
Namespaces for OCaml: a proposal

Gabriel Scherer Didier Rémy . . .

November 26, 2012

Contents

1 The Problem: naming conflicts among distributed libraries are
hard to avoid 2
1.1 Pack is not a satisfying solution . 2
1.2 Using long hopefully-unique names is impractical 2

2 Our proposal 2
2.1 A hierarchical compilation environment 3
2.2 A language of namespace construction 3
2.3 The view from the language . 5
2.4 Compilation unit information . 6
2.5 Restrictions and naming conventions 7

3 Considered extensions 7
3.1 Integrating the namespace language as OCaml source headers 7
3.2 Breaking compatibility for simpler dependencies 8
3.3 functor-pack integration . 9

The compilation environment

In our view, namespace handling is about configuration of the compilation environ-
ment: which libraries are visible under which name to the OCaml source file cur-
rently being compiled. We define the term “namespace” (space of names) to refer
to the compilation environment (the space of compilation units accessible through
module names).

The current implementation of OCaml configures the compilation environment
in a fairly naive way: it collects the -I flags passed in the compiler invocation
command as a set of paths, looks for compilation units (a bundle of .cmi, .cmo and
.cmx files with the same basename, with the sought-after extension depending on the
compilation phase), and produces a compilation environment where a compilation
unit ”foo.cm*” is represented, in an OCaml source file, by the capitalized module
name Foo. The basename of the compilation unit must corresponds to the internal
name stored inside the unit by the compiler, which means that the original source
file for foo.cmo must have been named foo.ml, or else compilation fails.

(In practice such a compilation environment is not build eagerly before starting
to analyze the compiled file, but the compilation units are looked-up on demand.
This doesn’t change the semantics of external module references in the program.)

1

1 The Problem: naming conflicts among distributed
libraries are hard to avoid

If two programmers happen to choose the same filename for a source file (and later
compiled unit), it is not possible to use both units as two parts of the same pro-
gram. The notion of “use” here is transitive with respect to dependencies, because
ultimately all dependencies must be linked together without conflicts. If two differ-
ent libraries each use one of the conflicting compilation units, you cannot use them
together in a program.

This is a fundamental problem as the user is not able to change the name of
the distributed libraries (the internal names are encoded in the units). Our ideal
goal is to let the user combine two libraries that have been independently developed,
without communication or coordination (explicit or implicit) between the providers.

1.1 Pack is not a satisfying solution

One could consider Pack as a potential solution to this conflict problem: library
distributor can pack libraries into module hierarchies, that limit the risk of name
clashes.

Unfortunately, packing produce huge .cmo files that the user then has to link
with. Packing an alternative standard library such as Core or Batteries would make
any user executable take tens of megabytes; users do not accept this choice, and
library authors have to abandon packing.

A good namespace proposal should subsume -pack, in the sense that (most)
current uses of -pack could be replaced by a corresponding use of namespaces.

1.2 Using long hopefully-unique names is impractical

The convention some libraries have adopted to avoid post-distribution conflicts is
to use long, hopefully-unique module names (with no actual guarantees of unicity).
We argue that the current combination of naive namespace semantics and module
system semantics make this choice impractical.

To avoid being imposed the long hopefully-unique name throughout the pro-
gram, a user could alias a distributed module under a shorter name.

module List = MyProg_Prelude_List

However the semantics of module aliasing implies a copy of the aliased module
into the current compilation unit. In particular, it is not practical to factorize a
coherent set of such renamings (possibly on the library side) and reuse it across
programs, because that is equivalent to manual -pack-ing: it creates huge .cmo
files.

Rather than bending the semantics of modules to satisfy this purpose, we expect
a good namespace proposal to make the approach of long names practical, by giving
users and library providers ways to refer conveniently to arbitrary compilation units.

2 Our proposal

We propose to accept namespace configuration as part of the language semantics,
by specifying a clean set of operator to configure compilation environments. By
letting users specify the compilation environment in which the source file is to be
understood, we solve the problem of name clashes and long name inconveniences
on the user side.

2

2.1 A hierarchical compilation environment

We suggest that such compilation environments could have a hierarchical structure.
While a flat structure would be enough to solve the aforementioned problems, a
hierarchical structure:

• is consistent with the way most other languages organize their library ecosys-
tem

• naturally maps to user filesystems, which allows to conveniently infer the
namespace from structured library storage

• allows a natural set of operators, for example to combine distinct namespaces:
to be able to speak about libraries in the namespaces Core and Inria without
risk of conflict, it’s natural to define them as two subtrees (labeled Core and
Inria) of a bigger environment

A hierarchical namespace is structured as a name-labeled tree whose leaves are
compilation units. For example, we could invoke the compiler on a source file,
passing the following compilation environment (where + is a shortcut for the OCaml
default library directory):

{

Joe: {

List: "+site-lib/joe/joe_list",

Array: "+site-lib/joe/joe_array"

},

Jenny: {

List: "+list",

ListDev: "/opt/ocaml/trunk/stdlib/list"

}

}

We can refer to a compilation unit through the sequence of labels to access it
through this environment: Joe#List for example (making an arbitrary choice of
separator, here distinct from the module-path separator . to avoid ambiguities).

2.2 A language of namespace construction

We can understand the current OCaml semantics as a restricted set of conventions
and “language” (command-line -I flags) to build such an environment – flat, with
no observable nesting.

We propose to extend this to a proper description language for environments.
Any reasonable set of operators on name-labeled trees could be fitting. Driven by
the usual application needs, we suggest the following set of base operators.

3

E,F ::= namespaces
| { (label : (”path”|E))∗ } literal structures
| E#label projection
| E − label subenvironment removal
| E[label\label] label renaming
| E[label := E] subenvironment replacement
| E only S signature restriction
| E [shallow|deep] merge [left|right|strict] F merge
| load ”path” file loading
| [file|provenance|strict] scan [flat|rec] ”path/” directory scan
| x variables
| let x = E in F let binding

S ::= namespace signatures
| { (label [: S])∗ } literal signatures

The semantics of most operators are clear; we will only detail projection, scan,
only and merge.

E#Foo accesses the subtree labelled Foo of the environment E. It should fail if
E has no label Foo, not return the empty environment. This is the difference be-
tween our choice of modeling namespaces as tree structures (with a clear distinction
between empty and non-existent subtrees), and the alternative choice of modeling
them as mappings from paths to compilation units – as in an earlier proposal.

file scan builds an environment by scanning a directory, keeping its compila-
tion units, and using the standard capitalization convention to choose their label.
If the rec flag is given rather than flat, we scan subdirectories recursively to get a
hierarchical environment corresponding to the filesystem structure. The other flag,
provenance scan, has a slightly different semantics (it explores the filesystem but
uses internal module information to choose the label path) that we will discuss later
in subsection 2.5. If no left flag is given, file is the default. If no right flag is given,
rec is the default.

only extracts from an environment a minimal environment satisfying a given
signature. The term signature here refers only to the shape of environments as a
tree of labels, with no type information. The restriction E only {Foo} is equiva-
lent to a projection {Foo:E#Foo}, and E only {Foo:S} corresponds to, recursively,
{Foo:(E#Foo only S)}.

Finally, merge returns the reunion of two environments. The optional flag on
the right indicates the conflict resolution strategy: if the two merged environments
both define the same path (sequence of labels), the strategy strict fails, left

uses the content of label of the left argument, and right the right; the default
value is strict. The optional flag on the left indicates a shallow or deep merge,
that is whether two subenvironments under the root label are considered in conflict
(shallow; fail or pick either subtree) or recursively merged (deep; conflicts hap-
pening only when a path designates a compilation unit in either environment); the
default choice is shallow.

The previous example could be built in the following way:

let stdlib = scan "+" in

let joe = load "+site-lib/joe/joe.ns" in

let trunk = scan "/opt/ocaml/trunk/stdlib" in

{ Joe: joe only {List, Array},

Jenny: { List: stdlib#List,

ListDev: trunk#List } }

4

The current OCaml compilation environment could be described in the follow-
ing way: we initially have just scan "+", and each flag -I "foo" transforms the
environment E into E merge right (scan "foo").

We propose to keep this convention of command-line interface by adding an op-
tion --namespace foo.ns (or -N foo.ns) that would transform the environment
E into E merge right (load "foo.ns"). More generally, we could map other ele-
ments of the namespace description language into environment-transforming command-
line options, as deemed useful.

On a rich description language A lot of the discussion on namespaces and
previous proposals evolved around an extremely minimal namespace description
language, tailored to enforce one or another convention of name handling. On
the contrary, we propose a semantic notion of namespace and a relatively rich
description language to build such semantic objects.

We think this richness is not a source of complexity or bloat. We expect the
proposal to respect a “pay for what you use” principle: users with simple needs
could ignore the description language, keeping the default environment, but the
more general descriptions would be useful in case of conflicts that currently require
sophisticated workarounds or are unsolvable. Finally, the description language en-
forces no particular convention and empower tool writers and organizations to select
them, rather than have to accept them. Of course, we can support the use of some
widespread conventions (such as the current semantics) by providing additional
description constructs for them (eg. scan).

Also note that a well-specified language based on a simple and general concept
can evolve easily. We do not expect the namespace convention language to be set
in stone, rather the semantics to be general enough to be gracefully extended to
new needs in the future – more so than the current “file name is module name and
linking name” design.

Finally, the clean separation between the compilation environment and the lan-
guage improves robustness. Independently of the details of namespace description
design, the value the descriptions produce (a tree-shapped mapping of names to
compilation units, possibly lazily computed) is clear, and it is the only thing the
OCaml source code will depend on.

2.3 The view from the language

We propose to add paths of the compilation unit environment, said otherwise “com-
pilation unit names”, as a new syntactic category compunit-name in the OCaml
grammar. The module-path rule would be changed in the following way:

module-path ::=

| compunit-name (. module-name)*

| module-name (. module-name)*

Note that there is an ambiguity: if, as in our previous example, the lexical
class for compunit-name includes the lexical class for module-name, the module
path List.Ord may be seen either as referencing the compilation unit List or an
internal module List (previously defined as module List = ... in the source file).
This ambiguity, already present in the current version of the OCaml language, is
the reason why ocamldep is so painfully approximative – more on that in the next
section (3.2).

That is the only change to the OCaml language that is necessary to implement
our proposal. If we were to use a flat rather than hierarchical namespace (as Alain
Frisch suggested as a minimal proposal), mangle hierarchical compilation unit names
into single module names, or use . as the label separator for compilation unit names,

5

we could even avoid introducing any syntactic change at all, but we believe that
there is sufficient value (additional structure and avoided confusion) in this proposal.

We discuss some possible additional changes in the “Considered extensions”
section of this document (3).

2.4 Compilation unit information

The changes proposed so far essentially allow to solve the problems evoked in the
introduction, under the assumption that programmers were to use long, hopefully-
long module names. We are not satisfied with this as the only way to avoid name
clashes for two different reasons:

• It does not coincide with the development techniques of most OCaml users
right now, which prefer small, readable source file names. Helping users to re-
fer to two different modules compiled from the same filename doesn’t actually
do any good if the OCaml linker rejects them.

• A naming strategy is not enough to ensure uniqueness in some fairly real-
istic scenarios, for example if an user needs to use two different versions of
the same library in the same program. We hinted at this use case with our
Jenny#List and Jenny#ListDev example: it is a very plausible need, and the
“long filenames” approach to avoid clashes would impose to rename all the
files of one of the version, which is impractical.

We therefore suggest the addition of two different information fields to the meta-
data of compiled units:

• an additional suffix field that would be part of the identity of the compilation
unit along with the original file name (in compiled object code), and could be
arbitrary data (for example a hash, or a randomly-generated unique identifier)
with strong unicity guarantees.

• an additional provenance field that would provide provenance information to
help humans distinguish two compilation units (coming from sources with the
same filename).

Our suggestion for the suffix field would be to let the user optionally force
its value, and otherwise pick a reasonable strategy that tries to ensure that two
independent developers choosing the same file name do not result in a module iden-
tity clash situation at link-time. For example, reusing the digest present in the
.cmi file would be a reasonable default choice. We could also consider generating
a random nonce at .cmi production time (even less clashes, but makes compila-
tion non-deterministic by default). There a design space here, and implementation
constraints to take into account.

We’re not aware of any “perfect strategy” that would fit all situations. Only
using the interface digest could result in potential clashes for broad interfaces inde-
pendently developed (monad.mli), and picking a random suffix at .cmi generation
time could be problematic for specific test reproductibility needs and modes of code
exchange (provide a .mli and expect a compilation unit in return to link with code
already compiled locally against a corresponding .cmi). In those complicated sit-
uations (that we suspect less frequent than module name clashes are right now in
the OCaml ecosystem), asking the user creating the compilation unit to explicitly
set the suffix is the right solution.

6

2.5 Restrictions and naming conventions

The provenance field is a suggestion of Fabrice Le Fessant; he envisions a prove-
nance convention similar to Java URL-like package names: inria.stdlib.list for
the standard List module for example. This provenance would also have a path
structure. Such a field would not be guaranteed to be unique among compilation
units (eg. when compiling two versions of the same library) but could still provide
useful guidance for user interaction, for example:

1. As a form of user-directed documentation: if module names are not unique
among the compilation units of a project, we don’t want the user to have to
identify compiled units (in low-level error messages, etc.) by their unreadable
suffix field; provenance information can help disambiguating.

2. To help populate the compilation environment in a “conventional” way re-
spected across the OCaml users, to make it easy to read other users’ code
without details on their namespace.

This suggest the following addition to the language of namespace construction:
a variant of the scan [rec] construction that would build a namespace where
encountered files are indexed not by their filesystem path from the scanned root,
but by their provenance information: the command would be [file|provenance]

scan [rec|flat], with file being the previous behavior selected by default, and
provenance placing files according to their provenance. For example, provenance scan rec "+"

could return a namespace such that Inria#Stdlib#List points to "+/list", etc.
Fabrice further suggests the availability of an optional check that would enforce

the semantics of both scanning methods to coincide, as a way to encourage users and
packagers to build in a more structured, corporate-friendly environment: strict

scan rec "foo" could verify that the filesystem organization under the path "foo"

is such that the compiled unit at path "foo/bar/baz" has provenance information
set to "bar.baz".

3 Considered extensions

The previous section form what we consider as a simple and small, yet reasonable
and usable, proposition of feature extension for better namespace support. Below
are further considerations that could be omitted from the final feature set or its
first implementation.

3.1 Integrating the namespace language as OCaml source
headers

Other namespace proposals had variants of the operations available today on mod-
ules, retargeted for namespaces; considering what it would mean, in particular, to
open a namespace path inside an OCaml source file. Our core proposal contains
no distinct open namespace feature – or any other change to the OCaml language
itself. Of course, you can write open Std#List if Std#List is a valid compila-
tion unit name, and therefore is interpreted in OCaml source as the corresponding
OCaml module, but there is no corresponding open Std.

We wish to maintain a clear phase separation between the compilation environ-
ment and the naming and typing environment of the program being processed: the
compilation environment has been fully described when invoking the compiler, and
it is not expected to evolve during the interpretation of a given source file, just as
the granularity of compilation units is the whole source file.

7

Nevertheless, some programming languages that have this phase separation still
allow users to specify namespace construction not anywhere in the source file, but at
the very beginning of the program: the syntax allows for a “header” that contains
import statements and potentially other unit-wide information. We think this
would be a valuable addition for the grammar of future OCaml versions: it would
allow users to embed (some part of) the namespace description directly in the
program itself, rather than in the command-line options passed to the compiler.

This has the benefit of giving a canonical way for users to distribute the compila-
tion environment along with their code – the environment being useful to interpret
the code, just as today the semantics of a source file depend on the filesystem
state and compilation option used. This is a more invasive language change and
it would break the current (rarely used) property that source files can be put be-
tween struct .. end then concatenated together; we’re afraid the elegant and
simplifying “a source file is exactly a module” idea is suffering fatal growth pains.

3.2 Breaking compatibility for simpler dependencies

If we could come back in time, we would remove the current ambiguity between
internal module names and compilation units. This change, suggested to us by
François Pottier, has the very sensible benefit of making it trivial to see which
compilation units a given source file depends on: just grep the source for compilation
unit names.

In presence of the ambiguity, ocamldep has to consider each module name as a
potential extern reference, which leads to a surapproximation of a file’s dependencies
in situations such as:

open A

(* a is an external dependency *)

open M

(* no way to know if this is external M or internal A.M

if A’s signature isn’t available (not compiled yet) *)

Most OCaml build systems rely on ocamldep, or somehow run in this problem
(you can’t compute the dependencies of a file whose dependencies haven’t been
compiled yet). It can result in useless compilation but, more importantly, failed
compilation due to imaginary cyclic dependencies. Solving it in a simple way would
be a very attractive change for both tool authors and users.

It is not clear how such a transition could happen without hard compatibility
break, and we are open to suggestions. We propose the following compromise:

• Allow the namespace label separator (written # in this document, but we
are not hung up on the concrete syntax) to be used at the beginning of a
namespace path. This would make both List and #List refer to the same
compilation unit, with only the first one ambiguously also a module name.

• Add a --strict-namespace flag where the first syntax without the separa-
tor, List, is not accepted. When also passed this --strict-namespace flag,
ocamldep would just look for occurrences of compilation units.

This side-effect of tremendously simplifying OCaml’s dependency computation
is one more reason to keep to the “phase separation” of namespaces mentioned in
the previous subsection (3.1). In particular, it encourages us to reject proposals
such as “local namespace open” – that don’t make this impossible, but still more
complex.

8

3.3 functor-pack integration

9

	The Problem: naming conflicts among distributed libraries are hard to avoid
	Pack is not a satisfying solution
	Using long hopefully-unique names is impractical

	Our proposal
	A hierarchical compilation environment
	A language of namespace construction
	The view from the language
	Compilation unit information
	Restrictions and naming conventions

	Considered extensions
	Integrating the namespace language as OCaml source headers
	Breaking compatibility for simpler dependencies
	functor-pack integration

