
Statistically profiling memory in OCaml

Jacques-Henri Jourdan

November 12th, 2019
Chameau sur le plateau, Gif-sur-Yvette



Memory profilers

Why does my program eat so much memory?

• Memory leaks

• Inefficient data structures

• ...

2 of 16



Solution 1: profiling allocations

• Use a generic profiler for runtime

• Focus on allocations

3 of 16



Solution 1: profiling allocations

• Use a generic profiler for runtime

• Focus on allocations

Released blocks should not be counted
⇒ Does not faithfully represent the heap.

3 of 16



Solution 2: attach meta-data to blocks

At each allocation: attach meta-data about the allocation point.

• When needed, analyze the meta-data in the heap.

Examples for OCaml:

• Ocp-Memprof: identifier of allocation site

• Spacetime: pointer to call graph (built on-the-fly)

4 of 16



Solution 2: attach meta-data to blocks

At each allocation: attach meta-data about the allocation point.

• When needed, analyze the meta-data in the heap.

Examples for OCaml:

• Ocp-Memprof: identifier of allocation site

• Spacetime: pointer to call graph (built on-the-fly)

Runtime/memory overhead
⇒ Limited amount of information

4 of 16



A statistical memory profiler

Track only a small, representative fraction of
allocations.

Much lower overhead

• Tunable sampling rate

• Relevant information even for low sampling rates

⇒ Attach much larger meta-data

• Full stack traces, values of some variables...

5 of 16



Architecture

In the runtime system:
only the sampling and tracking mechanisms

An arbitrary OCaml closure is called when:

• a block is sampled,

• a sampled block is promoted, or

• a sampled block is deallocated.

A client library chooses, collects and displays relevant information.

6 of 16



Sampling engine

Allocated blocks

Samples

• See allocations as a stream of blocks, seen one after the other
◦ Sizes are taken into account

7 of 16



Sampling engine

Allocated blocks

Samples

• See allocations as a stream of blocks, seen one after the other
◦ Sizes are taken into account

• Choose sampled words at random (“binomial process”) at a
tunable rate
◦ Some blocks not sampled, some sampled several times
◦ Easy to simulate
◦ E(Samples in a block) = Size of the block × Sampling rate

7 of 16



Interface of the sampler

type allocation = private { n_samples : int;
size : int;
tag : int;
unmarshalled : bool;
callstack : Printexc.raw_backtrace }

val start :
sampling_rate:float →
?callstack_size:int →
?minor_alloc_callback:(allocation → ’minor option) →
?major_alloc_callback:(allocation → ’major option) →
?promote_callback:(’minor → ’major option) →
?minor_dealloc_callback:(’minor → unit) →
?major_dealloc_callback:(’major → unit) →
unit → unit

val stop : unit → unit

8 of 16



Sampling algorithm

• Major heap: direct simulation of binomial distribution
◦ Large blocks ⇒ Amortized cost

• Minor heap:

S1 S2

S2 − S1 ∼ Geom(λ)

At each event:

1. Simulate position of next sample (geometric law)
2. Change lower limit of the minor allocation arena
⇒ Control goes back to runtime system when sampling

Non-sampled allocations performed as usual
⇒ No performance regression when λ� 1

9 of 16



Lessons learnt from the prototype
ML workshop 2016

• Every allocation can be sampled: C stubs, deserialized objects...

• Good performances:

Sampling rate λ = 10−5 ⇒ < 1% runtime overhead
λ = 10−4 ⇒ < 10%

Yet, very representative

• Requires invasive changes to the runtime and compiler:
◦ Deals with the “Comballoc” optimization
◦ Needs good support for asynchronous callbacks (+cleanup)
◦ Interacts subtly with the allocators

10 of 16



Challenge #1: The “Comballoc” optimization

Native compiler:

• combines successive allocations

• example: Some([0; 1; 2], 4, 4) ⇒ one allocation of size 16

What happens if a word in a “combined block” is sampled?

• frame tables : description of combined allocations
◦ changes needed in ocamlopt

• StatMemprof determines which sub-block is sampled, and calls the
callback(s) correspondingly

11 of 16



Challenge #2: Async callback safety

It is not safe to run arbitrary OCaml code anywhere

12 of 16



Challenge #2: Async callback safety

It is not safe to run arbitrary OCaml code anywhere

Allocations from C code:

• Example: allocating arrays, ...

• Guarantees: no OCaml callback (in major heap: no GC allowed!)

• StatMemprof postpones callbacks for these allocations

12 of 16



Challenge #2: Async callback safety

It is not safe to run arbitrary OCaml code anywhere

Allocations from C code:

• Example: allocating arrays, ...

• Guarantees: no OCaml callback (in major heap: no GC allowed!)

• StatMemprof postpones callbacks for these allocations

Handling postponed callbacks:

• Mechanism shared with signals and finalizers

• In C code (incl. bytecode interpreter):
◦ process_pending_actions called regularly at safe points

• In native code:
◦ Minor allocation arena closed ⇒ handled at next minor allocation

12 of 16



Challenge #3: Interaction with native allocator
The problem

Generated native (pseudo-)code for allocations (OCaml ≤ 4.10)
redo:

young_ptr -= whsize;

if (young_ptr < young_limit) goto gc;

Hd_hp(young_ptr) = header;

[Rest of the function]

gc:

young_ptr += whsize;

call_runtime_system ();

goto redo

The variable young_limit is used:

• as the begining of the minor heap

• for interrupting native code (e.g., signals)

• by StatMemprof, for sampling
13 of 16



Challenge #3: Interaction with native allocator
The problem

Generated native (pseudo-)code for allocations (OCaml ≤ 4.10)
redo:

young_ptr -= whsize;

if (young_ptr < young_limit) goto gc;

Hd_hp(young_ptr) = header;

[Rest of the function]

gc:

young_ptr += whsize;

call_runtime_system ();

goto redo

If signal arrives just after sampling

• signal handler will set young_limit := young_alloc_end

• signal callback will perform its own allocations before ours

• StatMemprof data structures will point to garbage
13 of 16



Challenge #3: Interaction with native allocator
The solution

Generated native (pseudo-)code for allocations (OCaml trunk)
young_ptr -= whsize;

if (young_ptr < young_limit) goto gc;

gc_done:

Hd_hp(young_ptr) = header;

[Rest of the function]

gc:

call_runtime_system ();

goto gc_done

• Same hot path, smaller code overall ⇒ performances OK

• Very close to the bytecode/C code allocator ⇒ share more code

• Runtime system now needs to know whsize

◦ Read it from frame tables (StatMemprof needs it anyway)

14 of 16



Future work

Needed for the release (in OCaml 4.11):

• Merge in OCaml trunk sampling for native code

• Make StatMemprof reentrant
◦ Thread preemption can occur during a callback

Optimizations (in OCaml, some day):

• Faster capture of callstack

• Faster generation of geometric random variables
◦ Better PRNG, faster log approximation, vectorized computations

Client libraries:

• Combine with Spacetime/Ocp-Memprof?

• Dedicated library?

15 of 16



Conclusion

• Together with Spacetime and Ocp-Memprof, we will soon have
efficient tools for understanding memory consumption in OCaml.

• StatMemprof in 4.11:
◦ Most of the code is merged.
◦ Many improvements compared to initial prototype
◦ Many thanks to Stephen Dolan, Jane Street, the core OCaml team !
◦ Still a few PRs are needed

16 of 16


