CO176 -84

SOFI"WARE—'PRACTICE AND EXPERIENCE, VOL. 24(2), 233 (FEBRUARY 1994)

Short Communication : .. » q

CORRECTION TO ‘PRODUCING
GOOD CODE FOR THE CASE
STATEMENT

SAMPATH KANNAN AND
TODD A. PROEBSTING

~ Department of Computer Science, University of

Arizona, Tucson, Arizona 85721 U.S.A. "

SUMMARY

An O(n?) algorithm for splitting a case statement’s
jump table into the minimum number of subtables
(of a given density) is presented. Previously, the
problem was thought to be NP-complete.

- KEY worRDs Case statement Code generation NP-
complete

ALGORITHM

. In-Reference 1, Bernstein asserts that the problem
. of splitting a case statement’s jump table into the
nummum number of clusters (of a given dens1ty)
g generallzatlon of the- clustermg problem given as
. 'MS9 in Reference 2. MS9, however, considers
. -finding the smallest number of clusters with, arbi-
~ trary. distances between pairs of points, whereas
* this problem is restricted to points that are integers
.on a line. A simple O(n?) algonthm that solves
 this problem follows.
. A’jump table with a large proportion of default

" ‘entries can be broken into smaller, denser jump .

~tables. with a binary or linear search for locating

" the appropnate smaller table. Bernstein calls these-

smaller jump tables: ‘clusters’.

- Let caseitem be a sorted array of the n non-

default case items. The density of a range -of case
items is the number of non-default entries over
‘the size of the range. The density of the range
-~ from- caseitem([i] to caseitem(j] (mcluswc) d(i,j) is
5 ,computed as

| CCC 0038-0644/94/020233-01 |
- (© 1994 by John Wiley & Sons, Ltd.

J-’(

di) =

j-i+1
caseitem|[j] —caseitem[i] + 1

For i = 1 to n, let minClusters[i] be the minimum -

number of clusters for caseitem[1] through caseit-

-em[i] such that each cluster achieves the desired
-density, 6. (We define minClusters[0] to be 0.)

minClusters[i] = - min minclusters[k] + 1
. i
dRF D=0

. Clearly, the above recurrence yields the correct

value of minClusters[1]. By induction the best clus-
tering of selectors 1 throughi is obtained by opti-

" mally choosing the cluster (k + 1, ..., i)—the

cluster to contain i—and combining this cluster
with the best clustering of 1 through k.

The algorithm below computes - minClusters]i]
according to the above recurrence:

minClusters[0] < 0 -
forall i <~ 1 to n do
minClusters[i] <— o
forall j «— 0 to i—1 do o
it d(j+1,{) = 0 and mmClusters[]]+1 <
minClusters[i]then
minClusters[i] <= minclusters[j]+1
endif
end forall
end forall

The algorithm terminates. after computing min-

_clusters[n], the minimum number of legal clusters
for all case items. It is trivial to augment the

algorithm to indicate the range of each cluster.

Each of the two nested loops iterates at most n
times (the number of items). With.only a constant
amount of additional work per iteration, the algor-
ithm. terminates in O(n?) time.

REFERENCES

1. Robert L. Bernstein, ‘Producing good code. for the

case statement’, Software—Practice and Experience,
- 15(10), 1021-1024 (1985).
2. M..R. Garey and D. S. Johnson, Computers and Intrac-
? tabdu‘y A Guide to the Theory of NP-Completeness
W. H. Freeman and Company, 1979.

Received 6 May 1993

Revised 16 August 1993

RIORI |
1

