
The free bifibration over a functor

Bryce Clarke, Gabriel Scherer, Noam Zeilberger

LIX ÝÑ IRIF

LHC 2025
Saclay, June 2nd 2025

1 / 31

Disclaimer

I’m the least category-competent of the authors of this work.

Don’t expect good answers to your categorical questions. Sorry!

2 / 31

What is a bifibration?

One category living over another category, such that objects of the category above may
be pushed and pulled along arrows of the category below.

Formally:

D

C

p

S f` S

A B

fS

f

g´ T T

B C

gT

g

...and these liftings should be “universal” in an appropriate sense...

S f` S T

A B C

fS f zg α

f g

=
S T

A B C

α

f g

=
S g´ T T

A B C

α f {g gT

f g

3 / 31

What is a bifibration?

One category living over another category, such that objects of the category above may
be pushed and pulled along arrows of the category below.
Formally:

D

C

p

S f` S

A B

fS

f

g´ T T

B C

gT

g

...and these liftings should be “universal” in an appropriate sense...

S f` S T

A B C

fS f zg α

f g

=
S T

A B C

α

f g

=
S g´ T T

A B C

α f {g gT

f g

3 / 31

What is a bifibration?

One category living over another category, such that objects of the category above may
be pushed and pulled along arrows of the category below.
Formally:

D

C

p

S f` S

A B

fS

f

g´ T T

B C

gT

g

...and these liftings should be “universal” in an appropriate sense...

S f` S T

A B C

fS f zg α

f g

=
S T

A B C

α

f g

=
S g´ T T

A B C

α f {g gT

f g

3 / 31

What is a bifibration?

One category living over another category, such that objects of the category above may
be pushed and pulled along arrows of the category below.
Formally:

D

C

p

S f` S

A B

fS

f

g´ T T

B C

gT

g

...and these liftings should be “universal” in an appropriate sense...

S f` S T

A B C

fS f zg α

f g

=
S T

A B C

α

f g

=
S g´ T T

A B C

α f {g gT

f g

3 / 31

What is a bifibration?

One category living over another category, such that objects of the category above may
be pushed and pulled along arrows of the category below.
Formally:

D

C

p

S f` S

A B

fS

f

g´ T T

B C

gT

g

...and these liftings should be “universal” in an appropriate sense...

S f` S T

A B C

fS f zg α

f g

=
S T

A B C

α

f g

=
S g´ T T

A B C

α f {g gT

f g

3 / 31

What is a bifibration?

One category living over another category, such that objects of the category above may
be pushed and pulled along arrows of the category below.
Formally:

D

C

p

S f` S

A B

fS

f

g´ T T

B C

gT

g

...and these liftings should be “universal” in an appropriate sense...

S f` S T

A B C

fS f zg α

f g

=
S T

A B C

α

f g

=
S g´ T T

A B C

α f {g gT

f g

3 / 31

What is a bifibration?

One category living over another category, such that objects of the category above may
be pushed and pulled along arrows of the category below.
Formally:

D

C

p

S f` S

A B

fS

f

g´ T T

B C

gT

g

...and these liftings should be “universal” in an appropriate sense...

S f` S T

A B C

fS f zg α

f g

=

S T

A B C

α

f g

=
S g´ T T

A B C

α f {g gT

f g

3 / 31

What is a bifibration?

One category living over another category, such that objects of the category above may
be pushed and pulled along arrows of the category below.
Formally:

D

C

p

S f` S

A B

fS

f

g´ T T

B C

gT

g

...and these liftings should be “universal” in an appropriate sense...

S f` S T

A B C

fS f zg α

f g

=
S T

A B C

α

f g

=
S g´ T T

A B C

α f {g gT

f g

3 / 31

What is a bifibration?

One category living over another category, such that objects of the category above may
be pushed and pulled along arrows of the category below.
Formally:

D

C

p

S f` S

A B

fS

f

g´ T T

B C

gT

g

...and these liftings should be “universal” in an appropriate sense...

S f` S T

A B C

fS f zg α

f g

=
S T

A B C

α

f g

=
S g´ T T

A B C

α f {g gT

f g

3 / 31

A few examples (from logic and computer science)

1. The forgetful functor Subset Ñ Set is a bifibration, where:

f`pS Ď Aq “ f pSq f´pT Ď Bq “ f ´1pT q

2. One-object C: a set S of states, and programs c modeled as relations in S ˆ S:

S

c

D: objects are state predicates P, Q P PpSq, and morphisms in P Ñ Q are given
by programs c : S ˆ S such that tPu c tQu: @px , yq P c, x P P ùñ y P Q

The forgetful functor from D to C has a bifibration
§ c` P is the strongest postcondition of c from P: ty | Dx P P, px , yq P cu

§ c´ Q is the weakest precondition of c from Q: tx | @y P Q, px , yq P cu

4 / 31

A few examples (from logic and computer science)

1. The forgetful functor Subset Ñ Set is a bifibration, where:

f`pS Ď Aq “ f pSq f´pT Ď Bq “ f ´1pT q

2. One-object C: a set S of states, and programs c modeled as relations in S ˆ S:

S

c

D: objects are state predicates P, Q P PpSq, and morphisms in P Ñ Q are given
by programs c : S ˆ S such that tPu c tQu: @px , yq P c, x P P ùñ y P Q

The forgetful functor from D to C has a bifibration
§ c` P is the strongest postcondition of c from P: ty | Dx P P, px , yq P cu

§ c´ Q is the weakest precondition of c from Q: tx | @y P Q, px , yq P cu

4 / 31

A few examples (from logic and computer science)

1. The forgetful functor Subset Ñ Set is a bifibration, where:

f`pS Ď Aq “ f pSq f´pT Ď Bq “ f ´1pT q

2. One-object C: a set S of states, and programs c modeled as relations in S ˆ S:

S

c

D: objects are state predicates P, Q P PpSq, and morphisms in P Ñ Q are given
by programs c : S ˆ S such that tPu c tQu: @px , yq P c, x P P ùñ y P Q

The forgetful functor from D to C has a bifibration
§ c` P is the strongest postcondition of c from P: ty | Dx P P, px , yq P cu

§ c´ Q is the weakest precondition of c from Q: tx | @y P Q, px , yq P cu

4 / 31

A few examples (from logic and computer science)

1. The forgetful functor Subset Ñ Set is a bifibration, where:

f`pS Ď Aq “ f pSq f´pT Ď Bq “ f ´1pT q

2. One-object C: a set S of states, and programs c modeled as relations in S ˆ S:

S

c

D: objects are state predicates P, Q P PpSq, and morphisms in P Ñ Q are given
by programs c : S ˆ S such that tPu c tQu: @px , yq P c, x P P ùñ y P Q

The forgetful functor from D to C has a bifibration
§ c` P is the strongest postcondition of c from P: ty | Dx P P, px , yq P cu

§ c´ Q is the weakest precondition of c from Q: tx | @y P Q, px , yq P cu

4 / 31

Problem

Given a functor, can we turn it into a bifibration in a universal way?

D

Bifppq

E

C

p

ηp

This question has been relatively little-studied:
§ R. Dawson, R. Paré, and D. Pronk (DPP). Adjoining adjoints. Adv. Mathematics, 2003.
§ François Lamarche. Path functors in Cat. Unpublished, 2010. hal-00831430.

5 / 31

Problem

Given a functor, can we turn it into a bifibration in a universal way?

D Bifppq

E

C

p

ηpηp

Λp

This question has been relatively little-studied:
§ R. Dawson, R. Paré, and D. Pronk (DPP). Adjoining adjoints. Adv. Mathematics, 2003.
§ François Lamarche. Path functors in Cat. Unpublished, 2010. hal-00831430.

5 / 31

Problem

Given a functor, can we turn it into a bifibration in a universal way?

D Bifppq

E

C

p

ηpηp

θ

Λp

q

This question has been relatively little-studied:
§ R. Dawson, R. Paré, and D. Pronk (DPP). Adjoining adjoints. Adv. Mathematics, 2003.
§ François Lamarche. Path functors in Cat. Unpublished, 2010. hal-00831430.

5 / 31

Problem

Given a functor, can we turn it into a bifibration in a universal way?

D Bifppq

E

C

p

ηpηp

θ

Λp

J´Kθ

q

This question has been relatively little-studied:
§ R. Dawson, R. Paré, and D. Pronk (DPP). Adjoining adjoints. Adv. Mathematics, 2003.
§ François Lamarche. Path functors in Cat. Unpublished, 2010. hal-00831430.

5 / 31

Problem

Given a functor, can we turn it into a bifibration in a universal way?

D Bifppq

E

C

p

ηpηp

θ

Λp

J´Kθ

q

This question has been relatively little-studied:
§ R. Dawson, R. Paré, and D. Pronk (DPP). Adjoining adjoints. Adv. Mathematics, 2003.
§ François Lamarche. Path functors in Cat. Unpublished, 2010. hal-00831430.

5 / 31

Free bifibration: intuition

Introduce “formal” push/pull along the arrows of C.

X Y
δ P D

.f

{g

e .

{h

Some operations commute: non-trivial equivalence.

6 / 31

Free bifibration: intuition

Introduce “formal” push/pull along the arrows of C.

X Y
δ P D

.f

{g

e .

{h

Some operations commute: non-trivial equivalence.

6 / 31

Free bifibration: intuition

Introduce “formal” push/pull along the arrows of C.

X Y
δ P D

.f

{g

e .

{h

Some operations commute: non-trivial equivalence.

6 / 31

Free bifibration: intuition

Introduce “formal” push/pull along the arrows of C.

X Y
δ P D

.f

{g

e .

{h

Some operations commute: non-trivial equivalence.

6 / 31

Free bifibration: intuition

Introduce “formal” push/pull along the arrows of C.

X Y
δ P D

.f

{g

e .

{h

Some operations commute: non-trivial equivalence.

6 / 31

Free bifibration: intuition

Introduce “formal” push/pull along the arrows of C.

X Y
δ P D

.f

{g

e .

{h

Some operations commute: non-trivial equivalence.

6 / 31

Our work

We propose a proof-theoretic construction of Bifppq, via sequent calculus: morphisms
are derivations modulo an equivalence relation, which

... correspond to cells in a certain double category of zigzags ZC.

... can also be represented using string diagrams.

We use multi-focusing to give more canonical presentations of morphisms.

Under a condition coming from (DPP), maximal multi-focusing gives normal forms.

Finally, we found a couple nice examples of free bifibrations of a combinatorial nature.

7 / 31

Our work

We propose a proof-theoretic construction of Bifppq, via sequent calculus: morphisms
are derivations modulo an equivalence relation, which

... correspond to cells in a certain double category of zigzags ZC.

... can also be represented using string diagrams.

We use multi-focusing to give more canonical presentations of morphisms.

Under a condition coming from (DPP), maximal multi-focusing gives normal forms.

Finally, we found a couple nice examples of free bifibrations of a combinatorial nature.

7 / 31

Our work

We propose a proof-theoretic construction of Bifppq, via sequent calculus: morphisms
are derivations modulo an equivalence relation, which

... correspond to cells in a certain double category of zigzags ZC.

... can also be represented using string diagrams.

We use multi-focusing to give more canonical presentations of morphisms.

Under a condition coming from (DPP), maximal multi-focusing gives normal forms.

Finally, we found a couple nice examples of free bifibrations of a combinatorial nature.

7 / 31

Our work

We propose a proof-theoretic construction of Bifppq, via sequent calculus: morphisms
are derivations modulo an equivalence relation, which

... correspond to cells in a certain double category of zigzags ZC.

... can also be represented using string diagrams.

We use multi-focusing to give more canonical presentations of morphisms.

Under a condition coming from (DPP), maximal multi-focusing gives normal forms.

Finally, we found a couple nice examples of free bifibrations of a combinatorial nature.

7 / 31

Our work

We propose a proof-theoretic construction of Bifppq, via sequent calculus: morphisms
are derivations modulo an equivalence relation, which

... correspond to cells in a certain double category of zigzags ZC.

... can also be represented using string diagrams.

We use multi-focusing to give more canonical presentations of morphisms.

Under a condition coming from (DPP), maximal multi-focusing gives normal forms.

Finally, we found a couple nice examples of free bifibrations of a combinatorial nature.

7 / 31

A sequent calculus for Bifppq

8 / 31

Formulas / objects

Bifibrational formulas S < A: S lies over A

X P D ppX q “ A
X η < A

S < A f : A Ñ B
f` S < B

f : A Ñ B T < B
f´ T < A f` g´ h´ Y

As diagrams: zigzags

pX P Dq

S

¨

f

T

¨

f

Y

¨

¨

¨

h

g

f

9 / 31

Derivations / pre-morphisms
Axioms + inference rules α : S ùñ

h
T : α : S Ñ T lies over h : ppSq Ñ ppT q.

δ : X Ñ Y P D ppδq “ f
δη : Xη ùñ

f
Y η δη

¨ ¨
δ

f

α : T ùñ
g

T 1

f .α : f´ T ùñ
fg

T 1
Lg´

¨ ¨

¨ ¨

g

f

fg

α : S 1 ùñ
e

S

α.f : S 1 ùñ
ef

f` S Rf`

¨ ¨

¨ ¨

e

f

ef

α : S ùñ
fg

T

f zg α : f` S ùñ
g

T Lf`

¨ ¨

¨ ¨

fg
f

g

α : S ùñ
fg

T

α f { g : S ùñ
f

g´ T Rg´

¨ ¨

¨ ¨

fg

f
g

10 / 31

Derivations / pre-morphisms
Axioms + inference rules α : S ùñ

h
T : α : S Ñ T lies over h : ppSq Ñ ppT q.

δ : X Ñ Y P D ppδq “ f
δη : Xη ùñ

f
Y η δη ¨ ¨

δ

f

α : T ùñ
g

T 1

f .α : f´ T ùñ
fg

T 1
Lg´

¨ ¨

¨ ¨

g

f

fg

α : S 1 ùñ
e

S

α.f : S 1 ùñ
ef

f` S Rf`

¨ ¨

¨ ¨

e

f

ef

α : S ùñ
fg

T

f zg α : f` S ùñ
g

T Lf`

¨ ¨

¨ ¨

fg
f

g

α : S ùñ
fg

T

α f { g : S ùñ
f

g´ T Rg´

¨ ¨

¨ ¨

fg

f
g

10 / 31

Permutation equivalences

pf .αq.h „ f .pα.hq for α over g (1)
pf zg αq.h „ f zgh pα.hq for α over fg (2)

pf .αq fg { h „ f .pα g { hq for α over gh (3)
pf zgh αq g { h „ f zg pα fg { hq for α over fgh (4)

(reminiscent of Lambek calculus)

11 / 31

String diagrams

¨ ¨

¨ ¨

fg

f L

g

¨ ¨

¨ ¨

g

R f

gf

¨ ¨

¨ ¨

g

Lf

fg

¨ ¨

¨ ¨

gf

R

g

f

¨ ¨

¨ ¨

¨ ¨

fg

f L
g

R h

gh

„

¨ ¨

¨ ¨

¨ ¨

fg

R h

fgh

f L

gh

¨ ¨

¨ ¨

¨ ¨

g

R h

gh

L̄f

fgh

„

¨ ¨

¨ ¨

¨ ¨

g

L̄f

fg

R h

fgh

¨ ¨ ¨

12 / 31

Identity and Composition
Identity (induction on the formula):

idXη
def
“ pidX q

η idf` S
def
“ f zidB pidS .fq idg´ T

def
“ pg . idT q idB { g

Composition is cut-elimination:
α : S ùñ

g
T β : T ùñ

h
U

α ¨ β : S ùñ
gh

U

Principal cuts:

δη ¨ ϵη def
“ pδ ϵq

η

pα.fq ¨ pf zh βq
def
“ α ¨ β

pα g { f q ¨ pf .βq
def
“ α ¨ β

Commutative cuts:
pf .αq ¨ β

def
“ f .pα ¨ βq

pf zg αq ¨ β
def
“ f zgh pα ¨ βq

α ¨ pβ.fq def
“ pα ¨ βq.f

α ¨ β h{ f def
“ pα ¨ βq gh{ f

Note: ambiguous cases up to equivalence.

13 / 31

Identity and Composition
Composition is cut-elimination:

α : S ùñ
g

T β : T ùñ
h

U

α ¨ β : S ùñ
gh

U

Principal cuts:

δη ¨ ϵη def
“ pδ ϵq

η

pα.fq ¨ pf zh βq
def
“ α ¨ β

pα g { f q ¨ pf .βq
def
“ α ¨ β

Commutative cuts:

pf .αq ¨ β
def
“ f .pα ¨ βq

pf zg αq ¨ β
def
“ f zgh pα ¨ βq

α ¨ pβ.fq def
“ pα ¨ βq.f

α ¨ β h{ f def
“ pα ¨ βq gh{ f

Note: ambiguous cases up to equivalence.

13 / 31

Identity and Composition
Composition is cut-elimination:

α : S ùñ
g

T β : T ùñ
h

U

α ¨ β : S ùñ
gh

U

Principal cuts:

δη ¨ ϵη def
“ pδ ϵq

η

pα.fq ¨ pf zh βq
def
“ α ¨ β

pα g { f q ¨ pf .βq
def
“ α ¨ β

Commutative cuts:

pf .αq ¨ β
def
“ f .pα ¨ βq

pf zg αq ¨ β
def
“ f zgh pα ¨ βq

α ¨ pβ.fq def
“ pα ¨ βq.f

α ¨ β h{ f def
“ pα ¨ βq gh{ f

Note: ambiguous cases up to equivalence.

13 / 31

Identity and Composition
Composition is cut-elimination:

α : S ùñ
g

T β : T ùñ
h

U

α ¨ β : S ùñ
gh

U

Principal cuts:

δη ¨ ϵη def
“ pδ ϵq

η

pα.fq ¨ pf zh βq
def
“ α ¨ β

pα g { f q ¨ pf .βq
def
“ α ¨ β

Commutative cuts:

pf .αq ¨ β
def
“ f .pα ¨ βq

pf zg αq ¨ β
def
“ f zgh pα ¨ βq

α ¨ pβ.fq def
“ pα ¨ βq.f

α ¨ β h{ f def
“ pα ¨ βq gh{ f

Note: ambiguous cases up to equivalence.
13 / 31

Putting it all together

Let Bifppq be the category whose objects are bifibrational formulas and whose arrows
are p„q-equivalence classes of derivations, with composition defined by cut-elimination.

Let Λp be the functor Bifppq Ñ C sending pS < Aq to A and pα : S ùñ
f

T q to f .

Theorem. Λp : Bifppq Ñ C is the free bifibration on p : D Ñ C.

14 / 31

Multi-focusing

15 / 31

Rigid proof structure: invertible and non-invertible rules.

Γ A⊢ Γ A⊢foc

16 / 31

Invertibility

Invertible, non-invertible rules (from conclusion to premises).

α : S ùñ
fg

T

f zg α : f` S ùñ
g

T Lf`

¨ ¨

¨ ¨

fg

f
g

α : S ùñ
fg

T

α f { g : S ùñ
f

g´ T Rg´

¨ ¨

¨ ¨

fg

f
g

α : T ùñ
g

T 1

f .α : f´ T ùñ
fg

T 1
Lg´

¨ ¨

¨ ¨

g

f
fg

α : S 1 ùñ
e

S

α.f : S 1 ùñ
ef

f` S Rf`

¨ ¨

¨ ¨

e

f
ef

17 / 31

Polarized formulas

π, ρ, σ, τ ::“ pf0, . . . , fnq non-empty sequence of composable arrows

Ssa ::“ Psa | Nsa
Psa ::“ X η | π` Nsa
Nsa ::“ X η | π´ Psa

18 / 31

Multi-focused rules

δ : X Ñ Y P D ppδq “ f
δη : X η ùñ

f
Y η δη

αm : N ùñ
πf

P

π zf αm : π` N ùñ
f

P
Lπ`

αm : N ùñ
πf σ

P

π z αm
f

{ ρ : π` N ùñ
f

σ´ P
Lπ`Rσ´

αm : N ùñ
f ρ

P

αm f { ρ : N ùñ
f

ρ´ P
Rσ´

αm : P ùñ
f

Q

π.αm : π´ P ùñ
πf

Q
Lπ´

αm : P ùñ
f

N

π.αm.σ : π´ P ùñ
πf σ

σ` N
Lπ´Rσ`

αm : N ùñ
f

M

αm.σ : N ùñ
f σ

σ` M
Rσ`

+ normal forms via a confluent rewrite system, under a DPP condition

19 / 31

Now for some examples!

20 / 31

Example #1

Consider the following functor:
1

2

p

0

0 1f

Puzzle: what is the free bifibration over p? Hmm...

Objects in Bifppq0 are isomorphic to even-length sequences S ” f´ f` ¨ ¨ ¨ f´ f` 0

What are the arrows over 0?

21 / 31

Example #1

Consider the following functor:
1

2

p

0

0 1f

Puzzle: what is the free bifibration over p? Hmm...

Objects in Bifppq0 are isomorphic to even-length sequences S ” f´ f` ¨ ¨ ¨ f´ f` 0

What are the arrows over 0?

21 / 31

Example #1

Consider the following functor:
1

2

p

0

0 1f

Puzzle: what is the free bifibration over p? Hmm...

Objects in Bifppq0 are isomorphic to even-length sequences S ” f´ f` ¨ ¨ ¨ f´ f` 0

What are the arrows over 0?

21 / 31

One morphism 2 Ñ 1

0 ùñ
id0

0 id

0 ùñ
f

f` 0 Rf`

f` 0 ùñ
id1

f` 0 Lf`

f´ f` 0 ùñ
f

f` 0 Lf´

f` f´ f` 0 ùñ
id1

f` 0 Lf`

f´ f` f´ f` 0 ùñ
f

f` 0 Lf´

f´ f` f´ f` 0 ùñ
id0

f´ f` 0 Rf´

22 / 31

Two morphisms 1 Ñ 2

0 ùñ
id0

0 id0

0 ùñ
f

f` 0 Rf`

0 ùñ
id0

f´ f` 0 Rf´

0 ùñ
f

f` f´ f` 0 Rf`

f` 0 ùñ
id1

f` f´ f` 0 Lf`

f´ f` 0 ùñ
f

f` f´ f` 0 Lf´

f´ f` 0 ùñ
id0

f´ f` f´ f` 0 Rf´

0 ùñ
id0

0 id0

0 ùñ
f

f` 0 Rf`

f` 0 ùñ
id1

f` 0 Lf`

f´ f` 0 ùñ
f

f` 0 Lf´

f´ f` 0 ùñ
id0

f´ f` 0 Rf´

f´ f` 0 ùñ
f

f` f´ f` 0 Rf`

f´ f` 0 ùñ
id0

f´ f` f´ f` 0 Rf´

23 / 31

Three morphisms 2 Ñ 2

f´ f` f´ f` 0 ùñ
id0

f´ f` f´ f` 0

24 / 31

Punchline #1

Arrows pf´ f`qm0 ÝÑ pf´ f`qn0 in Bifppq0 correspond to monotone maps m Ñ n!

Indeed, the push-pull adjunction captures the adjunction

∆ ∆K

f`

f´

K

between the category ∆ of finite ordinals and order-preserving maps, and the category
∆K of non-empty finite ordinals and order-and-least-element-preserving maps.

25 / 31

Example #2

Now consider the following functor:

1

N

p

0

0 1 2 . . .

Build the free bifibration Bifppq Ñ N, and look at the fiber of 0.

Puzzle: what are its objects?

26 / 31

A category with Dyck walks as objects!

f´ f´ f` f` f´ f` f´ f´ f´ f` f` f´ f` f` 0 “

But what is a morphism of Dyck walks??

The Bifp´q construction gives an answer. Is it something natural/known?

27 / 31

Reconstructing the Batanin-Joyal category of trees

Dyck paths have a well-known, canonical bijection with (finite rooted plane) trees.

ÞÑ

Trees may also be encoded as functors T : Nop Ñ ∆.

28 / 31

Reconstructing the Batanin-Joyal category of trees

Consider natural transformations θ : S ñ T .

...
...

Sp2q T p2q

Sp1q T p1q

Sp0q “ 1 1 “ T p0q

θ2

θ1

In other words, map nodes to nodes of the same height, respecting parents.

29 / 31

Punchline #2

Theorem: Bifpp : 1 Ñ Nq0 – PTree.

(More generally, Bifppqk – PTreek = category of finite rooted plane trees whose
rightmost branch is pointed by a node of height k.)

30 / 31

Summary

We have a clean and simple proof-theoretic construction of free bifibrations, with
complentary algebraic & topological perspectives.

Normal forms characterized, under a DPP condition, by maximal multi-focusing.

Some surprisingly rich combinatorics emerges as if out of thin air.

1

N

p

0

0 1 2 . . .

31 / 31

Thanks !

Questions ?

32 / 31

A category C is factorization preordered if for any diagram of composable arrows of
the form

¨̈ ¨̈
f
g

h

k

if both fg “ fh and gk “ hk then necessarily g “ h. Equivalently, C is factorization
preordered just in case every commuting square has at most one diagonal filler:

¨̈

¨̈

f 1

f k

k 1

g“h

33 / 31

	A sequent calculus for Bif(p)
	Multi-focusing
	Now for some examples!

