
Gabriel Scherer
Jan 2016 - Jul 2017: Northeastern University
Sep 2012 - Dec 2015: Gallium (INRIA Rocq.)

Formally improving the programming experience

1

So far:

1 Implementation and research on OCaml

2 Type-directed program inference

3 Program equivalence and canonical representations

Project:

1 Canonical representations at higher types

2 Tools with program equivalence

3 Multi-language programming systems

Integration: Parsifal

2

So far:

1 Implementation and research on OCaml

2 Type-directed program inference

3 Program equivalence and canonical representations

Project:

1 Canonical representations at higher types

2 Tools with program equivalence

3 Multi-language programming systems

Integration: Parsifal

2

Result: deciding equivalence

3

Setting

We have tools to check that a program verifies a specification.

Few tools to check program equivalence.
Potential applications: verification of refactoring, consistency checking,
program synthesis...

Pure functional programming: rich equivalences.
More useful, but more complex.

Fundamental challenge: equivalence is not well-understood.

4

Equivalence in the full simply-typed λ-calculus is decidable

“Deciding equivalence with sums and the empty type”
Gabriel Scherer
POPL 2017
https://arxiv.org/abs/1610.01213

5

https://arxiv.org/abs/1610.01213

History

Simple types: formal model of datatypes in programming.

Decidability of equivalence:

ΛC(α,→): Tait, 1967 or earlier.

ΛC(α,→,×): essentially the same proof.

ΛC(α,→,×, 1): essentially the same proof.

ΛC(α,→,×, 1,+): Ghani, 1995; Altenkirch, Dybjer, Hoffman, Scott:
2001; Balat, Di Cosmo, Fiore: 2004; Lindley, 2007; Ahmad, Licata,
Harper, 2010.

ΛC(α,→,×, 1,+, 0): this work.

Open problem despite work: need a different approach.

6

module type PARAM = sig

type error

val process : input -> (output + error)

...

end

module Action (P : PARAM) = struct

let process_or_stdout input =

match process input with

| σ1 out -> out

| σ2 err -> report_error_stdout (); exit 1

let process_or_email input =

match process input with

| σ1 out -> out

| σ2 err -> report_error_email (); exit 2

...

end

7

Intuition

0 represents impossible cases.

Γ ` t : 0 Γ ` u1, u2 : A

Γ ` u1 ≈η u2 : A

let process_or_stdout input =

match process input with

| σ1 out -> out

| σ2 err -> report_error_stdout (); exit 1

let process_or_email input =

match process input with

| σ1 out -> out

| σ2 err -> report_error_email (); exit 2

8

Intuition

0 represents impossible cases.

Γ ` t : 0 Γ ` u1, u2 : A

Γ ` u1 ≈η u2 : A

let process_or_stdout input =

match process input with

| σ1 out -> out

| σ2 err -> report_error_stdout (); exit 1

let process_or_email input =

match process input with

| σ1 out -> out

| σ2 err -> report_error_email (); exit 2

8

Question

What is a canonical form for equivalence of simply-typed terms?

Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(��≈stx) =⇒ (��≈sem)

With only functions and pairs, there is a reasonable notion of β-short
η-long normal form. It does not scale to sums.

9

Question

What is a canonical form for equivalence of simply-typed terms?

Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(��≈stx) =⇒ (��≈sem)

With only functions and pairs, there is a reasonable notion of β-short
η-long normal form.

It does not scale to sums.

9

Question

What is a canonical form for equivalence of simply-typed terms?

Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(��≈stx) =⇒ (��≈sem)

With only functions and pairs, there is a reasonable notion of β-short
η-long normal form. It does not scale to sums.

9

Idea

Curry-Howard, again: programs as proofs.

The structure of

canonical forms

corresponds to the structure of

proof search

Restricting the search space restricts expression redundancy.

Research transfer from proof theory.

10

Proof search: Focusing

(existing work)

Γ A⊢ Γ A⊢foc

Gives a term representation (`foc).
Not yet canonical.

And it preserves computational content!

Γ ` t : A
(new)
=⇒ ∃v ≈βη t, Γ `foc v : A

11

Proof search: Focusing

(existing work)

Γ A⊢ Γ A⊢foc

Gives a term representation (`foc).
Not yet canonical.

And it preserves computational content!

Γ ` t : A
(new)
=⇒ ∃v ≈βη t, Γ `foc v : A

11

Proof search: Focusing

(existing work)

Γ A⊢ Γ A⊢foc

Gives a term representation (`foc).
Not yet canonical.

And it preserves computational content!

Γ ` t : A
(new)
=⇒ ∃v ≈βη t, Γ `foc v : A

11

Proof search: Saturation

(my contribution).

Non-invertible steps: either (p : P) (value) or (let x = n[y : N] in . . .)
(environment).

Idea: make all possible deductions from the environment first.

Canonical representation, (locally) complete.

Γ ` t : 0 Γ ` u1, u2 : A

Γ ` u1 ≈η u2 : A

Saturation discovers t.

12

Proof search: Saturation

(my contribution).

Non-invertible steps: either (p : P) (value) or (let x = n[y : N] in . . .)
(environment).

Idea: make all possible deductions from the environment first.

Canonical representation, (locally) complete.

Γ ` t : 0 Γ ` u1, u2 : A

Γ ` u1 ≈η u2 : A

Saturation discovers t.

12

Thesis (Didier Rémy) Gallium, INRIA Roc.
Post-doc (Amal Ahmed)

Northeastern, Boston

2011

2010 2012 2013 2014 2015 2016 2017

Types with a unique inhabitant

Equivalence and canonical forms

focusing, abstract machines

OCaml: research and developmenttype inference

dependent types consistency, confluence

pattern matchingvariance and GADTsnamespaces

Full abstraction

speculative optimisation

13

Thesis (Didier Rémy) Gallium, INRIA Roc.
Post-doc (Amal Ahmed)

Northeastern, Boston

2011

2010 2012 2013 2014 2015 2016 2017

Types with a unique inhabitant

Equivalence and canonical forms

focusing, abstract machines

OCaml: research and developmenttype inference

dependent types consistency, confluence

pattern matchingvariance and GADTsnamespaces

Full abstraction

speculative optimisation

POPL

ICFP

LICS

ESOP

SNAPL

 ML

 LPAR
LMCS

ESOP

14

Thesis (Didier Rémy) Gallium, INRIA Roc.
Post-doc (Amal Ahmed)

Northeastern, Boston

20112010 2012 2013 2014 2015 2016 2017

Types with a unique inhabitant

Equivalence and canonical forms

focusing, abstract machines

OCaml: research and developmenttype inference

dependent types consistency, confluence

pattern matchingvariance and GADTsnamespaces

Full abstraction

speculative optimisation

POPL

ICFP

LICS

ESOP

SNAPL

 ML

 LPAR
LMCS

ESOP

Service:

35 + 2 reviews

ICFP student volunteer

 2013, 2014,

captain 2015, 2016

TFP 2017: PC member

ICFP 2017: PC member

15

Thesis (Didier Rémy) Gallium, INRIA Roc.
Post-doc (Amal Ahmed)

Northeastern, Boston

2011

2010 2012 2013 2014 2015 2016 2017

Types with a unique inhabitant

Equivalence and canonical forms

focusing, abstract machines

OCaml: research and developmenttype inference

dependent types consistency, confluence

pattern matchingvariance and GADTsnamespaces

Full abstraction

speculative optimisation

16

2012-2017: Research and development on OCaml

technical contributions to the implementation (committer #2)

community building: opening the development process
(github, code reviews, social events)
20 contributors in 2012, 93 in 2017

research problems identified and studied

Example: ambiguous pattern variables, with Luc Maranget

bug report from the Why3 team

research and publication – ML workshop post-proceedings

patch to the compiler, merged in 4.04.0

cross-language discussions with Haskell, Rust designers

Community recognition:
PC member for the OCaml Workshop 2016, PC chair for 2017.

17

Theory, design and implementation of programming languages.

So far:

1 Implementation and research on OCaml

2 Type-directed program inference

3 Program equivalence and canonical representations

Project:

1 Canonical representations at higher types

2 Tools with program equivalence

3 Multi-language programming systems

18

Theory, design and implementation of programming languages.

So far:

1 Implementation and research on OCaml

2 Type-directed program inference

3 Program equivalence and canonical representations

Project:

1 Canonical representations at higher types

2 Tools with program equivalence

3 Multi-language programming systems

18

Project: multi-language programming systems

19

The Ultimate Language may not exist

Ideal (general-purpose) language design:
simplicity/power compromise using powerful, orthogonal concepts.

More and more problem domains for general-purpose languages:
distributed programming, web/mobile development...

Languages of today tend to evolve into behemoths by piling features up:
C++, Scala, GHC Haskell, OCaml...

Does managing this complexity require super-human feats?

20

Multi-language systems

Proposal: Multi-language programming systems.
Several smaller languages working together to cover the feature space.
(simpler?)

(Done in practice, but no design guarantees.)

To manage complexity, one should be able to ignore some languages of
the system – and not pay for it.

Multi-language system require specific design for graceful interoperation.

We must learn how to achieve this, rigorously.

21

Multi-language stories

Teachable
sublanguage

Wild
language

Expert
language

General-purpose
language

Abstraction leak? Graceful interoperation?

22

Full abstraction

(existing work)

J K : S −→ T fully abstract:

a ≈ b =⇒ JaK ≈ JbK

Full abstraction preserves (equational) reasoning.
(Program equivalence again)

(new) Claim: full abstraction can be used to formally capture
the usability properties of multi-language design.

23

Full abstraction

(existing work)

J K : S −→ T fully abstract:

a ≈ b =⇒ JaK ≈ JbK

Full abstraction preserves (equational) reasoning.
(Program equivalence again)

(new) Claim: full abstraction can be used to formally capture
the usability properties of multi-language design.

23

Full abstraction for multi-language systems

Teachable
sublanguage

Wild
language

Expert
language

General-purpose
language

No abstraction leaks: T
f .a.−→W Graceful interoperation: G

f .a.−→ (G + E)
(not symmetric)

24

First instance in the works

Linear
types

ML

Expert linear language allows safe lower-level programming.
Efficiency and safety complement.

Other potential cases: Coq+OCaml, Why3+ML, safe FFI,
interaction between proof assistants (Coq, Agda, Abella, Dedukti)...

25

Challenges

Full abstraction not yet well-understood. Theoretical advances required.
(simply-typed with recursion → untyped: was POPL 2016 article)

How to weaken full-abstraction when it cannot hold?

Can this scale to full-fledged n-languages designs?

26

G.S. and Amal Ahmed. “Search for Program Structure”. SNAPL. 2017.

G.S. “Deciding equivalence with sums and the empty type”. POPL. 2017.

G.S. and Didier Rémy. “Which simple types have a unique inhabitant?” ICFP. 2015.

Guillaume Munch-Maccagnoni and G.S. “Polarised Intermediate Representation of
Lambda Calculus with Sums”. LICS. 2015.

G.S. “Multi-focusing on extensional rewriting with sums”. TLCA. 2015.

G.S. and Didier Rémy. “Full reduction in the face of absurdity”. ESOP. 2015.

Pierre-Évariste Dagand and G.S. “Normalization by realizability also evaluates”. JFLA.
2015.

G.S. and Jan Hoffmann. “Tracking Data-Flow with Open Closure Types”. LPAR. 2013.

G.S. and Didier Rémy. “GADTs meet subtyping”. ESOP. 2013.

Andreas Abel and G.S. “On Irrelevance and Algorithmic Equality in Predicative Type
Theory”. Logical Methods in Computer Science (2012).

G.S. and Jérôme Vouillon. “Macaque: Interrogation sûre et flexible de bases de données
depuis OCaml”. JFLA. 2010.

27

http://www.ccs.neu.edu/home/gasche/tmp/snapl.pdf
https://arxiv.org/abs/1610.01213
http://gallium.inria.fr/~scherer/research/unique_inhabitants/unique_stlc_sums-long.pdf
http://gallium.inria.fr/~scherer/drafts/systemL-sums.pdf
http://gallium.inria.fr/~scherer/drafts/systemL-sums.pdf
http://gallium.inria.fr/~scherer/drafts/multifoc_sums.pdf
https://hal.inria.fr/hal-01095390
https://hal.inria.fr/hal-01099138
http://hal.inria.fr/hal-00911656
http://hal.archives-ouvertes.fr/hal-00772993
http://arxiv.org/abs/1203.4716
http://arxiv.org/abs/1203.4716
https://hal.archives-ouvertes.fr/hal-00495977
https://hal.archives-ouvertes.fr/hal-00495977

	Result: deciding equivalence
	Project: multi-language programming systems

