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Theory, design and implementation
of programming languages.

I am fond of programming.

I want to make it even better.

Designing good programming languages and tools is difficult.
We rely a lot on subjective opinions, gut feelings.

I try to capture usability aspects through formalism.
And implement the resulting designs.
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2012-2017: Research and development on OCaml

technical contributions to the implementation (committer #2)

community building: opening the development process
(github, code reviews, social events)
20 contributors in 2012, 93 in 2017

research problems identified and studied

Example: ambiguous pattern variables, with Luc Maranget

bug report from the Why3 team

research and publication – ML workshop post-proceedings

patch to the compiler, merged in 4.04.0

cross-language discussions with Haskell, Rust designers

Community recognition:
PC member for the OCaml Workshop 2016, PC chair for 2017.
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Program equivalence

We have tools to check that a program verifies a specification.

Few tools to check program equivalence.
(richer programming languages ⇒ more complex equivalences.)

Untapped potential for applications; tools for:

verified refactoring

consistency checking for implicit programming

program synthesis (see further)

Challenge: undecidability.
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Past result: Full simply-typed equivalence is decidable

“Deciding equivalence with sums and the empty type”
Gabriel Scherer (at Northeastern)
POPL 2017
https://arxiv.org/abs/1610.01213
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History

Simple types: formal model of datatypes in programming.

Decidability of equivalence:

ΛC(α,→): Tait, 1967 or earlier; easy

ΛC(α,→,×): essentially the same proof.

ΛC(α,→,×, 1): essentially the same proof.

ΛC(α,→,×, 1,+): Ghani, 1995; Altenkirch, Dybjer, Hoffman, Scott:
2001; Balat, Di Cosmo, Fiore: 2004; Lindley, 2007; Ahmad, Licata,
Harper, 2010. difficult

ΛC(α,→,×, 1,+, 0):
Open problem that needed a different approach. hard

my work (POPL 2017)
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module type PARAM = sig
type error
val process : input → (output + error)
...

end

module Action (P : PARAM) = struct
let process or stdout input =
match P.process input with
| σ1 out → out
| σ2 err → report error stdout (); exit 1

let process or email input =
match P.process input with
| σ1 out → out
| σ2 err → report error email (); exit 2

...
end
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Intuition
0 represents impossible cases.

module P = struct
type error = 0
let process : input −> (output + 0) = ...

end
let process or stdout input =
match P.process input with
| σ1 out → out
| σ2 err → report error stdout (); exit 1

let process or email input =
match P.process input with
| σ1 out → out
| σ2 err → report error email (); exit 2

Γ ` t : 0 Γ ` u1, u2 : A

Γ ` u1 ≈η u2 : A
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Question

What is a canonical form for simply-typed terms?

Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(��≈stx) =⇒ (��≈sem)

(Decides equivalence.)

With only functions and pairs, easy.
It does not scale to sums (even booleans !).

14



Question

What is a canonical form for simply-typed terms?

Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(��≈stx) =⇒ (��≈sem)

(Decides equivalence.)

With only functions and pairs, easy.

It does not scale to sums (even booleans !).

14



Question

What is a canonical form for simply-typed terms?

Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(��≈stx) =⇒ (��≈sem)

(Decides equivalence.)

With only functions and pairs, easy.
It does not scale to sums (even booleans !).

14



Idea

Curry-Howard, again: programs as proofs.

The structure of

canonical forms

corresponds to the structure of

proof search

Restricting the search space restricts expression redundancy.

Research transfer from proof theory.
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Proof search: Focusing

(existing work)

Γ  A⊢ Γ  A⊢foc

Gives a term representation (`foc).
Not yet canonical.
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Proof search: Saturation

(my contribution).

Idea: make all possible deductions from the environment first.

Canonical representation.

Γ ` t : 0 Γ ` u1, u2 : A

Γ ` u1 ≈η u2 : A

Saturation discovers t.

(Booleans ⇒ BDDs)
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Application: program synthesis

Canonical representations tell us about program structure.

Program synthesis by searching among canonical representations.

Discussions with synthesis groups at MIT, UPenn, Princeton.
Heuristics subsumed by focusing.
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Project: Search for Program Structure

Transfer proof representation techniques
to programming language applications.

Gives strong results in restricted setting (simple types),
also useful in richer languages – “more canonical” representations.

Applications: new programming language features and tools.

Continued exchange between logic and programming techniques
(inductives, second-order logic, dependent types) is necessary.

(Not detailed here)
Multi-language programming and interoperation.
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Parsifal

Expertise in proof theory, focusing, automated theorem proving.

Applied mostly to proof systems so far.

Me: expertise and application goals in programming languages.

Foundational proof certificates for prover interoperability
↔ programming languages interoperation.

Ambitious programming projects (Abella, Psyche, Bedwyr, Mætning...).
↔ OCaml expertise.
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Timeline

Short term

Verified refactoring.

Canonicity and polymorphism.

OCaml plus expert languages.

Medium term

Program synthesis for dependent types.

Focusing, abstract machines and CBPV.

Verified/unverified interoperability.

Long term

Understanding pure program structure.

Generic focusing and canonicity.

Hybrid proof/program synthesis for effective verified programming.
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