Two-Way Comparison Search Tees
A Generalization of Binary Search Tees and Split Tees

David Spuler
Dept. of Computer Science
James Cook University of North Queensland

Abstract

A generalization of binary searchetes and binary split trees is developed that takes advantage of
two-way key comparisons — the two-way comparissm tThewo-way comparison tree is shown to have
little use for dynamic situations, but to be an improvement over the optimal binach s and the opti-
mal binary split tree for static data setdn Q(n) time and space algorithm is presented for construction of
the optimal two-way comparison tree when access probabiliteesgaial; the construction of the optimal
tree for moe general probabilities is shown to be readfficult and unlikely to cost less thar(i®).

1. Introduction

Binary search trees are a well-known and effective method of searching forHiatever it has
been noted that they can be improved upon when a 3-way key comparison costs twice as much as a 2-way
key comparison.n that case, a node visitation in a binary search tree involves two 2-way comparisons —
an equality comparison and an order comparisgimeil [1978] noted that an improvement would be to sep-
arate these two tests, applying them to different keys, and introduced a new data structure for this purpose:
the binary split tree A node in the binary split tree contains two keys; one is used for the equality compari-
son and the other for the order comparison.

Given the separation of two types of tests, a generalization of both these types of trees becemes inter
esting. Asmotivation, consider the case when two keys have much higher frequencies than all other keys
(including unsuccessful search). In this case, the optimal search order is to test both keys for equality
before performing any order tests. Neither binary search trees nor split trees can achieve this search order.

2. Definition of the Two-Way Comparison Tee

The generalization is to have a tree where each node contains a single key and a boolean flag to indi-
cate whether a comparison with the key should be for equality or for. ddddes are calledqualitynodes
or order nodes. Ifa node is an equality node, it has at most one subtree (i.e. it has one sub-tree which can
be nil), but an order node can have zero, one or two sub-trees (i.e. two sub-trees, both of which can be nil).

The search algorithm for the two-way comparison tree is shown in Figutéslpresented as a sim-
ple recursive algorithm, but a mordieient iterative version can be simply developed (although as we shall
see, the efficiency of this search algorithm is not important).

procedure search(node);
begin
if node = nilthen {*** unsuccessful search when get to nil leaves ***}
NOTFOUND(searchkey)
else
begin
if node is an equality nodken
begin
if searchkey = node”.kdfien {*** equality test ***}
FOUND(searchkey)
else
search(node”.left) {***search single descendant ***}
end
else
begin
if searchkey <= node”.kakien
search(node”.left) {****** search left sub-tree ***}
else
search(node”.right) {***search right sub-tree ***}
end
end
end

FIGURE 1. Search Algorithm for Two-Way Comparison Tree

The search algorithm as given above for a two-way comparison tessédfficient than searching a
binary search tree or a split tree because of the extra boolean test to determine whether the node is an equal-
ity or order node.This inefficiency means that the two-way comparison tree is not a good data structure for
the dynamic situation where axplicit tree must be maintaineddowever the node-type test can be
removed for trees representistatic data setby cleverly coding the treienplicitly in program code, rather
than explicitly in an actual tree data structure. All finite data structures can be converted to execution code
using this method, and the two-way comparison tree will be finite under the assumption of statio data.
this way each node of the tree is converted into an if-then-else programming language statement. The tree
structure is implicitly represented by program fl@nd in fact, the program flow graph for that part of the
program becomes a tree. At each node, there is no longer any need to test the boolean flag, because it is
clear which type of node is being used, and the test is not needed at run-time. This is rather like unrolling
all the recursive calls of the search routine into inline code — it is possible because the recursive depth is
finite, as the tree has finite depth. For example, the algorithm to search the two-way comparison tree shown
in Figure 2 can be written as inline code as shown in Figure 3.

FIGURE 2. Two-way comparison tree for keys 1..4

if searchkey =4 then
FOUND(4)
else
begin
if searchkey <=2 then
begin
if searchkey =2 then
FOUND(2)
else if searchkey = 1 then
FOUND(1)
else
NOTFOUND(searchkey)
end
else {*** key > 2 ***}
begin
if searchkey =3 then
FOUND(3)
else
NOTFOUND(searchkey)
end
end

FIGURE 3. if-then-else statements for 2-way comparison tree

3. Properties of the Two-Way Comparison Tee

All keys being searched for must be stored in exactly one equality node — they must appear in a
node once so as to be found, and appearing twice would be redundant fiognhefHencethere are
exactlyn equality nodes.

None of the keys need appear in an order node, although the same keys will often be used in both
places. Ordenodes need only form an index over the other no@e® situation where the use of non-key
order nodes would be useful is to use smaller keys where the order comparison is CHespecan be
less tham order nodes (e.g. there could be zero order nodes if the fishparisons are all for equality).

At an order node, all the keys in equality nodes in the left subtree vdltie key in the order node,
and all keys in equality nodes in the right subtree will be > the key in the order node.

There is no explicit relationship between the key in an equality node and keys in equality nodes of its
sub-tree (although this key will usually be the most heavily weighted, so as to make the tree as close as pos-
sible to optimal).

4. Binary Search Trees and Split Tees as Special Cases

The binary search tree is a special case of two-way comparison tree where each equality node has as
its immediate child an order node containing the same Khig assumes a tree search algorithm that does
its equality test first; otherwise the corresponding two-way comparison tree is an order node with the equal-
ity node with the same key as the left chilthus, the tree structure alternates between equality and order
nodes.

A split tree is also a special case of the two-way comparison tree which has the same restriction that
the tree structure alternates between equality and order nodes as the search moves down the tree. An order
node always has an equality node as its paftdotvever lit trees do not require the keys to be the same
in pairs of nodes.

5. Constructingthe Optimal Two-Way Comparison Tree For Equal Probabilities

An efficient algorithm can be developed for constructing the optimal two-way comparison tree under
the assumption that keys have equal access probabilities for successful search and that unsuccessful search
does not occurThese assumptions correspond well to an application in compiler design — code genera-
tion for the Pascal case statement — where probabilities of the cases are unknown (and therefore assumed
equal) and unsuccessful search is unimportant since it is an exceptional condition that leads to program ter
mination with a diagnostic (refer to [Spulé®92]).

For the following discussion we will denote the cost of the optimal treerwithdes ag,. Note that
this cost is dependent only arbecause all access frequencies are equal and, of course it is not dependent
on the key values — thus, any optimal tree witkeys has cost,. For convenience we will denote the
cost of the empty tree with zero keyscgs- 0.

The crucial point to note in the construction of the optimal two-way comparison tree, which follows
from the recursive nature of the tree, is thalbtrees of the optimal tree must also be optimal

Hence, when finding the optimal tree fokkeys we need only examine all the possible choices of
root nodes and determine the costs of the optimal subtrees on either side of the rodhimdpproach is
analogous to that used to build the optimal binary search tree [Knuth, 1973, p436]. The choice of a root
node has two main alternatives: an equality node or an order Aogenode can be used as the equality
node, as all have equal probabilities. The cost of the resulting tree is 1 comparison for the (equality) root
node plus the cost of the subtree contaimingl keys (an equality node has only one subtr@dle cost of
the subtree witim — 1 keys will be:

ChptNn-—1.

because the cost of the subtree with cgstis the sum of the heights of all tequalitynodes:
n-1 n-1
2 hip =2 h, becausep =1
i=1 i=1

and hanging this subtree from another node increases the height of each equality node by one, leading to
the new cost:

1 n-1

hi+>1=cp1+n-1

i=1 i=1

n-

n-1
z hi + 1 =
i=1

Thus the total cost of the resulting tree by choosing an equality root node is:
Ch=1l+c,1+tn—-1=cp1*+nN

The choice of awrder root node is more complicated, as different choices of root nodes lead to dif-
ferent costs. There aredifferent choices of keys for the order node (although some of them are trivially
irrelevant), and the cost of the resulting tree for each choice will be the sum of the costs of the two subtrees
(the root node has no weight because it is an order node and search cannot terminateettiewe).
denote the number of keys in the left subtree (withi keys in the right subtree), the cost of the resulting
tree will be:

Ch=C +Cphi*tn

where the +n" term arises for similar reasons to the 1 term in the equality root node choice — all of the
n equality keys in the two optimal subtrees have their height increased by 1, thusratilthg total cost.

This idea leads to dynamic pogrammingsolution whereby the optimal trees for snrakire calcu-
lated first, stored in a table and then used to build optimal trees der far This algorithm follows the
approach to constructing the optimal binary search tree (see [Knuth, 1973, pA&6phoice of root node
can be made so that its cost is the minimum of the cost of the single tree resulting from an equality root
node, and the formulae for timepossible trees from the different choices of order root nodes. The com-

putation of the optimal tree directly from this recurrence relation yield3(ef) algorithm.

However it turns out that a much simpler approach can be used to construct the optimal tree for
equal probabilities. An exact solution of this recurrence relation is posstolen < 3 the optimal two-
way tree is a sequence of equality nodes (i.e. equivalent to linear seaocim)= 4 there are two possible
optimal trees — either four equality nodes in sequence, or an order node as root with two equality nodes in
each subtreeThe tree with the order node is preferable, because although it has the same average cost as
the one with only equality nodes, its total height is one less and therefore has slightly reduced worst case
cost. Forn >4 the optimal tree always has an order node as root (i.e. never an equality node), and the
choice of order node is simply the/2th node.

-5-

That the solution fon > 4 is so simple appears surprising initialbut it can be explained intuitively
from the information-theoretic viewpoint in that testing the middle key gets the maximum "information”
from a comparison.

The optimal two-way comparison tree has order nodes in the internal nodes forming an index over
subtrees containing equality nodes close to the leaWese a subtree has as few as 3 keys, it becomes a
sequence of equality nodefmtuitively, this is similar to a binary search over an array that changes to linear
search when the size of the interval to be searched is less than or equal to 3.

By using the above solution to the recurrence, a simple Pascal function can be designed to build the
optimal tree. This routine is very similar to that used to build a complete binary search tree from the binary
search algorithm [Knuth, 1973, p409].

function build_two_way2(keys : ArrayOfKeys; left,right:integer): TreePtr;
var

n : i nteger;

mid : integer;

temp : TreePtr,;
begin

n = r ight-left+1; {*** number of keys ***}
if n <= 3 then

case n of {*** Build sequence of equality nodes ***}
0: temp := nil;

1: temp := new_node(keys[left], equality);

2: begin

temp := new_node(keyslleft], equality);
temp”.left := new_node(keys[left+1], equality);
end,
3: begin
temp := new_node(keyslleft], equality);
temp”.left := new_node(keys[left+1], equality);
temp”.left".left := new_node(keys[left+2], equality);

end,;
end
else
begin
mid := (left + right) div 2; {*** the m/2rth key ***}
temp := new_node(keys[mid], order); {*** Order node ***}
temp”.left := build_two_way?2(keys, left, mid); {*** keys <= key[mid] ***}
temp”.right := build_two_way2(keys, mid+1, right); {*** keys > key[mid] ***}
end;
build_two_way?2 := temp;
end;

6. Analysisand Proof

The solution of the recurrence fop has been presented above and intuitiguaeents have sup-
ported it. However a formal proof is necessary to show that the algorithm produces the optimaFuee.
n <4 it is adequate to enumerate all possible trees to show that<d@ the root node will be an equality
node and that fon = 4 dther an equality node or an order node (With 2) is adequate. The general proof
that an order node is optimal for> 4 and also thak = mn/2jis more difficult.

Lemma 1. The exact solution o, has the following form:
c=0,c,=1,c,=3
c,=a(b+4)+(3b+6)2°, forn=>3, wheren=a+3*2° b>0, 0< a< 3*2°
or equivalently:
c,=2a+(b+2)n ,forn>3, wheren=a+3*2° b>0,0<a<3*2°

Proof: The particular values fan < 2 can be found by simple enumeration of all possible trees. In addi-
tion, the values o€, for 3< n <5 can be verified by enumeration of possible trees, direct computation of
¢, and calculation of the general formula fgr for n= 3. Forn= 6 the proposition can be proved by
showing that:

Ch = CD|1/2|]+ CDD/ZD+ n

Forn =6 we @n express ash = a+3* 2° whereb > 0 and 0< a < 3* 2°. Note thatb > Oimplies
that 3* 2P is even. Therefore, the following identities hold:

M/20= h+3*2° 0= @20+ 3* 27

M20= h+3*2° 5= @20+ 3+ 27

Also because of the inequalisy< 3* 2° the following inequalities apply:

a/20< 3*2°1
@/20< 3* 201

Hence we can express,,;uniquely in terms of' = @/2njandb’ = b -1 wherea’ < 3* 2. How-
ever there are two cases far,,; €ther @/20< 3% 251 or m20=3*2"1. In the first case we can
expresypuniquely in terms o' = @/2jandb’ = b - 1 wherea’ < 3* 2" Therefore:

Covegt Cyzpt N

=@2(b-1)+4)+BMh-1)+6) 2 + @2(b-1)+4)+(B(b-1)+6) X +a+3*2°
= (@2 @20(b+3)+(Bb+3) P +a+3*2°

=ab+3)+@Bb+6)P +a

—a(b+4)+(Bb+6)2

:Cn

For the second case whea/2=3* 2" we can expressy,, uniquely in terms ofa’ = 0 and
b' = b. Therefore:

Covznt Cayzpt N

=@2(b-1)+4)+Bh-1)+6) X1 +0((b-1)+4)+(Bb+6) X +a+3*2P°
=@/2(b+3)+(Bb+3) X1+ Bb+6) L +a+3*2°
=@/2(b+3)+((b+1)+2(b+2)+2)3* 21 +a
=@20(b+3)+((b+1)+2(b+2)+2)@21+ a

= (/2 @/20)(b + 3)+(2b + 4) 20+ a

=a(b+4)+ (2b+4)3* 2*1

=a(b+4)+ (3b+6)2°

:Cn

The second form of the exact expression presented in the Lemma follows easily by arithmetic manip-
ulations from the use of the substitutios 3 * 2°, as bllows:
2a+(b+2)n=2a+(b+2)(@+3*2°
=2a+a(b+2)+(b+2)(3*2)
=a(b+4)+(3b+6)2°
Lemma 2. The sequence of differencds = c,,,1 — ¢, has the following exact form for> 3:
da+3*2b =b+ 4,
where:

n=a+3*2° b>0,0<a<3*2"

Proof: Let n be expressed as=a+3*2" whereb>0 and 0<a<3*2° which allowsc, to be
expressed in terms @fandb. n+1 can be expressed as= a' +3*2”, wherea’'= a+1 and b’ = b and

thereforec,,; can be expressed in termsaof 1 and b, provideda + 1 < 3* 2P, Therefore:
dn =Cnh1~Cp
=(b+2)(n+1)+2(a+1)-(b+2)n-2a
=bn+2n+b+2+2a+2-bn-2n-2a
=b+4

At the boundary case wheset 1=3 * 2° we can express,,; in terms ofa’ = 0 and b’ = b + 1 giving:
dn =Cns1—Cp
=(b+1+2)(n+1)+2(0)-(b+2)n-2a
=bn+3n+b+3-bn-2n-2a
=b+4+(n-1-2a)
=b+4

The last step follows because-1-2a=0. Atthe boundary we hava+1=3* 2" and also the general
resultn = a+ 3 * 2°. Together these two equalities imply that=2n - 1.

The form ofd, shows that it contains long sequences of identical numbers which increment by one at
the boundaries of the sub-sequences (i.e. wharcreases by one). The result shows tihais a non-
decreasing sequence, and also thas a strictly increasing sequence foe 3 snced,, > 0.

Lemma 3. The expression, + C,_, is hon-increasing for £ k < [{n/2)rwhenn = 3.

Proof: To prove the lemma, consider the following conditionkon

k < m/2g

- k=<m/i2g
> k< (n+1)/2
> 2k<sn+1
~ k=-1<n-k

From Lemma 2 we see that is a non-decreasing sequence, and therdferg < n — k implies:

k-1 < dn
= Ck = Ck-1 = Cpk+1 ~ Cnk
= Ck + Cnk = Cpi+1 T Cy1

This shows that, + ¢, is non-increasing for & k < m/2pfor n= 3. By symmetry ofk andn -k we
need not consider values lofn the rangen/2(1+ 1 < k < n. Thereforek = m/2jis the optimal choice df
if an order node is chosen.

Lemma 4. The value ot,_; is strictly greater than,,+ Cpypfor n> 4.

Proof: This proposition is proved by showing first tlegt; is strictly greater than, + ¢, for n = 5 as bl-
lows.

Cp-1 > C2tCh2

|ﬁ Cn—l_Cn—Z_CZ > 0
|ﬁ dn_2_3>0

iff b+4-3=b+1>0,

The last step follows because whem 5, we can expresa—2 in the forma+3* 2P

whereb = 0 and 0< a< 3*2°. Sinceb = 0, the conditiorb + 1 > Ois always true, and the inter
mediate result has been proven.

The above has shown thgt ; is larger than the choice &f=2 from the second case of the recur
rence, but has not related it to the optimal choide ®fmn/2; However sncen = 5 we havem/2= 2 and
therefore by Lemma 3 we have the relation:

CrtChop 2 CDﬂ/ZD+ CDﬂ/ZD forn=5.

Therefore:

Cn-1 > C2 + Cp 2 Cpypy* Cpyzy fOrn 2 5.

This has shown that the optimal choice of nodenfor4 is an order node witk = /27

Theorem 1. The optimal two-way comparison tree for equal probabilitiesifoodes has an equality node
as the root node fam < 3, either an equality node or order node wkith 2 whenn =4, and an order node
as the root node far > 4, with the mn/2[th key being stored in the order node.

Proof: The proposition is easily proved far< 4 by enumeration of all possible trees or by calculation of

¢,. Lemma 1 has proved an exact solutiorciavhich follows the conditions specified by this theorem.

Lemma 4 has proved that for> 4 the value ofc,, using an order node is always better than that for an
equality node. Lemma 2 has proved that the optimal choice of order node Wil g2

Theorem 2. The asymptotic behaviour of, is O(nlogn).

Proof: The exact form ofc, for n=3 can be presented in terms ofby calculatinga and b from
n=a+3*2° By the definition ofa we have

a<3*2P
and also:
n=a+3*2°

Therefore:
asn/2

Also, b is bounded by:
b = tog,(n - a)/30< fog, n/3[< log, N
Together these bounds cmandb imply:

C, =2a+(2+b)n
<2(n/2)+ (2 +log, N)n

The asymptotic behaviour of this function is obviouSinlogn). Thereforethe average cost of searching
for a key in the optimal two-way comparison tree with equal access probabilidéegn) two-way com-
parisons.

7. TheOptimal Two-Way Comparison Tree For Unequal Probabilities

Let us now consider the problem of computing the optimal two-way comparison tree in the general
situation where access frequencies for successful and unsuccessful search are known and are not all identi-
cal. Thisproblem has already been studied for the special cases of the binary search tree and the binary
split tree, and the research there gives us some insight into the difficulty of the problem.

The best known algorithm for constructing the optimal binary search tre@(hgstime complexity
[Knuth, 1973, p436]. The best known algorithm for the optimal binary split tre©m} complexity with
the restriction that the access probabilities for each key are all different; without this restriction, the best
known algorithm isO(n°) [Hester Hirschbeg, Huang and Wong, 1986]. For both these situations, the
space complexity i©(n®). Thereason for this apparently strange restriction of distinct access frequencies
is that if access frequencies are distinct, they can be placed into a strict ordering which simplifies the
dynamic programming algorithmSince the key with maximum weight is always placed as the value key
in the root of a split tree, for a given interval of keys with a number of keys "missing” (i.e. as value keys in
higher internal nodes), tHemissing keys are known to be thdeys with greatest weights and a value can
be ascribed to the optimal split tree from that interval with a particular number of keys miBsangdetails
can be found in [Huang anddng, 1984 (b)], [Perl, 1984], and [Hestétirschbeg, Huang and \dhg,

1986].

Huang and Wng [1984a] have also demonstrated a result about split trees that is not intuitively obvi-
ous — that having the key with maximum weight as the value key in the root node does not necessarily
give the best treeThey have defined "generalized split trees" which lift the restriction that the maximally
weighted key need be in the root nodtuang and Wong [1984a] give &{n°) algorithm for constructing
optimal generalized split trees.

Since two-way comparison trees are a generalization of split trees (and of generalized split trees) we
would assume that the best algorithm for the optimal two-way comparison tree would have @¢ri8ast
cost, possibly under the restriction of distinct access probabilities. The discovery by Huangrmmnd W
[1984a] and [1984b] that generalized split trees can be better than split trees has implications for designing
an algorithm for the optimal two-way split tree. In particulsinen the root node of the optimal two-way
tree is arequalitynode it does not necessarily follow that choosing the key with the largest weight will pro-
duce the optimal tree; it might be true but there is as yet no proof nor counter-example.

It may be fruitful to define a class of restricted two-way comparison trees where an equality node
must contain the maximally weighted kelyor this class of two-way trees we could use similar dynamic
programming techniques to those for split trees, particularly if we assume distinct access probabilities.

8. Conclusions

The two-way comparison tree is a generalization of binary search trees and binary split trees, which
takes full advantage of the breakdown of a 3-way key comparison into two 2-way key comparisons. Itis a
practical alternative for searching static sets of data, but is not useful for dynamic data sets (i.e. it is not
practical if insertion or deletion are requiredixplicit representation of a two-way comparison tree is inef-
ficient because of the need to test a boolean flag during search, imjtliait two-way comparison tree
represented bif-thenelseprogram statements can be verfiognt. Theconversion of an explicit two-
way comparison tree ti6-thenelsestatements (or to lower-level assembly language) is a simple procedure
and can be automated.

A linear time algorithm has been presented for building the optimal two-way comparison tree when
access frequencies are equal (or assumed equal when they are unkhiosvpjoblem of building the opti-

mal tree under more general weights is examined and it is conjectured that it will cost @éasThe
author is currently examining this more difficult problem.

9. Acknowledgments

Special thanks to colleagues on g@.math international news group, especially David Larue
and Laurent Alonso, for their help in solving the recurrence.

10. Refeences

Hester JH., Hirschberg, D.S., Huang, S-H.S. andny, C.K., "Faster Construction of Optimal Binary
Split Trees"J of Agorithms 7(3):412-424, (Sep 1986).

Hester JH., Hirschberg, D.S. and Larmore, L.L., "Construction of Optimal Binary Spdieg in the Pres-
ence of Bounded Access Probabilitiesaf Agorithms 9(22):245-253, (June 1988).

Hester JH. and Hirschberg, D.S., "Faster Construction of Optimal Binary Spesr,Journal of Algo-
rithms, Vol 7, 412-424, 1986.

Huang, S-H.S. and ¥ig, C.K., "Generalized Binary Splitdes" Acta Informatica21(1):113-123, (1984).
Huang, S-H.S. and Wong, C.K., "Optimal Binary Split Treds¥f Agorithms 5(1):6579, (Mar 1984).

Knuth, D.E.,The Art of Computer Programming, Vol. lll: Sorting and $barg Addison-WesleyRead-
ing, Mass, 1973.

Perl, Y., "Optimum split trees'J of Agorithms 5(3):367-374, (Sep 1984).

-10 -

Sheil, B.A., "Median Split Trees: A Fast Lookup Technique for Frequently Occurring KeysCM Vol.
21, No. 11, p947-958, Nov 1978.

Spuler D.A., "Code Generation for the Pascal Case Stateniargfeparation 1992.

