
- 1 -

Two-Way Comparison Search Trees
A Generalization of Binary Search Trees and Split Trees

David Spuler
Dept. of Computer Science

James Cook University of North Queensland

Abstract

A generalization of binary search trees and binary split trees is developed that takes advantage of
two-way key comparisons — the two-way comparison tree. Thetwo-way comparison tree is shown to have
little use for dynamic situations, but to be an improvement over the optimal binary search tree and the opti-
mal binary split tree for static data sets.An O(n) time and space algorithm is presented for construction of
the optimal two-way comparison tree when access probabilities are equal; the construction of the optimal
tree for more general probabilities is shown to be more difficult and unlikely to cost less than O(n4).

1. Intr oduction

Binary search trees are a well-known and effective method of searching for data.However, it has
been noted that they can be improved upon when a 3-way key comparison costs twice as much as a 2-way
key comparison.In that case, a node visitation in a binary search tree involves two 2-way comparisons —
an equality comparison and an order comparison.Sheil [1978] noted that an improvement would be to sep-
arate these two tests, applying them to different keys, and introduced a new data structure for this purpose:
the binary split tree.A node in the binary split tree contains two keys; one is used for the equality compari-
son and the other for the order comparison.

Given the separation of two types of tests, a generalization of both these types of trees becomes inter-
esting. Asmotivation, consider the case when two keys have much higher frequencies than all other keys
(including unsuccessful search). In this case, the optimal search order is to test both keys for equality
before performing any order tests. Neither binary search trees nor split trees can achieve this search order.

2. Definition of the Two-Way Comparison Tree

The generalization is to have a tree where each node contains a single key and a boolean flag to indi-
cate whether a comparison with the key should be for equality or for order. Nodes are calledequalitynodes
or order nodes. Ifa node is an equality node, it has at most one subtree (i.e. it has one sub-tree which can
be nil), but an order node can have zero, one or two sub-trees (i.e. two sub-trees, both of which can be nil).

The search algorithm for the two-way comparison tree is shown in Figure 1.It is presented as a sim-
ple recursive algorithm, but a more efficient iterative version can be simply developed (although as we shall
see, the efficiency of this search algorithm is not important).

- 2 -

proceduresearch(node);
begin
if node = nilthen {*** unsuccessful search when get to nil leaves ***}

NOTFOUND(searchkey)
else
begin
if node is an equality nodethen

begin
if searchkey = nodeˆ.keythen {*** equality test ***}

FOUND(searchkey)
else

search(nodeˆ.left) {***search single descendant ***}
end

else
begin

if searchkey <= nodeˆ.keythen
search(nodeˆ.left) {****** search left sub-tree ***}

else
search(nodeˆ.right) {***search right sub-tree ***}

end
end

end

FIGURE 1. Search Algorithm for Two-Way Comparison Tree

The search algorithm as given above for a two-way comparison tree islessefficient than searching a
binary search tree or a split tree because of the extra boolean test to determine whether the node is an equal-
ity or order node.This inefficiency means that the two-way comparison tree is not a good data structure for
the dynamic situation where anexplicit tree must be maintained.However, the node-type test can be
removed for trees representingstatic data setsby cleverly coding the treeimplicitly in program code, rather
than explicitly in an actual tree data structure. All finite data structures can be converted to execution code
using this method, and the two-way comparison tree will be finite under the assumption of static data.In
this way, each node of the tree is converted into an if-then-else programming language statement. The tree
structure is implicitly represented by program flow, and in fact, the program flow graph for that part of the
program becomes a tree. At each node, there is no longer any need to test the boolean flag, because it is
clear which type of node is being used, and the test is not needed at run-time. This is rather like unrolling
all the recursive calls of the search routine into inline code — it is possible because the recursive depth is
finite, as the tree has finite depth. For example, the algorithm to search the two-way comparison tree shown
in Figure 2 can be written as inline code as shown in Figure 3.

=2

=1

=3

=4

<=2

FIGURE 2. Two-way comparison tree for keys 1..4

- 3 -

if searchkey = 4 then
FOUND(4)

else
begin

if searchkey <= 2 then
begin

if searchkey = 2 then
FOUND(2)

else if searchkey = 1 then
FOUND(1)

else
NOTFOUND(searchkey)

end
else {*** key > 2 ***}

begin
if searchkey = 3 then

FOUND(3)
else

NOTFOUND(searchkey)
end

end

FIGURE 3. if-then-else statements for 2-way comparison tree

3. Properties of the Two-Way Comparison Tree

All keys being searched for must be stored in exactly one equality node — they must appear in a
node once so as to be found, and appearing twice would be redundant and inefficient. Hencethere are
exactlyn equality nodes.

None of the keys need appear in an order node, although the same keys will often be used in both
places. Ordernodes need only form an index over the other nodes.One situation where the use of non-key
order nodes would be useful is to use smaller keys where the order comparison is cheaper. There can be
less thann order nodes (e.g. there could be zero order nodes if the firstn comparisons are all for equality).

At an order node, all the keys in equality nodes in the left subtree will be≤ the key in the order node,
and all keys in equality nodes in the right subtree will be > the key in the order node.

There is no explicit relationship between the key in an equality node and keys in equality nodes of its
sub-tree (although this key will usually be the most heavily weighted, so as to make the tree as close as pos-
sible to optimal).

4. Binary Search Trees and Split Trees as Special Cases

The binary search tree is a special case of two-way comparison tree where each equality node has as
its immediate child an order node containing the same key. This assumes a tree search algorithm that does
its equality test first; otherwise the corresponding two-way comparison tree is an order node with the equal-
ity node with the same key as the left child.Thus, the tree structure alternates between equality and order
nodes.

A split tree is also a special case of the two-way comparison tree which has the same restriction that
the tree structure alternates between equality and order nodes as the search moves down the tree. An order
node always has an equality node as its parent.However, split trees do not require the keys to be the same
in pairs of nodes.

5. Constructing the Optimal Two-Way Comparison Tree For Equal Probabilities

An efficient algorithm can be developed for constructing the optimal two-way comparison tree under
the assumption that keys have equal access probabilities for successful search and that unsuccessful search
does not occur. These assumptions correspond well to an application in compiler design — code genera-
tion for the Pascal case statement — where probabilities of the cases are unknown (and therefore assumed
equal) and unsuccessful search is unimportant since it is an exceptional condition that leads to program ter-
mination with a diagnostic (refer to [Spuler, 1992]).

- 4 -

For the following discussion we will denote the cost of the optimal tree withn nodes ascn. Note that
this cost is dependent only onn because all access frequencies are equal and, of course it is not dependent
on the key values — thus, any optimal tree withn keys has costcn. For convenience we will denote the
cost of the empty tree with zero keys asc0 = 0.

The crucial point to note in the construction of the optimal two-way comparison tree, which follows
from the recursive nature of the tree, is thatsubtrees of the optimal tree must also be optimal.

Hence, when finding the optimal tree forn keys we need only examine all the possible choices of
root nodes and determine the costs of the optimal subtrees on either side of the root node.This approach is
analogous to that used to build the optimal binary search tree [Knuth, 1973, p436]. The choice of a root
node has two main alternatives: an equality node or an order node.Any node can be used as the equality
node, as all have equal probabilities. The cost of the resulting tree is 1 comparison for the (equality) root
node plus the cost of the subtree containingn − 1 keys (an equality node has only one subtree).The cost of
the subtree withn − 1 keys will be:

cn−1 + n − 1.

because the cost of the subtree with costcn−1 is the sum of the heights of all theequalitynodes:

n−1

i=1
Σ hi pi =

n−1

i=1
Σ hi , becausepi =1

and hanging this subtree from another node increases the height of each equality node by one, leading to
the new cost:

n−1

i=1
Σ hi +1 =

n−1

i=1
Σ hi +

n−1

i=1
Σ 1 = cn−1 + n − 1

Thus the total cost of the resulting tree by choosing an equality root node is:

cn = 1+ cn−1 + n − 1 = cn−1 + n

The choice of anorder root node is more complicated, as different choices of root nodes lead to dif-
ferent costs. There aren different choices of keys for the order node (although some of them are trivially
irrelevant), and the cost of the resulting tree for each choice will be the sum of the costs of the two subtrees
(the root node has no weight because it is an order node and search cannot terminate there).Letting i
denote the number of keys in the left subtree (withn − i keys in the right subtree), the cost of the resulting
tree will be:

cn = ci + cn−i + n

where the "+n" term arises for similar reasons to then − 1 term in the equality root node choice — all of the
n equality keys in the two optimal subtrees have their height increased by 1, thus addingn to the total cost.

This idea leads to adynamic programmingsolution whereby the optimal trees for smalln are calcu-
lated first, stored in a table and then used to build optimal trees for larger n. This algorithm follows the
approach to constructing the optimal binary search tree (see [Knuth, 1973, p436]).The choice of root node
can be made so that its cost is the minimum of the cost of the single tree resulting from an equality root
node, and the formulae for then possible trees from then different choices of order root nodes. The com-
putation of the optimal tree directly from this recurrence relation yields anO(n2) algorithm.

However, it turns out that a much simpler approach can be used to construct the optimal tree for
equal probabilities. An exact solution of this recurrence relation is possible.For n ≤ 3 the optimal two-
way tree is a sequence of equality nodes (i.e. equivalent to linear search).For n = 4 there are two possible
optimal trees — either four equality nodes in sequence, or an order node as root with two equality nodes in
each subtree.The tree with the order node is preferable, because although it has the same average cost as
the one with only equality nodes, its total height is one less and therefore has slightly reduced worst case
cost. Forn > 4 the optimal tree always has an order node as root (i.e. never an equality node), and the
choice of order node is simply the n/2 th node.

- 5 -

That the solution forn > 4 is so simple appears surprising initially, but it can be explained intuitively
from the information-theoretic viewpoint in that testing the middle key gets the maximum "information"
from a comparison.

The optimal two-way comparison tree has order nodes in the internal nodes forming an index over
subtrees containing equality nodes close to the leaves.Once a subtree has as few as 3 keys, it becomes a
sequence of equality nodes.Intuitively, this is similar to a binary search over an array that changes to linear
search when the size of the interval to be searched is less than or equal to 3.

By using the above solution to the recurrence, a simple Pascal function can be designed to build the
optimal tree. This routine is very similar to that used to build a complete binary search tree from the binary
search algorithm [Knuth, 1973, p409].

function build_two_way2(keys : ArrayOfKeys; left,right:integer): TreePtr;
var

n : i nteger;
mid : integer;
temp : TreePtr;

begin
n := r ight - left + 1; {*** number of keys ***}
if n <= 3 then

case n of {*** Build sequence of equality nodes ***}
0: temp := nil;
1: temp := new_node(keys[left], equality);
2: begin

temp := new_node(keys[left], equality);
tempˆ.left := new_node(keys[left+1], equality);

end;
3: begin

temp := new_node(keys[left], equality);
tempˆ.left := new_node(keys[left+1], equality);
tempˆ.leftˆ.left := new_node(keys[left+2], equality);

end;
end

else
begin

mid := (left + right) div 2; {*** the  n/2 th key ***}
temp := new_node(keys[mid], order); {*** Order node ***}
tempˆ.left := build_two_way2(keys, left, mid); {*** keys <= key[mid] ***}
tempˆ.right := build_two_way2(keys, mid+1, right); {*** keys > key[mid] ***}

end;
build_two_way2 := temp;

end;

6. Analysisand Proof

The solution of the recurrence forcn has been presented above and intuitive arguments have sup-
ported it. However, a formal proof is necessary to show that the algorithm produces the optimal tree.For
n ≤ 4 it is adequate to enumerate all possible trees to show that forn ≤ 3 the root node will be an equality
node and that forn = 4 either an equality node or an order node (withk = 2) is adequate. The general proof
that an order node is optimal forn > 4 and also thatk =  n/2 is more difficult.

Lemma 1. The exact solution ofcn has the following form:

c0 = 0, c1 = 1, c2 = 3
cn = a(b + 4)+ (3b+6)2b, for n ≥ 3, wheren = a + 3 * 2b, b ≥ 0, 0≤ a < 3 * 2b.

or equivalently:
cn = 2a+ (b + 2)n , for n ≥ 3, wheren = a + 3 * 2b, b ≥ 0, 0≤ a < 3 * 2b.

Proof: The particular values forn ≤ 2 can be found by simple enumeration of all possible trees. In addi-
tion, the values ofcn for 3 ≤ n ≤ 5 can be verified by enumeration of possible trees, direct computation of
cn and calculation of the general formula forcn for n ≥ 3. For n ≥ 6 the proposition can be proved by
showing that:

- 6 -

cn = c n/2 + c n/2 + n

For n ≥ 6 we can expressn asn = a + 3 * 2b whereb > 0 and 0≤ a < 3 * 2b. Note thatb > 0 implies
that 3* 2b is even. Therefore, the following identities hold:

 n/2 = 

a + 3 * 2b


=  a/2 + 3 * 2b−1

 n/2 = 

a + 3 * 2b


=  a/2 + 3 * 2b−1

Also because of the inequalitya < 3 * 2b the following inequalities apply:

 a/2 < 3 * 2b−1

 a/2 ≤ 3 * 2b−1

Hence we can expressc n/2 uniquely in terms ofa′ =  a/2 andb′ = b − 1 wherea′ < 3 * 2b′ . How-

ever, there are two cases forc n/2 : either  a/2 < 3 * 2b−1 or  a/2 = 3 * 2b−1. In the first case we can

expressc n/2 uniquely in terms ofa′ =  a/2 andb′ = b − 1 wherea′ < 3 * 2b′ . Therefore:

c n/2 + c n/2 + n

=  a/2 ((b − 1) + 4)+ (3(b − 1) + 6) 2b−1 +  a/2 ((b − 1) + 4)+ (3(b − 1) + 6) 2b−1 + a + 3 * 2b

= ( a/2 +  a/2)(b + 3)+ (3b + 3) 2b + a + 3 * 2b

= a(b + 3)+ (3b + 6) 2b + a
= a(b + 4)+ (3b + 6) 2b

= cn

For the second case when a/2 = 3 * 2b−1 we can expressc n/2 uniquely in terms ofa′ = 0 and
b′ = b. Therefore:

c n/2 + c n/2 + n

=  a/2 ((b − 1) + 4)+ (3(b − 1) + 6) 2b−1 + 0((b − 1) + 4)+ (3b + 6) 2b + a + 3 * 2b

=  a/2 (b + 3)+ (3b + 3) 2b−1 + (3b + 6) 2b + a + 3 * 2b

=  a/2 (b + 3)+ ((b + 1)+2(b + 2)+2)3 * 2b−1 + a
=  a/2 (b + 3)+ ((b + 1)+2(b + 2)+2) a/2 + a
= ( a/2 +  a/2)(b + 3)+ (2b + 4) a/2 + a
= a(b + 4) + (2b + 4)3 * 2b−1

= a(b + 4) + (3b + 6)2b

= cn

The second form of the exact expression presented in the Lemma follows easily by arithmetic manip-
ulations from the use of the substitutionn = 3 * 2b, as follows:

2a+ (b + 2)n = 2a+ (b + 2)(a + 3 * 2b)
= 2a+ a(b + 2)+ (b + 2)(3 * 2b)
= a(b + 4)+ (3b+6)2b

Lemma 2. The sequence of differencesdn = cn+1 − cn has the following exact form forn ≥ 3:

da+3*2b = b + 4,

where:

n = a+3 * 2b, b ≥ 0, 0≤ a < 3 * 2b.

Proof: Let n be expressed asn = a + 3 * 2b where b ≥ 0 and 0≤ a < 3 * 2b which allows cn to be
expressed in terms ofa andb. n + 1 can be expressed asn = a′ + 3 * 2b′ , wherea′ = a + 1 and b′ = b and

- 7 -

thereforecn+1 can be expressed in terms ofa + 1 and b, provideda + 1 < 3* 2b. Therefore:

dn = cn+1 − cn

= (b + 2)(n + 1) + 2(a + 1)− (b + 2)n − 2a
= bn+ 2n + b + 2 + 2a + 2− bn− 2n − 2a
= b+4

At the boundary case wherea + 1=3 * 2b we can expresscn+1 in terms ofa′ = 0 and b′ = b + 1 giving:

dn = cn+1 − cn

= (b + 1 + 2)(n + 1) + 2(0)− (b + 2)n − 2a
= bn+ 3n + b + 3− bn− 2n − 2a
= b + 4 + (n − 1 − 2a)
= b+4

The last step follows becausen − 1 − 2a=0. At the boundary we havea + 1=3 * 2b and also the general
resultn = a + 3 * 2b. Together these two equalities imply that 2a= n − 1.

The form ofdn shows that it contains long sequences of identical numbers which increment by one at
the boundaries of the sub-sequences (i.e. whenb increases by one). The result shows thatdn is a non-
decreasing sequence, and also thatcn is a strictly increasing sequence forn ≥ 3 sincedn > 0.

Lemma 3. The expressionck + cn−k is non-increasing for 1≤ k ≤  (n/2) whenn ≥ 3.

Proof: To prove the lemma, consider the following condition onk:

k ≤  n/2
→ k ≤  n/2
→ k ≤ (n + 1)/2
→ 2k ≤ n + 1
→ k − 1 ≤ n − k

From Lemma 2 we see thatdn is a non-decreasing sequence, and thereforek − 1 ≤ n − k implies:

dk−1 ≤ dn−k

→ ck − ck−1 ≤ cn−k+1 − cn−k

→ ck + cn−k ≤ cn−k+1 + ck−1

This shows thatck + cn−k is non-increasing for 1≤ k ≤  n/2 for n ≥ 3. By symmetry ofk and n − k we
need not consider values ofk in the range n/2 + 1 ≤ k ≤ n. Thereforek =  n/2 is the optimal choice ofk
if an order node is chosen.

Lemma 4. The value ofcn−1 is strictly greater thanc n/2 + c n/2 for n > 4.

Proof: This proposition is proved by showing first thatcn−1 is strictly greater thanc2 + cn−2 for n ≥ 5 as fol-
lows.

cn−1 > c2 + cn−2

iff cn−1 − cn−2 − c2 > 0
iff dn−2 −3 > 0
iff b + 4−3 = b+1 > 0,

The last step follows because whenn ≥ 5, we can expressn − 2 in the form a + 3 * 2b

whereb ≥ 0 and 0≤ a < 3 * 2b. Sinceb ≥ 0, the conditionb + 1 > 0 is always true, and the inter-
mediate result has been proven.

The above has shown thatcn−1 is larger than the choice ofk = 2 from the second case of the recur-
rence, but has not related it to the optimal choice ofk =  n/2 . However, sincen ≥ 5 we have n/2 ≥ 2 and
therefore by Lemma 3 we have the relation:

c2 + cn−2 ≥ c n/2 + c n/2 , for n ≥ 5.

- 8 -

Therefore:

cn−1 > c2 + cn−2 ≥ c n/2 + c n/2 , for n ≥ 5.

This has shown that the optimal choice of node forn > 4 is an order node withk =  n/2 .

Theorem 1. The optimal two-way comparison tree for equal probabilities forn nodes has an equality node
as the root node forn ≤ 3, either an equality node or order node withk = 2 whenn = 4, and an order node
as the root node forn > 4, with the n/2 th key being stored in the order node.

Proof: The proposition is easily proved forn ≤ 4 by enumeration of all possible trees or by calculation of
cn. Lemma 1 has proved an exact solution tocn which follows the conditions specified by this theorem.
Lemma 4 has proved that forn > 4 the value ofcn using an order node is always better than that for an
equality node. Lemma 2 has proved that the optimal choice of order node will bek =  n/2 .

Theorem 2. The asymptotic behaviour ofcn is O(n log n).

Proof: The exact form ofcn for n ≥ 3 can be presented in terms ofn by calculatinga and b from
n = a + 3 * 2b. By the definition ofa we have

a < 3 * 2b

and also:

n = a + 3 * 2b

Therefore:

a ≤ n/2

Also, b is bounded by:

b =  log2(n − a)/3 ≤  log2 n/3 ≤ log2 n

Together, these bounds ona andb imply:

cn = 2a+ (2 + b)n
≤ 2(n/2)+ (2 + log2 n)n

The asymptotic behaviour of this function is obviouslyO(n log n). Thereforethe average cost of searching
for a key in the optimal two-way comparison tree with equal access probabilities isO(log n) two-way com-
parisons.

7. TheOptimal Two-Way Comparison Tree For Unequal Probabilities

Let us now consider the problem of computing the optimal two-way comparison tree in the general
situation where access frequencies for successful and unsuccessful search are known and are not all identi-
cal. Thisproblem has already been studied for the special cases of the binary search tree and the binary
split tree, and the research there gives us some insight into the difficulty of the problem.

The best known algorithm for constructing the optimal binary search tree hasO(n2) time complexity
[Knuth, 1973, p436]. The best known algorithm for the optimal binary split tree hasO(n4) complexity with
the restriction that the access probabilities for each key are all different; without this restriction, the best
known algorithm isO(n5) [Hester, Hirschberg, Huang and Wong, 1986]. For both these situations, the
space complexity isO(n3). Thereason for this apparently strange restriction of distinct access frequencies
is that if access frequencies are distinct, they can be placed into a strict ordering which simplifies the
dynamic programming algorithm.Since the key with maximum weight is always placed as the value key
in the root of a split tree, for a given interval of keys with a number of keys "missing" (i.e. as value keys in
higher internal nodes), thek missing keys are known to be thek keys with greatest weights and a value can
be ascribed to the optimal split tree from that interval with a particular number of keys missing.The details
can be found in [Huang and Wong, 1984 (b)], [Perl, 1984], and [Hester, Hirschberg, Huang and Wong,

- 9 -

1986].

Huang and Wong [1984a] have also demonstrated a result about split trees that is not intuitively obvi-
ous — that having the key with maximum weight as the value key in the root node does not necessarily
give the best tree.They have defined "generalized split trees" which lift the restriction that the maximally
weighted key need be in the root node.Huang and Wong [1984a] give anO(n5) algorithm for constructing
optimal generalized split trees.

Since two-way comparison trees are a generalization of split trees (and of generalized split trees) we
would assume that the best algorithm for the optimal two-way comparison tree would have at leastO(n4)
cost, possibly under the restriction of distinct access probabilities. The discovery by Huang and Wong
[1984a] and [1984b] that generalized split trees can be better than split trees has implications for designing
an algorithm for the optimal two-way split tree. In particular, when the root node of the optimal two-way
tree is anequalitynode it does not necessarily follow that choosing the key with the largest weight will pro-
duce the optimal tree; it might be true but there is as yet no proof nor counter-example.

It may be fruitful to define a class of restricted two-way comparison trees where an equality node
must contain the maximally weighted key. For this class of two-way trees we could use similar dynamic
programming techniques to those for split trees, particularly if we assume distinct access probabilities.

8. Conclusions

The two-way comparison tree is a generalization of binary search trees and binary split trees, which
takes full advantage of the breakdown of a 3-way key comparison into two 2-way key comparisons. It is a
practical alternative for searching static sets of data, but is not useful for dynamic data sets (i.e. it is not
practical if insertion or deletion are required).Explicit representation of a two-way comparison tree is inef-
ficient because of the need to test a boolean flag during search, but animplicit two-way comparison tree
represented byif-then-elseprogram statements can be very efficient. Theconversion of an explicit two-
way comparison tree toif-then-elsestatements (or to lower-level assembly language) is a simple procedure
and can be automated.

A l inear time algorithm has been presented for building the optimal two-way comparison tree when
access frequencies are equal (or assumed equal when they are unknown).The problem of building the opti-
mal tree under more general weights is examined and it is conjectured that it will cost at leastO(n4). The
author is currently examining this more difficult problem.

9. Acknowledgments

Special thanks to colleagues on thesci.math international news group, especially David Larue
and Laurent Alonso, for their help in solving the recurrence.

10. References

Hester, J.H., Hirschberg, D.S., Huang, S-H.S. and Wong, C.K., "Faster Construction of Optimal Binary
Split Trees",J of Algorithms, 7(3):412-424, (Sep 1986).

Hester, J.H., Hirschberg, D.S. and Larmore, L.L., "Construction of Optimal Binary Split Trees in the Pres-
ence of Bounded Access Probabilities",J of Algorithms, 9(22):245-253, (June 1988).

Hester, J.H. and Hirschberg, D.S., "Faster Construction of Optimal Binary Split Trees",Journal of Algo-
rithms, Vol 7, 412-424, 1986.

Huang, S-H.S. and Wong, C.K., "Generalized Binary Split Trees",Acta Informatica, 21(1):113-123, (1984).

Huang, S-H.S. and Wong, C.K., "Optimal Binary Split Trees",J of Algorithms, 5(1):6579, (Mar 1984).

Knuth, D.E.,The Art of Computer Programming, Vol. III: Sorting and Searching, Addison-Wesley, Read-
ing, Mass, 1973.

Perl, Y., "Optimum split trees",J of Algorithms, 5(3):367-374, (Sep 1984).

- 10 -

Sheil, B.A., "Median Split Trees: A Fast Lookup Technique for Frequently Occurring Keys",C.ACM, Vol.
21, No. 11, p947-958, Nov 1978.

Spuler, D.A., "Code Generation for the Pascal Case Statement",in preparation, 1992.

