
MLF
Raising ML to the Power of System F

Didier Le Botlan and Didier Rémy
INRIA-Rocquencourt

78153 Le Chesnay Cedex, France
{Didier.Le_Botlan,Didier.Remy}@inria.fr

Abstract

We propose a type system MLFthat generalizes ML with first-class
polymorphism as in System F. Expressions may contain second-
order type annotations. Every typable expression admits a principal
type, which however depends on type annotations. Principal types
capture all other types that can be obtained by implicit type instan-
tiation and they can be inferred. All expressions of ML are well-
typed without any annotations. All expressions of System F can be
mechanically encoded into MLF by dropping all type abstractions
and type applications, and injecting types of lambda-abstractions
into MLFtypes. Moreover, only parameters of lambda-abstractions
that are used polymorphically need to remain annotated.

Categories and Subject Descriptors:D.3.3 Language Constructs
and Features.

General Terms: Theory, Languages.

Keywords: Type Inference, First-Class Polymorphism, Second-
Order Polymorphism, System F, ML, Type Annotations.

The quest for type inference with first-class
polymorphic types

Programming languages considerably benefit from static type-
checking. In practice however, types may sometimes trammel pro-
grammers, for two opposite reasons. On the one hand, type anno-
tations may quickly become a burden to write; while they usefully
serve as documentation for toplevel functions, they also obfuscate
the code when every local function must be decorated. On the other
hand, since types are only approximations, any type system will
reject programs that are perfectly well-behaved and that could be
accepted by another more expressive one; hence, sharp program-
mers may be irritated in such situations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’03,August 25–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00

Fortunately, solutions have been proposed to both of these prob-
lems. Type inference allows to elide most type annotations, which
relieves the programmer from writing such details and simultane-
ously lightens programs. In parallel, more expressive type systems
have been developed, so that programmers are less often exposed
to their limitations.

Unfortunately, those two situations are often conflicting. Expres-
sive type systems tend to require an unbearable amount of type
decorations, thus many of them only remained at the status of proto-
types. Indeed, full type inference for System F is undecidable [26].
Conversely, languages with simple type inference are still limited
in expressiveness; more sophisticated type inference engines, such
as those with subtyping constraints or higher-order unification have
not yet been proved to work well in practice.

The ML language [4] appears to be a surprisingly stable point of
equilibrium between those two forces: it combines a reasonably
powerful yet simple type system and comes with an effective type
inference engine. Besides, the ML experience made it clear that
expressiveness of the type system and a significant amount of type
inference are equally important.

Despite its success, ML could still be improved: indeed, there are
real examples that require first-class polymorphic types [25, 20, 7]
and, even though these may not occur too frequently, ML does not
offer any reasonable alternative. (The inconvenience is often un-
derestimated, since the lack of a full-fledged language to experi-
ment with first-class polymorphism insidiously keeps programmers
thinking in terms of ML polymorphism.)

A first approach is to extend ML with first-class second-order poly-
morphism [15, 25, 20, 7]. However, the existing solutions are still
limited in expressiveness and the amount of necessary type decla-
rations keeps first-class polymorphism uneasy to use.

An alternative approach, initiated by Cardelli [2], is to start with
an expressive but explicitly typed language, say Fω

<:, and perform
a sufficient amount of type inference, so that simple programs—
ideally including all ML programs—would not need any type an-
notation at all. This lead tolocal type inference[24], recently im-
proved tocolored local type inference [21]. These solutions are
quite impressive. In particular, they include subtyping in combina-
tion with higher-order polymorphism. However, they fail to type all
ML programs. Moreover, they also fail to provide an intuitive and
simple specification of where type annotations are mandatory.

In this work, we follow the first approach. At least, by being conser-
vative over ML, we are guaranteed to please programmers who are

already quite happy with ML1. We build on some previous work [7],
which has been used to add polymorphic methods to OCaml [16].
Here, we retain the same primary goal, that is to type all expressions
of System-F, providing explicit annotations when needed, and to
keep all expressions of ML unannotated. In addition, we aim at the
elimination of all backward coercions from polymorphic types to
ML-types. In particular, our goal is not to guess polymorphic types.

Our track

Church’s style System-F and ML are quite different in nature. In
ML, the elimination of polymorphism is implicitly performed at
every use occurrence of a variable bound with a polymorphic type
∀ᾱ.τ, which can then be given any instance, of the formτ[τ̄/ᾱ].
Indeed, a polymorphic type somehow represents the set of its in-
stances. This induces an instance relation between polymorphic
types themselves. For example, the (polymorphic) type∀(α) α →
α is said to be more general than∀(α) ∀(β) (α → β)→ (α → β)
and we write∀(α) α → α 4 ∀(α) ∀(β) (α → β) → (α → β) be-
cause all instances of the latter are also instances of the former.

Conversely, in Church’s style System F, a type∀(α) α → α only
stands for itself (modulo renaming of bound variables) and the elim-
ination of polymorphism must be performed explicitly by type ap-
plication (and abstraction) at the source level. A counter-part in
System F is that bound type variables may be instantiated by poly-
morphic types, allowing for expressive impredicative second-order
types. For example, an expression of type∀(α) α→ α can be given
type(∀(β) β→ β)→ (∀(β) β→ β) by an explicit type-application
to ∀(β) β→ β.

Unfortunately, combining implicit instantiation of polymorphic
types with second-order types raises conflicts almost immediately.
For illustration, consider the application of the functionchoose,
defined asλ(x) λ(y) if truethen x else y, to the identity function
id. In ML, choose andid have principal types∀(α) α→ α→ α
and ∀(α) α → α, respectively. For conciseness, we shall write
idα for α → α and σid for ∀(α) idα. Shouldchoose id have
type σ1 equal to∀(α) idα → ∀(α) idα, obtained by keeping the
type of id uninstantiated? Or, should it have typeσ2 equal to
∀(α) (idα → idα), obtained by instantiating the type ofid to the
monomorphic typeidα and generalizingα only at the end? In-
deed, bothσ1 andσ2 are correct types forchoose id. However,
neither one is more general than the other in System F. Indeed, the
function auto defined asλ(x : σid) x x can be typed withσ1, as
choose id, but not withσ2; otherwiseauto could be applied, for
instance, to the successor function, which would lead to a runtime
error. Hence,σ1 cannot be safely coerced toσ2. Conversely, how-
ever, there is a retyping function—a function whose type erasure
η-reduces to the identity [19]—from type σ2 to typeσ1, namely,
λ(g : σ2) λ(x : σid) λ(α) g α (x α). Actually, σ2 is a principal type
for choose id in Fη∗ (System F closed byη-expansion) [19].

While the argument ofauto must be at least as polymorphic asσid,
the argument of the functionchoose id need not be polymorphic:
it may be any instanceτ of σid and the type of the return value is
thenτ. We could summarize these constraints by saying that:

auto : ∀(α=σid) α→ α
choose id : ∀(α≥ σid) α→ α

The type given tochoose id captures the intuition that this appli-

1On a practical level, this would also ensure upward compati-
bility of existing code, although translating tools could always be
provided.

cation has typeτ→ τ for any instanceτ of σid. This form of quan-
tification allows to postpone the decision of whetherσid should
be instantiated as soon as possible or kept polymorphic as long as
possible. The bound ofα in ∀(α ≥ σid) α → α, which is said to
be flexible, can be weakened either by instantiatingσid or by re-
placing≥ by =. Both forms of weakening can be captured by an
appropriate instance relation4 between types. In a binder of the
form (α = σ) the boundσ, which is said to berigid, cannot be in-
stantiated any longer. Intuitively, the type∀(α = σ) σ′ stands for
the System-F typeσ′[σ/α].

Finally, bothchoose id succ andchoose id auto are well-typed,
taking int→ int or σid for the type ofα, respectively. In fact,
the type∀(α ≥ σid) α → α happens to be a principal type for
choose id in MLF. This type summarizes in a compact way the part
of typecheckingchoose id that depends on the context in which it
will be used: some typing constraints have been resolved definitely
and forgotten; others, such as “α is any instance ofσid”, are kept
unresolved. In short, MLFprovides richer types with constraints on
the bounds of variables so that instantiation of these variables can
be delayed until there is a principal way of instantiating them.

A technical road-map

The instantiations between types used above remain to be captured
formally within an appropriate relation4. Indeed, the instance re-
lation plays a crucial role in type inference, via a typing ruleINST
stating that any expressiona of typeσ in a contextΓ has also type
σ′ in the same context wheneverσ 4 σ′. Intuitively, the larger the
relation4 is, the more flexibility is left for inference, and, usually,
the harder the inference algorithm is.

Unsurprisingly, the “smallest reasonable relation”4 that validates
all the instantiations used above leads to undecidable type infer-
ence, for full type inference in System-F is undecidable. Still, the
relation4 induces an interesting variant UMLF that has the same
expressiveness as MLFbut requires no type annotations at all. For-
tunately, the relation4 can be split into a composition of rela-
tionsA−vA− where uses of the relationv can be inferred as long
as all applications ofA− are fully explicit: this sets a clear distinc-
tion between explicit and inferred type information, which is the
essence of MLF.

Unfortunately, subject reduction does not hold in MLFfor a simple
notion of reduction (non local computation of annotations would
be required during reduction). Thus, we introduce an intermediate
variant MLF? where only place holders forA− are indicated. For ex-
ample, using the symbol? in place of polytypes,λ(x :?) x xbelongs
to MLF

? sinceλ(x : σid) x xbelongs to MLF(and of course,λ(x) x x
belongs to UMLF). Subject reduction and progress are proved for
MLF

? and type soundness follows for MLF
? and, indirectly, for MLF.

In fact, we abstract the presentation of MLF
? over a collection of

primitives so that MLFcan then be embedded into MLF
? by treating

type-annotations as an appropriate choice of primitives and disal-
lowing annotation place holders in source terms. Thus, although
our practical interest is the system MLF, most of the technical de-
velopments are pursued in MLF

?.

Unsurprisingly, neither UMLF nor MLF
? admits principal types.

Conversely,every expression typable in MLF admits a principal
type. Of course, principal types depend on type annotations in

Figure 1. Syntax of Types

τ ::= α | gn τ1 .. τn Monotypes
σ ::= τ | ⊥ | ∀(α≥σ) σ | ∀(α=σ) σ Polytypes

the source term. More precisely, if an expression is not typable
in MLF, it may sometimes be typable by adding extra type annota-
tions. Moreover, two different type annotations may lead to two in-
comparable principal types. As an example, the expressionλ(x) x x
is not typable in MLF, while both expressionsλ(x :∀α.α) x x and
λ(x :∀α.α→ α) x x are typable, with incomparable types. Adding
a (polymorphic) type annotation to a typable expression may also
lead to a new type that is not comparable with the previous one.
This property should not be surprising since it is inherent to second-
order polymorphism, which we keep explicit—remember that we
only infer first-order polymorphism in the presence of second-order
types. Still, the gain is the elusion of most type annotations, via the
instance relationv.

The paper is organized as follows. In Section1, we describe types
and instance relations@− andv. The syntax and the static and dy-
namic semantics of MLF? are described in Section2. Section3
presents formal properties, including type soundness for MLF

? and
type inference for MLF. Section4 introduces explicit type annota-
tions. A comparison with System-F is drawn is Section5. In Sec-
tion 6, we discuss expressiveness, language extensions, and related
works. For the sake of readability, unification and type inference al-
gorithms have been moved to the appendices. Due to lack of space,
all proofs are omitted.

“Monomorphic abstraction of polymorphic types”

In our proposal, ML-style polymorphism, as in the type ofchoose
or id, can be fully inferred. (We will show that all ML programs
remain typable without type annotations.) Unsurprisingly, some
polymorphic functions cannot be typed without annotations. For
instance,λ(x) x x cannot be typed in MLF. In particular, we do not
infer types for function arguments that are used polymorphically.
Fortunately, such arguments can be annotated with a polymorphic
type, as illustrated in the definition ofauto given above. Once de-
fined, a polymorphic function can be manipulated by another unan-
notated function, as long as the latter does notusepolymorphism,
which is then retained. This is what we qualify “monomorphic ab-
straction of polymorphic types”. For instance, bothid auto and
choose id auto remain of type∀(α = σid) α → α (the typeσid

of auto is never instantiated) and neitherchoose nor id require
any type annotation. Finally, polymorphic functions can be used by
implicit instantiation, much as in ML.

To summarize, a key feature of MLF is that type variables canal-
waysbe implicitly instantiated by polymorphic types. This can be
illustrated by the killer-app(lication)(λ(x) x id) auto. This ex-
pression is typable in MLF as such, that is without any type ap-
plication nor any type annotation—except, of course, in the def-
inition of auto itself. In fact, a generalization of this example
is the app function λ(f) λ(x) f x, whose MLF principal type is
∀(α,β) (α → β) → α → β. It is remarkable that whenevera1 a2

is typable in MLF, so isapp a1 a2, without any type annotation nor
any type application. This includes, of course, cases wherea1 ex-
pects a polymorphic value as argument, such as inapp auto id. We
find such examples quite important in practice, since they model it-

erators (e.g. app) applied to polymorphic functions (e.g. auto)
over structures holding polymorphic values (e.g.id).

1 Types

1.1 Syntax of types

The syntax of types is given in Figure1. The syntax is parameter-
ized by an enumerable set of type variablesα ∈ ϑ and a family of
type symbolsg∈G given with their arity|g|. To avoid degenerated
cases, we assume thatG contains at least a symbol of arity two (the
infix arrow→). We writegn if g is of arity n. We also writeτ̄ for
tuples of types. The polytype⊥ corresponds to(∀α.α), intuitively.
More precisely, it will be made equivalent to∀(α≥⊥) α.

We distinguish betweenmonotypesandpolytypes. By default, types
refer to the more general form,i.e. to polytypes. As in ML, mono-
types do not contain quantifiers. Polytypes generalize ML type
schemes. Actually, ML type schemes can be seen as polytypes of
the form∀(α1≥⊥) . . .∀(αn≥⊥) τ with outer quantifiers. Inner
quantifiers as in System F cannot be written directly inside mono-
types. However, they can be simulated with types of the form
∀(α = σ) σ′, which stands, intuitively, for the polytypeσ′ where
all occurrences ofα would have been replaced by the polytypeσ.
However, our notation contains additional meaningful sharing in-
formation. Finally, the general form∀(α≥σ) σ′ intuitively stands
for the collection ofall polytypesσ′ whereα is an instance ofσ.

Notation. We say thatα has arigid bound in (α = σ) and a
flexible boundin (α≥ σ). A particular case of flexible bound is
theunconstrained bound(α≥⊥), which we abbreviate as(α). For
convenience, we write(α ¦σ) for either(α = σ) or (α≥σ). The
symbol¦ acts as a meta-variable and two occurrences of¦ in the
same context mean that they all stand for= or all stand for≥. To
allow independent choices we use indices¦1 and¦2 for unrelated
occurrences.

Conversion and free variables. Polytypes are considered
equal moduloα-conversion where∀(α¦σ) σ′ bindsα in σ′, but not
in σ. The set of free variables of a polytypeσ is writtenftv(σ) and
defined inductively as follows:

ftv(α) = {α} ftv(gn τ1 . . . τn) =
[

i=1..n

ftv(τi) ftv(⊥) = /0

ftv(∀(α¦σ) σ′) =

{
ftv(σ′) if α /∈ ftv(σ′)
ftv(σ′)\{α}∪ ftv(σ) otherwise

The capture-avoiding substitution ofα by τ in σ is writtenσ[τ/α].

EXAMPLE 1. The syntax of types only allows quantifiers to be
outermost, as in ML, or in the bound of other bindings. There-
fore, the type∀α · (∀β · (τ[β] → α)) → α of System F2 cannot
be written directly. (Here,τ[β] means a typeτ in which the vari-
able β occurs.) However, it could be represented by the type
∀(α) ∀(β′ = ∀(β) τ[β] → α) β′ → α. In fact, all types of Sys-
tem F can easily be represented as polytypes by recursively bind-
ing all occurrences of inner polymorphic types to fresh variables
beforehand— an encoding from System F into MLFis given in Sec-
tion 5.1.

Types may be instantiated implicitly as in ML along an instance
relation4. As explained above, we decompose4 into A−vA−. In

2We write∀α ·τ for types of System F, so as to avoid confusion.

Section1.2, we first define an equivalence relation between types,
which is the kernel of both@− andv. In Section1.3, we define the
relation@− that is the inverse ofA−. The instance relationv, which
contains@−, is defined in Section1.4.

1.2 Type equivalence

The order of quantifiers and some other syntactical notations are
not always meaningful. Such syntactic artifacts are captured by a
notion of type equivalence. Type equivalence and all other relations
between types are relative to a prefix that specifies the bounds of
free type variables.

DEFINITION 1 (PREFIXES). A prefix Q is a sequence of bind-
ings(α1 ¦1 σ1) . . .(αn ¦n σn) where variablesα1, . . .αn are pair-
wise distinct and form the domain ofQ, which we writedom(Q).
The order of bindings in a prefix is significant: bindings are meant
to be read from left to right; furthermore, we require that variables
α j do not occur free inσi wheneveri ≤ j. Sinceα1, . . .αn are pair-
wise distinct, we can unambiguously write(α¦σ)∈Q to mean that
Q is of the form(Q1,α¦σ,Q2). We also write∀(Q) σ for the type
∀(α1¦1 σ1) . . .∀(αn¦n σn) σ. (Note thatαi ’s can be renamed in the
type∀(Q) σ, but not in the prefixQ.)

DEFINITION 2 (EQUIVALENCE). The equivalence under prefix
is a relation on triples composed of a prefixQ and two typesσ1 and
σ2, written (Q) σ1 ≡ σ2. It is defined as the smallest relation that
satisfies the rules of Figure2. We writeσ1 ≡ σ2 for (/0) σ1 ≡ σ2.

Rule EQ-COMM allows the reordering of independent binders;
Rule EQ-FREE eliminates unused bound variables. RulesEQ-
CONTEXT-L andEQ-CONTEXT-R tell that≡ is a congruence; Rea-
soning under prefixes allows to break up a polytype∀(Q) σ and
“look inside under prefixQ”. For instance, it follows from iter-
ations of RuleEQ-CONTEXT-R that (Q) σ ≡ σ′ suffices to show
(/0) ∀(Q) σ≡ ∀(Q) σ′.

Rule EQ-MONO allows to read the bound of a variable from the
prefix when it is (equivalent to) a monotype. An example of use
of EQ-MONO is (Q,α = τ0,Q′) α → α ≡ τ0 → τ0. Rule EQ-
MONO makes no difference between≥ and= whenever the bound
is (equivalent to) a monotype. The restriction of RuleEQ-MONO
to the case whereσ0 is (equivalent to) a monotype is required for
the well-formedness of the conclusion. Moreover, it also disallows
(Q,α = σ0,Q′) α ≡ σ0 whenτ is a variableα: variables with non
trivial bounds must be treated abstractly and cannot be silently ex-
panded. In particular,(Q) ∀(α=σ0,α′=σ0) α→ α′ ≡ ∀(α=σ0)
α→ α does not hold.

Rule EQ-VAR expands into both∀(α = σ) α ≡ σ and ∀(α≥ σ)
α ≡ σ. The former captures the intuition that∀(α = σ) σ′ stands
for σ′[σ/α], which however, is not always well-formed. The latter
may be surprising, since one could expect∀(α≥σ) αv σ to hold,
but not the converse. The inverse part of the equivalence could be
removed without changing the set of typable terms. However, it is
harmless and allows for a more uniform presentation.

The equivalence(Q) ∀(α¦ τ) σ≡ σ[τ/α] follows from RulesEQ-
MONO, context rules, transitivity, andEQ-FREE, which we further
refer to as the derived ruleEQ-MONO?.

The equivalence under (a given) prefix is a symmetric operation.
In other words, it captures reversible transformations. Irreversible
transformations are captured by aninstancerelationv. Moreover,
we distinguish a subrelation@− of v calledabstraction. Inverse of

Figure 2. Type equivalence under prefix
All rules are considered symmetrically.

EQ-REFL

(Q) σ≡ σ

EQ-TRANS

(Q) σ1 ≡ σ2
(Q) σ2 ≡ σ3

(Q) σ1 ≡ σ3

EQ-CONTEXT-R
(Q,α¦σ) σ1 ≡ σ2

(Q) ∀(α¦σ) σ1 ≡ ∀(α¦σ) σ2

EQ-CONTEXT-L
(Q) σ1 ≡ σ2

(Q) ∀(α¦σ1) σ≡ ∀(α¦σ2) σ

EQ-FREE

α /∈ ftv(σ1)
(Q) ∀(α¦σ) σ1 ≡ σ1

EQ-COMM

α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)
(Q) ∀(α1¦1σ1) ∀(α2¦2 σ2) σ≡ ∀(α2¦2σ2) ∀(α1¦1σ1) σ

EQ-VAR

(Q) ∀(α¦σ) α≡ σ

EQ-MONO

(α¦σ0) ∈Q (Q) σ0 ≡ τ0

(Q) τ≡ τ[τ0/α]

Figure 3. The abstraction relation

A-EQUIV

(Q) σ1 ≡ σ2

(Q) σ1@− σ2

A-TRANS
(Q) σ1@− σ2
(Q) σ2@− σ3

(Q) σ1@− σ3

A-CONTEXT-R
(Q,α¦σ) σ1@− σ2

(Q) ∀(α¦σ) σ1@− ∀(α¦σ) σ2

A-HYP
(α1 =σ1) ∈Q

(Q) σ1@− α1

A-CONTEXT-L
(Q) σ1@− σ2

(Q) ∀(α=σ1) σ@− ∀(α=σ2) σ

abstractions are sound relations for4 but made explicit so as to
preserve type inference, while inverse of instance relations would,
in general, be unsound for4.

1.3 The abstraction relation

DEFINITION 3. The abstraction under prefix, is a relation on
triples composed of a prefixQ and two typesσ1 andσ2, written3

(Q) σ1 @− σ2, and defined as the smallest relation that satisfies the
rules of Figure3. We writeσ1@− σ2 for (/0) σ1@− σ2.

RulesA-CONTEXT-L andA-CONTEXT-R are context rules; note
that RuleA-CONTEXT-L does not allow abstraction under flexible
bounds. The interesting rule isA-HYP, which replaces a polytype
σ1 by a variableα1, providedα1 is rigidly bound toσ1 in Q.

Remarkably, ruleA-HYP is not reversible. In particular,(α=σ) ∈
Q does not imply(Q) α@−σ, unlessσ is (equivalent to) a monotype.
This asymmetry is essential, since uses of@− will be inferred, but
uses ofA− will not. Intuitively, the former consists inabstracting
the polytypeσ as the nameα (after checking thatα is declared as
an alias forσ in Q). The latter consists inrevealingthe polytype
abstracted by the nameα. An abstract polytype,i.e. a variable
bound to a polytype inQ, can only be manipulated by its name,i.e.
abstractly. The polytype must be revealedexplicitly (by using the
relationA−) before it can be further instantiated (along the relation
@− orv). (See also examples6 and7.)

3Readσ2 is an abstraction ofσ1—or σ1 is a revelation ofσ2—
under prefixQ.

Figure 4. Type instance

I-A BSTRACT
(Q) σ1@− σ2

(Q) σ1 v σ2

I-TRANS
(Q) σ1 v σ2
(Q) σ2 v σ3

(Q) σ1 v σ3

I-CONTEXT-R
(Q,α¦σ) σ1 v σ2

(Q) ∀(α¦σ) σ1 v ∀(α¦σ) σ2

I-HYP
(α1≥σ1) ∈Q

(Q) σ1 v α1

I-CONTEXT-L
(Q) σ1 v σ2

(Q) ∀(α≥σ1) σv ∀(α≥σ2) σ

I-BOT
(Q)⊥v σ

I-RIGID

(Q) ∀(α≥σ1) σv ∀(α=σ1) σ

EXAMPLE 2. The abstraction(α = σ) ∀(α = σ) σ′ @− σ′ is deriv-
able: on the one hand,(α = σ) σ @− α holds byA-HYP, leading to
(α=σ) ∀(α=σ) σ′ @−∀(α=α) σ′ by A-CONTEXT-L; on the other
hand,(α = σ) ∀(α = α) σ′ ≡ σ′ holds byEQ-MONO?. Hence, we
conclude byA-EQUIV andA-TRANS.

1.4 The instance relation

DEFINITION 4. The instance under prefix, is a relation on triples
composed of a prefixQ and two typesσ1 and σ2, written4 (Q)
σ1 v σ2. It is defined as the smallest relation that satisfies the rules
of Figure4. We writeσ1 v σ2 for (/0) σ1 v σ2.

Rule I-BOT means that⊥ behaves as a least element for the in-
stance relation. RulesI-CONTEXT-L andI-RIGID mean that flexi-
ble bounds can be instantiated and changed into rigid bounds. Con-
versely, instantiation cannot occur under rigid bounds, except when
it is an abstraction, as described by RuleA-CONTEXT-L.

The interesting rule isI-HYP—the counter-part of ruleA-HYP,
which replaces a polytypeσ1 by a variableα1, providedσ1 is a
flexible bound ofα1 in Q.

EXAMPLE 3. The instance relation(α ≥ σ) ∀(α ≥ σ) σ′ v σ′
holds. The derivation follows the one of Example2 but usesI-HYP
and I-CONTEXT-L instead ofA-HYP and A-CONTEXT-L. More
generally,(QQ′) ∀(Q′) σv σ holds for anyQ, Q′, andσ, which we
refer to as RuleI-DROP.

The relation(Q) ∀(α1≥∀(α2¦σ2) σ1) σv∀(α2¦σ2) ∀(α1≥σ1)
σ holds wheneverα2 /∈ ftv(σ), which we further refer to as the
derived ruleI-UP.

As expected, the equivalence is the kernel of the instance relation:

LEMMA 1 (EQUIVALENCE). For any prefixesQ and typesσ and
σ′, we have(Q) σ≡σ′ if and only if both(Q) σvσ′ and(Q) σ′vσ
hold.

The instance relation coincide with equivalence on monotypes,
which captures the intuition that “monotypes are really monomor-
phic”.

LEMMA 2. For all prefixesQ and monotypesτ and τ′, we have
(Q) τv τ′ if and only if(Q) τ≡ τ′.

4Readσ2 is an instance ofσ1—or σ1 is more general thanσ2—
under prefixQ.

The instance relation also coincides with the one of ML on ML-
types. In particular,∀(ᾱ) τ0 v τ1 if and only if τ1 is of the form
τ0[τ̄/ᾱ].

EXAMPLE 4. The instance relation covers an interesting case of
type isomorphism [3]. In System F, type∀α ·τ′→ τ is isomorphic5

to τ′ → ∀α · τ wheneverα is not free inτ′. In MLF, the two cor-
responding polytypes are not equivalent but in an instance relation.
Precisely,∀(α′≥∀(α) τ) τ′→ α′ is more general than∀(α) τ′→ τ,
as shown by the following derivation:

∀(α′≥∀(α) τ) τ′→ α′
v ∀(α) ∀(α′≥ τ) τ′→ α′ by I-UP

≡ ∀(α) τ′→ τ by EQ-MONO?

(However, as opposed to type containment [19], the instance rela-
tion cannot express any form of contravariance.)

1.5 Operation on prefixes and unification

Rules A-CONTEXT-L and I-CONTEXT-L show that two types
∀(Q) σ and ∀(Q′) σ with the same suffix can be in an instance
relation, for any suffixσ. This suggests a notion of inequality be-
tween prefixes alone. However, because prefixes are “open” this
relation must be defined relatively to a set of variables that lists (a
superset of) the free type variables ofσ. In this context, a set of
type variables is called aninterfaceand is written with letterI .

DEFINITION 5 (PREFIX INSTANCE). A prefix Q is an instance
of a prefixQ′ under the interfaceI , and we writeQvI Q′, if and
only if ∀(Q) σv∀(Q′) σ holds for all typesσ whose free variables
are included inI . We omit I in the notation when it is equal to
dom(Q). We defineQ≡I Q′ andQ@−I Q′ similarly.

Prefixes can be seen as a generalization of the notion of substitu-
tions to polytypes. Then,Qv Q′ captures the usual notion of (a
substitution)Q being more general than (a substitution)Q′.

DEFINITION 6 (UNIFICATION). A prefix Q′ unifiesmonotypes
τ1 andτ2 underQ if and only if QvQ′ and(Q) τ1 ≡ τ2.

The unification algorithm, calledunify, is defined in AppendixA.

THEOREM 1. For any prefixQ and monotypesτ1 and τ2, unify
(Q,τ1,τ2) returns the smallest prefix (for the relationvdom(Q)) that
unifiesτ1 and τ2 underQ, or fails if there exists no prefixQ′ that
unifiesτ1 andτ2 underQ.

The following lemma shows that first-order unification lies under
MLFunification.

LEMMA 3. If (Q) τ1 ≡ τ2, then there exists a substitution̂Q (de-
pending only onQ) that unifiesτ1 andτ2.

2 The core language

As explained in the introduction we formalize the language MLF

as a restriction to the more permissive language MLF
?. We assume

given a countable set of variables, written with letterx, and a count-
able set of constantsc ∈ C . Every constantc has an arity|c|. A
constant is either a primitivef or a constructorC. The distinction

5That is, there exists a function(η,β)-reducible to the identity
that transforms one into the other, and conversely.

Figure 5. Expressions of MLF?

a ::= x | c | λ(x) a | a a | let x = a in a Terms

| (a : ?) Oracles

c ::= f |C Constants

z ::= x | c Identifiers

between constructors and primitives lies in their dynamic seman-
tics: primitives (such as+) are reduced when fully applied, while
constructors (such ascons) represent data structures, and are not
reduced. We use letterz to refer to identifiers,i.e. either variables
or constants.

Expressions of MLF?, written with lettera, are described in Fig-
ure 5. Expressions are those of ML extended withoracles. An
oracle, written(a : ?) is simply a place holder for an implicit type
annotation around the expressiona. Intuitively, oracles are places
where the type inference algorithm must call an “oracle” to fill
the hole with a type annotation. Equivalently, the oracles can be
replaced by explicit type annotations before type inference. Ex-
plicit annotations(a : σ), which are described in Section4, are
actually syntactic sugar for applications(σ) a where(σ) are con-
stants. Examples in the introduction also use the notationλ(x : σ) a,
which do not appear in Figure5, because this is, again, syntac-
tic sugar forλ(x) let x = (x : σ) in a. Similarly, λ(x :?) a means
λ(x) let x = (x : ?) in a.

The language MLFis the restriction of MLF? to expressions that do
not contain oracles.

2.1 Static semantics

Typing contexts, written with letterΓ are lists of assertions of the
form z : σ. We write z : σ ∈ Γ to mean thatz is bound inΓ and
z : σ is its rightmost binding inΓ. We assume given an initial typing
contextΓ0 mapping constants to closed polytypes.

Typing judgments are of the form(Q) Γ ` a : σ. A tiny difference
with ML is the presence of the prefixQ that assigns bounds to type
variables appearing free inΓ or σ. By comparison, this prefix is
left implicit in ML because all free type variables have the same
(implicit) bound⊥. In MLF, we require thatσ and all polytypes of
Γ be closed with respect toQ, that is,ftv(Γ)∪ ftv(σ)⊆ dom(Q).

Typing rules. The typing rules of MLF? and MLFare described
in Figure6. They correspond to the typing rules of ML modulo the
richer types, the richer instance relation, and the explicit binding of
free type variables in judgments. In addition, RuleORACLE allows
for the revelationof polytypes, that is, the transformation of types
along the inverse of the abstraction relation. (This rule would has
no effect in ML where abstraction is the same as equivalence.) For
UMLF, it suffices to replace RuleORACLE by U-ORACLE given
below or, equivalently, combineORACLE with INST into U-INST.

U-ORACLE

(Q) Γ ` a : σ (Q) σA− σ′

(Q) Γ ` a : σ′

U-INST

(Q) Γ ` a : σ (Q) σA−vA− σ′

(Q) Γ ` a : σ′

As in ML, there is an important difference between rulesFUN and
LET: while typechecking their bodies, a let-bound variable can be
assigned a polytype, but aλ-bound variable can only be assigned

Figure 6. Typing rules for ML F and MLF
?

VAR
z : σ ∈ Γ

(Q) Γ ` z : σ

APP
(Q) Γ ` a1 : τ2 → τ1 (Q) Γ ` a2 : τ2

(Q) Γ ` a1 a2 : τ1

FUN
(Q) Γ,x : τ0 ` a : τ

(Q) Γ ` λ(x) a : τ0 → τ

LET
(Q) Γ ` a1 : σ

(Q) Γ,x : σ ` a2 : τ
(Q) Γ ` let x = a1 in a2 : τ

GEN

(Q,α¦σ) Γ ` a : σ′ α /∈ ftv(Γ)
(Q) Γ ` a : ∀(α¦σ) σ′

INST
(Q) Γ ` a : σ
(Q) σv σ′

(Q) Γ ` a : σ′

ORACLE
(Q) Γ ` a : σ
(Q) σA− σ′

(Q) Γ ` (a : ?) : σ′

a monotype inΓ. Indeed, the latter must be guessed while the for-
mer can be inferred from the type of the bound expression. This
restriction is essential to enable type inference. Notice that aλ-
bound variable can refer to a polytypeabstractlyvia a type variable
α bound to a polytypeσ in Q. However, this will not allow to take
different instances ofσ while typing the body of the abstraction,
unless the polytype boundσ of α is first revealedby an oracle. In-
deed, the only possible instances ofα under a prefixQ that contains
the binding(α = σ) are types equivalent toα underQ. However,
(Q) α ≡ σ does not hold. Thus, ifx : α is in the typing context
Γ, the only way of typingx (modulo equivalence) is(Q) Γ ` x : α,
whereas(Q) Γ` x : σ is not derivable. Conversely,(Q) Γ` (x : ?) : σ
is derivable, since(Q) αA− σ.

ML as a subset of MLF. ML can be embedded into MLF

by restricting all bounds in the prefixQ to be unconstrained. Rules
GEN and INST are then exactly those of ML. Hence, any closed
program typable in ML is also typable in MLF.

EXAMPLE 5. This first example of typing illustrates the use of
polytypes in typing derivations: we consider the simple expres-
sionK′ defined byλ(x) λ(y) y. Following ML, one possible typing
derivation is (we recall that(α,β) stands for(α≥⊥,β≥⊥)):

GEN

FUN
(α,β) x : α,y : β ` y : β

FUN
(α,β) x : α ` λ(y) y : β→ β
(α,β) ` K′ : α→ (β→ β)
` K′ : ∀(α,β) α→ (β→ β)

There is, however, another typing derivation that infers a more gen-
eral type forK′ in MLF(for conciseness we writeQ for α,β≥σid):

INST

GEN

FUN
(Q,γ) x : α,y : γ ` y : γ

(Q,γ) x : α ` λ(y) y : γ→ γ
(Q) x : α ` λ(y) y : σid (Q) σid v β

FUN
(Q) x : α ` λ(y) y : β

GEN
(Q) ` K′ : α→ β
` K′ : ∀(Q) α→ β

Notice that the polytype∀(α,β≥σid) α→ β is more general than
∀(α,β) α→ (β→ β), which follows from Example4.

Figure 7. Syntax directed typing rules

VARO

z : σ ∈ Γ
(Q) Γ `O z : σ

FUNO

(QQ′) Γ,x : τ0 `O a : σ dom(Q′)∩Γ = /0
(Q) Γ `O λ(x) a : ∀(Q′,α≥σ) τ0 → α

APPO

(Q) Γ `O a1 : σ1 (Q) Γ `O a2 : σ2
(Q) σ1 v ∀(Q′) τ2 → τ1 (Q) σ2 v ∀(Q′) τ2

(Q) Γ `O a1 a2 : ∀(Q′) τ1

LETO

(Q) Γ `O a1 : σ1
(Q) Γ,x : σ1 `O a2 : σ2

(Q) Γ `O let x = a1 in a2 : σ2

ORACLEO

(Q) Γ `O a : σ
(Q) σA− σ′

(Q) Γ `O (a : ?) : σ′

2.2 Syntax directed presentation

As in ML, we can replace the typing rules of MLF
? by a set of

equivalent syntax-directed typing rules, which are given in Figure7.
Naively, a sequence of non-syntax-directed typing RulesGEN and
INST should be placed around any other rule. However, many of
these occurrences can be proved unnecessary by following an ap-
propriate strategy. For instance, in ML, judgments are maintained
instantiated as much as possible and are only generalized on the
left-hand side of RuleLET. In MLF

?, this strategy would require
more occurrences of generalization. Instead, we prefer to maintain
typing judgments generalized as much as possible. Then, it suffices
to allow RuleGEN right after RuleFUN and to allow RuleINST
right before RuleAPP(see RulesFUNO andAPPO).

EXAMPLE 6. As we claimed in the introduction, aλ-bound vari-
able that is used polymorphically must be annotated. Let us check
that λ(x) x x is not typable in MLF by means of contradiction. A
syntax-directed type derivation of this expression would be of the
form:

APPO

VARO (Q) x : τ0 `O x : τ0
(Q) τ0 v ∀(Q′) τ2 → τ1 (2)

(Q) x : τ0 `O x : τ0 VARO

(Q) τ0 v ∀(Q′) τ2 (1)

FUNO
(Q) x : τ0 `O x x : ∀(Q′) τ1

(Q) /0 ` λ(x) x x : ∀(α≥∀(Q′) τ1) τ0 → α

Applying Rule I-DROP to (2) and (1), we get respectively(QQ′)
τ0 v τ2 → τ1 and(QQ′) τ0 v τ2. Then(QQ′) τ2 → τ1 ≡ τ2 fol-
lows by Lemma2 andEQ-TRANS. Thus, by Lemma3, there ex-
ists a substitutionθ such thatθ(τ2) = θ(τ2 → τ1), that is,θ(τ2) =
θ(τ2)→ θ(τ1), which cannot be the case.

This example shows the limit of type inference, which is actually
the strength of our system! That is, to maintain principal types
by rejecting examples where type inference would need to guess
second-order types.

EXAMPLE 7. Let us recover typability by introducing an oracle
and build a derivation forλ(x) (x : ?) x. Taking(α=σid) for Q and

α for τ0, we obtain:

APPO
ORACLEO

VARO (Q) x : α `O x : α
(Q) αA− σid (3)

(Q) x : α `O (x : ?) : σid

(Q) σid v α→ α
(Q) x : α `O x : α VARO

FUNO
(Q) x : α `O (x : ?) x : α

` λ(x) (x : ?) x : ∀(α=σid) α→ α

The oracle plays a crucial role in (3)—the revelation of the type
schemeσid that is the bound of the type variableα used in the type
of x. We have(Q) σid v α, indeed, but the converse relation does
not hold, so ruleINST cannot be used here to replaceα by its bound
σid.

2.3 Dynamic semantics

The semantics of MLF? is the standard call-by-value semantics of
ML. We present it as a small-step reduction semantics. Values and
call-by-value evaluation contexts are described below.

v ::= λ(x) a
| f v1 . . .vn n < | f |
|C v1 . . .vn n≤ |C|
| (v : ?)

E ::= [] | E a | v E | (E : ?) | let x = E in a

The reduction relation−→ is parameterized by a set ofδ-rules of
the form(δ) below:

f v1 . . .vn −→ a when| f |= n (δ)
(λ(x) a) v−→ a[v/x] (βv)

let x = v in a−→ a[v/x] (βlet)
(v1 : ?) v2 −→ (v1 v2 : ?) (?)

The main reduction is theβ-reduction that takes two forms Rule
(βv) and Rule(βlet). Oracles are maintained during reduction to
which they do not contribute: they are simply pushed out of ap-
plications by rule(?). Finally, the reduction is the smallest re-
lation containing(δ), (βv), (βlet), and(?) rules that is closed by
E-congruence:

E[a]−→ E[a′] if a−→ a′ (CONTEXT)

3 Formal properties

We verify type soundness for MLF
? and address type inference in

MLF.

3.1 Type soundness

Type soundness for MLF? is shown as usual by a combination of
subject reduction, which ensures that typings are preserved by re-
duction, andprogress, which ensures that well-typed programs that
are not values can be further reduced.

To ease the presentation, we introduce a relation⊆ between pro-
grams: we writea⊆ a′ if and only if every typing ofa, i.e. a triple
(Q,Γ,σ) such that(Q) Γ ` a : σ holds, is also a typing ofa′. A rela-
tion R on programs preserves typings whenever it is a sub-relation
of ⊆.

Of course, type soundness cannot hold without some assumptions
relating the static semantics of constants described by the initial
typing contextΓ0 and their dynamic semantics.

DEFINITION 7 (HYPOTHESES). We assume that the following
three properties hold for constants.

(H0) (Arity) Each constantc∈ dom(Γ0) has a closed typeΓ0(c) of
the form∀(Q) τ1 → . . .τ|c|→ τ and such that the top symbol
of ∀(Q) τ is not in{→,⊥} wheneverc is a constructor.

(H1) (Subject-Reduction)All δ-rules preserve typings.

(H2) (Progress)Any expressiona of the form f v1 . . .v| f |, such
that(Q) Γ0 ` a : σ is in the domain of(δ).

THEOREM 2 (SUBJECT REDUCTION). Reduction preserves typ-
ings.

THEOREM 3 (PROGRESS). Any expressiona such that(Q) Γ0 `
a : σ is a value or can be further reduced.

Combining theorems2 and 3 ensures that the reduction of well-
typed programs either proceeds for ever or ends up with a value.
This holds for programs in MLF? but also for programs in MLF,
since MLFis a subset of MLF?. Hence MLFis also sound. However,
MLF does not enjoy subject reduction, since reduction may create
oracles. Notice, however, that oracles can only be introduced by
δ-rules.

3.2 Type inference

A type inference problemis a triple (Q,Γ,a), where all free type
variables inΓ are bound inQ. A pair (Q′,σ) is a solution to this
problem ifQvQ′ and(Q′) Γ ` a : σ. A pair (Q′,σ′) is aninstance
of a pair (Q,σ) if Qv Q′ and (Q′) σ v σ′. A solution of a type
inference problem isprincipal if all other solutions are instances of
the given one.

Figure9 in the AppendixB defines a type inference algorithm WF

for MLF. This algorithm proceeds much as type inference for ML:
the algorithm follows the syntax-directed typing rules and reduces
type inference to unification under prefixes.

THEOREM 4 (TYPE INFERENCE). The set of solutions of a solv-
able type inference problem admits a principal solution. Given any
type inference problem, the algorithm WFeither returns a principal
solution or fails if no solution exists.

4 Type annotations

In this section, we restrict our attention to MLF, i.e. to expressions
that do not contain oracles. Since expressions of MLF are exactly
those of ML, its expressiveness may only come from richer types
and typing rules. However, the following lemma shows that this is
not sufficient:

LEMMA 4. If the judgment(Q) Γ ` a : σ holds in MLF where the
typing contextΓ contains only ML types andQ contains only type
variables with unconstrained bounds, then there exists a derivation
of Γ ` a : ∀(ᾱ) τ in ML where∀(ᾱ) τ is obtained fromσ by moving
all inner quantifiers ahead.

The inverse inclusion has already been stated in Section2.1. In the
particular case where the initial typing contextΓ0 contains only ML
types, a closed expression can be typed in MLFunderΓ0 if and only

if it can be typed in ML underΓ0. This is not true for MLF? in which
the expressionλ(x) (x : ?) x is typable. Indeed, as shown below, all
terms of System F can be typed in MLF

?. Fortunately, there is an
interesting choice of constants that provides MLF with the same
expressiveness as MLF

? while retaining type inference. Precisely,
we provide type annotations as a collection of coercion primitives,
i.e. functions that change the type of expressions without changing
their meaning. The following example, which describes a single
annotation, should provide intuition for the general case.

EXAMPLE 8. Let f be a constant of typeσ equal to ∀(α =
σid,α′≥σid) α → α′ with the δ-reduction f v−→ (v : ?). Then,
the expressiona defined asλ(x) (f x) x behaves asλ(x) x x and
is well-typed, of type∀(α = σid) α → α. To see this, letQ
and Γ stand for(α = σid,α′ = σid) and x : α. By Rules INST,
VAR, and APP (Q) Γ ` f x : α′; hence by ruleGEN, (α = σid)
Γ ` f x : ∀(α′ = σid) α′ sinceα′ is not free in theΓ. By rule
EQ-VAR, we have∀(α′ = σid) α′ ≡ σid (under any prefix); be-
sides,σid v α → α under any prefix that bindsα. Thus, we get
(α = σid) Γ ` f x : α → α by Rule INST. The result follows by
RulesAPP, FUN, andGEN.

Observe that the static effect off in f x is (i) to enforce the type
of x to be abstracted by a variableα bound toσid in Q and (ii) to
give f x, that isx, the typeσid, exactly as the oracle(x : ?) would.
Notice that the bound ofα in σ is rigid: the function f expects a
valuev that must have typeσid (and not a strict instance ofσid).
Conversely, the bound ofα′ is flexible: the type off v is σid but
may also be any instance ofσid.

DEFINITION 8. We call annotationsthe denumerable collection
of primitives (∃(Q) σ), of arity 1, defined for all prefixesQ and
polytypesσ closed underQ. The initial typing environmentΓ0 con-
tains these primitives with their associated type:

(∃(Q) σ) : ∀(Q) ∀(α=σ) ∀(β≥σ) α→ β ∈ Γ0

We may identify annotation primitives up to the equivalence of their
types.

Besides, we write(a : ∃(Q) σ) for the application(∃(Q) σ) a. We
also abbreviate(∃(Q) σ) as(σ) when all bounds inQ are uncon-
strained. Actually, replacing an annotation(∃(Q) σ) by (σ) pre-
serves typability and, more precisely, preserves typings.

While annotations are introduced as primitives for simplicity of pre-
sentation, they are obviously meant to be applied. Notice that the
type of an annotation may be instantiated before the annotation is
applied. However, the annotation keeps exactly the same “reveal-
ing power” after instantiation. This is described by the following
technical lemma (the reader may take/0 for Q0 at first).

LEMMA 5. The judgment(Q0) Γ` (a : ∃(Q) σ) : σ0 is valid if and
only if there exists a type∀(Q′) σ′1 such that the judgment(Q0) Γ `
a : ∀(Q′) σ′1 holds together with the following relations:Q0Qv
Q0Q′, (Q0Q′) σ′1A− σ, and(Q0) ∀(Q′) σv σ0.

The prefixQ of the annotation∃(Q) σ may be instantiated intoQ′.
However,Q′ guardsσ′1 A− σ in (Q0Q′) σ′1 A− σ. In particular, the
lemma would not hold with(Q0) ∀(Q′) σ′1 A− ∀(Q′′) σ and (Q0)
∀(Q′′) σ′1 v σ0. Lemma5 has similarities with RuleANNOT of
Poly-ML [7].

COROLLARY 6. The judgment(Q) Γ ` (a : ?) : σ0 holds if and
only if there exists an annotation(σ) such that(Q) Γ ` (a : σ) : σ0
holds.

Hence, all expressions typable in MLF
? are typable in MLFas long

as all annotation primitives are in the initial typing contextΓ0.

Reduction of annotations. Theδ-reduction for annotations
just replaces explicit type information by oracles.

(v : ∃(Q) σ)−→ (v : ?)

LEMMA 7 (SOUNDNESS OF TYPE ANNOTATIONS). All three
hypotheses (H0, arity), (H1, subject-reduction), and (H2, progress)
hold when primitives are the set of annotations, alone.

The annotation(∃(Q) σ) can be simulated byλ(x) (x : ?) in MLF
?,

both statically and dynamically. Hence annotations primitives are
unnecessary in MLF?.

Syntactic sugar. As mentioned in Section2, λ(x : σ) a is
syntactic sugar forλ(x) let x = (x : σ) in a. The derived typing
rule is:

FUN?

(Q) Γ,x : σ ` a : σ′ Q′ vQ

(Q) Γ ` λ(x :∃(Q′) σ) a : ∀(α=σ) ∀(α′≥σ′) α→ α′

This rule is actually simpler than the derived annotation rule sug-
gested by lemma5, because instantiation is here left to each occur-
rence of the annotated program variablex in a.

The derived reduction rule is(λ(x :∃(Q) σ) a) v
β?−→ let x = (v :

∃(Q) σ) in a. Values must then be extended with expressions of
the formλ(x :∃(Q) σ) a, indeed.

5 Comparison with System-F

We have already seen that all ML programs can be written in MLF

without annotations. In Section5.1, we provide a straightforward
compositional translation of terms of System-F into MLF. In Sec-
tion 5.2, we then identify a subsystem of MLF, called Shallow-
MLF

?, whose let-binding free version is exactly the target of the
encoding of System-F.

5.1 Encoding System-F into MLF

The types, terms, and typing contexts of systemF are given below:

t ::= α | t → t | ∀α · t
M ::= x |M M | λ(x : t) M | Λ(α)M |M t
A ::= /0 | A,x : t | A,α

The translation of types of System-F into MLFtypes uses auxiliary
rigid bindings for arrow types. This ensures that there are no inner
polytypes left in the result of the translation, which would otherwise
be ill-formed. Quantifiers that are present in the original types are
translated to unconstrained bounds.

[[α]] = α [[∀α · t]] = ∀(α) [[t]]

[[t1 → t2]] = ∀(α1 =[[t1]]) ∀(α2 =[[t2]]) α1 → α2

In order to state the correspondence between typing judgments, we
must also translate typing contexts. We writeA`M : t to mean that
M has typet in typing contextA in System F. The translation ofA,

written [[A]], returns a pair(Q) Γ of a prefix and a typing context
and is defined inductively as follows:

[[/0]] = () /0
[[A]] = (Q) Γ

[[A,x : t]] = (Q) Γ,x : [[t]]

[[A]] = (Q) Γ α /∈ dom(Q)
[[A,α]] = (Q,α) Γ

The translation of System F terms into MLF terms forgets type
abstraction and type applications, and translates types in term-
abstractions.

[[Λ(α)M]] = [[M]] [[M t]] = [[M]] [[x]] = x

[[M M′]] = [[M]] [[M′]] [[λ(x : t) M]] = λ(x : [[t]]) [[M]]

Finally, we can state the following lemma:

LEMMA 8. For any closed typing contextA (that does not bind
the same type variable twice), termM, and typet of systemF such
that A ` M : t, there exists a derivation(Q) Γ ` [[M]] : τ such that
(Q) Γ = [[A]] and[[t]]@− τ.

Remarkably, translated terms contain strictly fewer annotations
than original terms—a property that was not true in Poly-ML. In
particular, all typeΛ-abstractions and type applications are dropped
and only annotations ofλ-bound variables remain. Moreover, some
of these annotations are still superfluous.

5.2 Shallow-MLF
?

Types whose flexible bounds are always⊥ are called F-types
(they are the translation of types of System F). Types of the form
∀(α≥σ) τ, whereσ is not equivalent to a monotype nor to⊥, have
been introduced to factor out choices during type inference. Such
types are indeed used in a derivation oflet f = choose id in
(f auto) (f succ). However, they are never used in the encoding
of System-F. Are they needed as annotations?

Let a type beshallowif and only if all its rigid bounds are F-types.
More generally, prefixes, typing contexts, and judgments are shal-
low if and only if they contain only shallow types. A derivation is
shallow if all its judgments are shallow and RuleORACLE is only
applied to F-types. Notice that the explicit annotation(σ) has a
shallow type if and only ifσ is an F-type. We call Shallow-MLF?
the set of terms that have shallow derivations. Interestingly, subject
reduction also holds for Shallow-MLF

?.

Let-bindings do not increase expressiveness in MLF
?, since they can

always be replaced byλ-bindings with oracles or explicit annota-
tions. This is not true for Shallow-MLF?, since shallow-types that
are not F-types cannot be used as annotations. Therefore, we also
consider the restriction Shallow-F of Shallow-MLF

? to programs
without let-bindings.

The encoding of System-F into MLF given in Section5.1 is actu-
ally an encoding into Shallow-F. Conversely, all programs typable
into Shallow-F are also typable in System-F. Hence, Shallow-F and
System-F have the same expressiveness.

6 Discussion

6.1 Expressiveness of MLF

By construction, we have the chain of inclusions Shallow-F⊆
Shallow-MLF? ⊆ MLF

?. We may wonder whether these languages
have strictly increasing power. That is, ignoring annotations and
the difference in notation between let-bindings andλ-redexes, do
they still form a strict chain of inclusions? We conjecture that this
is true.

Still, MLF
? remains a second-order system and in that sense should

not besignificantlymore expressive than System F. In particular,
we conjecture that the term(λ(y) y I ; y K) (λ(x) x x) that is typable
in Fω but not in F [9] is not typable in MLFeither. Conversely, we
do not know whether there exists a term of MLFthat is not typable
in Fω.

Reducing all let-bindings in a term of Shallow-MLF
? produces a

term in Shallow-F. Hence, terms of Shallow-MLF
? are strongly nor-

malizable. We conjecture that so are all terms of MLF.

6.2 Simple language extensions

Because the language is parameterized by constants, which can be
used either as constructors or primitive operations, the language
can import foreign functions defined via appropriateδ-rules. These
could include primitive types (such as integers, strings,etc.) and
operations over them. Sums and products, as well as predefined
datatypes, can also be treated in this manner, but some extension is
required to declare new data-types within the language itself.

The value restriction of polymorphism [28] that allows for safe mu-
table data-structures in ML should carry over to MLF by allowing
only rigid bounds that appear in the type of expansive expressions to
be generalized. However, this solution is likely to be disappointing
in MLF, as it is in Poly-ML, which uses polymorphism extensively.
An interesting relaxation of the value-only restriction has been re-
cently proposed [6] and allows to always generalize type variables
that never appears on the left hand-side of an arrow type; this gave
quite satisfactory results in the context of Poly-ML and we can ex-
pect similar benefits for MLF.

6.3 Related works

Our work is related to all other works that aim at some form of
type inference in the presence of higher-order types.The closest
of them is unquestionably Poly-ML [7], with which close con-
nections have already been made. Poly-ML also subsumes previ-
ous proposals that encapsulate first-class polymorphic values within
datatypes [25]. Odersky and Laufer’s proposal [20] also falls into
this category; however, a side mechanism simultaneously allows
a form of toplevel rank-2 quantification, which is not covered by
Poly-ML but is, we think, subsumed by MLF.

Rank-2 polymorphism actually allows for full type inference [13,
11]. However, the algorithm proceeds by reduction on source terms
and is not very intuitive. Rank-2 polymorphism has also been in-
corporated in the Hugs implementation of Haskell [17], but with
explicit type annotations. The GHC implementation of Haskell has
recently been released with second-order polymorphism at arbitrary
ranks [8]; however, types at rank 2 or higher must be given explic-

itly and the interaction of annotations with implicit types remains
unclear. Furthermore, to the best of our knowledge, this has not yet
been formalized. Indeed, type inference is undecidable as soon as
universal quantifiers may appear at rank 3 [14].

Although our proposal relies on the let-binding mechanism to in-
troduce implicit polymorphismand flexible bounds in types to fac-
torize all ways of obtaining type instances, there may still be some
connection with intersection types [12], which we would like to
explore. Our treatment of annotations as type-revealing primitives
also resembles retyping functions (functions whose type-erasureη-
reduces to the identity) [19]. However, our annotations are explicit
and contain only certain forms of retyping functions. Type infer-
ence for System F moduloη-expansion is known to be undecidable
as well [27].

Several people have considered partial type inference for System F
[10, 1, 23] and stated undecidability results for some particular vari-
ants that in all cases amount—directly or indirectly—to permitting
(and so forcing) inference of the type of at least one variable that
can be used in a polymorphic manner, which we avoid.

Second-order unification, although known to be undecidable, has
been used to explore the practical effectiveness of type inference
for System F by Pfenning [22]. Despite our opposite choice, that is
not to support second-order unification, there are at least two com-
parisons to be made. Firstly, Pfenning’s work does not cover the
language MLper se, but only theλ-calculus, since let-bindings are
expanded prior to type inference. Indeed, ML is not the simply-
typedλ-calculus and type inference in ML cannot,in practice, be
reduced to type inference in the simply-typedλ-calculus after ex-
pansion of let-bindings. Secondly, one proposal seems to require
annotations exactly where the other can skip them: in [22], markers
(but no type) annotations must replace type-abstraction and type-
application nodes; conversely, this information is omitted in MLF,
but instead, explicit type information must remain for (some) argu-
ments ofλ-abstractions.

Our proposal is implicitly parameterized by the type instance rela-
tion and its corresponding unification algorithm. Thus, most of the
technical details can be encapsulated within the instance relation.
We would like to understand our notion of unification as a particular
case of second-order unification. One step in this direction would
be to consider a modular constraint-based presentation of second-
order unification such as [5]. Flexible bounds might partly capture,
within principal types, what constraint-based algorithms capture as
partially unresolved multi-sets of unification constraints. Another
example of restricted unification within second-order terms is uni-
fication under a mixed prefix [18]. However, our notion of prefix
and its role in abstracting polytypes is quite different.

Actually, none of the above works did consider subtyping at all.
This is a significant difference with proposals based on local type
inference [2, 24, 21] where subtyping is a prerequisite. The addition
of subtyping to our framework remains to be explored.

Furthermore, beyond its treatment of subtyping, local type infer-
ence also brings the idea that explicit type annotations can be prop-
agated up and down the source tree according to fixed well-defined
rules, which, at least intuitively, could be understood as a prepro-
cessing of the source term. Such a mechanism is being used in the
GHC Haskell compiler, and could in principle be added on top of
MLFas well.

Conclusions

We have proposed an integration of ML and System F that com-
bines the convenience of type inference as present in ML and the
expressiveness of second-order polymorphism. Type information is
only required for arguments of functions that are used polymorphi-
cally in their bodies. This specification should be intuitive to the
user. Besides, it is modular, since annotations depend more on the
behavior of the code than on the context in which the code is placed;
in particular, functions that only carry polymorphism without using
it can be left unannotated.

The obvious potential application of our work is to extend ML-like
languages with second-order polymorphism while keeping full type
inference for a large subset of the language, containing at least all
ML programs. Indeed, we implemented a prototype of MLF and
verified on a variety of examples that few annotations are actually
required and always at predictable places. However, further investi-
gations are still needed regarding the syntactic-value polymorphism
restriction and its possible relaxation.

Furthermore, on the theoretical side, we wish to better understand
the concept of “first-order unification of second-order terms”, and,
if possible, to confine it to an instance of second-order unification.
We would also like to give logical meaning to our types and to the
abstraction and instance relations.

7 References

[1] H.-J. Boehm. Partial polymorphic type inference is undecidable. In
26th Annual Symposium on Foundations of Computer Science, pages
339–345. IEEE Computer Society Press, Oct. 1985.

[2] L. Cardelli. An implementation of FSub. Research Report 97, Digital
Equipment Corporation Systems Research Center, 1993.

[3] R. D. Cosmo.Isomorphisms of Types: from lambda-calculus to infor-
mation retrieval and language design. Birkhauser, 1995.

[4] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. InProceedings of the Ninth ACM Conference on Principles of
Programming Langages, pages 207–212, 1982.

[5] G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Higher-order
unification via explicit substitutions: the case of higher-order patterns.
In M. Maher, editor,Joint international conference and symposium on
logic programming, pages 259–273, 1996.

[6] J. Garrigue. Relaxing the value-restriction. Presented at the
third Asian workshop on Programmaming Languages and Systems
(APLAS), 2002.

[7] J. Garrigue and D. Rémy. Extending ML with semi-explicit
higher-order polymorphism.Journal of Functional Programming,
155(1/2):134–169, 1999. A preliminary version appeared in TACS’97.

[8] The GHC Team.The Glasgow Haskell Compiler User’s Guide, Ver-
sion 5.04, 2002. ChapterArbitrary-rank polymorphism.

[9] P. Giannini and S. R. D. Rocca. Characterization of typings in poly-
morphic type discipline. InThird annual Symposium on Logic in Com-
puter Science, pages 61–70. IEEE, 1988.

[10] J. James William O’Toole and D. K. Gifford. Type reconstruction with
first-class polymorphic values. InSIGPLAN ’89 Conference on Pro-
gramming Language Design and Implementation, Portland, Oregon,
June 1989. ACM. also in ACM SIGPLAN Notices 24(7), July 1989.

[11] T. Jim. Rank-2 type systems and recursive definitions. Technical Re-
port MIT/LCS/TM-531, Massachusetts Institute of Technology, Lab-
oratory for Computer Science, Nov. 1995.

[12] T. Jim. What are principal typings and what are they good for? In
ACM, editor, ACM Symposium on Principles of Programming Lan-

guages (POPL), St. Petersburg Beach, Florida, pages 42–53, 1996.

[13] A. J. Kfoury and J. B. Wells. A direct algorithm for type inference
in the rank-2 fragment of the second-order lambda -calculus. InACM
Conference on LISP and Functional Programming, 1994.

[14] A. J. Kfoury and J. B. Wells. Principality and decidable type inference
for finite-rank intersection types. InACM Symposium on Principles of
Programming Languages (POPL), pages 161–174. ACM, Jan. 1999.

[15] K. Läufer and M. Odersky. Polymorphic type inference and abstract
data types.ACM Transactions on Programming Languages and Sys-
tems, 16(5):1411–1430, Sept. 1994.

[16] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The
Objective Caml system, documentation and user’s manual - release
3.05. Technical report, INRIA, July 2002. Documentation distributed
with the Objective Caml system.

[17] Mark P Jones, Alastair Reid, the Yale Haskell Group, and the OGI
School of Science & Engineering at OHSU. An overview of hugs
extensions. Available electronically, 1994-2002.

[18] D. Miller. Unification under a mixed prefix.Journal of Symbolic
Computation, 14:321–358, 1992.

[19] J. C. Mitchell. Polymorphic type inference and containment.Infor-
mation and Computation, 2/3(76):211–249, 1988.

[20] M. Odersky and K. Läufer. Putting type annotations to work. InPro-
ceedings of the 23rd ACM Conference on Principles of Programming
Languages, pages 54–67, Jan. 1996.

[21] M. Odersky, C. Zenger, and M. Zenger. Colored local type inference.
ACM SIGPLAN Notices, 36(3):41–53, Mar. 2001.

[22] F. Pfenning. Partial polymorphic type inference and higher-order uni-
fication. InProceedings of the ACM Conference on Lisp and Func-
tional Programming, pages 153–163. ACM Press, July 1988.

[23] F. Pfenning. On the undecidability of partial polymorphic type recon-
struction.Fundamenta Informaticae, 19(1,2):185–199, 1993. Prelim-
inary version available as Technical Report CMU-CS-92-105, School
of Computer Science, Carnegie Mellon University, January 1992.

[24] B. C. Pierce and D. N. Turner. Local type inference. InProceedings of
the 25th ACM Conference on Principles of Programming Languages,
1998. Full version inACM Transactions on Programming Languages
and Systems (TOPLAS), 22(1), January 2000, pp. 1–44.

[25] D. Rémy. Programming objects with ML-ART: An extension to ML
with abstract and record types. In M. Hagiya and J. C. Mitchell,
editors, Theoretical Aspects of Computer Software, volume 789 of
Lecture Notes in Computer Science, pages 321–346. Springer-Verlag,
April 1994.

[26] J. B. Wells. Typability and type checking in the second orderλ-
calculus are equivalent and undecidable. InNinth annual IEEE Sym-
posium on Logic in Computer Science, pages 176–185, July 1994.

[27] J. B. Wells.Type Inference for System F with and without the Eta Rule.
PhD thesis, Boston University, 1996.

[28] A. K. Wright. Simple imperative polymorphism.Lisp and Symbolic
Computation, 8(4):343–355, 1995.

A Unification algorithm

The algorithmunify is specified in Section1.5; it takes a prefix
Q and two typesτ andτ′ and returns a prefix that unifiesτ andτ′
underQ (as described in Theorem1) or fails. In fact, the algorithm
unify is recursively defined by an auxiliary unification algorithm
for polytypes:polyunify takes a prefixQ and two type schemes
σ1 and σ2 and returns a pair(Q′,σ′) such thatQv Q′ and (Q′)
σ1 v σ′ and(Q′) σ2 v σ′.

The algorithmsunify andpolyunify are described in Figure8.
For the sake of comparison with ML, think of the input prefixQ

Figure 8. Unification algorithm

unify (Q,τ′′,τ′′′)
— first rewrites all bounds ofQ in normal form and proceeds

by case analysis on(τ′′,τ′′′) :

Case (α,α): return Q.

Case (g τ1
1 .. τn

1,g τ1
2 .. τn

2):

• let Q1 beQ in
• let Qi+1 beunify (Qi ,τi

1,τ
i
2) for 16 i 6 n in

• return Qn+1.

Case (g1 τ1
1 .. τp

1,g2 τ1
2 .. τq

2) with g1 6= g2: fail .

Case (α,τ) or (τ,α) when(α¦ τ′) ∈Q:
• return unify (Q,τ,τ′).

Case (α,τ) or (τ,α) when(α¦σ) ∈Q
andτ /∈ dom(Q) andσ /∈ T
• let (Q′,_) bepolyunify (Q,σ,τ) in
• fail if (α¦σ) /∈Q′.
• return (Q′)⇐ (α= τ)

Case (α1,α2) when(α1 ¦1 σ1) ∈Q and(α2 ¦2 σ2) ∈Q and
α1 6= α2 andσ1, σ2 are not inT .

• let (Q′,σ3) bepolyunify (Q,σ1,σ2) in
• fail if (α1 ¦1 σ1) /∈Q′ or if (α2 ¦2 σ2) /∈Q′
• return (Q′)⇐ (α1 ¦1 σ3)⇐ (α2 ¦2 σ3)⇐ α1∧α2.

polyunify (Q,σ1,σ2)
— requiresσ1, σ2, and all bounds inQ to be in normal form1 :

Case (⊥,σ) or (σ,⊥): return (Q,σ)

Case (∀(Q1) τ1,∀(Q2) τ2) with Q1, Q2, andQ having disjoint
domains (which usually requires renamingσ1 andσ2)
• let Q0 beunify (QQ1Q2,τ1,τ2) in
• let (Q3,Q′) beQ0↑dom(Q) in
• return (Q3,∀(Q′) τ1)

1Actually, only need to replace types of the form∀(α ¦σ) α by
σ, which can always be done lazily.

given tounify as a substitution and of the result prefixQ′ as an
instance ofQ (i.e. a substitution of the formQ′′ ◦Q) that unifiesτ
andτ′. First-order unification of polytypes essentially follows the
general structure of first-order unification of monotypes. The main
differences are that (i) the computation of the unifying substitution
is replaced by the computation of a unifying prefix, (ii) additional
work must be performed when a variable bound to a strict polytype
(i.e. other than⊥ and not equivalent to a monotype) is being uni-
fied: bounds must be further unified (last case ofpolyunify) and
the prefix updated accordingly. Auxiliary algorithms are used for
this purpose.

Let a rearrangementof a prefixQ be a prefix equivalent toQ ob-
tained by a permutation of bindings ofQ.

DEFINITION 9. Thesplit algorithmQ↑ᾱ takes a prefixQ and re-
turns a pair of prefixes(Q1,Q2) such that (i)Q1Q2 is a rearrange-
ment of Q, (ii) ᾱ ⊆ dom(Q1), and (iii) dom(Q1) is minimal (in
other words,Q1 contains only bindings ofQ useful for exporting
the interfacēα, andQ2 contains the rest).

Figure 9. Algorithm W F

infer (Q,Γ,a):
— proceeds by case analysis on expressiona :

Case x: return Q,Γ(x)

Case λ(x) a:

• let Q1 = (Q,α≥⊥) with α /∈ dom(Q)
• let (Q2,σ) = infer (Q1,Γ,x : α,a)
• let β /∈ dom(Q2) and(Q3,Q4) = Q2↑dom(Q)
• return Q3,∀(Q4) ∀(β≥σ) α→ β

Case a b:
• let (Q1,σa) = infer (Q,Γ,a)
• let (Q2,σb) = infer (Q1,Γ,b)
• let αa,αb,β /∈ dom(Q2)
• let Q3 = unify ((Q2,αa≥σa,αb≥σb,β≥⊥),

αa,αb → β)
• let (Q4,Q5) = Q3↑dom(Q)
• return (Q4,∀(Q5) β)

Case let x = a1 in a2:
• let (Q1,σ1) = infer (Q,Γ,a1)
• return infer (Q1,(Γ,x : σ1),a2)

DEFINITION 10. The abstraction-checkalgorithm (Q) σ @−? σ′
takes a prefixQ and two polytypesσ andσ′ such that(Q) σ v σ′
and checks that(Q) σ@− σ′ or fails otherwise.

DEFINITION 11. TheupdatealgorithmQ⇐ (α¦σ) takes a prefix
Q and a binding(α¦σ) such thatα is in the domain ofQ and returns
a prefix(Q0,α¦σ,Q1) such that (i)(Q0,α¦′ σ′,Q1) is a rearrange-
ment ofQ and (ii)dom(Q1)∩ ftv(σ) = /0. The algorithm fails when
there is not such decomposition (because of circular dependencies)
or when¦′ is = and(Q) σ′ @−? σ fails.

DEFINITION 12. ThemergealgorithmQ⇐ α∧α′ takes two vari-
ablesα andα′ and a prefix of the form(Q0,α ¦σ,Q1,α′ ¦′ σ′,Q2)
and returns the prefix(Q0,α ¦′′ σ,Q1,α′= α,Q2) where¦′′ is≥ if
both¦ and¦′ are≥, and¦′′ is = otherwise.

The implementation of algorithmssplit, update, and merge is
straightforward. The algorithmabstraction-checkcan be reduced
to a simple check on the structure of paths, thanks to the assump-
tion (Q) σv σ′. By lack of space, they are all omitted.

B Type inference algorithm

Figure 9 defines the type-inference algorithm WF for MLF. The
algorithm follows the algorithm W for ML, with only two differ-
ences: first, the algorithm builds a prefixQ instead of a substitu-
tion; second, all free type variables not inΓ are quantified at each
abstraction or application. Since free variables ofΓ are indom(Q),
finding quantified variables consists in splitting the current prefix
according todom(Q), as described by Definition9.

