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Abstract: MLF is a language that extends ML and System F and combines the benefits of both. We propose
a dag representation of MLF types that superposes a term-dag, encoding the underlying term structure with
sharing, and a tree encoding the binding structure. Compared to the original definition, this representation is
more canonical, as it factors out most of the notational details; it is also closely related to first-order terms.
Moreover, it permits a simpler and more direct definition of type instance that combines type instance on first-
order term-dags, simple operations on the binding tree, and a control that allows or rejects potential instances.
Using this representation, we build a linear-time unification algorithm for MLF types, which we prove sound and
complete with respect to its specification.
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Une présentation par graphes de MLF avec
un algorithme d’unification local linéaire

Résumé : MLF est un langage qui étend ML et le système F, tout en combinant les avantages des deux
systèmes. Nous proposons une représentation par dag des types de MLF, qui superpose un dag encodant la
structure sous-jacente de terme avec partage explicite, et un arbre encodant la structure des lieurs. Comparée à
la définition originelle, cette représentation est plus canonique, car elle évite la plupart des détails de notation;
elle est également très proche de celle utilisée pour les termes du premier ordre. Par ailleurs, elle permet une
définition plus simple et plus directe de la relation d’instance entre types, en combinant instance sur les types
du premier ordre, des opérations simples sur l’arbre des lieurs, et un contrôle de permissions qui autorise ou
rejette certaines instances. En utilisant cette représentation, nous construisons un algorithme d’unification de
complexité linéaire. Nous prouvons celui-ci correct et complet vis-à-vis de sa spécification.

Mots-clés : Système F, MLF, Unification, Types, Graphes, Lieurs



A graphical presentation of MLF types with a linear-time local unification algorithm. 3

This report is an extended version of [13]. It is electronically available in both color and black-and-
white versions1. This is the black-and-white version.

1 Introduction

The language MLF [7] has been proposed for smoothly combining the advantages of ML-style type inference [2]
with the expressiveness of System-F first-class polymorphism [4]. MLF is a conservative extension of ML that
allows to type all System-F terms [7]. MLF terms are partially annotated. All functions that use their parameter
in a polymorphic way—and only those—need an annotation. In particular, ML terms do not.

MLF comes with a type inference algorithm: every well-typed source program provided with some annotations
has a principal type—i.e. one of which all other correct types are instances. The typing rules of MLF are a
simple generalization of those of ML, and are quite straightforward. Moreover, they can be presented as a
particular instance of a simple generic type system that generalizes both ML and System F [8]. This system
is parameterized by the exact language of types and a type instance relation between types. Unfortunately,
while type instance and a subrelation called abstraction play a key role in MLF, they are defined by purely
syntactic means and with little intuitive support. So far, these relations were mainly justified a posteriori by
the properties of MLF. A more semantic-based definition has been proposed but only for a significant restriction
of the language and only for the instance relation [8].

We propose an alternative definition of types based on an (acyclic) graph representation. More precisely,
types have an underlying term-graph structure, similar to the representation of simple types with sharing, an
additional binding tree, and further properties relating the two. The existence of a graphic presentation for MLF-
types had already been suggested [6], but it was not sufficiently well-understood to be used formally. Graphic
types are more canonical, as they factor a lot of the syntactical artifacts that can be found in the original
syntactic definition of MLF. Both representations are isomorphic (and converting from one into the other has
linear complexity), but reasoning on graphic types is easier.

We define instantiation on graphs as a combination of simple transformations that include the following
three parts: instantiation of the first-order term-graph, simple transformations on the binding tree, and a
control process based on flags attached to the binding tree.

We also present a sound and complete linear-time unification algorithm on graphic types that finds the
smallest instance of two types (for the instance relation). The algorithm follows the same pattern as the
instance relation: unification of the first-order underlying term graph, computation of the least binding tree
that is an instance of the ones of the input types, and a control of permissions rejecting some unsound instances.

Outline The paper is organized as follows. We briefly reintroduce suntactic MLF types (§2) as well as the
definitions of terms, term-graphs and first-order unification (§3). We introduce the graphic representation of
MLF types (§4). We define the instance relation on graphic types (§5) and study some of its properties (§6). We
describe a unification algorithm for graphic types and prove it sound and complete (§7). Finally, we present an
informal comparison between the syntactic and the graphic presentations of MLF, and give algorithms translating
between syntactic and graphic types (§8). A table of notations is included in the appendix (page 39).

Notations

If a is a meta-variable ranging over some set A, we write a for a sequence of elements of A.
Let G be an arbitrary graph with nodes N and edges E labeled in L, i.e. E is a subset of N × L×N . We

write E−1 for the symmetric relation of E, obtained by reversing the arrows in E.
We write n1

a
−→ n2 ∈ E for (n1, a, n2) ∈ E. Often, E may be left implicit and we simply write n1

a
−→ n2.

We may fix a label a ∈ L and see
a
−→ as the binary relation {(n1, n2) | (n1

a
−→ n2)}. If a is a string of labels

a1 . . . ak, we write n1
a
−→ nk for n1

a1−→ . . . nk−1
ak−1

−→ nk. Using regular expressions syntax, we write n
∗
−→ n′

if there exists a string of labels a such that n
a
−→ n′, and n

+
−→ n′ if, moreover, this string is non-empty.

Fixing one side of the arrow to a particular set of nodes N , we write (N −→) (resp. (−→ N)) for the set of
nodes leaving (resp. reaching) a node in N .

We often see some relations as rewriting systems. Consequently, in the following we write f ;g for the inverse
composition g ◦ f . The semicolon notation emphasizes the order in which the rewritings can be done. Similarly,

1See http://gallium.inria.fr/~remy/mlf/.
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4 Rémy & Yakobowski

given two relations, we write R ; R′ for the composition of relations defined by x (R ;R′) y ⇐⇒ ∃z, x R
z ∧ z R′ y.
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6 Rémy & Yakobowski

2 A brief introduction to (syntactic) MLF

2.1 MLF syntactic types

MLF types are parameterized by a set of of type symbols Σ, including at least the arrow symbol →. We
distinguish first-order types t from second-order types σ, which are both defined by the following grammar, in
BNF form.

t ::= α | t→ t | . . .
σ ::= t | ⊥ | ∀ (α ⋄ σ) σ
⋄ ::= > | =

A first-order type t is defined as usual. A syntactic, second-order type σ is a first-order type t, a bottom
type ⊥ (which intuitively stands for the System-F type ∀α.α), or a quantified type ∀ (α ⋄ σ) σ′. A difference
with System-F is that quantification always assign bounds to variables. Bounds are themselves second-order
types. Bounds are either rigid when introduced with the = flag, or flexible when introduced with the > flag.
Intuitively, the meaning of α ⋄ σ is that α ranges over types that are either equivalent to σ when the bound is
rigid, or an instance of σ when the bound is flexible.

For example, the type ∀α. α→ α of System F can be represented in MLF as

∀ (α >⊥) α→ α. (σid )

We may omit trivial bounds and we often write ∀ (α) σ for ∀ (α > ⊥) σ. The System-F type (∀α. α → α) →
(∀α. α → α) cannot be represented directly, as the grammar forbids such types as σid → σid . We instead use
an auxiliary variable with a rigid bound and write

∀ (β = σid ) β → β. (σ1)

One may still, at first, understand rigid bounds by expansion as if σ1 standed for the ill-formed type σid → σid .
In MLF, we can also write the type

∀ (β > σid ) β → β. (σ2)

Syntactically, it only differs from σ1 by changing the rigid bound into a flexible one. This time however,
expansion would be a misleading intuition—otherwise, rigid and flexible bounds would make no difference.
Intuitively, σ2 should rather be understood by the set of its instances, that is, all types ∀ (β = σ) β → β such
that σ is an instance of σid . In fact, σ1 is itself an instance of σ2.

The auxiliary variable β is used to share the two instances of σ on the left and right sides of the arrow.
Thus, σ2 is quite different from the type

∀ (β > σid ) ∀ (β′ > σid ) β → β′, (σ3)

which stands for all types ∀ (β =σ) ∀ (β′ =σ′) β → β′ such that σ and σ′ are independent instances of σid . This
is similar to the difference between types ∀γ.γ → γ and ∀γ.∀γ′.γ → γ′ in System-F.

Combining both forms of quantification, the type

∀ (β = σid ) ∀ (β′ > σid ) β → β′ (σ4)

may be understood as the set of all types ∀ (β = σid ) ∀ (β′ = σ) β → β′ (i.e. intuitively σid → σ) such that σ is
an instance of σid .

2.2 Type instance

A peculiarity of MLF is its sophisticated instance relation ⊑ that can operate deeply under other quantifiers
and, indirectly, under type structure, as illustrated with type σ4 above.

While flexible and rigid bounds are often used in covariant and contravariant contexts, respectively, quan-
tification in MLF also allows to instantiate the (flexible) bound of a variable that appears both covariantly
and contravariantly, as in σ2. This is actually a key to having principal types in MLF. This is made possible,
while maintaining type-soundness, by enforcing all occurrences of the bound to simultaneously pick the same
instance: the weaker the types in contra-variant position (typically of arguments), the weaker the types in
co-variant position (typically of results).

INRIA



A graphical presentation of MLF types with a linear-time local unification algorithm. 7

Instantiation is always safe—and permitted—under flexible bindings, which provide some polymorphism but
do not request it. Conversely, it is generally unsafe—and thus forbidden—under rigid ones, which require some
polymorphism, and might have assumed it. While a function of type ∀ (α) α→ α can be safely considered as a
function of type t→ t for any monotype t, it would be unsafe to consider a function of type ∀ (β = σid ) β → β
as a function of type ∀ (β = t → t) β → β: the former requires its argument to be polymorphic (and returns
a polymorphic result) while the latter only requires its argument to be of type t → t. In the second case, this
argument could then be erroneously applied to values of unexpected type.

While rigid bounds that occur in contravariant position cannot be instantiated for soundness of type-checking,
it is a key design choice to forbid instances of all rigid bounds, so that type instantiation is then only driven by
bound flags and never looks at variances. This makes type inference decidable, tractable, and actually relatively
simple.

Still, it would always be sound and often useful to treat a function of type σ1 as a function of type σ4. To
circumvent this limitation—and recover all uses of polymorphism—MLF introduces type annotations (_ : σ)
that behave as explicit retyping functions of type ∀ (α = σ, α′ > σ) α→ α′. That is, (a : σ) explicitly requires a
to have type σ, and then allows it to be used with an instance of σ.

In fact, MLF still allows a very restricted form of instance under rigid bounds, called abstraction and writ-
ten ⊏−. Typically, abstraction may increase sharing by merging two variables with the same rigid bound, but
may not instantiate flexible bounds. For instance, σ1 is an abstraction of ∀ (β = σid , β′ = σid ) β → β′—but not
the converse. Abstraction may be distinguished from general instances, as its inverse relation ⊐− is sound and
is only disallowed in order to keep type inference decidable. The remaining reversible part ⊏− ∩ ⊐−, called type
equivalence and written ≡, captures syntactic artifacts such as renaming of bound variables, commutation of
adjacent binders, removal of useless binders, and such.

In the original definition of type instance, places where inner instantiation or abstraction may actually
occur are implicitly defined by contextual inference rules. Namely, instantiation may only occur under flexible
quantifiers, called a flexible context, and abstraction may only occur under a sequence of rigid quantifiers itself
in a flexible context. For example, abstraction is disallowed in the inner bound α3 of ∀ (α1 = ∀ (α2 > ∀ (α3 = σ3)
σ2) σ1) σ. While such a transformation appears to be sound from a semantic point of view, its naive integration
would surprisingly break type soundness via ad hoc intricate interaction with type equivalence.

One of our main contributions is to revisit the instance relation (§5) using a graph presentation of types (§4).
This new presentation eliminates most of the syntactic artifacts and so is more direct, allows more support for
intuition, and supports extensions of the abstraction relation just mentioned without endangering soundness.

3 First- and second-order types

This section presents a formal definition of first-order types, as well as of their graph representation. The latter
is often used—behind the scene—in efficient first-order unification algorithms. We then introduce graphical
notations on the well-known System-F types, as they offer a good support for intuitions.

3.1 First-order terms

Let paths, ranged over by π, be sequences of integers. We let ǫ designate the empty path, and ππ′ the
concatenation of π′ after π. We extend concatenation to sets of paths by Π ·Π′ = {π · π′ | π ∈ Π, π′ ∈ Π′}.

A (first-order) term t over a signature Σ (a set of symbols with arities) and a set of variables V is a mapping
from a non-empty set of paths to Σ ∪ V that is prefix-closed and respect arities. That is, for all paths π in
dom(t) (the domain of t) and all integers k, πk ∈ dom(t) is equivalent to 1 ≤ k ≤ arity(t(π)).

First-order types are usually understood as trees. For example the tree (a) of Figure 1 represents the type
(α→ β)→ (α→ β). This type is itself the function that maps ǫ and the paths 1 and 2 to →, paths 11 and 21
to α, and paths 21 and 22 to β.

The projection of a term t at a path π is the partial function t/π that maps t to its subterm rooted at π;
projecting type (a) at path 1 or 2 yields the type α → β. It is defined by π′ 7→ t(ππ′). Conversely, we may
treat a symbol C of Σ as a function on trees that maps a tuple of terms t of arity arity(C) to the term t that
maps ǫ to C and paths kiπ to ti(π) for i in 1..arity(C).

A substitution ϕ is a mapping from variables to terms; it is extended to a mapping from terms to terms in
the usual way.

A term t′ is an instance of a term t, which we write t 6 t′, if it is the image of t by some substitution ϕ. Two
terms t and t′ are unifiable if there exists a substitution ϕ, called a unifier of t and t′, that identifies them. The
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(a) →

→

1

α

1

β

2

→

2

α

1

β

2

(b) →

→

1

α

→

2

β

1 21 2

{ǫ}

{1} {2}

{11,21} {12,22}

(c) →

→

1 2

α

1

β

2

{ǫ}

{1,2}

{11,21} {12,22}

Figure 1: Several representations of (α→ β)→ (α→ β).

unifier ϕ is said to be principal if any other unifier can be written as ϕ′ ◦ ϕ for some substitution ϕ′. Similarly,
t′′ is a (principal) unifier of t and t′ if it is of the form ϕ(t) where ϕ is a (principal) unifier of t and t′.

Unification is a well-known problem on first-order terms that can be computed in linear time [11] using
dags. Other algorithms use union-find structures and have nα(n) time complexity; however, they run faster in
practice [5, 10] and are simpler to implement. Moreover, Huet’s algorithm [5] can perform unification on regular
terms as well. Interestingly, all three algorithms use a graph representation of types. In fact, they compute
unification on graphs representations of terms, and reinterpret the resulting graphs as terms.

3.2 Term-graphs

When representing first-order types, it is sometimes convenient (and often more efficient) to identify all variables
with the same name, as shown in the dag (b) of Figure 1. In fact, inner nodes with identical subtrees can also
be shared, as illustrated on Figure 1 (c). This enables sharing of common suffixes, hence for a more compact,
but also richer representation, where sharing of nodes asserts that the substrees are indeed equal. The use
of a dag representation of terms for efficient first-order unification algorithms is standard. It may be explicit
when algorithms are described imperatively, or left implicit as in Huet’s algorithm [5]. Our presentation is also
inspired by the notations used in graph rewriting [12].

Definition 1 (Term-graphs) An equivalence relation ∼ on the paths of a term t is a congruence if it is suffix-
closed, i.e. π ∼ π′ and πk and π′k are in dom(t) implies πk ∼ π′k. It is weakly consistent if the image by t of
an equivalence class contains at most one symbol of Σ. It is consistent if the image by t of an equivalence class
is a singleton.

A term-graph is a pair of a term t and a consistent congruence ∼ on dom(t) such that every variable appears
in at most one equivalence class2. �

Intuitively, we may view an equivalence relation on t as “sharing” some “nodes” of t. Congruences enforces
that when two paths are shared, (the paths at) their respective subterms remain shared. Consistent relations
ensure that shared paths are mapped to the same symbol or variable. Weakly consistent relations do not impose
a constraint on paths that are mapped to variables—their are used to reason about unification.

A consistent congruence on t partitions the paths of t into (disjoint) equivalence classes that represent the
nodes of the term-graph. As t is constant on every node, we may extend t to nodes by mapping each node n to
the common value of t on all paths of n. Consistently, we also write dom(t) for the equivalence classes of t, i.e.
for the set of the nodes of t.

We use letter n to range over nodes. We also write r the root node {ǫ} of a graph. We use letter g to range
over term-graphs and write ĝ and g̃ for the term and the equivalence relation defining g.

For example, dags (b) and (c) on Figure 1 are two term-graphs representing the same term (α→ β)→ (α→
β). In the dag (b), only variable nodes are shared. This term-graph has five nodes {ǫ}, {1}, {2}, {11, 21} and
{12, 22}. Here, we have drawn node names; however, we usually leave them implicit.

Notice that the nodes {1} and {2} of (b) are congruent: for any path π, 1π and 2π are equivalent, and
moreover, both nodes are labelled with the arrow symbol. Therefore, the equivalence relation of (b) could be
enriched with {1, 2} while remaining congruent and consistent, resulting in exactly the equivalence relation of
dag (c). Intuitively, the subgraphs under {1} and {2}, which were identical in (b), have been merged in (c).
In this simple example, only the nodes {1} and {2} have been merged. The name of the merged nodes is the
union of the names of the nodes to be merged.

2This last invariant is not strictly required, but there is no real advantage to use graphs if it is not enforced.
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Figure 2: Term-graph instance.

Term-graphs as graphs A term-graph g may be read as an ordinary graph whose nodes are dom(g), labeled

by the function g, and whose labeled edges n
k
−→ n′ are the set of triples such that there exists a path π in

n with πk in n′. In this setting, we forget the underlying structure of nodes as sets of paths, and treat them
as atoms. We use the term standard graphs to refer to this view; the two representations are isomorphic. The
standard view is sometimes necessary for efficiency of algorithms, since otherwise maintaining names could be
exponential in the size of the graph. However, the default, named view is more convenient for referring to nodes
and to keep track of nodes during a sequence of graph transformations.

Designating nodes in graphs When a graph is known, we often use a single path π as a short-name for the
unique node n to which π belongs, and write 〈π〉 for n. For example, in picture (c) of Figure 1, 〈12〉 and 〈22〉

refer to the same node {12, 22}. More generally, given two term-graphs t and t′ such that t̃ ⊆ t̃
′
(i.e. t′ shares

more nodes than t), a node n of t can be translated unambiguously into a node n′ of t′, which is the only node
of t′ that is a superset of n. For brevity we often designate n′ by n.

We usually leave arities implicit, as we always write outgoing edges downwards and from left to right.

3.3 Instance and unification on term-graphs

Unsurprinsingly, instance of term-graphs is two-fold: it is either an instance of the underlying first-order term t̂,
which changes the structure of the type, or an instance of the equivalence relation t̃, which merges more nodes.

Definition 2 A term-graph g′ is an instance of a term-graph g, which we write g 6 g′, if ĝ 6 ĝ′ and g̃ ⊆ g̃′.
We say that g′ is a reversible instance of g if moreover ĝ = ĝ′.

Two term-graphs are equivalent if they are instances of one another. Two term-graphs are similar if they
are two reversible instances of a same term-graph. �

Two equivalent term-graphs are in fact equal up to the renaming of their variables. Reversible instance only
changes the representation of a type, but not its meaning as a first-order type. It is thus “semantically”
reversible, although it is usually not operationally allowed. Precisely, similarity abstracts over the notational
details brought by term-graphs: two term-graphs are similar if they represent the same first-order type.

Let us give some examples. In figure 2, the term-graphs (c) and (e) are two instances of (a), through the
substitutions γ 7→ α → β and γ 7→ δ → δ respectively. The graph (c) is also a reversible instance of (b), as it
shares more nodes than (b), and its underlying tree is equal to that of (b). Hence, (b) and (c) are similar—but
not equal. Here, (c) is also an instance of (b). In general however, none of two similar types would be an instance
of the other, as one could share could share more in one branch and less in another one. The term-graph (d) is

also an instance of (b), through the substitution α, β 7→ δ. Even though ĉ 6 d̂ holds, (d) is not an instance of
(c), as the nodes 〈1〉 and 〈2〉 are shared in (c) but not in (d). Similarly, (e) is an instance of (d); conversely, (d)
is not an instance of (e). Finally, (e) is an instance of (b). Instance is indeed a transitive relation.

On term-graphs, unification can be internalized, that is, it may be defined on two nodes of a same term-graph
instead of between two term-graphs. We say that a term-graph g′ is a unifier of two nodes of a term-graph g
if it is an instance of g that identifies both nodes (i.e. there exists a node n of g′ that is a superset of both
nodes). For example, the term-graph (c) is a unifier of the nodes 〈1〉 and 〈2〉 of the term-graph (b). A unifier g′

of two nodes is principal if any other unifier of those nodes is also an instance of g′. Unification of two nodes of
g can be computed as the smallest weakly consistent, congruent equivalence that contains g̃ and identifies both
nodes [5].

Unification of term-graphs also computes their unification up to similarity, i.e. unification on terms. More
precisely, if g′ is a (principal) unifier of two nodes n1 and n2 in a term-graph g, then ĝ′/n is a (principal) unifier

RR n° 0123456789



10 Rémy & Yakobowski

∀

α

1

→

2

∀

β

1

→

2

β

1

α

2

α

2

(1) Second-order
term

∀

→

2

∀

1

→

2

β

1

α

2

1
2

1

(2) Second-order
dag

→

→

2

β

1

α

2

1

(3) binding
edges

→

→

2

β

1

α

2

1

(4)

→

→

2

⊥

1

⊥

2

1

(5) anonymous
variables

Figure 3: Representations of second-order types.
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Figure 4: Examples of graphic MLF types.

of ĝ/n1 and ĝ/n2 where n is the node of g′ that is a superset of n1 and n2 (where the notation t/n stands for
the (common) subterm of t at any path in n). This property, often overlooked in the literature, justifies the
fact that term-graphs can be used instead of first-order terms to perform first-order unification.

3.4 Representing second-order types

Traditionally, binders are represented with an explicit node labeled with a special symbol ∀ of arity two. For
example, the System-F type ∀α.(∀β.β → α) → α is usually represented as the tree (1) of Figure 3. Using
dags, we would rather represent it as in (2). However, representing quantifiers as special nodes inserted in the
structure is counter-intuitive, as it hides the underlying common structure of all instances.

We may in fact remove the quantifier node and instead introduce a binding edge between the bound variable
and the node just above which it is bound, as illustrated in graph (3). We orient the binding edge from the
bound variable to its binding node. This is just a convention, and we could have chosen the opposite direction—
our choice is slighly easier to think about, as each variable node is bound to a single node, but a single node
could be a binding position for several variables.

Notice that this notation looses the order of adjacent binders and makes useless binders not representable—
two artifacts of the syntactic notations that we are so happy to eliminate. For instance, ∀α.∀β.(β → α) → β,
∀β.∀α.(β → α)→ β and ∀γ.∀α.∀β.(β → α)→ β will all have the same representation (4).

Finally, as quantified variables are treated modulo α-renaming, we may advantageously draw them anony-
mously, as in (5). For that purpose, we introduce a new kind of node ⊥, called a bottom node to mean “a
variable”. The bottom sign ⊥ is not a true symbol (it is not an element of Σ) but a new pseudo-symbol that
does not clash with other symbols during unification. We intendedly reuse the same notation as the bottom
type of syntactic MLF types, since the notation “∀ (α ⋄ ⊥)” plays the same role as “∀α.” in System-F types.

INRIA



A graphical presentation of MLF types with a linear-time local unification algorithm. 11

4 MLF graphic types

4.1 Representing MLF types

Let us illustrate the graphic representation of MLF types on the four types σ1, σ2, σ3, and σ4 introduced earlier
(§2.1) and drawn in Figure 4. As for System F, we draw binding edges from nodes to their binding node, but
use two kinds of edges to distinguish between flexible and rigid bindings, represented by dotted and dashed lines
respectively3. In addition, we represent the bound of the variable in place of the unique node representing that
variable (hence, non-bottom nodes may now also have binding edges). For instance, the graph representing σ3

contains at the node 〈1〉 a subgraph representing the bound σid of the variable α. This node is itself bound at
the root. For bottom bounds, we thus recover the representation of variables for System-F types. For example,
node 〈11〉 of σ3 is a bottom node.

Thus defined, the binding edges of graphic types are upwards-closed. From a theoretical standpoint, some
nodes (such as the type constructor int) need not be bound. However, this makes reasoning on the graphic
types uneasy, so we require that all nodes be bound.

As in term-graphs, sharing of non-variable nodes is possible. However, it is most of the case semantically
significant (unlike in term-graphs). In MLF, σ4, in which the two occurrences of σid may be instantiated
separately, is quite different from σ3, in which both sides of the arrow must be instantiated simultaneously.
This is partly reflected in the graphic presentation by the fact that there are copies of the graph representing
σid in σ4, but only one in σ3. We are now able to characterize graphic types, i.e. graphs representing MLF

types. We first define pre-types (§4.1), and then state well-formedness conditions they must satisfy in order to
be types (§4.2).

Definition 3 A pre-type τ is a pair of:

1. A term-graph τ̊ , whose nodes are labelled by elements of Σ∪ {⊥}. The bottom nodes must be leaves and
the other nodes must respect the arity of their symbol.

2. A binding tree ≻τ for τ̊ . That is, a set of binding edges labelled with flags that form an upside-down tree
rooted at 〈ǫ〉, such that any node different from the root is in the tree. �

Notations In the text, we write n ◦−→ n′ ∈ τ (resp. n ⋄≻−→ n′ ∈ τ) to mean that there is a structure
edge (resp. a binding edge with flag ⋄) from n to n′ in τ . We may drop the flag when it is unimportant. If

n ⋄≻−→ n′ ∈ τ , we also write
⋄
τ(n) for ⋄ and ≻τ (n) (or simply ≻n) for n′; we call n′ the binder of n and we say that

n is bound at n′.
If π is a path, we write n π◦−→ n′ to denote the fact that n′ is at path π from n. We write←−≺ the symmetric

of the relation ≻−→ and ◦−≺ the union (◦−→) ∪ (←−≺). Given some nodes n1, ..., nk, we say that the sequence
n1 ◦−≺ n2 . . . ◦−≺ nk−1 ◦−≺ nk is a mixed path between n1 and nk; this path is said to contain n if n = ni for
some 1 ≤ i ≤ k. We write τ̂ and τ̃ for the term and equivalence defining τ̊ . We simply write τ(n) for τ̂(n), i.e.

the symbol on the node n. We write
◦−→
τfoo and

≻−→
τbar instead of τ̊ foo and ≻τ bar for wide arguments.

For example, consider the pre-types of Figure 5. We have 〈1〉 =≻−→ {ǫ} ∈ τ1. Hence, the binder of 〈1〉 is
≻τ1〈1〉 = {ǫ}, and

⋄
τ1(〈1〉) is =. We also have 〈1〉 ◦−→ 〈11〉 ◦−→ 〈112〉 ∈ τ2 or, leaving τ2 implicit, 〈1〉 12◦−→ 〈112〉.

Following the first or second outgoing edge from 〈1〉 leads to the same node 〈11〉 (also named 〈12〉). Finally, we

also have {ǫ} ←−≺ 〈11〉 2◦−→ 〈112〉, which is a mixed path in τ2 from {ǫ} to 〈112〉.

4.2 Well-formedness

All pre-types are not types as the later must correspond to syntactic types. In particular, the binding tree
must be compatible with lexical scoping of variables. Two examples of ill-formed binding trees are described in
Figure 5:

• In pre-type τ1, the node 〈21〉 is bound at a node that is not among its parents. This is not permitted, as
in a syntactic presentation, the variable should be bound on the left branch and used on the right branch,
out of its scope.

3In generic diagrams where an edge can be indifferently flexible or rigid, we use dashed-dotted edges.
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Figure 5: Invalid graphic types.

• In pre-type τ2, both nodes 〈1〉 and 〈11〉 are bound at the root. However, the two bindings depend on one
another: when attempting the translation to a syntactic type, if we try to bind 〈11〉 first, we must refer to
〈112〉 which is bound under 〈1〉; conversely, if we choose to bind 〈1〉 first, we must use 〈11〉 in the bound
of 〈1〉 while this node is not bound yet.

Both invariants can be captured using the notion of domination.

Definition 4 (Domination) Let τ be a pre-type and n and n′ two nodes of τ . We say that n dominates n′

and we write n ◦−⊲−≺ n′ if every mixed path from the root to n′ contains n. �

It is well-known that domination is a partial order.
Consider again the pre-types of Figure 5. In τ1, the mixed paths between {ǫ} and 〈11〉 are

{ǫ} ◦−→ 〈1〉 1◦−→ 〈11〉 {ǫ} ←−≺ 〈1〉 1◦−→ 〈11〉

{ǫ} ◦−→ 〈1〉 2◦−→ 〈11〉 {ǫ} ←−≺ 〈1〉 2◦−→ 〈11〉

All four paths contain 〈1〉. Hence node 〈1〉 dominates node 〈11〉.

Conversely, node 〈1〉 does not dominate 〈21〉, as evidenced by the path {ǫ} 2◦−→ 〈2〉 1◦−→ 〈21〉. Similarly, in

τ2, 〈1〉 does not dominate 〈112〉, since {ǫ} ←−≺ 〈11〉 2◦−→ 〈112〉.

Well-formed types are simply types in which the binder of a node dominates the node itself. This result is
just a generalization of the known case for types with explicit nodes encoding binders (type (2) of Figure 3),
where ∀-nodes must dominate the variables they introduce. In our more general case, we must also take the
binding tree into account.

Definition 5 (Types) The binding tree of a pre-type τ is well-dominated if every bound node is dominated4

by its binder, i.e., for all n and n′ in τ , n ≻−→ n′ implies n′ ◦−⊲−≺ n, or, in short, (←−≺) ⊆ (◦−⊲−≺). A (graphic)
type is a well-dominated pre-type. �

As seen in examples, neither τ1 nor τ2 are types, as they are not well-dominated. In particular, ≻τ1(〈21〉) does
not dominate 〈21〉 in τ1 and ≻τ2(〈112〉) does not dominate 〈112〉 in τ2.

4.3 Invariants induced by well-formedness

Well-domination is a fairly strong property: it imposes several invariants on the relation between the structure
and the binding tree of a type. We characterize some of them below.

We first introduce a notion of “bubble” that contains all the nodes that are “under” a given node.

Definition 6 (Bubbles) The bubble of a node n of a type τ , written Bτ (n), is the set {n′ ∈ dom(τ) | ≻n +◦−→
n′ ∗◦−→ n} of nodes above n and strictly under the binder of n. �

We may omit τ in Bτ (n) when it is clear from context. Notice that the bubble of n contains n, but not ≻n.
We call ≻n the top of the bubble. In Figure 6, we have drawn a type τ (on the left) and a schema of τ (on the
right) in which the bubbles (and the edges connecting the nodes) of the three nodes 〈1〉, 〈1111〉 and 〈1122〉 are
colored. For example, B(1122) = {〈11〉, 〈112〉, 〈1122〉} is drawn in red.

Well-domination ensures the following properties.

4Since ≻
τ is a tree, it is acyclic and ≻

n cannot be n. Hence we couldd also require every bound node to be strictly dominated by
its binder.
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Figure 7: Diagrams for bubbles nesting

Property 1 For any type τ and for all nodes n, n′, and n′′ in τ ,

1. if n ≻−→ n′ then n′ +◦−→ n
(binding edges follow inverse structure edges);

2. if n′ ∈ B(n), then ≻n ◦−⊲−≺ n′

(the top of the bubble dominates all nodes of the bubble);

3. if n′ ∈ B(n) then n′ +≻−→ ≻n
(all bound nodes of a bubble are transitively bound at the top of the bubble);

4. if n +≻−→ n′′ +◦−→ n′ ∗◦−→ n, then n′ +≻−→ n′′;

5. if B(n) ∩ B(n′) 6= ∅ then either n +≻−→ ≻n′ or n′ +≻−→ ≻n. �

Properties 3 and 4 are presented as diagrams in Figure 7, which shows that Property 4 is actually a subcase
of 3. The conclusion is the rightmost binding edge. Property 3 can be checked (in a simple case) on node 〈1〉 of
type τ of Figure 6. This node is in the bubble of node 〈1111〉, and is (directly) bound at the binder of 〈1111〉.
Property 5 implies in particular that bubbles having a common node do not separate above that node. An
example is nodes 〈1111〉 and 〈1122〉 of τ of Figure 6, whose bubbles intersect on 〈11〉 or 〈112〉.

Bubbles can also be used to order nodes along a “dependency” relation. Indeed, given two nodes n and n′,
if n ∈ B(n′), we know that the subgraph under n contains n′. Thus n “uses” n′ in its bound when the graphic
type is written as a syntactic one.

Definition 7 (Order on bound nodes) We write <B the partial order on bound nodes defined by n <B n′

if and only if ≻n = ≻n′ ∧ B(n′) ⊂ B(n). �

In type τ of Figure 6, the relation 〈1111〉 <B 〈1〉 holds. Nodes minimal for <B are always lower in the type (the
converse implication being false).

4.4 Operators for building graphs

In this section, we introduce several operations to build or transform graphs. The semantics of those transfor-
mations in terms of graphic types will be considered in the next section.
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Figure 8: Operations on graphs

Grafting We write τ [τ ′/n] for the grafting of a type τ ′ at a bottom node n of a type τ ; the resulting type is
described by τ ′ for nodes below n and by τ for other nodes. In Figure 8, grafting type τg at node 〈1〉 in itself
yields type τg′ . Formally:

• τ̂ [τ ′/n] maps nm to τ ′(m) for m ∈ dom(τ ′), and maps m in dom(τ) \ {n} to τ(m);

• τ̃ [τ ′/n] is equal to τ̃ ∪ n · τ̃ ′ where n · τ̃ ′ means the set of pairs (n ·m, n ·m′) such that m τ̃ ′ m;

•
≻−−−→
τ [τ ′/n] is ≻τ extended with all edges nm ⋄≻−→ nm′ such that m ⋄≻−→ m′ ∈ τ ′.

Projection .
Let us call closed a node n such that all nodes of the subgraph under n are transitively bound under n itself

(that is n +◦−→ n′ implies n′ +≻−→ n). Given such a node, we write τ/n for the projection of τ at n, obtained
by removing all nodes not under n and all dangling edges, and renaming nodes accordingly (thus making n
the root node of the resulting graph). For example, projecting at node 〈1〉 in τ ′

g yields type τg. Projecting at
nodes 〈1〉 or 〈2〉 in τ is impossible, as 〈11〉 is not bound under 〈1〉 (and the resulting graph would be ill-bound).
Formally:

• τ̂/n is τ̂ /n.

• t̃/n is such that π τ̃/n π′ if and only if nπ τ̃ nπ′.

•
≻→
t/n is defined by m ⋄≻−→ m′ ∈ τ/n if and only if nm ⋄≻−→ nm′ ∈ τ .

Fusion Provided the subgraphs under n1 and n2 are structurally equal and their binding trees can be fused,
we write τ [n1 = n2] the type obtained by fusing those two subgraphs in τ . For example, fusing the nodes 〈11〉
and 〈21〉 in τ yields type τm. More interestingly, the nodes 〈1〉 and 〈2〉 can be fused in both τ and τm, resulting
in type τm′ . Notice that the binding edges 〈11〉 ≻−→ {ǫ} and 〈21〉 ≻−→ {ǫ} of τ are fused in τm′ , as a side-effect
of fusing 〈1〉 and 〈2〉.

We say that an equivalence relation on nodes is consistent if it is compatible with the binding structure.
(That is, whenever n1 ∼ n2, then n1 and n2 are both bound, to nodes n′

1 and n′
2 such that n1 ∼ n′

2.) The
fusion τ [n1 = n2] is defined on all the graphs τ such that τ/n1 and τ/n2 are equal and the smallest congruence
∼ which merges n1 and n2 in τ is consistent with ≻τ . It is defined by:

• ̂τ [n1 = n2] is τ̂

• ˜τ [n1 = n2] is τ̃ ∪{ (n1π, n2π) n1π ∈ dom(τ̂ ) }.

•
≻−−−−−−→
τ [n1 = n2] is the quotient of ≻τ by ˜τ [n1 = n2], which is well-defined by construction.

Raising Consider a node n of a type τ such that n ⋄≻−→ n′ ⋄′

≻−→ n′′ holds. A simple transformation on the
binding tree of τ is to “lift” the binding edge n ≻−→ n′ above the edge n′ ≻−→ n′′, resulting in the edge n ⋄≻−→ n′′.
The resulting pre-type is called the raising of n in τ , written τ ↑ n. In Figure 8, the type τr is the raising of
the node 〈22〉 in τ . Formally:

• τ̂ ↑ n is τ̂ ;
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• τ̃ ↑ n is τ̃ ;

•
≻−−→
τ ↑ n is ≻τ , except on n where it is n ⋄≻−→ n′′ (where ⋄ =

⋄
τ (n), and n′′ = ≻τ (≻τ (n))).

Well-formedness of operations Grafting, fusion and projection are “well-behaved” operations that trans-
form a type into a (well-dominated) type, but this is not the case for raising.

Property 2 Let τ be a type.

• Let τ ′ be a type and n a bottom node of τ ; the grafting τ [τ ′/n] is a type.

• Let n1 and n2 be two nodes that can be fused in τ . The fusion τ [n1 = n2] is a type.

• Let n be a closed node of τ . The projection τ/n is a type. �

Raising at arbitrary nodes can result in ill-dominated pre-types. Consider the raising of 〈11〉 in type τ of
Figure 6, and let us call g the result. The mixed path {ǫ} ←−≺ 〈11〉 ◦−→ 〈112〉 ◦−→ 〈1122〉 of g does not contain
the node 〈1〉 = ≻g(〈1122〉). Thus g is not well-dominated.

We can however characterize the set of nodes n which can raised while preserving well-domination. In-
tuitively, the bubble of n must not be contained in the bubble of a node n′ bound at the same node as n.

Definition 8 (Raisable node) Given a type τ and a bound node n ∈ τ , n is raisable in τ if it is minimal for
<B in τ . That is ∀n′ ∈ τ , n′ 6<B n. �

Given the definition of <B, the condition can be relaxed into ∀n′ ∈ (≻−→ ≻n), n′ 6<B n, which may be checked
locally. In Figure 6, 〈1122〉 is minimal for <B, so it is raisable. Conversely, 〈11〉 is not, as Bτ (〈11〉) ⊂ Bτ (〈1122〉).

Lemma 1 τ ↑ n is a type ( i.e. is well-dominated) iff n is raisable in τ . �

5 The instance relation on graphic types

This section presents the instance relation on graphic types. The relation can be decomposed into local atomic
transformations on types, each of them transforming either the underlying term-graph of the graphic type, or
its binding tree, as seen in the previous section:

Grafting replaces a bottom node (i.e. a variable) by a type, as in first-order terms;

Merging fuses variables or inner nodes, as in the dag representation of first-order types;

Raising performs a scope extrusion. In spirit, transforming the System-F type τ ′ → (∀α.τ) into ∀α.(τ ′ → τ)
(whenever α does not appear free in τ ′) is a raising.

Weakening changes a flexible binder into a rigid one.

However, this description is not complete. Firstly, we must adapt the transformations on first-order terms or
dags to the richer structure of binders of MLF. Secondly, some transformations going in the inverse direction of
the transformations presented above are possible on first-order dags; for example the types d and e of Figure 2
are equivalent, hence in instance relation. We must decide whether those transformations are possible for the
MLF instance relation. Thirdly, all transformations should not be allowed at every node. Indeed, the idea behind
rigid bounds is to freeze polymorphism, hence preventing some transformations.

In the next section we examine some instances that should—and should not—hold on graphic types. The
formal definition of the instance relation will be given afterwards.
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5.1 Shaping the instance relation

The instance relation ⊑ of MLF is implicit : if two types τ and τ ′ are such that τ ⊑ τ ′, any expression with type
τ can be used in a context where an expression of type τ ′ is required. Thus ⊑ must be shaped so that:

1. It is sound. Naturally, only instances ensuring type soundness should be allowed.

2. It is as large as possible. The larger the relation, the bigger the set of typable programs.

3. It allows type inference. If ⊑ is too large, type inference will likely be undecidable, as in System F [14].

Of course, the last two points are incompatible, and account for a large part of the design space. The last
point must be studied together with type inference, which we leave for future work. Thus, in this section we
concentrate on the first two points. (However, the type instance relation we propose do allow type inference.)

In the next examples, we identify some instances we find desirable, and others that must be flagged as
unsound. In order to do this, we present of few terms, together with some types they can be given (Figure 9).
Of course, we have a “chicken-and-egg” problem: the set of types a term can be given depend on the instance
relation! However, it is our belief that the intuitive semantics of types we have given so far should provide
intuitions on why the proposed types are correct.

→

id : τid

⊥

→

choose id : τ1

→

⊥

→

τ2

→

⊥

→

τ3

→

⊥

→

choose (choose id)

→

→

⊥

→

succ

int

→

K = λ(x) λ(y) y : τ ′

⊥ →

⊥

→

τ ′′

→

⊥

→

⊥

→

τe

⊥ ⊥

→

f = λ(g : τid ) g true

→

⊥

bool

→

ω⊥ = λ(x : ⊥) x x

⊥ ⊥

→

ωid = λ(x : τid ) x x

→

⊥

→

⊥

→

ωτ1
= λ(x : τ1) x x

→

→

⊥

→

→

⊥

Figure 9: Examples of terms

Binding paths It is a key design point of MLF not to take into account the variances of constructors in order
to determine what operations are allowed on a given node. Moreover, the arrow constructor → has no special
meaning, and is treated as all other type constructors. Instead, the transformations allowed are determined by
the binding tree alone. More precisely, the transformations allowed on a node n are determined almost entirely
by its binding path, which is defined as the sequence of flags on the binding edges from the root to n (thus
followed in the reverse direction). For example, in Figure 4, the binding path of nodes 〈11〉 and 〈2〉 of type σ4

are (=>) and (>) respectively. We write ⋄τ (n) the binding path of n in τ .

Nodes at flexible bindings paths Consider first the type τ1 of choose id. The types τ2 and τ3 correspond
to the F-types of choose id, i.e. ∀ (α) (α → α) → (α → α) for τ2 and (∀ (α) α → α) → (∀ (α) α → α) for
τ3. Thus we want τ1 ⊑ τ2 and τ1 ⊑ τ3 to hold. Notice that τ1 ⊑ τ2 is a raising, while τ1 ⊑ τ3 is a weakening.
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A graphical presentation of MLF types with a linear-time local unification algorithm. 17

Thus weakening a node n such that ⋄n = (>) must be allowed. Similarly, raising a node n verifying ⋄n = (>>)
(provided that n is raisable) must be possible.

If we now consider the type of choose (choose id), raising and weakening must likewise be allowed at every
node, in order to capture all possible derivations. More generally, this examples shows that adding a flexible
binding at the beginning of a binding path should not change the set of allowed transformations. A node n such
that ⋄n = (>+) is said to have flexible permissions.

Let us look next at grafting. Of course, we want the type of id to instantiate into the type of the successor
function (as it does in ML). So grafting at a node with flexible permissions must be allowed. Notice that we
can also instantiate the variable of τid by a polymorphic type (such as τid itself), as polymorphism is first-class:
τid ⊑ τ1 holds.

Consider next the second projection K, whose most general type is τ ′ (which is slightly more general than
the ML type ∀ (α) ∀ (β) α→ β → β). We have already seen that τ ′ ⊑ τ ′′ must hold. But we also want τ ′′ ⊑ τ1

to hold: we just forget that the two instances of τid are distinct (this allows for example to combine K and id

in a list). Thus merging two nodes with flexible permissions bound at the same node must be allowed.
Finally, let us consider the inverse transformations. Those already forbidden on first-order dags remain

forbidden in MLF: “ungrafting” the type of succ into τid would allow applying succ to (for example) a boolean,
an operation which is unsound. Similarly, “unmerging” a variable, is unsound. It would allow transforming τid
into τe, and would make the term id true true well-typed. But, unlike in ML, unmerging inner (polymorphic)
nodes is also unsound. If we unshare 〈1〉 in τ1 (which is a valid type for id), we obtain τ ′′. This erroneously
makes the term id succ true well-typed. (Note however that unsharing 〈1〉 in τ2 would be sound, as it would
not unshare the variable at node 〈22〉.) Finally, making a rigid edge flexible is also unsound in general. If we
consider the term f (which applies an identity-like function to a boolean), making node 〈1〉 flexible would make
the unsound term f succ well-typed.

To summarize, nodes with flexible permissions allow four forms of instance. However, those transformations
are semantically irreversible: the inverse transformation is in general unsound.

Nodes at flexible-rigid binding paths We next consider nodes which are rigidly bound. In fact, as we
have seen above, we can consider all binding paths of the form (>∗=). We say that nodes having such a binding
path have rigid permissions.

Of course, such nodes cannot be weakened: they are already rigidly bound. We have also seen above that
making their binding flag flexible would be unsound in general. Can we graft at them? Notice that the type of
ω⊥ corresponds to the F type (∀ (α) α) → (∀ (β) β), and the type system should (hopefully) prevent us from
creating a value of type ∀ (α) α. Nevertheless, if we allow grafting at variables with rigid permissions, we can
give as argument to ω⊥ an integer, resulting for example in the application of 1 to itself.

It is harder to give intuitions regarding merging and raising of nodes with rigid permissions, as those two
operations are intrinsically linked to decidability of type inference. Both operations are sound, and so are the
corresponding inverse operations. In fact, in the implicit version of MLF (where type inference is impossible),
types can be considered up to raising/merging of such nodes. This is done on a significant fragment of MLF,
where types are be given a semantic in terms of set of F types [8].

As a consequence (or, more precisely, as a design choice), we only allow merging and raising of nodes with
rigid permissions in the instance relation. The inverse operations are still available, but only explicitly, through
the use of type annotations.

Nodes at flexible-rigid-flexible binding paths The last step of binding paths we consider are those of
the form (>∗ = >+). As we will see shortly, operations on those nodes are in general unsound, so we say they
have locked permissions.

Consider the type of ωid , and suppose we allow grafting at nodes with locked permissions. Then by grafting
int at node 〈11〉, we would make the application ωid succ (and thus succ succ) well-typed, which is clearly
incorrect. Similarly, if we allow raising this node, it acquires flexible permissions and can be instantiated to int,
yielding the same contradiction. Thus both grafting and raising must be forbidden at locked nodes.

As a more intricate example, suppose we allow weakening at locked nodes. If we weaken 〈11〉 in the type of
ωτ1

, we can give it as argument ωid . Indeed, as we have seen in the two previous paragraphs, the type of ωid

can be instantiated to τ3, which is the type of the argument of ωτ1
after the weakening. Thus (in an untyped

view) the application ω ω would be well-typed.

RR n° 0123456789



18 Rémy & Yakobowski

(τ1) →

→

⊥

→

int int

(τ2) →

→

⊥

→

int int

(τ3) →

→

⊥

→

int

Figure 10: Graphic types with monomorphic nodes

Perm Name Allows Binding Path

F Flexible Instance >∗

R Rigid Abstraction (>|=)∗ =

L Locked Nothing (>|=)∗ = >+

F

R

L

Figure 11: Permissions for the instance relation.

Inert nodes Some nodes hold in fact no instantiable polymorphism, either because there is no type variable
under them, or because those variables are protected lower in the type by a rigid edge.

Definition 9 We suppose that Σ is partitioned into two sets of monomorphic and polymorphic type construc-
tors. The symbol ⊥ is considered polymorphic.

A node n of a type τ is said to be inert if τ(n) is not a monomorphic constructor, and for any node n′

labelled by a polymorphic constructor such that n′ ⋄≻−→ n, there is a rigid flag in the sequence ⋄. Monomorphic
nodes are the subset of inert nodes on which no polymorphically labelled node is bound. �

Polymorphic type constructors (other than⊥) can for example be used to model polymorphic type abbreviations;
otherwise, in this paper only ⊥ will be polymorphic. Monormophic nodes correspond in essence to the inner
nodes of term-graphs.

In all three types of Figure 10, the nodes 〈2〉, 〈21〉 and 〈22〉 are monomorphic. Intuitively, all three
graphic types represent the type τ given above, with different—yet unimportant—binding edges and sharing
for monomorphic nodes.

More generally, inert nodes are an exception to the system of permissions above. Indeed, since they hold
no instantiable polymorphism, it is always sound to transform them. Indeed, all the examples of unsoundness
above crucially rely on the fact that a variable can be grafted, or that two variables with flexible bindings can
be merged or split (as, in some context, it will be possible to instantiate those variables). As a consequence,
inert nodes can be freely raised, merged, weakened, or transformed in the inverse direction of those operations.
(Grafting is not possible, as inert nodes cannot be variables.)

5.2 Permissions

Of course, we have not treated all possible cases in the previous paragraphs. As binding paths increase in
complexity, examples become much more involved (and more difficult to find!). In this section we attach
permissions to the remaining cases. Hopefully the intuitions given by the examples above will carry over.

In the syntactic presentation of MLF, finding which transformations are allowed at a given position in a
type is not readily apparent, and is determined by contextual inference rules and the stratification between
abstraction and instance. In graphic types, they are given by the permissions of the nodes, plus the fact that
the node is inert.

We abbreviate the three different permissions Flexible, Rigid and Locked by F, R, and L respectively. Notice
that we have listed them here in strictly decreasing order—i.e. fewer transformations are permitted on L-nodes
than on F-nodes.

To each permission intuitively corresponds a class of transformations that will be allowed at nodes having
this permission. Instance transformations are permitted at flexible nodes. As we have seen, they are in general
semantically not reversible, i.e. the inverse transformations would be unsound. Abstraction transformations are
a subset of instance transformations that are permitted at rigid nodes. Since we want to use unification-based
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A graphical presentation of MLF types with a linear-time local unification algorithm. 19

type inference, we disallow all inverse transformations (i.e. un-merging, un-raising and un-weakening) at rigid
nodes, even though they would be sound. (However we will add them into a larger relation.)

The permission system is given by a function P from strings of flags to the set {F, R, L}. Then, the permission
of a bound node n of a type τ , which we write Pτ (n) or P(n) when τ is clear from context, may be computed
as P(⋄τ (n)). We write ⋄n instead of ⋄τ (n) when τ is clear from context.

The simplest way to define P is by a finite automaton, given in Figure 11. The states of the automaton
are the three permissions, with F being the initial state (i.e. also the permission of the root node). Transitions
are (inverse) binding edges labeled by their flag. The permission P(⋄) is the state the automaton reaches when
given the string ⋄ as input. It is striking on this definition that flexible nodes form a prefix of the binding tree,
followed by an alternation of rigid and locked regions as flags alternate. Notice that rigid permissions are larger
than the ones defined in the previous section: all nodes under a rigid edge have rigid permissions.

Permissions are summarized in the table of Figure 11. The binding path column is given as a regular
expression that describes the sets of binding paths having the corresponding permission. The colors of the rows
of this table are sometimes used in drawings below to remind of the permissions unobstructively. We represent
inert nodes in white, as permissions are not significant for them. For example, permissions are explicitly drawn
on all types of Figure 12. For instance, node 〈11〉 of type τ1 is rigid—its binding path is >=.

More restrictive permissions The looser the permissions, the larger the instance relation, the more “in-
ference”. Of course, permissions should remain within the limit of type soundness. The permissions we have
described above are a slight generalization of the ones that could be reconstructed from a careful reading of the
syntactic instance relation, and described by the following automaton:

F R L

The difference lies in the set of rigid nodes. In the syntactic permissions, one can only encounter some flexible
flags followed by rigid ones; afterwards, all the permissions are locked. With our looser definition, rigid binding
edges behaves as a “protection” and reset locked-nodes to rigid ones. We have good reasons to believe that
looser permissions preserve type soundness—-a formal verification is ongoing work.

A variant of looser permissions was initially suggested by François Pottier on syntactic types. Unfortunately,
as mentioned earlier, a naive integration of looser permissions on syntactic types is unsound, due to annoying
interaction with administrative rules used to deal with syntactic artifacts.

Interestingly, the instance relation is implicitly parameterized by the permission system P: all results de-
pending on permissions are obtained through lemmas that abstract over important properties of permissions,
and thus apply to all permission systems that satisfy those lemmas. Hence, we may easily fall back to the
stricter permissions, if ever need be.

5.3 Instance operations

We now classify the different ways in which two types may be in an instance relation. We isolate atomic instance
relation steps that instantiate either the term-graph or the binding tree. The former relations, grafting and
merging are strongly linked to the instance relation 6 on term-graphs; they essentially operate on the structure
of the type. The latter relations, raising and weakening, only operate on the binding tree. Moreover, each step
is controlled by the permissions of the node it operates on (if the nodes involved are polymorphic).

We examine each of the instance transformations in more detail below. For each operation both a schematic
depiction and a formal definition are given—most of the technical details may safely be skipped on a first read.
Figure 12, which is used throughout this section, introduces a sequence of types, each of which is in a particular
form of instance relation with it successor as shown at the bottom of the figure.

5.3.1 Grafting

The grafting operation (introduced in (§4.4) corresponds to the operation of substituting a polymorphic type
variable by a type, as can be done in ML. In term-graphs, it corresponds to the operation of instantiating the
underlying skeleton. As such, the corresponding instance transformation is semantically irreversible (as the
skeleton is irrevocably changed), and can only occur at flexible nodes.

Definition 10 (Grafting) A type τ ′ is an (instance-)grafting of a type τ if τ ′ is obtained by replacing a flexible
bottom node of τ by a type τ ′′.
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(τ1) →

→

→

⊥

→

⊥

⊥

(τ2) →

→

→

⊥

→

⊥

→

→

⊥ ⊥

→

⊥ ⊥

(τ3) →

→

→

⊥

→

⊥

→

→

⊥ ⊥

→

⊥ ⊥

(τ4) →

→

→

⊥

→

⊥

→

→

⊥ ⊥

→

⊥ ⊥

(τ5) →

→

→

⊥

→

⊥

→

→

⊥ ⊥

→

⊥ ⊥

(τ6) →

→

→

⊥

→

⊥

→

→

⊥

→

⊥

(τ7) →

→

→

⊥

→

⊥

→

→

⊥

→

⊥

(τ8) →

→

→

⊥

→

⊥

τ1 ⊑
G τ2 ⊑

R τ3 ⊑
R τ4 ⊑

w τ5 ⊑
M τ6 ⊑

W τ7 ⊑
M τ8

Figure 12: Example of type instance.

We write Graft(τ ′′, n) for the function τ 7→ τ ′ and ⊑G for the reflexive transitive closure of the relation
τ R τ ′ defined by ∃n, ∃τ ′′, τ ′ = Graft(τ ′′, n)(τ). �

⊥

⊑G

τ ′′

→

⊥

⊑G
→

→

⊥

⊑G
→

→

→

⊥

Figure 13: Sketch and example of grafting.

Let us consider some examples. The left part of Figure 13 presents a schematic depiction of grafting. In
Figure 12, τ1 ⊑G τi holds for 2 ≤ i ≤ 7, the grafting occurring at node 〈2〉. The right part of Figure 13 shows
a derivation of σid ⊑G ∀ (α > σid ) α→ α ⊑G ∀ (α > ∀ (β > σid ) β → β) α→ α. Indeed, let us temporarily call
τg,1, τg,2 and τg,3 those three graphs. The three following relations hold:

τg,2 = Graft(τg,1, 〈1〉)(τg,1) τg,3 = Graft(τg,1, 〈11〉)(τg,2) τg,3 = Graft(τg,2, 〈1〉)(τg,1)

Hence τg,1 ⊑G τg,3 can be proved either by transitivity of the grafting relation applied to the two first graft-
ing steps, or by the single atomic last grafting step. Notice that grafting maintains the original binder and
permissions, allowing in particular further refinements.

5.3.2 Merging

Merging is a subrelation of the relation induced by the fusion operator (§4.4). It corresponds to increasing the
equivalence relation through instance in term-graphs.
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The general form of merging is sketched on Figure 14. As required by the fusion operator, the type on the
left is such that its subgraphs under the nodes n1 and n2 are equal. Some subparts of the subgraphs can already
be shared, hence the overlap in the sketch. Moreover, n1 and n2 must be bound at the same node, with the
same flag. Merging fuses those two nodes; it also requires as an additional condition that they both have the
same non-locked permissions (i.e. flexible or rigid), which we refer to as the roots of the merging. Merging is
allowed provided the roots are not locked, or inert; we represent them in blue to remind of this fact.

n1

⋄

τ
n2

⋄

τ

⊑M

n

⋄

τ

Figure 14: Sketch of merging.

Examples of merging are presented in Figure 12, where it is used thrice. Two pairs of bottom nodes are
merged independently in type τ5, 〈211〉 and 〈212〉 on the one hand, 〈221〉 and 〈222〉 on the other hand, leading
to type τ6. In type τ7, the subgraphs under 〈1〉 and 〈2〉 are merged, resulting in τ8.

(τ) →

→

⊥ ⊥

→

⊥ ⊥

(τm) →

→

⊥ ⊥

→

⊥

(τm′) →

→

⊥ ⊥

Figure 15: Merging conditions.

Let us call merged two nodes which were initially different, but are mapped into the same node by the merge.
The formal definition of merging adds an additional condition on binding edges, explained below.

Definition 11 (Merging) A type τ ′ is a merging of a type τ at nodes n1 and n2 of τ if the following holds:

(1) τ ′ is the fusion of n1 and n2 in τ

(2) n1 and n2 have non-locked permissions, or are inert;

(3) for any two merged bound nodes n′
1 and n′

2 respectively under n1 and n2, n′
i must be transitively bound

at ni (i.e. n′
i

∗≻−→ ni ∈ τ) for i in {1, 2}.

We write Merge(n1, n2) for the function τ 7→ τ ′, and merge(n1, n2) for its restriction to the case where n1 and
n2 are monomorphic5. We write ⊑M (resp. ⊑m) for the reflexive transitive closure of the relation R defined by
τ R τ ′ ⇐⇒ ∃n1, n2, τ

′ = Merge(n1, n2)(τ) (resp. τ ′ = merge(n1, n2)(τ)). �

Merging of leaf nodes is exactly as with term-graphs. Otherwise, the interesting condition is 3, which prevents
mergings that would recursively merge nodes bound above n1 and n2. In those cases, mergings would only
be correct under a much more complex control of permissions than condition 2. For example, consider the
types τ , τm and τm′ of Figure 15. The type τm′ is τ [n1 = n2], but not Merge(〈1〉, 〈2〉)(τ): nodes 〈11〉 and 〈21〉
fail condition 3, since 〈11〉 is not bound under 〈1〉 in τm′ . In this particular case, the transformation can be
decomposed into two atomic merges that both satisfy condition 3:

τm′ = Merge(〈1〉, 〈2〉)(τm) τm = Merge(〈11〉, 〈21〉)(τ)

However, it is not always possible to do such a decomposition, as permissions may prevent merging the nodes
that are bound above the nodes to be merged.

5Since all merged nodes are bound on either n1 or n2, all merged nodes are also monomorphic.
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5.3.3 Raising

Raising performs in essence a scope extrusion, similar to coercing the System-F type τ ′ → (∀α.τ) into ∀α.(τ ′ →
τ) whenever α does not appear free in τ ′. However, sharing of type variables in MLF allows raising to soundly
occur under left sides of arrows and deeper inside types. Namely, given two successive binding edges n ≻−→
n′ ≻−→ n′′, the first one can be raised above the second one to yield the edge n ≻−→ n′′ whenever n is not
locked. Raising is sketched on the left side of Figure 16. As for raising, raising is possible provided the node to
be raised is either unlocked or inert.

n

⋄

⊑R

n

⋄ n

>

⊑W

n

=

n

>

⊑w

n

=

Figure 16: Sketches of raising and weakening.

Definition 12 (Raising) A binding tree ≻τ ′ is the raising of a binding tree ≻τ at node n if n is not locked or
inert in τ and ≻τ and ≻τ ′ coincide except for the binding edge of n, which is such that n ⋄≻−→ n′ ≻−→ n′′ ∈ ≻τ and
n ⋄≻−→ n′′ ∈ ≻τ ′. We write Raise(n) for the function ≻τ 7→ ≻τ ′ (and raise if n is monomorphic).

Similarly, a type τ ′ is the raising at node n of a type τ if τ̊ and τ̊ ′ are equal and ≻τ ′ is the raising at node n
of ≻τ . We extend the function Raise and raise to types accordingly.

We write ⊑R (resp. ⊑r) for the reflexive transitive closure of the relation defined by τ R τ ′ ⇐⇒ ∃n, τ ′ =
Raise(n)(τ) (resp. τ ′ = raise(n)(τ)). �

In Figure 12, τ3 is a raising of node 〈221〉 in τ2 and τ4 is a raising of node 〈222〉 in τ3.

5.3.4 Weakening

Weakening has two uses. On polymorphic nodes, it is used to forbid irreversible instance operations to occur
underneath a node. It turns a flexible or inert binding edge leaving a flexible node into a rigid one, as illustrated
on the right side of Figure 16. (Merging rigid edges has no sense, as they already have a rigid flag).

Definition 13 (Weakening) A type τ ′ is a weakening at a flexible or inert node n of a type τ if τ and τ ′

coincide except for the binding edge n >≻−→ n′ ∈ τ , which is replaced by n =≻−→ n′ in τ ′.
We write Weaken(n) for the function τ 7→ τ ′, or weaken(n) if n is monomorphic. We write ⊑W (resp.

⊑w) for the reflexive transitive closure of the relation defined by τ R τ ′ ⇐⇒ ∃n, τ ′ = Weaken(n)(τ) (resp.
τ ′ = weaken(n)(τ)). �

In Figure 12, type τ7 is a (polymorphic) weakening of τ6 at node 〈21〉, while τ5 is a monomorphic weakening of
τ4 at node 〈22〉.

5.4 The instance relation

Instance is simply the union of all forms of instance operations.

Definition 14 (Instance) The instance relation on types ⊑ is the reflexive transitive closure (⊑G ∪ ⊑M ∪ ⊑R

∪ ⊑W )∗ of all forms of instances. �

Coming back to our example, we have seen above that τ1 ⊑G τ2 ⊑R τ3 ⊑R τ4 ⊑w τ5 ⊑M τ6 ⊑w τ7 ⊑M τ8

holds. Hence, τ1 ⊑ τ8 holds by definition of ⊑; note that a shortened decomposition of this fact is τ1 ⊑G τ7 ⊑M

τ8. Moreover, operations can also be performed in a different order. However, the weakening of node 〈21〉 must
always be performed after the nodes 〈211〉 and 〈212〉 have been merged. Indeed, both nodes are locked after
the weakening, which prevents any further operation on them.

Interestingly, the instance relation of MLF can be seen as a refinement of the instance relation on term-graphs.

Property 3 Given two types τ and τ ′ such that the instance τ ⊑ τ ′ holds, then τ̊ 6 τ̊ ′ also holds. �
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Links with the syntactic presentation By using the syntactic permission (§5.2) instead of our usual
system, we obtain another instance relation on graphs which is more restrictive than the one we used so far (as
syntactic permissions are a restriction of the standard ones). This point is discussed further in (§8).

The two following properties abstract over the permission system (and so serve as interface to many proofs
that do not then need to directly refer to the definition of permissions). It also indirectly highlights some
properties of the instance operations that transform the binding tree.

Property 4 Both permissions systems P (graphic and syntactic) satisfie:

1. If P(⋄1⋄2⋄3) 6= L, then P(⋄1⋄2⋄3⋄4) = P(⋄1⋄3⋄4).

2. If P(⋄>) = F, then P(⋄=⋄′) ≤ P(⋄>⋄′) for the order L ≤ R ≤ F. �

In particular, raising preserves permissions (which follows from 1) and weakening only restricts them (which
follows from 2).

Binding trees carry two independent pieces of information: where and how nodes are bound. Interestingly,
the two can almost be treated independently. The where is computationally essential and determines the shape
of the binding tree while the how mostly acts as a filter by blocking certain instances. In particular, when
raising is blocked by permission constraints, weakening never helps (Property 4.2). This enables to perform
unification by computing the binding edges and their labeling independently (§7).

Notations In the remainder of the article we write ⊑1 for the subrelation of ⊑ obtained by performing exactly
one instance operator application. For X, Y ∈ {G, R, W, M, r, m, w}, we let ⊑XY be (⊑X ∪ ⊑Y)∗, and ⊒X be the
inverse relation of ⊑X. Thus ⊑ = ⊑GRMW . We also allow any meaningful combinations of those notations.

5.5 Similarity

As for first-order term-graphs, the instance relation is too fine grained (§3.3) and one may wish to read types
modulo some inessential details, using a similarity relation which abstracts over them. A first cause of similarity
already present in term-graphs is sharing of inner nodes. However, sharing of polymorphic (flexible) nodes is
semantically significant in MLF, so we restrict similarity to monomorphic ones. The second source of similarity
is the way monormophic nodes are bound6—i.e. what is their binder and binding flag.

Definition 15 (Similarity) We call reversible instance the subrelation ⊑rmw. We call similarity the equiv-
alence relation (⊑rmw ∪ ⊒rmw)∗, written ≈. We call instance modulo similarity and write ⊑≈ the relation
(⊑ ∪ ≈)∗, also equal to (⊑ ∪ ⊒rmw)∗. �

Thus all three types of Figure 10 are similar. Indeed, τ3 = (merge(〈21〉, 〈22〉) ; weaken(〈21〉))(τ2), and τ1 =
(raise(〈21〉) ; raise(〈22〉))(τ2) hold.

In practice, we work modulo similarity and are interested in ⊑≈; however, we often express results for ⊑
alone, as they are stronger than for ⊑≈, as well as easier to establish.

Notice that, from a purely semantic standpoint, we could include all transformations on rigid and inert
nodes. However the resulting relation would not permit type inference. This is discussed in §5.6.

As for term-graphs, we could define an equivalence relation on graphic types (two types being equivalent
if they are instances of the other). However, since graphic types do not require α-conversion, this relation
degenerates to equality.

Lemma 2 The kernel of ⊑ is equality. �

Reversible instance is the reversible part of the instance modulo similarity relation. That is, all operations
not in ⊑rmw are indeed irreversible.

Lemma 3 The kernel of ⊑≈ is ≈. �

Similarity of two types can be characterized in a quite simple way, by comparing the sharing and binding
edges of their polymorphic nodes. This gives an efficient and simple algorithm for checking similarity (Fig. 17).
In essence, it verifies that the two types unify without any change in their polymorphic nodes.

Lemma 4 The algorithm Similar is a sound and complete algorithm for testing similarity, in linear time. �

6We could have chosen to represent monormophic nodes without binding edges, but this solution has some technical cost.
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Input: Two types τ1 and τ2

Output: A boolean indicating whether τ1 and τ2 are similar

1. Compute the first-order type-graph unifier of τ1 and τ2 (treating ⊥ as a variable).
Return false it does not exist.

2. Return false if an equivalence class holds any of the following:

(a) A polymorphic and a monomorphic node,

(b) Two polymorphic nodes of the same graph,

(c) One polymorphic node of each type, but with different flag on their binding edges, or such that their
binders are not in the same equivalence class.

Otherwise Return true.

Figure 17: Algorithm Similar for testing similarity

5.6 The abstraction relation

(The definitions and results of this section suppose that the permissions are the graphic ones, and not the ones
matching the syntactic permissions.)

By comparison with syntactic types, the instance relation on graphic types has been defined without referring
to abstraction. This section reintroduces the abstraction relation on graphic types. Although technically
unnecessary for solving unification, it remains interesting for pedagogical purposes.

The abstraction operations are sketched in Figure 18 and detailed in the definition below.

Definition 16 (Abstraction) The graphic abstraction relation on types, written ⊏−, is the subrelation (⊏−M ∪
⊏−R ∪ ⊏−W )∗ of ⊑ where ⊏−M is the subrelation of ⊑M such that the roots of the mergings are rigid or inert
nodes, ⊏−R is the subrelation of ⊑R that only raises rigid or inert nodes, and ⊏−W is the subrelation of ⊑W that
weakens only inert nodes. �

Notice that ⊑rmw ⊂ ⊏−.

=

τ

=

τ

⊏−M

=

τ

⋄

=

⊏−R

⋄

=

Figure 18: Abstraction operations.

The intuition behind the extended abstraction relation is hard to explain without referring to subject re-
duction. Roughly, paths of the form ⋄=⋄′ , i.e. below a rigid flag are protected, as they never allow a truly
flexible instance (requiring flexible permission). Moreover, this remains true when stripping off any prefix of
⋄, which simulates the possible deconstruction of the type during type-checking. Hence, performing an ab-
straction at path ⋄= will not have more observationable effect than performing this abstraction (later, during
deconstruction) under the flag =, which was already allowed by the syntactic permissions.

The following commutative diagram is one of the key properties for type soundness.

· ·

· ·

⊏−

⊑

⊏−

⊑

Interestingly, this results follows by a very simple case when reasoning with graphic types, while it was a difficult
and technically involved proof when reasoning with syntactic types.
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In fact, when type inference is not an issue, e.g. in the type soundness proof, we may treat types up to the
relation ⊏−⊐− = (⊏− ∪ ⊐−)∗. That is, we may replace type instance by the larger relation ⊑⊏−⊐− = (⊑ ∪ ⊏−⊐−)∗ [8]. It
easily follows from the above commutative diagram (and the fact that ⊏− is a subrelation of ⊑) that ⊏−⊐− and ⊑⊏−⊐−

are equal to ⊏−; ⊐− and ⊑; ⊐−, respectively. This also implies that the unification problem for ⊑⊏−⊐− can be reduced
to the unification problem for ⊑, which we solve in (§7). However, it is not the case that solving unification
for ⊑⊏−⊐− enables more aggressive type inference: indeed, taking ⊑⊏−⊐− for type instance interacts with other rules
in such a way that type inference can no longer be reduced to unification (and copying) for the type instance
relation.

6 Properties of instance

The instance relation ⊑ is quite rich, as it features four different operations: grafting, raising, merging and
weakening. However, those operations are mostly orthogonal. Hence it is possible to constrain the instance
relation and subrelations, so as to obtain more canonical derivations (resulting in simpler proofs).

We use three different approaches:

• Instance, similarity and instance modulo similarity can be reorganized so that to follow a certain order.

• We introduce “big-steps” relations that compare the shapes and two types and asserts they are in instance
relation, without asking for a decomposition of this instance in term of the instance operators.

• We prove inversion lemmas proving that operations occurring inside a derivation can often be pushed at
the beginning of the derivation.

6.1 Reorganizing relations

We start by showing that raising and merging are confluent:

Lemma 5 The following local confluence diagrams are verified (where Mi range over M and m, and Ri range
over R and r):

· ·

· ·

⊑M1

1

⊑M2

1

⊑M1

⊑M2

· ·

· ·

⊑R1

1

⊑R2

1

⊑R

1

⊑R2

�

Notice that similar results do not hold for ⊑G and ⊑W : grafting at the same node two different types results
in incompatible types, while weakening two different nodes on the same binding path must be done bottom-up,
as the top-down strategy is forbidden by permissions.

The instance relation is such that one may consider ordered sequences of instance operations without loss of
generality: graftings can always occur first, followed by raisings, and then mergings and weakenings interleaved.
This flexibility is the key to an efficient implementation of unification (§7).

Theorem 1 (Ordered derivations) The instance relation ⊑ is equal to ⊑G ;⊑R ;⊑MW . �

A sequence of elementary instance transformations is called ordered when they come in the decomposition order
of Theorem 1. This is the case of the proof of τ1 ⊑ τ8 in Figure 12.

Other simple decompositions (such as ⊑R ; ⊑MW ; ⊑G) are false in the general case. Grafting must occur
first, as it introduces new nodes which might need to be raised later. Weakening must occur last, because it
restricts permissions. Merging and weakening must be interleaved because the former requires binding flags to
be consistent.

Instance modulo similarity can also be decomposed, as all inverse reversible operations can be done at the
end of the derivation. Likewise, similarity can be decomposed.

Lemma 6 The relations ⊑≈ and ⊑ ; ⊒rmw are equal. The relations ≈ and ⊑rmw ; ⊒rmw are equal. �

Note that (⊑≈) = (⊒rmw ; ⊑) does not hold: some of the operations which would need to be done at the
beginning of the derivation would be polymorphic, i.e. not in ⊒rmw.
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6.2 Big step instance subrelations

6.2.1 Big step raising

The relation ⊑R
1 requires checking that the node is raisable, a slightly complicated operation. In order to prove

that τ ⊑R τ ′, we must prove that all intermediary types are well-dominated. Alternatively, we can define a
relation that compares binding trees between two well-dominated types.

Definition 17 Given two types τ and τ ′, we say that τ ′ is big-step raising of τ , written τ ⊑↑ τ ′, if and only if:

• τ̊ = τ̊ ′

• ∀n,
⋄
τ (n) =

⋄

τ ′(n)

• ∀n, n ≻−→ n′ ∈ τ ′ =⇒





n ≻−→ n′ ∈ τ
or

n ≻−→ +≻−→ n′ ∈ τ and n is not locked or inert in τ ′

�

The relation ⊑↑ avoids checking well-domination of intermediary types, but is equivalent to ⊑R: a sequence
of correct atomic raisings can always be found through careful ordering. In fact, we prove that all orderings
raising lowest nodes first are possible. Of course, other valid raising strategies might also be possible.

Lemma 7 Consider two types τ and τ ′ such that τ ⊑↑ τ ′. Then all derivations τ ⊑R τ ′ of the form τ ′ =
(Raise(n1) ; . . . ; Raise(nk))(τ) where i > j implies ¬(nj

+◦−→ ni) are valid. �

Theorem 2 The relations ⊑R and ⊑↑ are equal. �

6.2.2 Big step merging and weakening

As we have for ⊑R, we can characterize a “big-step” merging and weakening operation, and prove that it is
derivable using the usual “small-steps” operations.

Definition 18 We say that τ ′ is a merging-weakening of τ , written τ ⊑6 τ ′ if

1. τ̂ = τ̂ ′

2. ∀n, n ≻−→ n′ ∈ τ =⇒ n ≻−→ n′ ∈ τ ′

3. τ̃ ⊂ τ̃ ′

4. ∀n, n′ such that ≻n = ≻n′, if n 6τ̃ n′ and n τ̃ ′ n′, then n and n′ are either not locked or inert.

5. ∀n,
⋄
τ(n) = ⋄ =⇒





⋄

τ ′(n) = ⋄
or
⋄ = (>) and n is flexible or inert in τ

�

The first two points asserts that the underlying tree and binding edges are unchanged. The third point ensures
that τ ′ merges more nodes than τ , while the fourth verifies that permissions are verified for the merging. The
last point checks that all weakenings that occurred were allowed.

Theorem 3 Given two types τ and τ ′, τ ⊑6 τ ′ if and only if τ ⊑MW τ ′. �

Notice that the operations are performed bottom-up. A top-down approach is often impossible, because the
weakenings could prevent some operations under them.
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6.2.3 Grafting unconstrained graphs

Given two types τ and τ ′ such that τ ⊑ τ ′, it is always possible to find a derivation of this result which starts
by using graftings (Theorem 1). However, there are many possibilities as to which type to graft. As we have
already mentioned, in Figure 12, the relation τ1 ⊑G τi holds for 2 ≤ i ≤ 7. In τ2, we have grafted a “big” type
(in terms of number of nodes), but with a simple structure: there is no sharing, and all binders are flexible.
Conversely, in τ7 we have directed grafted a complicated type (thus making the derivation τ1 ⊑ τ8 shorter).
From a reasoning point of view, working with τ2 is much easier than with τ7. In this section we show that this
type of grafting is always possible.

Definition 19 (Expansion type) Given a term-graph t, we define its expansion t△ by:

• t̊△ is the unique tree-like term-graph which has the skeleton of t, i.e. t̂△ is t̂ and every node is reduced to
a single path in t̃△.

•
≻
t△ binds flexibly all the nodes to their ancestor, i.e.

≻
t△ = {n >≻−→ n′ | n′ ◦−→ n}. �

For example, in Figure 12, the subgraph τ2/〈2〉 is the expansion of τ̊2/〈1〉.

It is possible to prove that τ is always an instance of τ̊△. The strictly more general result also holds:

Lemma 8 Let τ ′ be an instance of a type τ , and n a bottom node of τ that is not a bottom node in τ ′. Then

τ ⊑G τ [(τ̊ ′
△/n)/n] ⊑ τ ′. �

As a direct consequence:

Corollary 1 Let τ ′ be an instance of a type τ . Let ni∈1..k
i be the bottom nodes of τ that are not bottom nodes

in τ ′. We define7 τ [τ ′/⊥] as τ [(τ̊ ′
△/n1)/n1] . . . [(τ̊

′
△/nk)/nk]. Then the relations τ ⊑G τ [τ ′/⊥] ⊑ τ ′ holds. �

τ [τ ′/⊥] is the smallest type τ ′′ (w.r.t. the ordering induced by the instance relation) such that τ ⊑G τ ′′ ⊑ τ ′

holds, and τ̂ ′ and τ̂ ′′ coincide. Indeed, the derivation of τ [τ ′/⊥] ⊑ τ ′ does not use any grafting, as both sides
already have the same skeleton.

6.3 Performing an instance operation early

In this section, we consider two types τ and τ ′ such that τ ⊑ τ ′. Intuitively, we prove that if an instance
operation o is performed “sometimes” in the derivation τ ⊑ τ ′, and if it can be applied to τ , then o(τ) ⊑ τ ′

holds (when o is not weakening).

If the underlying tree is instantiated in τ ′, we can start by performing an atomic grafting.

Lemma 9 Let n be a node of τ such that τ(n) = ⊥ and τ ′(n) 6= ⊥. Let τ ′′ be the type such that τ ′′({ǫ}) = τ ′(n)
and with arity(τ ′(n)) children bottom nodes flexibly bound at the root. Then τ ⊑G

1 Graft(τ ′′, n)(τ) ⊑ τ ′ holds. �

If a node n is raised in τ ′ and can be raised in τ , the raising can be performed immediately.

Lemma 10 Let n be such that it is raisable in τ , and ≻τ(n) 6=
≻
τ ′(n). Then τ ⊑R

1 Raise(n)(τ) ⊑ τ ′ holds. �

Similarly, if two nodes are merged in τ ′ and mergeable in τ , the merging can be done first.

Lemma 11 Suppose there exists n1 and n2 merged in τ ′ such that merging n1 and n2 in τ is possible. Then
τ ⊑M

1 Merge(n1, n2)(τ) ⊑ τ ′ holds. �

For weakenings, the result is not as obvious. Indeed, if we weaken too early, we will present some valid
transformation later. However, if a flexibly bound node must be merged with a rigidly bound one, and the
nodes bound under them are isomorphic, we can use the second node as a “witness”: indeed, transformations
which would become impossible under the first node are already impossible under the second.

Lemma 12 Let n a node that can be weakened in τ such that
⋄

τ ′(n) = (=). Suppose there exists n′ merged

with n in τ ′,
⋄
τ (n′) = (=), and the subgraphs for the bound nodes under n and n′ are identical. Then τ ⊑W

1

Weaken(n)(τ) ⊑ τ ′ holds. �

7The result of this operation does not depend on the order of n
i∈1..k
i as grafting at nodes n1, . . ., nk commutes.
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7 Unification

This section presents the unification problem for MLF types and an efficient algorithm to solve it.

7.1 Unification problem

The unification problem for MLF is quite standard: given two types τ1 and τ2, find a type τu that unifies those
types, i.e. such that τ1 ⊑ τu and τ2 ⊑ τu. It is already known that the MLFunification problem for the syntactic
presentation is principal, i.e. that all solutions are instances of a more general unifier τu [7]. However, we
propose a more general definition.

Definition 20 (Generalized unification) Given a type τ , we say that a type τ ′ is a unifier of a set of nodes
N in τ if τ ′ is an instance of τ in which all nodes of N are shared. Moreover, τ ′ is a principal unifier if any
other unifier of N in τ is an instance of τ ′. �

Generalized unification is more general than unifying two types. In fact, the latter class of problems can be
encoded into the former one.

(τ) →

τ1 τ2

(τ ′
u) →

τu

Figure 19: Encoding for standard unification.

Property 5 Two types τ1 and τ2 unify into a type τu if and only if the nodes 〈1〉 and 〈2〉 unify in the type τ
of Figure 19 into a type having the shape of τ ′

u ( i.e. 〈1〉 is closed and τ ′
u/1 = τu). �

7.2 Admissible problems

(τ) →

→

⊥ ⊥

→

⊥ ⊥

(τu) →

→

⊥ ⊥

→

⊥

(τ ′
u) →

→

⊥ ⊥

Figure 20: A problem without a principal solution.

Generalized unification significantly expands syntactic unification, and is in fact too powerful: some problems
(not expressible in a syntactic setting) can have a non-principal set of solutions.

Consider unifying the nodes 〈11〉 and 〈21〉 in the type τ of Figure 20. A first unifier is τu: the two nodes have
been raised once, and then merged. However, other unifiers exist, including τ ′

u which is obtained by merging the
nodes 〈1〉 and 〈2〉, which indirectly merges 〈11〉 and 〈21〉. There does not exist a unifier more general than those
two ones, as there is an incompatible choice to be made between raising the edges (and merging the leaves),
which irreversibly instantiates the binding structure, or merging the upper nodes, which irreversibly instantiates
the upper nodes of the underlying term-graph.

We nevertheless use generalized unification, as it is possible to characterize an important set of problems
that admit principal solutions. This set includes unification under the root of the type, as used to encode
unification of two different types (Figure 19), but also other interesting cases to be used in type inference. We
call admissible those problems.

The remainder of this section, which is a little technical, can easily be skipped on a first read.

Definition 21 Given a type τ and a set of nodes N , we say that (τ, N) is an admissible problem (or that N

is admissible for τ) if the set of nodes {n′′ ∈ τ | ∃n ∈ N, ∃n′ ∈ τ, n′ ≻−→ n′′ +◦−→ n ∗◦−→ n′} is totally ordered by
the domination relation ◦−⊲→ induced by ◦−→. �
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Input: A type τ and a set of nodes N .
Output: A type τu that unifies N , or Failure.

1. Let tu be the first-order unifier of the nodes N in the term-graph τ̊ , treating ⊥ as a variable.

Fail if tu does not exist, or if it is cyclic.

2. Let ≻τu be Rebind(tu,≻τ ). Fail if Rebind fails.

3. Return τu = (tu,≻τu).

Figure 21: UnifN algorithm.

It is difficult to give an intuition of this definition without actually proving that it ensures principality of
unification problems. Very roughly, non principality of unification always originates from a merging/raising
competition (as illustrated on the example of Figure 20). Admissible problems will ensure that such potential
conflicts will always occur between nodes in domination relation and thus can only be solved by raising, as
merging would create cycles in the structure.

In the example of Figure 20, the set N = {〈11〉, 〈21〉} is not admissible for τ or τ ′. Indeed, 〈1〉 and 〈2〉
(which are the binders of 〈11〉 and 〈21〉, and verify the condition above) are not comparable for ◦−⊲→ in τ̊ or τ̊ ′.

We characterize a few set of nodes that are guaranteed to be admissible. In particular, they subsume the
problems encoding unification under the root.

Property 6 Consider a type τ and a node n of τ :

• Any subset N of {n′ | n ◦−→ n′} is admissible for τ .

• Any subset N of {n′ | n′ ≻−→ n} is admissible for τ .

• Any set N = {n, n′} where n′ +≻−→ ≻n is admissible for τ .

(This last case is very useful in type inference.) �

Admissible problems are also stable by instance.

Property 7 Consider a type τ and a node n of τ . If N is admissible for τ , for any type τ ′ such that τ ⊑ τ ′,
N is admissible for τ ′. �

This result does not hold with instance modulo similarity ⊑≈, as unmerging or lowering nodes can make a
problem non admissible.

7.3 Unification algorithm

We present our unification algorithm UnifN in Figure 21. The algorithm takes a type τ as input and outputs a
type τu that unifies N , or fails. The algorithm is in two steps:

1. The first step unifies the nodes of N in τ̊ using first-order unification; the result of this phase will be the
structure of the unifier.

2. The second phase uses an auxiliary algorithm Rebind (presented in Figure 22) to build the binding tree
of the unifier. Given a type τ and a term-graph tu instance of τ̊ , it returns a binding-tree ≻τu such that
(tu,≻τu) is an instance of τ , or fails.

We write LCAG(n1, ..., nk) for the least common ancestor of the nodes n1, ..., nk in a rooted graph G. In the
following, nodes of τ are called m while those of τu are called n, with the following exception: for any node m
of τ , we write m̃ the corresponding node of τu (i.e. the unique node of τu whose name extends the name of m).

We say that a node n is partially grafted if there exists a bottom node m such that m̃ +◦−→ n.

The algorithm Rebind proceeds in two steps:

1. Building the binding tree.

The first phase binds the nodes of τ̊u. Given a node n, we call Mn the nodes of τ that are merged into n.
The binding edges of those nodes (whose ending nodes are Bn

1 ) must be raised until they are all bound at
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Input: A type τ and a term-graph tu instance of τ̊
Output: A binding tree ≻τu for tu, or Failure

1. Building the binding tree

For each node n of tu (visited in a top-down ordering), do:

(a) Let Mn be {m ∈ τ | m̃ = n}.

(b) Let ⋄n be (=) if (=) is in
⋄
τ (Mn), or (>) otherwise.

(c) Let nB be LCA≻τu
(Bn

1 ∪Bn
2 ), with

Bn
1 =

{≻τ(m) | m ∈Mn

}

Bn
2 =

{
{n′ | n′ ◦−→ n} if n is partially grafted
∅ otherwise

(d) Let ≻τu be ≻τu + n ⋄n≻−→ nB.

2. Correction of the instance steps

(a) Grafting: Fail if there exists a non flexible bottom node m
in τ such that m̃ is not a bottom node in tu.

(b) Raising and weakening: Fail if there exists a node n of τu

non inert in τu, and a node m of Mn such that:

≻τ (m) is not nB and m is locked in τ
or

⋄n is (=),
⋄
τ(m) is (>) and m is not flexible in τ

(c) Merging:

i. Build the graph τ↑ verifying τ̊↑ = τ̊ and
m ⋆≻−→ m′ ∈τ ∧ m̃ ≻−→ m̃′ ∈≻τu =⇒ m ≻−→ m′ ∈τ↑.

ii. Fail if there exists m and m′ distinct such that one of them
is locked and non inert, m̃ = m̃′, and ≻τ↑(m) = ≻τ↑(m

′).

3. Return ≻τu.

Figure 22: Rebind algorithm.
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the same node (step 1c)8. In parallel, a new flag ⋄n is computed for n; it is the best flag common to the
nodes of Mn (step 1b).

The computation of ≻τu is incremental and is done in a top-down fashion: results found for the nodes that
have already been considered are reused for computing the binders of the nodes underneath.

2. Correction of the instance steps.

The second phase verifies that the instance operations performed are correct w.r.t. permissions. Step 2a
checks that the graftings performed to obtain the skeleton of τu from the skeleton of τ are allowed.
Step 2b verifies that the weakenings and raisings that have been performed are correct. Step 2c revisits
the polymorphic merging transforming τ̊ into τ̊u.

This last step is difficult, as it needs to find where exactly the mergings originated. Consider the type τ6

in Figure 12. In τ7, the nodes 〈1〉 and 〈2〉 were merged, and we must verify that their permissions were
correct. However, 〈11〉 and 〈21〉 were also indirectly merged. Yet, for them no check must be done. We
use the following criterion: when two nodes are merged and their binders are equal, they are the root of
a polymorphic merge.

Notations For pedagogical purposes, we introduce two intermediate graphs τg and τr that correspond to the
steps of an ordered derivation of τ ⊑ τu. Although they are never actually built9 by the algorithm, they are
useful to reason on it.

• The graph τg is τ in which all the graftings have been performed, i.e. exactly τ [τu/⊥].

• The graph τr is τg in which all the raisings have been performed. It has the same term-graph as τg and

its binding tree is defined by: m ⋄≻−→ m′ ∈ τr if and only if m̃ ≻−→ m̃′ ∈ τu and m ⋄⋄≻−→ m′ ∈ τg.

7.4 Example of unification

Our running example will be Figure 12, in which we unify the nodes 〈1〉 and 〈2〉 of τ1. Of course, τ7 is one
suitable unifier; in fact, τ7 is Unif{1,2}(τ1), while τ2 and τ4 are τg and τr respectively. In τ2, the proper expansion
type is grafted under the node 〈2〉, which gives τg. For τr , the only nodes that must be raised in τg are 〈221〉
and 〈221〉, which are exactly the ones raised between τ2 and τ4.

Let us examine the actions of Rebind on our example:

Step 1 We suppose that Rebind tries to bind the node n = 〈121〉. The only node of τ1 merged into n in τu is
〈121〉, thus Mn is {〈121〉}. However, there are three such nodes in τg (i.e. τ2), namely 〈121〉, 〈221〉, and
〈222〉. Let this set be M ′

n.

The computation of ⋄n is easy, as Mn is a singleton. Consequently,
⋄
τu(n) is

⋄
τ1(〈121〉), i.e. (>).

Finding the new binder is slightly more subtle. In order to find nB, the algorithm must raise all the nodes
of M ′

n until they are all bound at the same level. It starts by computing the binders of the nodes of M ′
n:

• Bn
1 contains the binders of the nodes present in τ .

• Bn
2 contains the binders of the nodes that have been grafted between τ and τg. By construction of

the expansion graphs, the binding edges of those nodes are the inverse of structure edges.

In our case, Bn
1 = {≻τ1(n)} = {〈1〉}. Meanwhile, Bn

2 = {〈22〉}, i.e. the (common) binder in τg of the nodes
〈221〉 and 〈221〉 of M ′

n \Mn. The set Bn
1 ∪Bn

2 is thus equal to {〈1〉, 〈22〉}. At this stage of the algorithm,
the node 〈22〉, which is above n in τ̊u, is already (flexibly) bound to 〈2〉. This last node is equal to 〈1〉 in
τu, hence LCA≻τu

(Bn
1 ∪Bn

2 ) is equal to 〈1〉.

Step 2a The only bottom node of τ no longer a bottom node in τu is 〈2〉. It is flexible in τ , hence the step
succeeds. This ensures in particular that 〈2〉 can be grafted in τ1.

Step 2b We again consider node n = 〈121〉. The only node in Mn is 〈121〉 itself, which is neither raised nor
weakened, hence no permissions check are necessary. Note however that in the derivation τ1 ⊑ τ7, the
nodes 〈221〉 and 〈222〉 are raised and weakened, However, since they are the result of the grafting of an
expansion graph, they have flexible permissions.

8We defer the discussion on B
n
2

to (§7.4).
9The size of τg can be quadratic in the size of τ . Hence, building it would make impossible to have a linear complexity.
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Step 2c In our simple example, τ↑ is in fact equal to τ (i.e. τ1). The only pair of nodes satisfying the conditions
of step 2(c)ii other than being locked is (〈1〉, 〈2〉). However, since neither node is locked, the test succeeds.
Note that while the nodes 〈211〉 and 〈212〉 were merged in our derivation of Figure 12, the algorithm does
not check for them, as again it knows that they are flexible (as for 〈221〉 and 〈222〉).

7.5 Correctness of the algorithms

This section introduces the correctness results of the algorithm. All the results also apply to the stricter
permission system. Hence, our algorithm can be reused unchanged to perform unification in exactly the syntactic
version of MLF.

We implicitly quantify over a type τ , a set of nodes N , and a first-order instance tu of τ̊ . Unless mentioned
otherwise, we do not assume that (τ, N) is admissible or that tu is the principal first-order unifier of N in τ̊ .

7.5.1 Auxiliary results

We first give some auxiliary results for the proofs. We write m ∈ τ ⊆ n as a shorthand for m ∈ τ ∧m ⊆ n.

Lemma 13 Let n ≻−→ n′ ∈ τu, and let m be a polymorphic node of τg merged into n. Then there exists a node

m′ merged in n′ such that m +≻−→ m′ ∈ τg. Moreover, m′ is unique. �

Rebind chooses the lowest possible binder for a node:

Lemma 14 Let n be a node of τu. Let n′ be a node of τu such that for every node m of τg merged into n there

exists a node m′ of τg merged into n′ verifying m +≻−→ m′ ∈ τg. Then, n +≻−→ n′ ∈ τu. �

Lemma 15 The type τu = (tu,≻τu) is well-formed. �

A direct consequence of the principality of first-order unification is that the structure of τv is a first-order
instance of the structure of τu. In particular, this allows using nodes of τu as nodes of τv.

Lemma 16 The first-order instance τ̊u 6 τ̊v holds. �

Rebind preserves existing permissions:

Lemma 17 Let n be a node of τu such that every node m of τ that has been merged in n has at least the
permission P. Then, n also has the permission P in τu. �

A related result is that Rebind does not “invent” flags: any binding path found in τu was already present in
τr. This result can be used to justify that some raisings and weakenings commute.

Lemma 18 For any node n in τu, there exists m ∈ τr merged into n such that ⋄τu
(n) = ⋄τr

(m). �

Finally, for admissible problems only, the binding tree of the unifier returned by the algorithm is always
more general than that of any other unifier.

Lemma 19 Suppose that (τ, N) is admissible, and let τv be one unifier. For any node n of τ , n +≻−→ ≻τv(n) ∈ τu

holds. �

Note that this result does not hold for some non-admissible problems, as evidenced by Figure 20.

7.5.2 Main correctness results

Theorem 4 If Rebind(τ, tu) returns ≻τu, the instance relations τ ⊑G τg ⊑R τr ⊑MW (tu,≻τu) hold. �

In particular Unif is sound even on non admissible problems:

Corollary 2 (Soundness) The algorithm Unif is sound. �

Unif is also complete on admissible problems, and return a principal identifier.

Theorem 5 (Completeness and principality) Suppose that N is admissible for τ . If there exists an unifier
τv of (τu, N), UnifN (τ) returns a type τu; moreover, this type is more general than τv, i.e. τu ⊑ τv. �
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τ →

→

⊥

→

⊥

τ ′ →

→

⊥

→

⊥

Figure 23: Generalized unification problems and admissibility

Note that the proof of the completeness theorem also shows principality of Rebind on a given term-graph,
even if the problem is not admissible.

Corollary 3 Suppose there exists an unifier τv of (τu, N) such that τ̊v = τ̊u. Then Rebind(τ, τ̊u) returns ≻τu

such that the type τu equal to (τ̊u,≻τu) is more general than τv. �

Finally, the following lemma justifies the fact that we do not need to study principality up to similarity.
Indeed, it essentially “commutes” with unification.

Lemma 20 Let τ1 and τ2 be two types, and N a set of nodes admissible for both types. Assume UnifN (τ1)
exists and τ1 ≈ τ2. Then UnifN (τ2) exists and UnifN (τ1) ≈ UnifN (τ2). �

7.6 Complexity

For the sake of the complexity analysis, we assume that each of the following elementary operations takes
constant time:

• finding the binder of a node;

• going from m ∈ τ to the corresponding node m̃ ∈ τu;

• finding the list of nodes of τ that are merged into a node of τu.

This can easily be achieved by using constant-time access structures for storing graphs and by keeping track of
merges during unification. For the computation of least common ancestors, we use a dynamic algorithm that
computes LCA queries in worst-case constant time, and in which adding new leaves takes constant-time [1].

Theorem 6 Unif is linear in the size of its argument. �

This linear-time bound relies on a linear-time unification algorithm for term-graphs. We can also use a union-find
based first-order unification algorithm [5] instead, in which case we obtain a nα(n) complexity.

While the complexity bound of the algorithm used in the original syntactic presentation of MLF is not known,
it has to perform many duplications and α-conversions. We think that it would not scale to larger inference
problems that can appear e.g. in automatically generated code, encodings, or extensive use of polymorphic
records and variant types.

7.7 Generalized unification problems

The definition of unification problems may be generalized to express simultaneous unification problems on the
same type.

Definition 22 A generalized unification problem (τ,∼) is a pair of a type τ and an equivalence relation ∼ on
dom(τ). A solution of (τ,∼) is an instance τ ′ of τ such that (∼) ⊆ (τ̃ ′). �

The equivalence relation ∼ of a unification constraint (τ,∼) may be represented on τ by unification edges
between the nodes to unify. In practice, we only draw a subrelation of ∼ whose transitive closure is ∼.
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Admissibility It is of course possible to generalize admissibility in the obvious way, by requiring all equiva-
lence classes of τ to be admissible problems. However, this definition is too weak, as illustrated by Figure 23.
Although it is clear that τ and τ ′ have the same solutions, τ is admissible according to this criterion, while τ ′

is not. Accordingly, we generalize the criterion by considering only relevant equivalence classes in τ .

Definition 23 A generalized unification problems (τ/∼) is admissible if ∼ is equivalent to an equivalence
relation ∼′ on τ such that the subproblem (τ/N) are admissible for each equivalence class N of ∼′. ∼ and ∼′

are equivalent if they have the same first-order solutions on τ̊ . �

With this criterion, τ ′ is admissible, as the equivalences relations on τ and τ ′ are equivalent. More generally,
admissibility is preserved by congruence closures.

Generalized unification algorithm The Unif algorithm can be generalized in a straightforward manner to
generalized unification problems, thanks to the clean separation between the computation of τ̊u and ≻τu. In the
first phase of UnifN , it suffices to find the principal first-order unifier according to ∼ instead of N . This strategy
is more efficient than unifying the equivalence classes of ∼ one after the other using UnifN , which would require
calling Rebind up to k times, where k is the number of equivalence classes in ∼.

This generalized unification algorithm is complete on admissible problems.

Lemma 21 Given an admissible generalized unification problem (τ,∼), if there exists a solution to the problem
the generalized unification algorithm returns a type τu more general than any other solution. �

7.8 Unification in restrictions of MLF

In the terminology of [8], the system we presented here is Full MLF, the most expressive one. Let us call trivial
a flexible binding ∀ (α > σ) σ′ when σ = ⊥. Two natural restrictions of Full MLF exist:

Plain MLF 10 is obtained by restricting types so that any flexible binding occurring after a rigid binding must

be trivial. That is, all binding paths ending by a flexible binding must be of the form {ǫ} >+

←−≺ ⊥ or

{ǫ} >∗

←−≺ =+

←−≺ >←−≺ ⊥ (while in Full MLF, all binding paths {ǫ} {>,=}∗

←−−−−≺ >←−≺ ⊥ are allowed).

It can be shown that Plain MLF has exactly the expressivity of System F with let bindings. It is also the
system obtained by restricting type annotations in source terms to types of System F.

Simple MLF is even more restricted, as any non-trivial flexible binding is forbidden. Simple MLF is exactly as
expressive to System F. In fact, if we quotient types by the abstraction relation (i.e. we consider ⊑⊏−⊐−

instead of ⊑), all types are equivalent to a System F type.

In both Plain MLF and Simple MLF, the type instance relation is the restriction of of ⊑ to the types allowed in
both systems. Since the restrictions on allowed types are preserved by unification, Unif can be used unchanged
to perform unification in Plain MLF and Simple MLF. Furthermore, the restriction of ⊑ to types of Simple MLF

exactly corresponds to the instance relation in the implicit version of System F:

∀ (α) σ′ ⊑F ∀ (β) σ′[σ/α] β /∈ ftv(∀ (α) σ′)

Thus, independently of MLF, our unification algorithm can be used to perform unification on System F types.

8 Relating the syntactic and graphic versions of MLF

8.1 An informal comparison of syntactic and graphic instance

The instance relation of graphic MLF is noticeably simpler than its syntactic counterpart. Indeed, it does not
need to be defined under prefix, as it instead uses permission to deeply operate inside types. Likewise, context
rules such as I-Context-R or I-Context-L are superfluous.

The atomic instance operation can be put in correspondence with some of rules of the syntactic presentation:

• grafting corresponds to the rule I-Bot;

10Also called Shallow MLF in the original presentations of MLF [6, 7].
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• weakening corresponds to the rule I-Rigid

• raising corresponds to the derived rules I-Up and A-Up;

• merging has no direct equivalent in the syntactic presentation, and can only be obtained by a combination
of several rules. In order to prove ∀ (α>σ) ∀ (β >σ) α→ β ⊑ ∀ (α>σ) α→ α, one needs to syntactically
instantiate the first type into ∀ (α > σ) ∀ (β > α) α → β, using I-Hyp and context rules. This type is in
turn equivalent to ∀ (α > σ) α→ α. This syntactic derivation requires to abstract the second occurrence
of σ behind the name α, and to replace β by α everywhere using the equivalence relation. Comparatively,
the graphic proof is direct and simpler.

Our similarity relation is also simpler, thanks to the graphical representation itself. Rules Eq-Comm (which
deals with commutation of binder), Eq-Free, (which is used to remove unused quantification) and Eq-Var

become useless. Additionally, rule Eq-Mono, which inlines monotypes, has no direct equivalent: indeed we
require all nodes to be bound. However, as a counterpart to binding all nodes, we must deal with binding edges
and sharing of monomorphic nodes. (In the syntactic presentation, this was done indirectly by using Eq-Mono

in one direction, then in the other.) Yet, raising, merging and weakening of monomorphic nodes are subrelations
of the more general instance relation, and we only need to establish properties once.

8.2 Translating graphic types to and from syntactic types

8.2.1 From graphic to syntactic types

A graphic type τ may be read as a syntactic type Sτ ({ǫ}) using the algorithm of Figure 24. To each node n
which is not the root we associate a variable αn. On a given node, we first translate all the nodes bound on it,
in the order imposed by <B. By construction, all the children of n are then already bound.

Sτ (n) = ∀ (αn1

⋄
τ(n1) Sτ (n1)) ... ∀ (αni

⋄
τ (ni) Sτ (ni)) τ(n)(αn·1, ..., αn·j)

where n1, ... ni is one possible ordering of (≻−→ n) for <B

and j = arity(τ(n))

Figure 24: Translation from types to syntactic types

Lemma 22 Given a type τ , Sτ ({ǫ}) is a well-scoped syntactic type. �

The algorithm is not deterministic, as <B is only a partial order. However this non-determinism is unimportant,
as the differences are captured by the equivalence relation on syntactic types.

Lemma 23 Given a type τ , if σ1 and σ2 are two translations of τ for different orderings of bound nodes, then
σ1 and σ2 are equal up to some permutation of binders (hence syntactically equivalent for ≡). �

Lemma 24 Sτ ({ǫ}) can be computed in linear time in the size of τ . �

8.2.2 From syntactic to graphic types

We limit ourselves to syntactic types generated by the grammar

t ::= α | C(α, ..., α)
σ ::= t | ⊥ | ∀ (α ⋄ σ) σ

That is, we disallow monotypes of the form C(C(...), ...). Given a syntactic type, it is always possible to
transform it into an equivalent one (for ≡) that follows this restriction by introducing new bounds for the
monomorphic subtypes.

The translation from such a syntactic type σ into a graphic type G(σ) is defined inductively and uses an
auxiliary environment ρ mapping variables to graphs. It returns a standard graph. New nodes are taken all
distinct from one another in a global pool of nodes (which we leave implicit) using the notation “V n.” to mean
the allocation of such a fresh node n. We write r(τ) for the root node of τ and use + to aggregate elements
(nodes, structure edges or binding edges) composing a standard graph. The algorithm Gρ(·) is described in
Figure 25.
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Gρ(⊥) = V n.(n 7→ ⊥)
Gρ(α) = ρ(α)

Gρ(C(αi∈I
i )) = V n.(n 7→ C) + (n ◦−→ r(ρ(αi)))

i∈I

Gρ(∀ (α ⋄ σ) σ′) = let τ = Gρ(σ) in let τ ′ = Gρ,α7→V nα.(nα 7→⊥)(σ
′) in

if r(τ ′) = nα then τ else
if nα /∈ dom(σ′) then τ ′ else
τ ′[τ/nα] + r(τ) ⋄≻−→ r(τ ′)

Figure 25: Translation from syntactic types to types

Translating a bottom yields a new graph containing only a bottom node as the root, while translating a
variable retrieves the graph associated to this variable in the environment (by well-scopedness of syntactic types,
the variable is always already present in ρ). Translating a monotype labelled by C is straightforward.

The difficult case is ∀ (α ⋄ σ) σ′. We start by translating the bound σ into τ , and creating a new node nα

which will serve as a placeholder for α in the translation τ ′ of σ′. Then we graft nα by τ in τ ′. There are two
special cases. When σ′ is equivalent to α, only one node must be created for α and the translation is exactly τ .
When α does not appear free in σ′, translating σ is not useful. However, the condition “does not appear free” it
too weak: σ must not be translated if α does not appear free in nf(σ′) (where nf is the syntactic normal form).
We detect this case by checking if nα appears in τ ′.

The translation returns a correct type:

Lemma 25 Given a syntactic type σ, G(σ) is a well-formed type. �

Moreover, the translation can be performed in linear time.

Lemma 26 Given a syntactic type σ, G(σ) can be computed in linear time in the size of σ. �

9 Conclusion

We have given a formal meaning to the informal graphic types used in the original presentation of MLF [6]. We
proposed a definition of type instance based on several independent operations on types: merging and grafting
are well-known operations on first-order term-graphs; raising is a simple operation on the binding tree that
reduces polymorphism; weakening and permissions are new and both work together to ensure that requested
polymorphism is not reduced during instantiation.

We found that unification for MLF-types can be performed in linear time. Unsurprisingly, the critical step
seems to be the computation of the binding structure.

The most immediate application of our work is a simpler and efficient unification algorithm for MLF. The
language MLFhas already been used in the Morrow compiler [9]—an extension of core Haskell with second-order
types—using the syntactic presentation. We believe its performance on large problems would be significantly
improved by using graphic types and our algorithm.

Another immediate benefit is a simplification of MLF presentation and meta-theory. Our understanding of
the design space is also much improved, especially in the definition of the instance relation. We have proposed
a slightly more permissive definition of permissions—but the soundness of MLF for our enhanced permissions
system remains to be verified.

Our experience with graphic types is that once the definitions and the main lemmas are settled, results
are rather intuitive and easy. This contrasts with the previous approach based on syntactic types. Our better
understanding may allow us to review other useful features common to ML-like languages, such as recursive
types, generalized algebraic data types, subtyping, etc.

Future works A continuation of this work is to revisit type inference for MLF using our graph presentation;
we are in the process of formalizing a constraint-based approach. Primary results are encouraging, and draw
close parallels with type inference algorithms for ML, known to be quite efficient in practice. In the meantime,
we are implementing a graph-based prototype of MLF, to verify that type inference remains indeed tractable,
just as in ML.

By simplifying and increasing our understanding of MLF types, the graphic presentation also enables exploring
several extensions, such as recursive types, higher-order types, or primitive existential types.
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The combination of recursive types and second-order polymorphism alone is already tricky [3]. We thus have
only considered acyclic types here. Allowing cyclic term-graphs should be possible (even though we did not
do so). The difficulty rather lies in the treatment of recursion in the binding structure. While our framework
should extend to “monomorphic recursions” that do not interact with the binding structure, the general case
should be more challenging.

Probably harder, but also quite useful would be to extend the mechanism of MLF to higher-order types. The
interaction of β-reduction at the level of types with a first-order type inference à la MLF seems non-trivial.

While the encoding of existential types into universal types behaves rather well in MLF, as unpacking of
existential types does not require type information but only the position of unpackings, it is tempting to believe
that using primitive existential types instead of encodings would remove the need for unpacking positions as
well. Unfortunately, this seems to be against the natural flow of type inference in MLF and hopeless at first
glance.
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Eq-Refl

(Q) σ ≡ σ

Eq-Trans

(Q) σ1 ≡ σ2

(Q) σ2 ≡ σ3

(Q) σ1 ≡ σ3

Eq-Context-R

(Q, α ⋄ σ) σ1 ≡ σ2

(Q) ∀ (α ⋄ σ) σ1 ≡ ∀ (α ⋄ σ) σ2

Eq-Context-L

(Q) σ1 ≡ σ2

(Q) ∀ (α ⋄ σ1) σ ≡ ∀ (α ⋄ σ2) σ

Eq-Free

α /∈ ftv(σ1)

(Q) ∀ (α ⋄ σ) σ1 ≡ σ1

Eq-Comm

α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)

(Q) ∀ (α1⋄1σ1) ∀ (α2⋄2 σ2) σ ≡ ∀ (α2⋄2σ2) ∀ (α1⋄1σ1) σ

Eq-Var

(Q) ∀ (α ⋄ σ) α ≡ σ

Eq-Mono

(α ⋄ σ0) ∈ Q (Q) σ0 ≡ τ0

(Q) τ ≡ τ [τ0/α]

Figure 26: Type Equivalence

A-Equiv

(Q) σ1 ≡ σ2

(Q) σ1 ⊏− σ2

A-Trans
(Q) σ1 ⊏− σ2

(Q) σ2 ⊏− σ3

(Q) σ1 ⊏− σ3

A-Context-R
(Q, α ⋄ σ) σ1 ⊏− σ2

(Q) ∀ (α ⋄ σ) σ1 ⊏− ∀ (α ⋄ σ) σ2

A-Hyp
(α1 = σ1) ∈ Q

(Q) σ1 ⊏− α1

A-Context-L
(Q) σ1 ⊏− σ2

(Q) ∀ (α = σ1) σ ⊏− ∀ (α = σ2) σ

Figure 27: Type Abstraction

I-Abstract
(Q) σ1 ⊏− σ2

(Q) σ1 ⊑ σ2

I-Trans
(Q) σ1 ⊑ σ2

(Q) σ2 ⊑ σ3

(Q) σ1 ⊑ σ3

I-Context-R
(Q, α ⋄ σ) σ1 ⊑ σ2

(Q) ∀ (α ⋄ σ) σ1 ⊑ ∀ (α ⋄ σ) σ2

I-Hyp
(α1 > σ1) ∈ Q

(Q) σ1 ⊑ α1

I-Context-L
(Q) σ1 ⊑ σ2

(Q) ∀ (α > σ1) σ ⊑ ∀ (α > σ2) σ

I-Bot

(Q) ⊥ ⊑ σ
I-Rigid

(Q) ∀ (α > σ1) σ ⊑ ∀ (α = σ1) σ

Figure 28: Type Instance
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Appendix

A Syntactic MLF relations

The equivalence, abstraction and instance relations of the syntactic presentation of MLF are presented in Fig 26,
27 and 28 respectively. Fig 29 presents two important derived rules.
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A-Up
α′ /∈ ftv(σ0)

(Q) ∀ (α = ∀ (α′ = σ′) σ) σ0 ⊏− ∀ (α′ = σ′) ∀ (α = σ) σ0

I-Up
α2 /∈ ftv(σ)

(Q) ∀ (α > ∀ (α′ ⋄ σ′) σ) σ0 ⊑ ∀ (α′ ⋄ σ′) ∀ (α > σ) σ0

Figure 29: Derived rules

B Table of notations

Notation Definition Location

Metavariables
π, Π Paths and sets of paths Sec. 3.1, p. 7

n Nodes (i.e. sets of paths) Sec. 3.2, p. 8
t Term Sec. 3.1, p. 7
g Term-graph Sec. 3.2, p. 8

τ MLF type Sec. 4.1, p. 11
⋄, ⋄ Flags (> or =) and sequences of flags Sec. 2.1, p. 6

Paths and nodes
ǫ Empty path Sec. 3.1, p. 7

{ǫ}, 〈ǫ〉 Root of a term-graph
〈π〉, 〈n〉 Node containing at least π or n Sec. 3.2, p. 9

ππ′, nΠ′, Πn Concatenation on paths and sets of paths Sec. 3.1, p. 7
Components of types

τ̊ ,
◦−→
τfoo Term-graph associated to τ or τfoo Sec. 4.1, p. 11

≻τ ,
≻−→
τbar Binding tree of τ or τbar Sec. 4.1, p. 11

ĝ, τ̂ Tree associated to g or τ̊ Sec. 3.2 and 4.1, p. 8 and 11
g̃, τ̃ Equivalence relation associated to g or τ̊ Sec. 3.2 and 4.1, p. 8 and 11

≻n, ≻τ (n) Binder of n in τ Sec. 4.1, p. 11

n k◦−→ n′ Structure edge from n to n′ labelled by arity k Sec. 4.1, p. 11
n ⋄≻−→ n′ Binding edge from n to n′ labelled by ⋄ Sec. 4.1, p. 11
B(n), Bτ (n) Bubble of n in τ Sec. 4.3, p. 12

⋄
τ (n) Flag on the outgoing binding edge of n in τ Sec. 4.1, p. 11

⋄n, ⋄τ (n) Flags on the binding path between n and {ǫ} in τ Sec. 5.2, p. 19
P(⋄), P(n) Permissions associated to ⋄ or ⋄n Sec. 5.2, p. 18

t(π), g(n), τ(n) Symbol at path π or at node n in t, g or τ Sec. 3.1, 3.2 and 4.1, p. 7, 8 and 11
Miscellaneous relations

◦−⊲−≺ Domination order induced by ◦−→ ∪ ←−≺ Sec. 4.2, p. 12
◦−⊲→ Domination order induced by ◦−→
<B Order on bubbles Sec. 4.3, p. 13

Operators on types
τ/n Projection at n in τ Sec. 4.4, p. 13

τ [τ ′/n] Grafting of τ ′ at n in τ Sec. 4.4, p. 13
τ [n1 = n2] Fusion of n1 and n2 in τ Sec. 4.4, p. 13

τ△ Expansion of τ Sec. 6.2.3, p. 27
τ [τ ′/⊥] Grafting of all the bottom nodes of τ by the struc-

ture of τ ′
Sec. 6.2.3, p. 27

Instance operations on types
Graft(τ ′, n)(τ) Grafting of τ ′ at position n in τ Sec. 5.3.1, p. 19
Raise(n)(τ) Raising of the edge leaving n in τ Sec. 5.3.3, p. 22
raise(n)(τ) Restriction of Raise to monomorphic nodes Sec. 5.3.3, p. 22

(continued next page)
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Notation Definition Location

Merge(n1, n2)(τ) Merging of the subgraphs under n1 and n2 in τ Sec. 5.3.2, p. 21
merge(n1, n2)(τ) Restriction of Merge to monomorphic subgraphs Sec. 5.3.2, p. 21
Weaken(n)(τ) Weakening of the binder flag at n in τ Sec. 5.3.4, p. 22
weaken(n)(τ) Restriction of Weaken to monomorphic nodes Sec. 5.3.4, p. 22

Instance related relations
⊑ Instance Sec. 5.4, p. 22
⊑G Instance by grafting Sec. 5.3.1, p. 19
⊑R, ⊑r Instance by raising and monomorphic raising Sec. 5.3.3, p. 22
⊑↑ Instance by unchecked raising Sec. 6.2.1, p. 26

⊑M , ⊑m Instance by general and monomorphic merging Sec. 5.3.2, p. 21
⊑W , ⊑w Instance by weakening and monomorphic weaken-

ing
Sec. 5.3.4, p. 22

≈ Similarity Sec. 5.5, p. 23
⊑≈ Instance modulo similarity Sec. 5.5, p. 23
6 Instance on term graphs Sec. 3.3, p. 9

Derived instance relations
⊑XY Reflexive transitive closure of ⊑X ∪ ⊑Y

⊒X Symmetric relation of ⊑X

⊑X
1 Exactly one step of the instance operator corre-

sponding to X
Mathematical notations

R ; R′ Inverse composition (x, z) 7→ ∃y, x R y ∧ y R′ z
(N −→) {n ∃n′ ∈ N, n′ −→ n }

Table 1: Notations
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