
Gabriel Scherer
Jan 2016 - Jul 2017: Northeastern University – with Amal Ahmed
Sep 2012 - Dec 2015: Gallium (INRIA Rocq.) – with Didier Rémy

Search for Program Structure

1

Theory, design and implementation
of programming languages.

I am fond of programming.

I want to make it even better.

Designing good programming languages and tools is difficult.
We rely a lot on subjective opinions, gut feelings.

I try to capture usability aspects through formalism.
And implement the resulting designs.

2

Thesis (Didier Rémy) Gallium, INRIA Roc.
Post-doc (Amal Ahmed)

Northeastern, Boston

20112010 2012 2013 2014 2015 2016 2017

Types with a unique inhabitant

Equivalence and canonical forms

focusing, abstract machines

OCaml: research and developmenttype inference

dependent types consistency, confluence

pattern matchingvariance and GADTsnamespaces

Full abstraction

speculative optimisation

3

Thesis (Didier Rémy) Gallium, INRIA Roc.
Post-doc (Amal Ahmed)

Northeastern, Boston

20112010 2012 2013 2014 2015 2016 2017

Types with a unique inhabitant

Equivalence and canonical forms

focusing, abstract machines

OCaml: research and developmenttype inference

dependent types consistency, confluence

pattern matchingvariance and GADTsnamespaces

Full abstraction

speculative optimisation

POPL

ICFP

LICS

ESOP

SNAPL

 ML

 LPAR
LMCS

ESOP

4

Thesis (Didier Rémy) Gallium, INRIA Roc.
Post-doc (Amal Ahmed)

Northeastern, Boston

20112010 2012 2013 2014 2015 2016 2017

Types with a unique inhabitant

Equivalence and canonical forms

focusing, abstract machines

OCaml: research and developmenttype inference

dependent types consistency, confluence

pattern matchingvariance and GADTsnamespaces

Full abstraction

speculative optimisation

POPL

ICFP

LICS

ESOP

SNAPL

 ML

 LPAR
LMCS

ESOP

Service:

35 + 2 reviews

ICFP student volunteer

 2013, 2014,

captain 2015, 2016

TFP 2017: PC member

ICFP 2017: PC member

5

Thesis (Didier Rémy) Gallium, INRIA Roc.
Post-doc (Amal Ahmed)

Northeastern, Boston

20112010 2012 2013 2014 2015 2016 2017

Types with a unique inhabitant

Equivalence and canonical forms

focusing, abstract machines

OCaml: research and developmenttype inference

dependent types consistency, confluence

pattern matchingvariance and GADTsnamespaces

Full abstraction

speculative optimisation

6

2012-2017: Research and development on OCaml

technical contributions to the implementation (committer #2)

community building: opening the development process
(github, code reviews, social events)
20 contributors in 2012, 93 in 2017

research problems identified and studied

Example: ambiguous pattern variables, with Luc Maranget

bug report from the Why3 team

research and publication – ML workshop post-proceedings

patch to the compiler, merged in 4.04.0

cross-language discussions with Haskell, Rust designers

Community recognition:
PC member for the OCaml Workshop 2016, PC chair for 2017.

7

Project: Search for Program Structure

8

Program equivalence

We have tools to check that a program verifies a specification.

Few tools to check program equivalence.
(richer programming languages ⇒ more complex equivalences.)

Untapped potential for applications; tools for:

verified refactoring

consistency checking for implicit programming

program synthesis (see further)

Challenge: undecidability.

9

Past result: Full simply-typed equivalence is decidable

“Deciding equivalence with sums and the empty type”
Gabriel Scherer (at Northeastern)
POPL 2017
https://arxiv.org/abs/1610.01213

10

https://arxiv.org/abs/1610.01213

History

Simple types: formal model of datatypes in programming.

Decidability of equivalence:

ΛC(α,→): Tait, 1967 or earlier; easy

ΛC(α,→,×): essentially the same proof.

ΛC(α,→,×, 1): essentially the same proof.

ΛC(α,→,×, 1,+): Ghani, 1995; Altenkirch, Dybjer, Hoffman, Scott:
2001; Balat, Di Cosmo, Fiore: 2004; Lindley, 2007; Ahmad, Licata,
Harper, 2010. difficult

ΛC(α,→,×, 1,+, 0):
Open problem that needed a different approach. hard

my work (POPL 2017)

11

History

Simple types: formal model of datatypes in programming.

Decidability of equivalence:

ΛC(α,→): Tait, 1967 or earlier; easy

ΛC(α,→,×): essentially the same proof.

ΛC(α,→,×, 1): essentially the same proof.

ΛC(α,→,×, 1,+): Ghani, 1995; Altenkirch, Dybjer, Hoffman, Scott:
2001; Balat, Di Cosmo, Fiore: 2004; Lindley, 2007; Ahmad, Licata,
Harper, 2010. difficult

ΛC(α,→,×, 1,+, 0):
Open problem that needed a different approach. hard

my work (POPL 2017)

11

module type PARAM = sig
type error
val process : input → (output + error)
...

end

module Action (P : PARAM) = struct
let process or stdout input =
match P.process input with
| σ1 out → out
| σ2 err → report error stdout (); exit 1

let process or email input =
match P.process input with
| σ1 out → out
| σ2 err → report error email (); exit 2

...
end

12

Intuition
0 represents impossible cases.

module P = struct
type error = 0
let process : input −> (output + 0) = ...

end
let process or stdout input =
match P.process input with
| σ1 out → out
| σ2 err → report error stdout (); exit 1

let process or email input =
match P.process input with
| σ1 out → out
| σ2 err → report error email (); exit 2

Γ ` t : 0 Γ ` u1, u2 : A

Γ ` u1 ≈η u2 : A

13

Intuition
0 represents impossible cases.

module P = struct
type error = 0
let process : input −> (output + 0) = ...

end
let process or stdout input =
match P.process input with
| σ1 out → out
| σ2 err → report error stdout (); exit 1

let process or email input =
match P.process input with
| σ1 out → out
| σ2 err → report error email (); exit 2

Γ ` t : 0 Γ ` u1, u2 : A

Γ ` u1 ≈η u2 : A

13

Question

What is a canonical form for simply-typed terms?

Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(��≈stx) =⇒ (��≈sem)

(Decides equivalence.)

With only functions and pairs, easy.
It does not scale to sums (even booleans !).

14

Question

What is a canonical form for simply-typed terms?

Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(��≈stx) =⇒ (��≈sem)

(Decides equivalence.)

With only functions and pairs, easy.

It does not scale to sums (even booleans !).

14

Question

What is a canonical form for simply-typed terms?

Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(��≈stx) =⇒ (��≈sem)

(Decides equivalence.)

With only functions and pairs, easy.
It does not scale to sums (even booleans !).

14

Idea

Curry-Howard, again: programs as proofs.

The structure of

canonical forms

corresponds to the structure of

proof search

Restricting the search space restricts expression redundancy.

Research transfer from proof theory.

15

Proof search: Focusing

(existing work)

Γ A⊢ Γ A⊢foc

Gives a term representation (`foc).
Not yet canonical.

16

Proof search: Focusing

(existing work)

Γ A⊢ Γ A⊢foc

Gives a term representation (`foc).
Not yet canonical.

16

Proof search: Saturation

(my contribution).

Idea: make all possible deductions from the environment first.

Canonical representation.

Γ ` t : 0 Γ ` u1, u2 : A

Γ ` u1 ≈η u2 : A

Saturation discovers t.

(Booleans ⇒ BDDs)

17

Proof search: Saturation

(my contribution).

Idea: make all possible deductions from the environment first.

Canonical representation.

Γ ` t : 0 Γ ` u1, u2 : A

Γ ` u1 ≈η u2 : A

Saturation discovers t.

(Booleans ⇒ BDDs)

17

Proof search: Saturation

(my contribution).

Idea: make all possible deductions from the environment first.

Canonical representation.

Γ ` t : 0 Γ ` u1, u2 : A

Γ ` u1 ≈η u2 : A

Saturation discovers t.

(Booleans ⇒ BDDs)

17

Application: program synthesis

Canonical representations tell us about program structure.

Program synthesis by searching among canonical representations.

Discussions with synthesis groups at MIT, UPenn, Princeton.
Heuristics subsumed by focusing.

18

Project: Search for Program Structure

Transfer proof representation techniques
to programming language applications.

Gives strong results in restricted setting (simple types),
also useful in richer languages – “more canonical” representations.

Applications: new programming language features and tools.

Continued exchange between logic and programming techniques
(inductives, second-order logic, dependent types) is necessary.

(Not detailed here)
Multi-language programming and interoperation.

19

Parsifal

Expertise in proof theory, focusing, automated theorem proving.

Applied mostly to proof systems so far.

Me: expertise and application goals in programming languages.

Foundational proof certificates for prover interoperability
↔ programming languages interoperation.

Ambitious programming projects (Abella, Psyche, Bedwyr, Mætning...).
↔ OCaml expertise.

20

Timeline

Short term

Verified refactoring.

Canonicity and polymorphism.

OCaml plus expert languages.

Medium term

Program synthesis for dependent types.

Focusing, abstract machines and CBPV.

Verified/unverified interoperability.

Long term

Understanding pure program structure.

Generic focusing and canonicity.

Hybrid proof/program synthesis for effective verified programming.

21

G.S. and Amal Ahmed. “Search for Program Structure”. SNAPL. 2017.

G.S. “Deciding equivalence with sums and the empty type”. POPL. 2017.

G.S. and Didier Rémy. “Which simple types have a unique inhabitant?” ICFP. 2015.

Guillaume Munch-Maccagnoni and G.S. “Polarised Intermediate Representation of
Lambda Calculus with Sums”. LICS. 2015.

G.S. “Multi-focusing on extensional rewriting with sums”. TLCA. 2015.

G.S. and Didier Rémy. “Full reduction in the face of absurdity”. ESOP. 2015.

Pierre-Évariste Dagand and G.S. “Normalization by realizability also evaluates”. JFLA.
2015.

G.S. and Jan Hoffmann. “Tracking Data-Flow with Open Closure Types”. LPAR. 2013.

G.S. and Didier Rémy. “GADTs meet subtyping”. ESOP. 2013.

Andreas Abel and G.S. “On Irrelevance and Algorithmic Equality in Predicative Type
Theory”. Logical Methods in Computer Science (2012).

G.S. and Jérôme Vouillon. “Macaque: Interrogation sûre et flexible de bases de données
depuis OCaml”. JFLA. 2010.

22

http://www.ccs.neu.edu/home/gasche/tmp/snapl.pdf
https://arxiv.org/abs/1610.01213
http://gallium.inria.fr/~scherer/research/unique_inhabitants/unique_stlc_sums-long.pdf
http://gallium.inria.fr/~scherer/drafts/systemL-sums.pdf
http://gallium.inria.fr/~scherer/drafts/systemL-sums.pdf
http://gallium.inria.fr/~scherer/drafts/multifoc_sums.pdf
https://hal.inria.fr/hal-01095390
https://hal.inria.fr/hal-01099138
http://hal.inria.fr/hal-00911656
http://hal.archives-ouvertes.fr/hal-00772993
http://arxiv.org/abs/1203.4716
http://arxiv.org/abs/1203.4716
https://hal.archives-ouvertes.fr/hal-00495977
https://hal.archives-ouvertes.fr/hal-00495977

	Project: Search for Program Structure

