
Backtracking reference stores
Camille Noûs1 and Gabriel Scherer2

1 Laboratoire Cogitamus
2 INRIA

Abstract

François Pottier’s unionFind library is parameterized over an underlying store of mutable
references, and provides the usual references, transactional reference stores (for rolling back
some changes in case of higher-level errors), and persistent reference stores. We extend
this library with a new implementation of backtracking reference stores, to get a Union-
Find implementation that efficiently supports arbitrary backtracking and also subsumes
the transactional interface.

Our backtracking reference stores are not specific to unionFind, they can be used to
build arbitrary backtracking data structures. The natural implementation, using a journal
to record all writes, provides amortized-constant-time operations with a space overhead
linear in the number of store updates. A refined implementation reduces the memory
overhead to be linear in the number of store cells updated, and gives performance that
match non-backtracking references in practice.

1 Introduction
Our own use-case for the present work comes from implementing a type-checker for an

explicitly-typed (no inference required) extension of System F with Guarded Algebraic Datatypes
(GADTs). With GADTs, datatype constructors may witness equalities between types. For ex-
ample, matching on the constructor Int at type α rtty may reveal that the (universally quantified)
type variable α is in fact equal to int, that is, introduce the equality (α = int) in the typing
context. Then under this context we have to type-check a sub-expression, the right-hand-side
of the pattern matching clause, which in particular involves checking many type equalities
(Γ ` τ1 = τ2) modulo the equations in Γ. For example, the types (α → int) and (int → α) are
distinct in general, but they are equal under the assumption (α = int).

Union-Find is the perfect data structure to efficiently check equalities in presence of equality
assumptions. Our type-checker carries a global Union-Find graph, we create nodes for bound
type variables, equality assumptions add unification edges in the graph, and equality checking
can be implemented efficiently – even in presence of cyclic graphs / equi-recursive types. But
adding a local equality assumption, as required by GADTs, requires a form of backtracking :
we add unification edges before checking the sub-expressions of the GADT pattern clause, but
these edges should not remain present when type-checking the rest of the term outside this
clause.

A simple solution to this problem is to use a persistent Union-Find; there is a generic way
to implement a persistent version of a mutable data-structure, which is to replace all mutable
references by indices into a persistent map. When we extend a persistent Union-Find graph
G with a new equality, we get a new Union-Find graph G′; we can type-check the clause
right-hand-side using G′ and then go back to G to check the rest of the type derivation.

https://archive.softwareheritage.org/browse/revision/3a2f0dd1f30e629fd5be3002b88edaf7f560e38d/?origin_url=https://gitlab.inria.fr/fpottier/unionfind.git
https://archive.softwareheritage.org/browse/revision/3a2f0dd1f30e629fd5be3002b88edaf7f560e38d/?origin_url=https://gitlab.inria.fr/fpottier/unionfind.git

Backtracking reference stores Gabriel Scherer

let rec typeof env = function (* . . . *)
| Use (t, u) ->

match typeof env t with
| TyEq (ty1, ty2) ->
let env = introduce_equalities env ty1 ty2 in
typeof env u

| ty -> raise (TypeError (NotAnEquality ty))

However, this solution imposes a logarithmic overhead to all accesses and updates, which
adds a noticeable constant factor on reasonably-large programs. This is especially frustrating
given that GADTs are a relatively rare language feature; the whole type-checker pays for a
feature that may not even occur in the program being type-checked.

Another solution is to use a mutable, constant-time-access Union-Find graph, but perform
a copy of the graph when entering a GADT equality assumption. This has cost linear in the
number of type variables in context, which is unpleasant, but the cost is localized to GADT
use sites. This is a reasonable solution that, let’s be frank, would probably be fine in practice
for our use-case.

match typeof env t with
| TyEq (ty1, ty2) ->
let env = { env with store = StoreVector.copy store } in
introduce_equalities env ty1 ty2;
typeof env u

We want to do better by implementing a Union-Find that supports both constant-time
access/update and (amortized) constant-time backtracking.

match typeof env t with
| TyEq (ty1, ty2) ->
BtRef.branch env.store;
let finally () = BtRef.terminate_rollback env.store in
Fun.protect ~finally @@ fun () ->
introduce_equalities env ty1 ty2;
typeof env u

1.1 A trusted ally: a modular Union-Find library
François Pottier’s unionFind library provides an efficient implementation of Union-Find pa-

rameterized over a notion of mutable store, which allows to choose the implementation of
mutable references used in the Union-Find graph. At the time of writing, it provides four
implementations of this store interface:

StoreRef uses OCaml references directly. This gives the standard UnionFind behavior.

StoreMap uses indices into a persistent map. This gives a mutable API that operates on a
persistent graph under the hood, providing a constant-time operation to copy (share)
the whole graph. Algorithmically this corresponds exactly to the persistent approach we
discussed above.

StoreVector uses indices into a dynamic array. This gives constant-time access and update,
but tracks the set of nodes of the graph (and refers them through indices, a portable
indirection) which allows copying the whole graph in linear time. This corresponds exactly
to the copying approach we discussed above.

2

https://archive.softwareheritage.org/browse/revision/3a2f0dd1f30e629fd5be3002b88edaf7f560e38d/?origin_url=https://gitlab.inria.fr/fpottier/unionfind.git

Backtracking reference stores Gabriel Scherer

StoreTransactionalRef implements a transactional reference store, which allow starting a global
transaction with the ability to either commit all changes that happened during the trans-
action or to roll them back. This is important for type-checking algorithms that provide
partial operations (typically unification) on top of the Union-Find graph. An operation
may perform several unifications in sequence, but it should leave the graph unchanged in
case the operation fails – typically to print error messages to the user without showing
an inconsistent, in-progress state. Transactions cannot be nested.

1.2 Our contribution
We implement a backtracking reference store that allows to backtrack to previous versions

of the store in amortized constant time. A store contains many references that are versioned
together. There are explicit operations to branch the store into a new version, or return a store
to its parent version. In particular, if we roll back to a previous version, this rolls back the
value of all references in the store that were modified since the last branch. We can instantiate
François Pottier’s unionFind implementation with our new store, solving our quest for Union-
Find with backtracking.

Implementation The implementation of our structure is fairly simple. Intuitively the store
maintains a journal, or undo log, of all reference updates, which allows to roll back to previous
versions. In fact we have two implementations:

• In our first, simplest implementation, all updates are logged in the journal. Read/write
operations are constant-time, backtracking to the parent version is amortized constant-
time. But the journal adds a space overhead linear in the number of updates and branches
performed. (This is just fine for Union-Find, where the number of updates per node is
less than logarithmic. But our store may have other users without such guarantee.)

• We then propose a record-eliding optimization that uses timestamps to avoid recording a
given reference twice for the same version of the structure. The space overhead is linear
in the number of references updated in each version, rather than the number of writes.

Interface The building blocks of our implementations subsume two different flavors of inter-
faces that we can express on top of our work:

• We can provide a semi-persistent interface in the sense of Conchon and Filliâtre (2008).

• We provide a transactional interface, subsuming François Pottier’s transactional refer-
ences, but in addition we support arbitrary nesting of transactions.

Terminology: backtracking, semi-persistent, transactional Conchon and Filliâtre (2008)
proposes a specific API design for semi-persistent structures where backtracking to a previous
version is implicit. It happens on-demand when we start again to work on an older version, the
first access to this older version implicitly invalidates/backtrack any more recent version. This
gives a very declarative programming style, close in spirit to programming with persistent data
structurs, hence the name semi-persistent.

Our core API is different, more imperative. Terminating a version is explicit; this works
better with the transactional interface that gives two different ways to terminate a version
(commit or abort), making the implicit choice awkward. But one can easily build the semi-
persistent API on top of our existing interface – we do it in Section 4.2. We call our API
a backtracking API, although it is a bit more expressive than typical backtracking APIs that

3

https://archive.softwareheritage.org/browse/revision/3a2f0dd1f30e629fd5be3002b88edaf7f560e38d/?origin_url=https://gitlab.inria.fr/fpottier/unionfind.git

Backtracking reference stores Gabriel Scherer

only allow to rollback or abort changes, while we can also commit them – as with transactional
interfaces.

A more precise name may be transactional, but we already use it in the context of François
Pottier’s StoreTransactionalRef stores that do not support nested transactions. We could call
them one-transactional, or call ours nested-transactional, but we stick with the more common
backtracking.

Generality We emphasize that while our own use-case is a backtracking Union-Find, our back-
tracking (and transactional) references are of general interest and could be used to implement
basically any backtracking data-structure.

For example, you can rebuild backtracking arrays by simply using arrays of references in a
shared backtracking store – at the constant-factor cost of an extra isndirection per array element.
This would be silly for backtracking or semi-persistent arrays where specialized implementa-
tions are already available, or for structures that are naturally built by composing existing
backtracking libraries, in the same way Conchon and Filliâtre (2008) builds semi-persistent
hashtables out of semi-persistent dynamic arrays and semi-persistent stacks. But you may be
interested in backtracking doubly-linked lists, backtracking quad-trees, backtracking skiplists,
etc.

1.3 Early challengers: (semi-)persistent dynamic arrays
As we were considering this journey of implementing our own backtracking references, the

wizard Jean-Christophe Filliâtre sent us the following remark to test our resolve.

It is possible to implement a Union-Find graph backed by a dynamic array, so
you get a semi-persistent Union-Find by using an existing library of semi-persistent
dynamic arrays.

This solution has in fact already been presented in Conchon and Filliâtre (2007), which
proposes a persistent Union-Find implementation backed by a dynamic array, but tweaks it
slightly to be only semi-persistent in its Section 2.3.3.

Our justification for writing our own code is that array-backed Union-Find graphs – including
the use of François Pottier’s unionFind instantiated with its StoreVector module we mentioned
above – do not play nicely with garbage collection. All nodes of the graph remain alive as long
as the graph lives. In contrast, direct representations where the Union-Find graph is realized
by pointers in memory preserve the liveliness of individual nodes, which can be collected as
soon as they are not used in the program anymore.

This makes a difference in our use-case of using a Union-Find graph on the fly for type-
checking: when we traverse our typing derivation, we generate many Union-Find nodes on the
fly, each time we check an equality between types. But they are extremely short-lived, we
do not use them after we have checked those equalities. We expect those dead fragments of
the Union-Find graph to be collected promptly, while they leak when using an array-backed
implementation.

Note that transactional or backtracking references also extend the lifetime of values in certain
circumstances: to allow rolling back to a previous version we necessarily keep those previous
versions alive in memory. But this lifetime-extension ends when the corresponding transaction
or version is terminated. In our Union-Find use-case, this means that the garbage-collection
behavior of Union-Find nodes is unchanged by these journaling mechanisms.

Finally, (semi-)persistent arrays, in existing OCaml implementations, do not provide the
equivalent of our record-eliding optimization – their memory overhead is linear in the total

4

https://archive.softwareheritage.org/browse/revision/3a2f0dd1f30e629fd5be3002b88edaf7f560e38d/?origin_url=https://gitlab.inria.fr/fpottier/unionfind.git

Backtracking reference stores Gabriel Scherer

number of writes, instead of the number of distinct positions written. It may be possible
to implement it; we suspect that it is non-obvious for semi-persistent arrays and difficult for
persistent arrays. If we want record elision, we need to write new code anyway.

Remark: persistent vs. semi-persistent Semi-persistent data-structures were introduced
in Conchon and Filliâtre (2008) as an optimization of fully-persistent data structures for sce-
narios where backtracking is required, but not more complex reuse scenarios. We mentioned
earlier a naive strategy for persistence adding a logarithmic overhead on all access. But note
that persistent data-structures can also be fast thanks to rerooting as presented in Conchon
and Filliâtre (2007), almost as fast as semi-persistent data structures.

Reusing the existing implementation of a Union-Find graph backed by a persistent array
would certainly be fine performance-wise; as with any array-backed approach it prevents garbage
collection, and we believe that implementing the record-eliding optimization would be more dif-
ficult. Our record-eliding optimization relies on the fact that valid versions of a semi-persistent
data structure form a linear structure, so they can be denoted by integers, with a fast check of
whether a version is an ancestor of another. On the other hand, fully persistent data structures
have a tree of versions, so our approach does not work.

2 Specification
In this section we present the set of primitive operations supported by our backtracking

store of references, just their specification.
Note: we did not start by writing down a specification, we started by writing an implemen-

tation with a bug on nested transactions. We had to work out a clear specification to avoid the
bug in the future.

2.1 Specifying backtracking data structures
Let us first recall the vocabulary to specify semi-persistent data structures proposed in

Conchon and Filliâtre (2008).
In a semi-persistent implementation, there are several versions of the same mutable struc-

tures, in our case a store, that is, a set of references. Each version of the data-structure has a
corresponding state, independent of the other versions.

There is a current (most recent) version.
We can branch a new version from the current version: it is a child of the current version

and becomes the new current version. This new version starts in exactly the same state as its
parent version – the previous current version.

We can terminate the current version, if it has a parent version. This parent version becomes
the new current version. (Note: Conchon and Filliâtre (2008) does not discuss termination
explicitly, so we are deviating slightly here.)

Remark that versions form a linear path, not a tree. We would have a tree if we could
branch from any version, not just the current one, in particular we could have a version with
several children. This would correspond to a fully persistent implementation.

There is a root version that is the current version when the store is just created, and has
no parent version.

2.2 Backtracking store of references
Our backtracking data-structure is a store of references. We follow François Pottier’s design

for stores of references (modulo simplifications for presentation). A store is a set of references
and each reference belongs to exactly one store.

5

Backtracking reference stores Gabriel Scherer

Usual store operations
type store
val new_store : unit -> store

type 'a rref
val make: store -> 'a -> 'a rref
val get: store -> 'a rref -> 'a
val set: store -> 'a rref -> 'a -> unit
The state of a (usual) store of references is just a mapping from each reference to a value of

its content type; get and set operations modify the state as expected.
With our backtracking stores, a store has several versions, and the logical state of each

version is exactly this mapping from each reference in the store to a value.
make adds a new reference to the store. Note that this operation is independent from the

current version: the state of all versions of the store now has a mapping for this reference.
get and set operate on the current version of the store, as expected.

Creating new versions
val branch : store -> unit
val terminate_nodiff : store -> unit

branch has the usual specification for a semi-persistent data structure: it creates a new
version, child of the current version, which becomes the new current version, and initially has
the same state as the previous current version.

We provide a terminate_nodiff function to terminate the current version; its parent version
becomes the new parent version. For reasons that will become apparent in the next paragraph,
this function assumes that the state of the current version is equal to the state of its parent.
(It fails if the current version is the root version.)

Transactions
val commit : store -> unit
val rollback : store -> unit

Those functions provide the necessary primitives to implement François Pottier’s transac-
tional interface on top of our backtracking store – and a bit more. They require the current
version to have a parent version, and fail if the current version is the root version.

commit changes the state of the parent version to become identical to the state of the current
version.

rollback changes the state of the current version to become identical to the state of the
parent version.

Those operations do not terminate the current version, but one can call terminate_nodiff
after them – it expects the current and parent version to be in the same state, which they both
enforce.

Note: it would be natural to provide a higher-level interface that offers only terminate_commit
and terminate_rollback, hiding the harder-to-use terminate_nodiff function.

Performance We expect a fast path behavior of get and set when no version has been
branched (see below). In that case, set should write the content of the reference without
any extra book-keeping, so that the performance is very close to standard references. Back-
tracking must be a low-cost abstraction, that only adds noticeable overhead when it is actually

6

Backtracking reference stores Gabriel Scherer

used. (This fast path behavior is also present in the StoreTransactionalRef implementation of
François Pottier, so it is important that we support it to subsume that implementation.)

3 Implementation(s)
Our references are implemented as records with a mutable field. (Our record-eliding imple-

mentation will get an extra metadata field, discussed in the relevant section.)

type 'a rref = { mutable current: 'a; }

We maintain the invariant that the global state of a store, the content of the current field of
each reference, is equal to the logical state of the current version of the store. This guarantees
in particular that get can be implemented with a single read of a mutable field.

The general idea of our implementations is that the store maintains a journal of writes to
its references, so that those writes can be rolled back when backtracking.

To undo a write/set, we need the reference that was written and the value of the reference
before the write:

type undo_action =
| Set : 'a rref * 'a -> undo_action

Note that if we supported other types of backtracking mutable objects in the store, for
example arrays, we could add more undo actions (for an array write we would store the array,
the index and the old value at this index).

We went through three different implementations, from the less to the more sophisticated.
They differ by the data-structure used to store undo actions, and whether we record an undo
action for all writes or only some of them.

3.1 Stack of stacks
In our first implementation, the difference between a version and its parent version is stored

as a stack of undo actions. Our versioned store is just a mutable list of such differences from
the current version to the root version.

type diff = undo_action Stack.t
type store = diff list ref

When the store is empty, the current version is the root version. The root version has no
parent, so it does not store a diff. When the store is of the form d::ds, d is a diff from the
current version to its parent, and ds a list of diffs from the parent version to the root version.
In other words, a store keeps the whole journal of all writes, but segmented in separate stacks,
one for each parent-child relationship between versions.

let new_store () = ref []
let make (_s : store) (v : 'a) : 'a rref = { current = v; }
let get (_s : store) (x : 'a rref) : 'a = x.current

Set The specification of set says that it operates on the state of the current version of the
store. In our representation, we maintain the invariant that the state of the current version
is equal to the global state of the references, so set must update this global state. We also
maintain the invariant that the store diff list relates the state of the current version to the state
of the root version; the current version changes, so set must also update the current diff, the
diff between the current version and its parent.

7

Backtracking reference stores Gabriel Scherer

let set (s : store) (x : 'a rref) (v : 'a) : unit =
begin (* Update the diff list. *)
match !s with

(* If the diff list is empty, the current version is the root version
which has no undo log, so there is nothing to do. *)

| [] -> ()
| current_diff :: _rest ->

(* Add the write to the diff of the current version *)
Stack.push (Set (x, x.current)) current_diff;

end;
(* Update the global state. *)
x.current <- v

In the case where the current version is the root version, our representation does not maintain
an undo log for the root version so we do not record the write. The root version has no parent
so commit or rollback cannot be called, so we cannot observe the presence of an undo log.

Branch and terminate
let branch s =
s := Stack.create () :: !s

let terminate_nodiff s =
match !s with
| [] -> invalid_arg "terminate_nodiff_version: root version cannot be terminated"
| diff :: rest ->
assert (Stack.is_empty diff);
s := rest

Note: checking that diff is empty is slightly stronger than our specification, which allows
non-empty diffs of updates that cancel each other. Our implementation enforces the more inten-
tional specification that terminate_nodiff is always called immediately after branch,commit
or rollback.

Rollback and commit rollback mutates the current state to become equal to the parent
state, while commit mutates the parent state to become equal to the current state.

let rollback s =
match !s with
| [] ->
invalid_arg "rollback: the root version cannot be rolled back"

| current_diff :: _ ->
(* Current state:{

current version
in state A

current diff−−−−−−−→ parent version
in state B

}
*)
while not (Stack.is_empty current_diff) do
match Stack.pop current_diff with
| Set (x, old) ->
x.current <- old

done;
(* Final state:{

current version
in state B

∅−→ parent version
in state B

}
*)

8

Backtracking reference stores Gabriel Scherer

commit relies on an auxiliary function on stacks, move_stack s1 ~into:s2. It moves all
elements of s1 into s2, in the same order as they were in s1, which is now empty. In other
words, if before the call the list of elements of s1 and s2 were l1 and l2 respectively, then after
the call it is [] and l1 @ l2.

let commit s =
match !s with
| [] ->
invalid_arg "rollback: the root version cannot be committed"

| diff :: [] ->
(* Current state:{

current version
in state A

diff−−→ root version
in state B

}
*)
Stack.clear diff;
(* Final state:{

current version
in state A

∅=== root version
in state A

}
*)

| diff :: parent_diff :: _ ->
(* Current state:{

current version
in state A

diff−−→ parent version
in state B

parent diff−−−−−−−→ parent parent version
in state C

}
*)

move_stack diff ~into:parent_diff;
(* Final state:{

current version
in state A

∅=== parent version
in state A

diff + parent diff−−−−−−−−−−−→ parent parent version
in state C

}
*)

Complexity Ideally we want each operation to take constant time, possibly amortized. Amor-
tized reasoning works well with rollback. It traverses the undo log of the current version to
perform each undo action, removing it from the diff. Each undo action is rolled back at most
once, and we can consider that its rollback cost was paid in advance by the corresponding set.

This reasoning fails for commit unfortunately. move_stack traverses the current undo log,
and this traversal cost can be amortized, but the undo actions are not dropped after traversal,
they remain in the diff of another version. One would need set to pre-pay for each version,
which is not a constant cost. Amortized reasoning fails, and in fact we can observe quadratic
complexity in the worst case: consider a sequence of N branch calls, then N writes, then N
(commit; terminate_nodiff) sequences, this runs in O(N2). (This is not a concern if you only
use backtracking and never the transactional interface, as in this case you always rollback and
never commit.)

It would be possible to change the diff data-structure from stacks to something that pro-
vides constant-time concatenation, such as doubly-linked lists. Instead we move to our second
implementation, which uses simpler data structures and can thus be expected to have lower
constant factors – at the cost of being less abstract.

3.2 Stack and indices

In our second iteration, we use a single stack to store the undo actions of all versions. We
remember the boundaries of each version in a separate list.

9

Backtracking reference stores Gabriel Scherer

type store = { journal: undo_action Stack.t;
mutable children: int list; }

For each child (non-root) version, the list children stores the index of this version in the
journal, that is, the starting position of the diff of this version. The children versions are
stored in the list from the most recent (the current version) to the oldest (the immediate child
of the root version). Note that the root version keeps no diff / undo log, so its immediate child
always starts at position 0.

For example, a store with three children versions in addition to the root version may have
the following representation – we draw the stacks and lists as growing from the right to the left.

6 4 0 children

9 8 7 6 5 4 3 2 1 0

journal

root versionv1v2v3

Easy changes Most functions are trivially adapted to this new representation. In the case of
set, we have to check the list s.children to tell whether we are at the root version (which
stores no diff) or not, and only push to journal in the non-root case:

let set (s : store) (x : 'a rref) (v : 'a) : unit =
begin match s.children with
| [] -> ()
| _ :: _ ->

Stack.push (Set (x, x.current)) s.journal;
end;
x.current <- v

branch uses the current length of the journal as the starting position of the new version:
let branch s =
s.children <- Stack.length s.journal :: s.children

Finally, rollback performs some length computation to determine how many undo actions
to roll back from the journal:

let rollback s =
match s.children with
| [] ->
invalid_arg "rollback: the root version cannot be rolled back"

| curr_start :: _ ->
let current_version_length = Stack.length s.journal - curr_start in
for _i = 1 to current_version_length do

match Stack.pop s.journal with
| Set (x, old) ->
x.current <- old

done;
assert (Stack.length s.journal = curr_start);

10

Backtracking reference stores Gabriel Scherer

Commit This function motivated the change of representation. In the case where the parent
version is not the root version, commit does not touch the journal at all – the undo actions
remain in the same position in the stack, we only needs to adjust the version boundaries. We
move the start of the current version to the end of the stack, so that the parent version adopts
the undo actions that were previously in the current version.

let commit s =
match s.children with
| [] ->
invalid_arg "rollback: the root version cannot be committed"

| _curr_start :: parent_start :: rest ->
(* Current state:{

current version
end of stack

state: A
current diff←−−−−−−− parent version

pos. curr start

state: B

parent diff←−−−−−−− parent parent version
pos. parent start

state: C

}
We move the boundary of our current version to the current
stack length. This moves the content of our diff to our
parent version. *)

s.children <- Stack.length s.journal :: parent_start :: rest;
(* Final state: current version

end of stack

state: A
∅=== parent version

pos. Stack.length

state: A

current diff
+ parent diff←−−−−−−−− parent parent version

pos. parent start

state: C

*)

| curr_start :: [] ->
(* Current state:{

current version
end of stack

state: A
current diff←−−−−−−− root version

pos. curr start = 0

state: B

}
The current version is the immediate child of the root version,
which has no undo log. We know that the current version starts in
position [0], and can discard the changes in our undo log. *)

assert (curr_start = 0);
Stack.clear s.journal;
(* Final state:{

current version
end of stack

state: A
∅=== root version

pos. curr start = 0

state: A

}
*)

In the case where the root version is the parent version, a linear cost may remain — depend-
ing on the complexity of Stack.clear. But there is no complexity issue there, this is amortized
constant time. Indeed, we only pay this cost once per undo action, and then the actions are
removed from the journal. We can consider that set paid for this cost in advance.

3.3 Record elision
Our last iteration is a small modification of our previous version that avoids recording several

writes to the same cell in a given version. Recording only the first write suffices to roll back
the changes if necessary.

During set we could walk back the undo log of the current version, and exit early if we

11

Backtracking reference stores Gabriel Scherer

find another write to the same reference. This would be very slow. Instead we store, in each
reference, information on when the last write to this reference was recorded – using positions
inside the journal as a natural notion of timestamp.

type 'a rref = {
mutable current: 'a;

(** The value of this reference in the current version. *)
mutable last_record: int;

(** [last_record] is the position of the most recent
record of this reference recorded in the journal,
or -1 this reference has no record. *)

}

let make (_s : store) (v : 'a) : 'a rref =
{ current = v; last_record = -1; }

(Our actual code uses an abstract type Pos_option.t instead of int to hide the -1 encoding,
but auxiliary abstractions would make the presentation heavier here.)

We need to save this last_record field in our undo actions to be able to restore it correctly
during rollback:

type undo_action =
| Set : {
ref: 'a rref;

(** the reference that was written *)
previous: 'a;

(** the value of the reference before the write *)
previous_record: int;

(** the [last_record] value at write time *)
} -> undo_action

Set We can skip recording the write if the last record belongs to the current version. We
update the last_record field when we extend the journal.

let set (s : store) (x : 'a rref) (v : 'a) : unit =
begin match s.children with
| [] -> ()
| current_version_start :: _ ->

if x.last_record >= current_version_start then ()
else begin
let new_record = Stack.length s.journal in
Stack.push (Set {
ref = x;
previous = x.current;
previous_record = x.last_record;

}) s.journal;
x.last_record <- new_record;

end
end;
x.current <- v

Note that while the space-overhead complexity reduction may feel nebulous for many ap-

12

Backtracking reference stores Gabriel Scherer

plications, this optimization also makes a qualitative difference in performance. Indeed, the
(polymorphic) writes dominate the cost of set; with the previous implementations, each set
would perform two such writes, one to the reference field and the other by pushing into the
journal. With the new implementation, in the common case we perform a single write. Outside
the root-version fast path, our previous set implementations was at least twice slower than
with standard references, while the overhead of the new version becomes negligible for write-
heavy workflows. Said otherwise, this implementation is low-cost even in presence of infrequent
branching.

Commit There is a subtlety in the case where our parent version is the root version. The
previous implementation, at the end of Section 3.1, simply clears the journal in this case. This
was correct then, but reusing the same logic here would invalidate the last_record fields of
the references mentioned in this journal, pointing to journal entries that no longer exist. We
must now clear this field for the references mentioned in the journal about to be cleared. We
highlight the only lines of code that change since the last version:

let commit s =
match s.children with
| [] -> invalid_arg "rollback: the root version cannot be committed"
| _curr_start :: parent_start :: rest ->
s.children <- Stack.length s.journal :: parent_start :: rest;

| curr_start :: [] ->
assert (curr_start = 0);
s.journal |> Stack.iter (function
| Set {ref; previous = _; previous_record = _} ->
ref.last_record <- -1;

);
Stack.clear s.journal;

Note that, when the parent version is not the root version, it may be the case that a single
reference was recorded in the current diff and also in the parent diff. In this case it ends up
mentioned twice in the final diff of the parent version. We do not preserve the invariant that
a reference is recorded at most once in each version. Enforcing this invariant saves no work,
and the obvious way to do it is to perform a linear traversal during commit, which would create
again a quadratic worst case.

4 Interface(s)
module BtRef = StoreBacktrackingRef
let rec typeof env = function (*...*) | Use (t, u) ->
match typeof env t with
| TyEq (ty1, ty2) ->

BtRef.branch env.store;
let finally () =
BtRef.rollback env.store;
BtRef.terminate_nodiff env.store; in

Fun.protect ~finally @@ fun () ->
introduce_equalities env ty1 ty2;
typeof env u

The primitives defined previously are enough to use our Union-Find with backtracking. In

13

Backtracking reference stores Gabriel Scherer

this section we build two higher-level interfaces, to show that our primitives are expressive
enough. One expresses the transactional API of François Pottier, the other expresses the
original semi-persistent API of Conchon and Filliâtre (2008).

4.1 Transactional API
François Pottier exposes the following function for his transactional reference implementa-

tion, StoreTransactionalRef:
(**[tentatively s f] runs the function [f] within a new transaction on the

store [s]. If [f] raises an exception, then the transaction is aborted, and
all updates performed by [f] on references in the store [s] are rolled
back. If [f] terminates normally, then the updates performed by [f] are
committed.

Two transactions on a single store cannot be nested.

A cell that is created during a transaction still exists after the
transaction, even if the transaction is rolled back. In that case, its
content should be considered undefined. *)

val tentatively: 'a store -> (unit -> 'b) -> 'b

We can implement this API for our backtracking references, with two improvements:

1. Our transactions can be nested at will. (This single change to the StoreTransactionalRef
specification suffices to express arbitrary backtracking.)

2. Our specification naturally gives a meaning to the content of a reference that was created
in a version since rolled back. In our specification, a reference is defined in all versions,
and its initial value (in all versions) is the parameter provided to make.

As we remarked earlier, StoreTransactionalRef also provides the important property of being
low-cost in the sense that read and writes outside a tentatively call are essentially as fast as
raw references. We also preserve this property, thanks to the absence (in our implementations)
of an undo log for the root version.

let tentatively (s : store) (f : unit -> 'b) : 'b =
branch s;
match f () with
| v ->
commit s;
terminate_nodiff s;
v

| exception e ->
let b = Printexc.get_raw_backtrace() in
rollback s;
terminate_nodiff s;
Printexc.raise_with_backtrace e b

4.2 Semi-persistent API
The API proposed in Conchon and Filliâtre (2008) has a more declarative, less imperative

flavor than ours.

14

Backtracking reference stores Gabriel Scherer

module SemiPersistent : sig
type versioned_store

val new_store : unit -> versioned_store
val branch : versioned_store -> versioned_store

val make : versioned_store -> 'a -> 'a rref
val get : versioned_store -> 'a rref -> 'a
val set : versioned_store -> 'a rref -> 'a -> unit

end

This API manipulates versioned stores, whereas our imperative API acts on a global store.
With this versioned API, branch returns a new store version. The functions branch, get or
set do not need to be called on the current version, but they backtrack to the version they were
given, invalidating/aborting any child version. There is no explicit way to terminate a version.

This gives nice, declarative code for our store-backtracking function.

module SPRef = StoreBacktrackingRef.SemiPersistent
let rec typeof env = function (*...*) | Use (t, u) ->
match typeof env t with
| TyEq (ty1, ty2) ->

let env = { env with store = SPRef.branch env.store } in
introduce_equalities env ty1 ty2;
typeof env u

On the other hand, we are not sure how to gracefully integrate the transactional features,
the difference between commit and rollback. This is related to the fact that termination of
versions is implicit. We could add a commit function, but it might break user expectations by
having the user of a child version modify its parent version.

(It is also somewhat awkward that make takes a versioned store as input but adds the
reference to all versions.)

In fact, we can define a generic functor that takes a data-structure with our imperative API,
and implements the declarative API on top.

module type Backtracking = sig
type t
val branch : t -> unit
val terminate : t -> unit

end

(With our primitives, terminate is defined by calling rollback then terminate_nodiff.)

module type SemiPersistent = sig
type t
type version

(* A root version with the given initial state;
it is initially the current version for this state. *)

val new_root : t -> version

15

Backtracking reference stores Gabriel Scherer

(* Branches a new version from a given version
(any previous transitive child of the given version is invalidated);
the new version becomes the new current version. *)

val branch : version -> version

(* The given version becomes the current version
(any transitive child is invalidated);
the corresponding global state is returned. *)

val access : version -> t
end

module Make (D : Backtracking)
: SemiPersistent with type t = D.t

= struct ... end

The type version provided by this functor keeps the global state of the datastructure, along
with a mutable status field that tracks whether it is currently the current version, is the parent
of another version, or has been invalidated by backtracking.

type t = D.t
type version = {
global : D.t;
mutable status : status;

}
and status =
| Current
| Parent_of of version
| Invalid

let new_root global =
{ global; status = Current; }

Branching modifies the status of the branched version to track its child. We first implement
branch_current, which assumes that it gets the current version.

let branch_current version =
assert (version.status = Current);
D.branch version.global;
let child = { global = version.global; status = Current } in
version.status <- Parent_of child;
child

We then implement a backtrack primitive that backtracks the global state to make a given
version the current version.

let backtrack version =
(* [collect] accumulates the transitive children of a version. *)
let rec collect children version =
match version.status with
| Current -> children
| Invalid -> invalid_arg "backtrack: this version is invalid"
| Parent_of child -> collect (child :: children) child

in

16

Backtracking reference stores Gabriel Scherer

(* terminate and invalidate all children versions. *)
collect [] version |> List.iter (fun child ->
child.status <- Invalid;
D.terminate version.global;

);
version.status <- Current

Finally, branch and access first backtrack to the given version, then branch a new version
or access the underlying global structure.

let branch version =
backtrack version;
branch_current version

let access version =
backtrack version;
version.global

5 Related Work
StoreTransactionalRef Within the library ecosystem we are familiar with, our work is fairly
similar to François Pottier’s StoreTransactionalRef implementation. We provide more features
(nested transactions) with no additional costs. We haven’t discussed this with François Pottier
yet, but we would expect our proposal to replace his StoreTransactionalRef module completely.

In automated solvers Automated solvers, for example SMT solvers, rely heavily on effi-
cient backtracking. When we looked in the opam package repository for an implementation of
backtrack-able Union-Find or backtrack-able references, we could not find anything; but since
we worked on this paper every author of a solver we met tells us with “l’air penaud” that they
have a version of this, deep in the middle of their own code, that they have never shown to
anyone. Boo!

A kind anonymous reviewer also pointed us to the CVC5 overview paper: Barbosa, Bar-
rett, Brain, Kremer, Lachnitt, Mann, Mohamed, Mohamed, Niemetz, Nötzli, Ozdemir, Preiner,
Reynolds, Sheng, Tinelli, and Zohar (2022). In Section 2.4, “context-dependent data struc-
tures”, they mention a general idea of backtrackable data structures indexed by a context with
an imperative push/pop interface – as common in SAT/SMT solvers. CVC5 supports various
data-structures as first-class members of those contexts, which also correspond to our stores. It
is not clear to non-experts as we are whether one should try to continue with just backtrackable
stores of references as a simple building block, and define elaborate data structures on top of it
(Union-Find, hashtables, etc.), or whether we really get noticeable efficiency benefits by adding
more data structures as first-class concepts in the backtrackable store, creating opportunities
for specialized implementations or more compact representations.

Hidden OCaml implementations After submitting this article we were pointed to, in
particular, (unpublished) implementations of backtracking stores of references in the FaCiLe
constraint-solving library and in the Colibri2 constraint solver, which more generally implements
the context interface of CVC5 for various data structures. Note that SMT implementations
typically support only backtracking, that is an abort operation, but not the commit operation
of François Pottier’s transactional references. FaCiLe does support a commit operation which
is described as a cut from logic programming.

17

Backtracking reference stores Gabriel Scherer

Specialized implementations Finally, in the late 80s there was apparently a lot of work on
specialized implementations of Union-Find with various forms of built-in backtracking support,
see for example Apostolico, Italiano, Gambosi, and Talamo (1994). We don’t know of released
implementation of these algorithms. They may be marginally faster than building on top of
stores of references, but cannot be reused for other data structures.

6 Benchmarks
We wrote some benchmarks to confirm experimentally our overall claim: the implementation

we present in this work (the latest iteration, with the record-elision optimization) provides
references with backtracking support at low cost. They are suitable to build backtracking data
structures.

You can find our detailed performance results at https://gitlab.inria.fr/gscherer/
unionfind/-/blob/jfla-benchmarks/bench/README.Store.JFLA.md

In our performance tests, the Facile implementation is around 15% slower than ours, while
Colibri2 is around 60% slower than our code. (These overheads are small and become neglegible
for most workflows that are not dominated by reference performance; for comparison, using a
persistent Map is 13x slower than our implementation, and our attempt to use CCHashTrie
with transient updates fared even worse.)

We believe that the Colibri2 slowdown comes from an ”on-demand” design where the back-
tracking work is done the next time a reference is accessed, instead of backtracking all references
eagerly at abort/rollback time. This on-demand logic may save effort in some workloads, but
it adds an extra rewind function call in the hot paths of get and set. In the common case the
rewind function returns immediately because no backtracking is going on, or because it has
already been performed, but a function call that returns immediately is enough in a very fast
path for a noticeable performance difference.

References
Alberto Apostolico, Giuseppe F. Italiano, Giorgio Gambosi, and Maurizio Talamo. The set

union problem with unlimited backtracking. SIAM Journal on Computing, 23(1):50–70,
1994.

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,
Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A
versatile and industrial-strength smt solver. In Dana Fisman and Grigore Rosu, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages 415–442, Cham, 2022.
Springer International Publishing. ISBN 978-3-030-99524-9.

Sylvain Conchon and Jean-Christophe Filliâtre. A Persistent Union-Find Data Structure. In
ACM SIGPLAN Workshop on ML, pages 37–45, Freiburg, Germany, October 2007. ACM
Press.

Sylvain Conchon and Jean-Christophe Filliâtre. Semi-Persistent Data Structures. In 17th
European Symposium on Programming (ESOP’08), April 2008.

18

https://gitlab.inria.fr/gscherer/unionfind/-/blob/jfla-benchmarks/bench/README.Store.JFLA.md
https://gitlab.inria.fr/gscherer/unionfind/-/blob/jfla-benchmarks/bench/README.Store.JFLA.md
https://github.com/c-cube/ocaml-containers/blob/master/src/data/CCHashTrie.mli
http://www.lri.fr/~filliatr/ftp/publis/puf-wml07.pdf
http://www.lri.fr/~filliatr/ftp/publis/spds-rr.pdf

	Introduction
	A trusted ally: a modular Union-Find library
	Our contribution
	Early challengers: (semi-)persistent dynamic arrays

	Specification
	Specifying backtracking data structures
	Backtracking store of references

	Implementation(s)
	Stack of stacks
	Stack and indices
	Record elision

	Interface(s)
	Transactional API
	Semi-persistent API

	Related Work
	Benchmarks

