MLF
Raising ML to the Power of System F

Didier Le Botlan and Didier Rémy
INRIA-Rocquencourt
78153 Le Chesnay Cedex, France
{Didier.Le_Botlan,Didier.Remy}@inria.fr

Abstract Fortunately, solutions have been proposed to both of these prob-
lems. Type inference allows to elide most type annotations, which
We propose a type system fthat generalizes ML with first-class relieves the programmer from writing such details and simultane-
polymorphism as in System F. Expressions may contain second-ously lightens programs. In parallel, more expressive type systems
order type annotations. Every typable expression admits a principalhave been developed, so that programmers are less often exposed
type, which however depends on type annotations. Principal typesto their limitations.
capture all other types that can be obtained by implicit type instan-
tiation and they can be inferred. All expressions of ML are well- Unfortunately, those two situations are often conflicting. Expres-
typed without any annotations. All expressions of System F can be sive type systems tend to require an unbearable amount of type
mechanically encoded into l\}ﬁ_by dropping all type abstractions ~ decorations, thus many of them only remained at the status of proto-
and type applications, and injecting types of lambda-abstractions types. Indeed, full type inference for System F is undeciddtip [
into MLFtypes. Moreover, only parameters of lambda-abstractions Conversely, languages with simple type inference are sitill limited
that are used polymorphically need to remain annotated. in expressiveness; more sophisticated type inference engines, such
as those with subtyping constraints or higher-order unification have
Categories and Subject DescriptorsD.3.3 Language Constructs ~ Not yet been proved to work well in practice.

and Features. - .
The ML language4] appears to be a surprisingly stable point of

General Terms: Theory, Languages. equilibrium between those two forces: it combines a reasonably
powerful yet simple type system and comes with an effective type

Keywords: Type Inference, First-Class Polymorphism, Second- inference engine. Besides, the ML experience made it clear that
Order Polymorphism, System F, ML, Type Annotations. expressiveness of the type system and a significant amount of type
' B inference are equally important.

Despite its success, ML could still be improved: indeed, there are

real examples that require first-class polymorphic ty@&s20, 7]
The quest for type inference with first-class and, even though these may not occur too frequently, ML does not
polymorphic types offer any reasonable alternative. (The inconvenience is often un-

derestimated, since the lack of a full-fledged language to experi-

Programming languages considerably benefit from static type- MENtWith first-class polymorphism insidiously keeps programmers
checking. In practice however, types may sometimes trammel pro- thinking in terms of ML polymorphism.)

grammers, for two opposite reasons. On the one hand, type anno-, .. . _
tations may quickly become a burden to write; while they usefully A first approach is to extend ML with first-class second-order poly-

serve as documentation for toplevel functions, they also obfuscateMCrPhism L5, 25,2, [7]. However, the existing solutions are still
the code when every local function must be decorated. On the otheriMited in expressiveness and the amount of necessary type decla-
hand, since types are only approximations, any type system will "ations keeps first-class polymorphism uneasy to use.

reject programs that are perfectly well-behaved and that could be

accepted by another more expressive one: hence, sharp programfA! altérnative approach, initiated by Carde][is to start with
mers may be irritated in such situations. an expressive but explicitly t_yped language, s@y Fand perform

a sufficient amount of type inference, so that simple programs—
ideally including all ML programs—would not need any type an-
notation at all. This lead ttocal type inferencg24], recently im-
proved tocolored local type inferencedl]. These solutions are
quite impressive. In particular, they include subtyping in combina-
tion with higher-order polymorphism. However, they fail to type all
Permission to make digital or hard copies of all or part of this work for personal or ML programs. Moreover, they also fail to provide an intuitive and

classroom use is granted without fee provided that copies are not made or distributed simple specification of where type annotations are mandatory.

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute . . .

to lists, requires prior specific permission and/or a fee. In this work, we follow the first approach. At least, by being conser-
ICFP’03,August 25-29, 2003, Uppsala, Sweden. vative over ML, we are guaranteed to please programmers who are
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00

already quite happy with ML We build on some previous worK]|
which has been used to add polymorphic methods to OC&éhl [

cation has type — 1 for any instance of g;4. This form of quan-
tification allows to postpone the decision of whetlwgg should

Here, we retain the same primary goal, that is to type all expressionsbe instantiated as soon as possible or kept polymorphic as long as

of System-F, providing explicit annotations when needed, and to
keep all expressions of ML unannotated. In addition, we aim at the
elimination of all backward coercions from polymorphic types to

ML-types. In particular, our goal is not to guess polymorphic types.

Our track

Church’s style System-F and ML are quite different in nature. In
ML, the elimination of polymorphism is implicitly performed at
every use occurrence of a variable bound with a polymorphic type
va.1, which can then be given any instance, of the farfrya].

Indeed, a polymorphic type somehow represents the set of its in-

possible. The bound af in V(a > 0i4) o — a, which is said to
be flexible can be weakened either by instantiatmg or by re-
placing > by =. Both forms of weakening can be captured by an
appropriate instance relaticg between types. In a binder of the
form (a = o) the boundo, which is said to beigid, cannot be in-
stantiated any longer. Intuitively, the typgo = o) o’ stands for
the System-F type’[a/a].

Finally, bothchoose id succ andchoose id auto are well-typed,
taking int — int or 0i4 for the type ofa, respectively. In fact,
the typeV(a > 0i4) @ — o happens to be a principal type for
choose id in MLF. This type summarizes in a compact way the part

stances. This induces an instance relation between polymorphicof typecheckingchoose id that depends on the context in which it

types themselves. For example, the (polymorphic) type) a —
a is said to be more general tharia) V(B) (a — B) — (a — B)
and we writeV (a) a — a g V(a) Y(B) (a — B) — (a — B) be-
cause all instances of the latter are also instances of the former.

Conversely, in Church’s style System F, a typ@) a — a only
stands for itself (modulo renaming of bound variables) and the elim-
ination of polymorphism must be performed explicitly by type ap-
plication (and abstraction) at the source level. A counter-part in

will be used: some typing constraints have been resolved definitely
and forgotten; others, such as fs any instance 064", are kept
unresolved. In short, I\/!T__provides richer types with constraints on
the bounds of variables so that instantiation of these variables can
be delayed until there is a principal way of instantiating them.

A technical road-map

System F is that bound type variables may be instantiated by poly- The instantiations between types used above remain to be captured

morphic types, allowing for expressive impredicative second-order
types. For example, an expression of tyfie) a — a can be given
type (V(B) B — B) — (V(B) B — B) by an explicit type-application
tov(B)B—B.

Unfortunately, combining implicit instantiation of polymorphic

types with second-order types raises conflicts almost immediately.

For illustration, consider the application of the functiehoose,
defined as\(x) A(y) if truethen X elsey, to the identity function
id. In ML, choose andid have principal type¥ (o) a — a — o
andVv (o) o — a, respectively. For conciseness, we shall write
idg for a — a andoiq for V(o) idg. Shouldchoose id have
type o1 equal toV(a) idg — V(0) idg, obtained by keeping the
type of id uninstantiated? Or, should it have type equal to
V(a) (idq — idq), Obtained by instantiating the type o to the
monomorphic typeidy and generalizingx only at the end? In-
deed, botho; ando; are correct types fothoose id. However,

formally within an appropriate relatiog. Indeed, the instance re-
lation plays a crucial role in type inference, via a typing s T
stating that any expressi@of type o in a context™ has also type
o’ in the same context whenever< o’. Intuitively, the larger the
relationx is, the more flexibility is left for inference, and, usually,
the harder the inference algorithm is.

Unsurprisingly, the “smallest reasonable relatiep'that validates

all the instantiations used above leads to undecidable type infer-
ence, for full type inference in System-F is undecidable. Still, the
relation < induces an interesting variant UMitthat has the same
expressiveness as ¥ibut requires no type annotations at all. For-
tunately, the relationg can be split into a composition of rela-
tions 3C3 where uses of the relation can be inferred as long

as all applications ofg are fully explicit: this sets a clear distinc-
tion between explicit and inferred type information, which is the
essence of ML

neither one is more general than the other in System F. Indeed, the

function auto defined as\(x:0iq) X X can be typed withoy, as
choose id, but not withoy; otherwiseauto could be applied, for
instance, to the successor function, which would lead to a runtime
error. Hencegy cannot be safely coerced ¢tm. Conversely, how-
ever, there is a retyping function—a function whose type erasure
n-reduces to the identitylB]—from type o, to type a1, namely,
A(g:02) A(x:014) A(a) ga (xa). Actually, oz is a principal type

for choose id in F1* (System F closed by-expansion)19).

While the argument ofuto must be at least as polymorphicas,
the argument of the functiothoose id need not be polymorphic:
it may be any instance of g;4 and the type of the return value is
thent. We could summarize these constraints by saying that:

auto :
choose id:

V(a=0i9)0 —
V(o >0iq) 0 — O

The type given tahoose id captures the intuition that this appli-

10n a practical level, this would also ensure upward compati-
bility of existing code, although translating tools could always be
provided.

Unfortunately, subject reduction does not hold in fMar a simple
notion of reduction (non local computation of annotations would
be required during reduction). Thus, we introduce an intermediate

variant MLF, where only place holders fan are indicated. For ex-
ample, using the symbalin place of polytypes\(x:x) x xbelongs

to MLF, sinceA(x: 0i4) X xbelongs to ME (and of course)(X) X X
belongs to UMLF). Subject reduction and progress are proved for
MLF, and type soundness follows for fiLand, indirectly, for MIF.

In fact, we abstract the presentation of Wlover a collection of

primitives so that ME can then be embedded into Kilby treating
type-annotations as an appropriate choice of primitives and disal-
lowing annotation place holders in source terms. Thus, although

our practical interest is the system fLmost of the technical de-
velopments are pursued in ML

Unsurprisingly, neither UME nor MLF, admits principal types.

Conversely,every expression typable in fladmits a principal
type Of course, principal types depend on type annotations in

Figure 1. Syntax of Types

Ti=0a|g"11..T
ou=T1|Ll|V(a>0)o|V(a=0)0O

Monotypes
Polytypes

the source term. More precisely, if an expression is not typable

in MLF, it may sometimes be typable by adding extra type annota-
tions. Moreover, two different type annotations may lead to two in-
comparable principal types. As an example, the expreagonx x

is not typable in MIF, while both expressions(x:Va.a) x x and
A(x:Vo.o — a) x x are typable, with incomparable types. Adding

a (polymorphic) type annotation to a typable expression may also
lead to a new type that is not comparable with the previous one.
This property should not be surprising since it is inherent to second-
order polymorphism, which we keep explicit—remember that we
only infer first-order polymorphism in the presence of second-order
types. Still, the gain is the elusion of most type annotations, via the
instance relation-.

The paper is organized as follows. In Secilyrwe describe types
and instance relatiors andC. The syntax and the static and dy-
namic semantics of ML, are described in Sectid2. Section3
presents formal properties, including type soundness fdr.Mhd
type inference for ME Sectior introduces explicit type annota-
tions. A comparison with System-F is drawn is Secttbrin Sec-

erators €.g. app) applied to polymorphic functionse(g. auto)
over structures holding polymorphic valuesd. id).

1 Types
1.1 Syntax of types

The syntax of types is given in Figui The syntax is parameter-
ized by an enumerable set of type variabtes 3 and a family of
type symbolg € G given with their arity|g|. To avoid degenerated
cases, we assume thgtcontains at least a symbol of arity two (the
infix arrow —). We writeg" if g is of arity n. We also writet for
tuples of types. The polytypé corresponds téva.a), intuitively.
More precisely, it will be made equivalent¥qo > L) a.

We distinguish betweemonotypesndpolytypes By default, types
refer to the more general forme. to polytypes. As in ML, mono-
types do not contain quantifiers. Polytypes generalize ML type
schemes. Actually, ML type schemes can be seen as polytypes of
the formV (a1 > 1) ...V (0an > L) T with outer quantifiers. Inner
quantifiers as in System F cannot be written directly inside mono-
types. However, they can be simulated with types of the form
V(o =0) o', which stands, intuitively, for the polytype’ where

all occurrences oft would have been replaced by the polytype
However, our notation contains additional meaningful sharing in-
formation. Finally, the general forivi(a > o) o’ intuitively stands

for the collection ofall polytypeso’ wherea is an instance of.

tionl6, we discuss expressiveness, language extensions, and related)
works. For the sake of readability, unification and type inference al- Notation We say that has arigid boundin (a =0) and a
gorithms have been moved to the appendices. Due to lack of spaceflexible boundn (o >0o). A particular case of flexible bound is

all proofs are omitted.

“Monomorphic abstraction of polymorphic types”

In our proposal, ML-style polymorphism, as in the typecabose

or id, can be fully inferred. (We will show that all ML programs
remain typable without type annotations.) Unsurprisingly, some
polymorphic functions cannot be typed without annotations. For
instance(x) x x cannot be typed in ML In particular, we do not
infer types for function arguments that are used polymorphically.
Fortunately, such arguments can be annotated with a polymorphic
type, as illustrated in the definition efito given above. Once de-
fined, a polymorphic function can be manipulated by another unan-
notated function, as long as the latter doesus®polymorphism,
which is then retained. This is what we qualifjnbnomorphic ab-
straction of polymorphic typés For instance, bothid auto and
choose id auto remain of typev (o =0i4) @ — o (the typeciq

of auto is never instantiated) and neithelioose nor id require

any type annotation. Finally, polymorphic functions can be used by
implicit instantiation, much as in ML.

To summarize, a key feature of Nilis that type variables caal-
waysbe implicitly instantiated by polymorphic types. This can be
illustrated by the killer-app(licationjA(x) x id) auto. This ex-
pression is typable in MLas such, that is without any type ap-
plication nor any type annotation—except, of course, in the def-
inition of auto itself. In fact, a generalization of this example
is the app function A(f) A(x) f x, whose MIF principal type is
V(a,B) (a — B) — a — B. Itis remarkable that whenevey a

is typable in MIF, so isapp a1 az, without any type annotation nor
any type application. This includes, of course, cases wagex-
pects a polymorphic value as argument, such apirauto id. We

find such examples quite important in practice, since they model it-

theunconstrained boun¢x > 1), which we abbreviate ast). For
convenience, we writéa ¢ g) for either(a =0) or (o >0). The
symbol¢ acts as a meta-variable and two occurrences iof the
same context mean that they all stand$oor all stand for>. To
allow independent choices we use indiegsand«, for unrelated
occurrences.

Conversion and free variable®olytypes are considered
equal modula-conversion where (a¢o) ¢’ bindsa in @', but not
in 0. The set of free variables of a polytypgs writtenftv(o) and
defined inductively as follows:

ftv(a) = {a} fv(g"t1... Tn) = |J ftv(mi) ftv(L) =0
i=1..n
N) ftv(d) if o ¢ ftv(o’)
fu(viaeo) o) = {ftv(c’) \{a}Uftv(o) otherwise

The capture-avoiding substitution @fby T in o is writtena[t/a].

ExAMPLE 1. The syntax of types only allows quantifiers to be
outermost, as in ML, or in the bound of other bindings. There-
fore, the typeva - (VB- (T[B] — a)) — o of System B cannot

be written directly. (Heret[] means a type in which the vari-

able B occurs.) However, it could be represented by the type
V(o) V(B'=V(B) 1[B] — a) B’ — a. In fact, all types of Sys-
tem F can easily be represented as polytypes by recursively bind-
ing all occurrences of inner polymorphic types to fresh variables
beforehand— an encoding from System F into"f\i&given in Sec-
tion/5.1

Types may be instantiated implicitly as in ML along an instance
relation<. As explained above, we decompogento 3C3. In

2\We writeVa - T for types of System F, so as to avoid confusion.

Sectionl.2, we first define an equivalence relation between types,
which is the kernel of botlE andC. In Sectioril.3 we define the
relationE that is the inverse of3. The instance relation, which

Figure 2. Type equivalence under prefix

All rules are considered symmetrically.

. .) - . EQ-TRANS
containse, is defined in Sectiof.4. (Q) 01 =05 EQ-CONTEXT-R
Sore (Qo=o (Qc0)o1=0;
1.2 Type equivalence - (Qo1=03 (Q V(000) 01 =V (a00) 0z
The order of quantifiers and some other syntactical notations are| EQ-CONTEXT-L EQ-FREE
not always meaningful. Such syntactic artifacts are captured by a (Qo1=02 o ¢ ftv(o1)

notion of type equivalence. Type equivalence and all other relations

(QV(aooy) o=V (ao0z) 0

(QV(aoo)or=0;

between types are relative to a prefix that specifies the bounds of
free type variables. EQ-Comm
o1 ¢ ftv(O'z) 0o ¢ ftv(O’l)

(Q) V(010101) V (01202 02) 0 =V (0120202) ¥V (010101) O

DEFINITION 1 (PREFIXES). A prefix Q is a sequence of bind-
ings(01 ¢1 01)...(an on On) Where variablesty, ...ay, are pair-
wise distinct and form the domain &, which we writedom(Q).

EQ-Mono
The order of bindings in a prefix is significant: bindings are meant EQ-VAR (ao0g) €Q (Q) 00 =To
to be read from left to right; furthermore, we require that variables (QV(aoo)a=o0 QT =1lo/q]

a; do not occur free im; whenevei < j. Sinceay,...an are pair-
wise distinct, we can unambiguously wri@e o) € Q to mean that
Qs of the form(Qq,0 ¢ 0,Qy). We also writev (Q) o for the type
V(010101) ...V (anonon) 0. (Note thai’s can be renamed in the

Figure 3. The abstraction relation

typeV (Q) o, but not in the prefixQ.) 0 ATRANS

DEFINITION 2 (EQUIVALENCE). The equivalence under prefix ’(%S;ZOZ Egg g; E o2 A'CO?‘(BE;:?) ——

is a relation on triples composed of a prefpand two typesr; and — : v : v

o5, written (Q) 01 = 0. It is defined as the smallest relation that | (9 91 E 92 (Qo1E 03 (QV¥(aeo) 01 EV(a00) 02
satisfies the rules of Figu2: We writecy = o3 for (0) 01 = 02. O A-Hyp A-CONTEXT-L

Rule [EQ-ComM| allows the reordering of independent binders; (01=01)€Q (Qoa1E 02

Rule [EO-FREE eliminates unused bound variables. RUES- (QoiEm (QV(a=01)0cEV(a=02)0

CoNTEXT-L/andEQ-CONTEXT-Rtell that= is a congruence; Rea-
soning under prefixes allows to break up a polytyfi&®) o and

“look inside under prefixQ”. For instance, it follows from iter-
ations of RuleEQ-CONTEXT-R/that (Q) o = ¢’ suffices to show

abstractions are sound relations fgrbut made explicit so as to
0)V(Qo=Vv(Qoa"

preserve type inference, while inverse of instance relations would,
in general, be unsound feg.

Rule EQ-MONQ allows toread the bound of a variable from the
prefix when it is (equivalent to) a monotype. An example of use
of EQ-MONQ is (Q,a =10,Q) 0 — o =19 — T9. Rule/EQ-
MONGO makes no difference betweenand= whenever the bound) o)
is (equivalent to) a monotype. The restriction of R&@e-MONO D_EFINITION 3. The abstra_lctlon under prefixis a relatl_on on

to the case wherey is (equivalent to) a monotype is required for triples composed of a prefi@ and two typess; andoy, writter?

the well-formedness of the conclusion. Moreover, it also disallows (Q) 01 E 02, and defined as the smallest relation that satisfies the
(Q,a=00,Q) a = ag whent is a variablea: variables with non rules of Figure3. We writeas £ o2 for (0) 01 E 02. g
trivial bounds must be treated abstractly and cannot be silently ex-
panded. In particulatQ) V (o = 0p,0’ =0p) a — o’ =V (a =0yp)

o — a does not hold.

1.3 The abstraction relation

RulesA-CoNTEXT-L| andA-CONTEXT-R| are context rules; note
that RuleA-CoNTEXT-L| does not allow abstraction under flexible
bounds. The interesting rule/&-HYP, which replaces a polytype
Rule EQ-VAR| expands into botlY (a =0) a = o andV (a > o) 01 by a variablen, providedas is rigidly bound tooy in Q.

a = o. The former captures the intuition théfa = o) o’ stands) .)

for o’[o/a], which however, is not always well-formed. The latter Remarkably, rulA-HYP is not reversible. In particulatp =0) €
may be surprising, since one could expét > o) a C o to hold, Qdoes notimply Q) a & o, unless is (equivalent to) a monotype.
but not the converse. The inverse part of the equivalence could beThis asymmetry is essential, since uses=oWill be inferred, but
removed without changing the set of typable terms. However, it is Uses ofS will not. Intuitively, the former consists imbstracting

harmless and allows for a more uniform presentation. the polytypec as the namer (after checking thatt is declared as
an alias foro in Q). The latter consists irevealingthe polytype

abstracted by the nane An abstract polytypei.e. a variable
bound to a polytype i, can only be manipulated by its nanme,
abstractly. The polytype must be reveakdlicitly (by using the
relation3) before it can be further instantiated (along the relation
The equivalence under (a given) prefix is a symmetric operation. E Or). (See also exampliand7.)

In other words, it captures reversible transformations. Irreversible
transformations are captured by iastancerelationC. Moreover,

we distinguish a subrelatior of C calledabstraction Inverse of

The equivalencgQ) V (a ¢ 1) o = a[t/a] follows from RulesEQ-
MONQ, context rules, transitivity, arlHQ-FREE, which we further
refer to as the derived ruleQ-Mono*.

3Reado; is an abstraction af;—or o is a revelation of,—
under prefixQ.

Figure 4. Type instance

I-TRANS
I-ABSTRACT (Q o1t o2 |-CONTEXT-R
(Qo1EO (Qo2C 03 (Qaco)oi1C o
(QoiC o2 (Qo1C o3 (Q)V(aoao) o1 CV(ao0) 02
I-HYpP I-CONTEXT-L
(a1>01)€Q (Qoi1Co
(Qoi1Cag (QV(a>01)0EV(a>0z)0
I-BoT I-RIGID
(QLto (QV(a>o01)cCV(a=01)0

EXAMPLE 2. The abstractiorfa =) V(o =0) o' E ¢’ is deriv-

able: on the one handp =0) o E a holds byA-HYP, leading to
(a=0)V(a=0) 0 EV(a=0a)d’ by/A-CONTEXT-L} on the other
hand,(a=0) V(o =a) ¢’ = ¢’ holds byEQ-MONG¥. Hence, we
conclude byA-EQuiv/andA-TRANS.

1.4 The instance relation

DEFINITION 4. Theinstance under prefjxs a relation on triples
composed of a prefiQ and two typeso; and oz, writterf* (Q)

01 C 0. Itis defined as the smallest relation that satisfies the rules
of Figure4. We writea; C o3 for (0) o1 C 05. O

Rule[[-BOT means thatL behaves as a least element for the in-
stance relation. RuldsCoNTEXT-L! andl-R1GID/ mean that flexi-

ble bounds can be instantiated and changed into rigid bounds. Con-dom(Q). We defineQ =' Q' andQ ' Q' similarly.

versely, instantiation cannot occur under rigid bounds, except when
it is an abstraction, as described by RAIECONTEXT-LL

The interesting rule i3-HYP—the counter-part of rul@-HYP,
which replaces a polytype; by a variablea,, providedo; is a
flexible bound ofa; in Q.

ExAMPLE 3. The instance relatiofa > o) V(a > o) o C o
holds. The derivation follows the one of Exam@lbut used-HYP
and|-CoNTEXT-L| instead ofA-HYP and/A-CONTEXT-L. More
generally(QQ) V(Q') o C o holds for anyQ, Q’, anda, which we
refer to as Rulé-DRrovr.

The relationQ) V(a1 >V (02002) 01) 0 CV(02002) V(01 >01)
o holds wheneven ¢ ftv(o), which we further refer to as the
derived rulel-Up.

As expected, the equivalence is the kernel of the instance relation:

LEMMA 1 (EQUIVALENCE). Forany prefixe® and typess and
o', we havgQ) 0 = o’ if and only if both(Q) c C ¢’ and(Q) o’ C o
hold.

The instance relation coincide with equivalence on monotypes,
which captures the intuition that “monotypes are really monomor-
phic”.

LEMMA 2. For all prefixesQ and monotypes and v/, we have
(QtCvifandonlyif(Q) 1=T7.

4Reado; is an instance ofi;—or g is more general thag,—
under prefixQ.

The instance relation also coincides with the one of ML on ML-
types. In particulary (a) 1o C 13 if and only if 11 is of the form

To[t/al].

ExXAMPLE 4. The instance relation covers an interesting case of
type isomorphism3]. In System F, typ&/a - T — T is isomorphi€

to U — Va -1 whenever is not free int’. In MLF, the two cor-
responding polytypes are not equivalent but in an instance relation.
Preciselyy (o’ >V (a) 1) U — o’ is more general thavi(a) T — T,

as shown by the following derivation:

V(' >Vt —ad
CY(@Va>1)t —d
=V(a)tT —1

byl-UpP
by EQ-MONO*

(However, as opposed to type containméldl][the instance rela-
tion cannot express any form of contravariance.)

1.5 Operation on prefixes and unification

Rules /A-CONTEXT-L| and [-CONTEXT-L! show that two types
V(Q) o andV(Q') o with the same suffix can be in an instance
relation, for any suffixas. This suggests a notion of inequality be-
tween prefixes alone. However, because prefixes are “open” this
relation must be defined relatively to a set of variables that lists (a
superset of) the free type variablesaf In this context, a set of
type variables is called anterfaceand is written with letter.

DEFINITION 5 (PREFIX INSTANCE). A prefix Q is aninstance
of a prefixQ under the interfacé, and we writeQ C' @/, if and
only if V(Q) o C V(Q') o holds for all typess whose free variables
are included inl. We omitl in the notation when it is equal to
o

Prefixes can be seen as a generalization of the notion of substitu-
tions to polytypes. ThemQ C Q' captures the usual notion of (a
substitution)Q being more general than (a substituti@)

DEFINITION 6 (UNIFICATION). A prefix @ unifiesmonotypes
11 andt, underQ if and only if Q C @ and(Q) 11 = 1. O

The unification algorithm, callednify, is defined in AppendiA.

THEOREM 1. For any prefixQ and monotypes; andty, unify
(Q,11,T2) returns the smallest prefix (for the relatigrfo™(Q)) that
unifiest, and 1, underQ, or fails if there exists no prefiQ’ that
unifiest; andt, underQ.

The following lemma shows that first-order unification lies under
MLF unification.

LEmmMA 3. If (Q) T3 = T2, then there exists a substituti@(de-
pending only orQ) that unifiest; andts.

2 The core language

As explained in the introduction we formalize the IanguageFML
as a restriction to the more permissive languagd;MWe assume
given a countable set of variables, written with leteand a count-
able set of constantse C. Every constant has an arityic|. A
constant is either a primitivé or a constructo€. The distinction

5That is, there exists a functidm, B)-reducible to the identity
that transforms one into the other, and conversely.

Figure 5. Expressions of MmLF,

Figure 6. Typing rules for ML Fand MLF,

a:i=x|c|A(x)alaalletx=aina Terms

| (a: %) Oracles
c:=f|C Constants
zi=Xx|c Identifiers

between constructors and primitives lies in their dynamic seman-
tics: primitives (such ag-) are reduced when fully applied, while
constructors (such a®ns) represent data structures, and are not
reduced. We use letterto refer to identifiersj.e. either variables

or constants.

Expressions of ME, written with lettera, are described in Fig-
ure5. Expressions are those of ML extended wittacles An
oracle, written(a: x) is simply a place holder for an implicit type
annotation around the expressianIntuitively, oracles are places
where the type inference algorithm must call an “oracle” to fill
the hole with a type annotation. Equivalently, the oracles can be
replaced by explicit type annotations before type inference. Ex-
plicit annotations(a : o), which are described in Sectiof) are
actually syntactic sugar for applicatiofs) a where (o) are con-
stants. Examples in the introduction also use the notat{gno) a,
which do not appear in Figurd, because this is, again, syntac-
tic sugar forA(x) let X = (X: 0) in a. Similarly, A(x:x) a means
A(X) let x=(X: %) ina.

The language MEis the restriction of ME, to expressions that do
not contain oracles.

2.1 Static semantics

Typing contexts, written with lettel are lists of assertions of the
form z: 0. We writez: 0 € I' to mean that is bound inl" and
z: gis its rightmost binding i . We assume given an initial typing
contextl'g mapping constants to closed polytypes.

Typing judgments are of the forf@Q) I' - a: 0. A tiny difference
with ML is the presence of the pref@ that assigns bounds to type
variables appearing free in or 0. By comparison, this prefix is
left implicit in ML because all free type variables have the same
(implicit) bound L. In MLF, we require that and all polytypes of

I" be closed with respect @, that is,ftv(I") Uftv(o) C dom(Q).

Typing rules The typing rules of ME. and MLFare described

in Figure6. They correspond to the typing rules of ML modulo the
richer types, the richer instance relation, and the explicit binding of
free type variables in judgments. In addition, RARACLE allows

for therevelationof polytypes, that is, the transformation of types
along the inverse of the abstraction relation. (This rule would has

no effect in ML where abstraction is the same as equivalence.) For

UMLF, it suffices to replace RUl®RACLE by U-ORACLE given
below or, equivalently, combir@RACLE with [NST into[U-INST.

U-ORACLE U-INST
(Qrra:c (Qozd (Qrra:c (Qo3zC3d
(Qrra:d (Qrta:d

As in ML, there is an important difference between rifes\ and
LET: while typechecking their bodies, a let-bound variable can be
assigned a polytype, but’abound variable can only be assigned

VAR ApPP
z:oel Qrlta:12—11 Qrta:1
Qrkz:o QrlFaa:1;
LET
FUN (Q)rl—a]_ZO'

Qr,x:tota:t
QTrEAX)a:to—T

Qr,x:oklag:t
(QTkletx=ajinay:t

GEN
(Quaoo)TFa:a’ a¢ftv(ln)

(QTra:v(aoo)d

INST ORACLE
(Qrtra:o (Qrtra:o
(QoCd (Qozd
(Qrra:d (QTrk(a:x):d

a monotype il". Indeed, the latter must be guessed while the for-
mer can be inferred from the type of the bound expression. This
restriction is essential to enable type inference. Notice that a
bound variable can refer to a polytypbstractlyvia a type variable

o bound to a polytype in Q. However, this will not allow to take
different instances o6 while typing the body of the abstraction,
unless the polytype bourmof a is firstrevealedby an oracle. In-
deed, the only possible instancesiafinder a prefixQ that contains
the binding(a = o) are types equivalent to underQ. However,
(Q) a = o does not hold. Thus, iX: a is in the typing context

I, the only way of typingk (modulo equivalence) i€Q) I' - x: a,
whereagQ) ' F x: o is not derivable. Conversel§Q) '+ (x:x): 0

is derivable, sincéQ) a 3 o.

ML as a subset of ML ML can be embedded into ML
by restricting all bounds in the pref@ to be unconstrained. Rules
GEN andlINST are then exactly those of ML. Hence, any closed

program typable in ML is also typable in NTL

ExampLE 5. This first example of typing illustrates the use of
polytypes in typing derivations: we consider the simple expres-
sionK’ defined byA(x) A(y) y. Following ML, one possible typing
derivation is (we recall thaio,) stands fofa > L. > 1)):

(@p)x:ay:Bry:p

oy @B X AFAG) Y BB
o (@P) K a— (B—P)

FK' :V(a,B)a— (B—B)

There is, however, another typing derivation that infers a more gen-
eral type forK’ in MLF(for conciseness we writ® for o, > 0i4):

Q) x:a,y:yky:y

gzg Qy)x:iaFAyy:y—y
ST (Q)x:aFA(y)y:0ia (QoiaEPB

(Qx:atAly)y:B
. (Q FK:a—B

FK:V(Qa—p
Notice that the polytyp#& (a,>0i4) o — [is more general than
V(a,B) a — (B — B), which follows from ExampléaL.

FuN
GE

Figure 7. Syntax directed typing rules o for To, we obtain:

VARY FUNT] / VAR" (Q) x:a F x:a
z:oel (QQ)I,x:10F a:o dom(Q)NIr =0 SraeE (Q a=zoaiq (3) (QowCa—a
QT+ z:o QT AMx)a:¥(Q,a>0)T9—a X (Q)x:aF (X:%):0iq (Q)x:ak x:alVarY
PPY T -
AP o (Q).x.al.— (x:%)x:a
QT a:op QT a0, FAX) (X:%)x:V(00=039) 0 — O
QoEvV@Q)z—~1 (QoLV(Q)1 The oracle plays a crucial role iB)—the revelation of the type
QT aa:V(Q)1y schemao4 that is the bound of the type varialdeused in the type
of x. We have(Q) 0;4 C 0, indeed, but the converse relation does
LeTY ORACLE" not hold, so rul@NST cannot be used here to replacby its bound
(Qr+ a;:op (Qr+ a:o Oiq.
(Q I, x:01F ax: 07 (Qo=d .)
(QTH letx=a inay:0p QT (aix):d 2.3 Dynamic semantics

The semantics of ML, is the standard call-by-value semantics of
ML. We present it as a small-step reduction semantics. Values and
call-by-value evaluation contexts are described below.

; ; vi=A(X)a
2.2 Syntax directed presentation Fn v n<f]
.) [CVi ...V n<|C|
As in ML, we can replace the typing rules of lﬁLby a set of Vix
equivalent syntax-directed typing rules, which are given in Figure E:=[]|Ea|VE|(E:«)|letx=Eina

Naively, a sequence of non-syntax-directed typing R@esi and
INST should be placed around any other rule. However, many of The reduction relatior— is parameterized by a set dfrules of
these occurrences can be proved unnecessary by following an apthe form(3) below:

propriate strategy. For instance, in ML, judgments are maintained

instantiated as much as possible and are only generalized on the f(\/)\l().(.).;l/)n\:}aa[v/x}vvhen|f\ =N ([(333
left-hand side of RUl&ET. In MLF;, this strategy would require let X=Vina— av/X (Blet)
more occurrences of generalization. Instead, we prefer to maintain (V11 %) Vo —> (V1 Vo & %) (%)

typing judgments generalized as much as possible. Then, it suffices

to allow Rule/GEN right after RuleFun| and to allow RuleINST

right before RuléAPE (see Rule$uN” andAPF"). The main reduction is th@-reduction that takes two forms Rule
(Bv) and Rule(Bjet). Oracles are maintained during reduction to
which they do not contribute: they are simply pushed out of ap-

EXAMPLE 6. As we claimed in the introduction, xbound vari- plications by rule(x). Finally, the reduction is the smallest re-

able that is used polymorphically must be annotated. Let us checklation containing(d), (Bv), (Biet), and (x) rules that is closed by

thatA(x) x x is not typable in ME by means of contradiction. A E-congruence:

fsgrrrlrt]:?lx-dire(:ted type derivation of this expression would be of the Eld — E[d]ifa— 4 (ConTEXT)
3 Formal properties
VARY (Q) X:ToF X:To (Q) x: T x:TgVARY
—— (QuCEV@Q)2—1 (2 (QTCV(Q)1 (1) WeFverify type soundness for MLand address type inference in
e Q) x:ToF xx:V(Q) 11 MLF.

0 : ’ -
(QOFAX) xx:V(a=V(Q) 1) To—a 3.1 Type soundness

Type soundness for ML is shown as usual by a combination of
subject reductionwhich ensures that typings are preserved by re-
duction, andprogress which ensures that well-typed programs that
are not values can be further reduced.

Applying Rulel-DRoF to (2) and (@), we get respectivelyQQ)
1o C 12 — 11 and (QQ) 10 E 12. Then(QQ) 12 — 11 = 132 fOI-
lows by Lemmé2 andEQ-TRANS. Thus, by Lemmé8, there ex-
ists a substitutio® such thaB(t,) = 6(t2 — 11), that is,8(12) =

o(t 6(11), which cannot be the case. . .
(t2) = 8(11) To ease the presentation, we introduce a relagiobetween pro-

grams: we writea C &' if and only if every typing ofa, i.e. a triple
This example shows the limit of type inference, which is actually (Q.T,0) suchtha(Q)I'-a: o holds, is also a typing af'. Arela-
the strength of our system! That is, to maintain principal types tion & on programs preserves typings whenever it is a sub-relation
by rejecting examples where type inference would need to guessof c.

second-order types.)]
Of course, type soundness cannot hold without some assumptions

EXAMPLE 7. Let us recover typability by introducing an oracle relating the static semantics of constants described by the initial
and build a derivation fok(x) (x: x) x. Taking(a =014) for Q and typing context ¢ and their dynamic semantics.

DEFINITION 7 (HYPOTHESEY. We assume that the following
three properties hold for constants.

(HO) (Arity) Each constarte dom(I'g) has a closed typiey(c) of
the formV(Q) 11 — ... T — T and such that the top symbol

of V(Q) tis notin{—, L} whenever is a constructor.

(H1) (Subject-Reduction)All &-rules preserve typings.

(H2) (Progress)Any expressiora of the form f ViV such
that(Q) Mo - a: g is in the domain of5). u|

THEOREM2 (SUBJECT REDUCTION. Reduction preserves typ-
ings.
THEOREM3 (PROGRESS. Any expressioa such that(Q) g -

a: ois avalue or can be further reduced.

Combining theorem® and'3 ensures that the reduction of well-

typed programs either proceeds for ever or ends up with a value.

This holds for programs in ML but also for programs in ML,
since MIFis a subset of ME.. Hence MIFis also sound. However,

if it can be typed in ML undeF . This is not true for ME, in which

the expression(x) (x: %) xis typable. Indeed, as shown below, all
terms of System F can be typed in faL Fortunately, there is an
interesting choice of constants that providesﬁ\MLith the same
expressiveness as MiLwhile retaining type inference. Precisely,
we provide type annotations as a collection of coercion primitives,
i.e. functions that change the type of expressions without changing
their meaning. The following example, which describes a single
annotation, should provide intuition for the general case.

ExamMPLE 8. Let f be a constant of type equal toV(a =
04,0’ >034) 0 — o’ with the &-reductionf v— (v: x). Then,
the expressiora defined as\(x) (f x) x behaves ad(x) x x and
is well-typed, of typeV(a =0i4) 0 — a. To see this, letlQ
and I stand for(a = 04,0’ =034) andx: o. By RuleslNST,
VAR, and/APF (Q) I' - f x: a’; hence by ruléGEN, (o =0iq)
M fx:V(a'=0i4) o sincea’ is not free in thel. By rule
EQ-VAR, we haveV (o’ =034) @’ = 034 (under any prefix); be-
sides,0i9 C a — a under any prefix that binds. Thus, we get
(a=0iq) T+ f x:a — a by RulelINST. The result follows by
RulesAPF, [FUN, andGEN.

Observe that the static effect 6fin f x is (i) to enforce the type

MLF does not enjoy subject reduction, since reduction may create of x to be abstracted by a varialiebound toas4 in Q and (ii) to
oracles. Notice, however, that oracles can only be introduced by give f x, that isx, the typeo;q, exactly as the oracléx : x) would.

o-rules.

3.2 Type inference

A type inference probleris a triple (Q,I,a), where all free type
variables inl" are bound inQ. A pair (Q/,0) is asolutionto this
problem ifQC Q' and(Q) I'-a: 0. A pair (Q',0’) is aninstance
of a pair(Q,0) if QC Q and(Q') o C ¢’. A solution of a type
inference problem iprincipal if all other solutions are instances of
the given one.

Figure9 in the AppendixBl defines a type inference algorithmfw
for MLF. This algorithm proceeds much as type inference for ML:
the algorithm follows the syntax-directed typing rules and reduces
type inference to unification under prefixes.

THEOREM4 (TYPE INFERENCH. The set of solutions of a solv-
able type inference problem admits a principal solution. Given any
type inference problem, the algorithrrFWlther returns a principal
solution or fails if no solution exists.

4 Type annotations

In this section, we restrict our attention to ﬁlll.e. to expressions
that do not contain oracles. Since expressions of lile exactly
those of ML, its expressiveness may only come from richer types
and typing rules. However, the following lemma shows that this is
not sufficient:

LEmMMA 4. If the judgmen{Q) I Fa: o holds in MIF where the
typing contexf” contains only ML types an@ contains only type
variables with unconstrained bounds, then there exists a derivation
of M~a:V(a) Tin ML whereY (a) T is obtained fromo by moving

all inner quantifiers ahead.

The inverse inclusion has already been stated in Se2tibrin the
particular case where the initial typing conté&xtcontains only ML
types, a closed expression can be typed irFMnlderFo if and only

Notice that the bound af in o is rigid: the functionf expects a
valuev that must have typeiq (and not a strict instance afiq).
Conversely, the bound af’ is flexible: the type off v is g;4 but
may also be any instance of,.

DEFINITION 8. We call annotationsthe denumerable collection
of primitives (3(Q) a), of arity 1, defined for all prefixe®Q and
polytypeso closed unde®. The initial typing environmenrity con-
tains these primitives with their associated type:

(3(Q0):¥V(QV(a=0)V(B>0)a —B

We may identify annotation primitives up to the equivalence of their
types. a

Besides, we writéa: 3(Q) o) for the application3(Q) o) a. We
also abbreviaté¢3(Q) o) as (o) when all bounds irQ are uncon-
strained. Actually, replacing an annotati¢h(Q) o) by (o) pre-
serves typability and, more precisely, preserves typings.

el

While annotations are introduced as primitives for simplicity of pre-
sentation, they are obviously meant to be applied. Notice that the
type of an annotation may be instantiated before the annotation is
applied. However, the annotation keeps exactly the same “reveal-
ing power” after instantiation. This is described by the following
technical lemma (the reader may takéor Qg at first).

LEMMA 5. ThejudgmentQp) I - (a:3(Q) o) : ogis valid if and
only if there exists a type(Q') o} such that the judgmeriQo) I' -
a:v(Q) d] holds together with the following relationsQyQ C
QoQ’, (QuQ') 07 3 0,and(Q) ¥(Q') 0 C do.

The prefixQ of the annotationd (Q) o may be instantiated intQ’'.
However,Q guardsc)j 3 o in (QuQ') 0} 3 0. In particular, the
lemma would not hold wit{Qp) V(Q') 07 3 V(Q") o and (Qo)
V(Q") 0} C 0p. Lemmas has similarities with RuleANNOT of
Poly-ML [7].

COROLLARY 6. The judgment{Q) I - (a: %) : 0p holds if and
only if there exists an annotatidw) such that(Q) I' - (a: 0) : 0g
holds.

Hence, all expressions typable in fLare typable in ME as long
as all annotation primitives are in the initial typing contExyt

Reduction of annotationshes-reduction for annotations
just replaces explicit type information by oracles.

(v:3(Q)o) — (vix)

LEMMA 7 (SOUNDNESS OF TYPE ANNOTATIONS. All three
hypotheses (HO, arity), (H1, subject-reduction), and (H2, progress)
hold when primitives are the set of annotations, alone.

The annotatiorf3(Q) o) can be simulated by(x) (x:) in MLF,,
both statically and dynamically. Hence annotations primitives are

unnecessary in I\/ﬁ

Syntactic sugar As mentioned in Sectio, A(x:0) a is
syntactic sugar foh(x) let x = (x: 0) in a. The derived typing
rule is:

*

FuN

(Qr,x:cFa:d QCQ
(QTr-Ax:3(Q)o)a:Y(a=0)VY(d' >0)a —a

This rule is actually simpler than the derived annotation rule sug-
gested by lemma&, because instantiation is here left to each occur-
rence of the annotated program variabie a.

The derived reduction rule i\(x:3(Q) o) a) v 2 Let x = (v:
3(Q) o) in a. Values must then be extended with expressions of
the formA(x:3(Q) o) a, indeed.

5 Comparison with System-F

We have already seen that all ML programs can be written iff ML
without annotations. In Sectidh 1, we provide a straightforward

compositional translation of terms of System-F into Min Sec-
tion 5.2, we then identify a subsystem of I\ﬁj_called Shallow-

MLF,, whose let-binding free version is exactly the target of the
encoding of System-F.

5.1 Encoding System-F into MIE

The types, terms, and typing contexts of systerre given below:

ti=a|t—t|Va-t
M:i=x|MMI|AX:)M |A()M | M t
A:=0|AXx:t|Aa

The translation of types of System-F into ﬁllypes uses auxiliary
rigid bindings for arrow types. This ensures that there are no inner
polytypes left in the result of the translation, which would otherwise
be ill-formed. Quantifiers that are present in the original types are
translated to unconstrained bounds.

[of =« [Vor-t] = v (a) [t]
[tr — tof) = V(a1 = [ta]]) V(02 = [tz]}) 01 — a2

written [[A]], returns a paifQ) ' of a prefix and a typing context
and is defined inductively as follows:

B [Al=QT
[0 =00 [Ax:t] = (Q) I,x: t]
[Al=(QT a¢dom(Q
[Aa] = (Qa)T

The translation of System F terms into Riterms forgets type

abstraction and type applications, and translates types in term-

abstractions.
[A(@)M] =
MM =™

M]]
| (M

[[Mt] = [M]
}

Finally, we can state the following lemma:

LEMMA 8. For any closed typing conteX (that does not bind
the same type variable twice), teivh and typet of systent such
that AF M : t, there exists a derivatiofQ) I' - [M] : T such that
QT =[Aland[t] ET.

Remarkably, translated terms contain strictly fewer annotations
than original terms—a property that was not true in Poly-ML. In
particular, all type\-abstractions and type applications are dropped
and only annotations df-bound variables remain. Moreover, some
of these annotations are still superfluous.

5.2 Shallow-MLF,

Types whose flexible bounds are alwaysare called F-types
(they are the translation of types of System F). Types of the form
V(o >0) 1, wherea is not equivalent to a monotype nor tg have
been introduced to factor out choices during type inference. Such
types are indeed used in a derivationleft f = choose id in

(f auto) (f succ). However, they are never used in the encoding
of System-F. Are they needed as annotations?

Let a type beshallowif and only if all its rigid bounds are F-types.
More generally, prefixes, typing contexts, and judgments are shal-
low if and only if they contain only shallow types. A derivation is
shallow if all its judgments are shallow and RIDRACLE is only
applied to F-types. Notice that the explicit annotati@ar) has a
shallow type if and only ifo is an F-type. We call Shallow-ML

the set of terms that have shallow derivations. Interestingly, subject
reduction also holds for Shallow-NL

Let-bindings do not increase expressiveness imMince they can
always be replaced by-bindings with oracles or explicit annota-
tions. This is not true for Shallow-ML, since shallow-types that

are not F-types cannot be used as annotations. Therefore, we also

consider the restriction Shallow-F of Shallow-RiLto programs
without let-bindings.

The encoding of System-F into Nllgiven in Sectiorb.1 is actu-

In order to state the correspondence between typing judgments, weally an encoding into Shallow-F. Conversely, all programs typable

must also translate typing contexts. We wihte M :t to mean that
M has type in typing contextA in System F. The translation &f

into Shallow-F are also typable in System-F. Hence, Shallow-F and
System-F have the same expressiveness.

6 Discussion

6.1 Expressiveness of mE

By construction, we have the chain of inclusions Shallow:-F
Shallow-MLF, ¢ MLF,. we may wonder whether these languages
have strictly increasing power. That is, ignoring annotations and
the difference in notation between let-bindings andedexes, do
they still form a strict chain of inclusions? We conjecture that this
is true.

Still, MLE remains a second-order system and in that sense should

not besignificantlymore expressive than System F. In particular,
we conjecture that the ter@A(y) y I ; y K) (A(x) x X) that is typable

in F¥ but not in FB] is not typable in MIF either. Conversely, we

do not know whether there exists a term of Mhat is not typable
in F®.

Reducing all let-bindings in a term of Shallow-lﬁLproduces a
term in Shallow-F. Hence, terms of Shallow-ﬁllare strongly nor-
malizable. We conjecture that so are all terms ofML

6.2 Simple language extensions

itly and the interaction of annotations with implicit types remains
unclear. Furthermore, to the best of our knowledge, this has not yet
been formalized. Indeed, type inference is undecidable as soon as
universal quantifiers may appear at ranid3|[

Although our proposal relies on the let-binding mechanism to in-
troduce implicit polymorphismand flexible bounds in types to fac-
torize all ways of obtaining type instances, there may still be some
connection with intersection type&d], which we would like to
explore. Our treatment of annotations as type-revealing primitives
also resembles retyping functions (functions whose type-erasure
reduces to the identity)lLB]. However, our annotations are explicit
and contain only certain forms of retyping functions. Type infer-
ence for System F modulp-expansion is known to be undecidable
as well R7].

Several people have considered partial type inference for System F
[10,12,123] and stated undecidability results for some particular vari-
ants that in all cases amount—directly or indirectly—to permitting
(and so forcing) inference of the type of at least one variable that
can be used in a polymorphic manner, which we avoid.

Second-order unification, although known to be undecidable, has
been used to explore the practical effectiveness of type inference
for System F by Pfennin@P]. Despite our opposite choice, that is

not to support second-order unification, there are at least two com-

Because the language is parameterized by constants, which can bgarisons to be made. Firstly, Pfenning’s work does not cover the
used either as constructors or primitive operations, the languagejanguage MLper se but only theh-calculus, since let-bindings are

can import foreign functions defined via appropridteiles. These
could include primitive types (such as integers, strirggs) and

expanded prior to type inference. Indeed, ML is not the simply-
typedA-calculus and type inference in ML cannot,practice be

operations over them. Sums and products, as well as predefinededuced to type inference in the simply-typeatalculus after ex-
datatypes, can also be treated in this manner, but some extension iansjon of let-bindings. Secondly, one proposal seems to require

required to declare new data-types within the language itself.

The value restriction of polymorphisr28| that allows for safe mu-
table data-structures in ML should carry over to ity allowing

annotations exactly where the other can skip them22j [markers

(but no type) annotations must replace type-abstraction and type-
application nodes; conversely, this information is omitted infVIL
but instead, explicit type information must remain for (some) argu-

only rigid bounds that appear in the type of expansive expressions toments ofA-abstractions.

be generalized. However, this solution is likely to be disappointing
in MLF, as itis in Poly-ML, which uses polymorphism extensively.
An interesting relaxation of the value-only restriction has been re-
cently proposecd] and allows to always generalize type variables

Our proposal is implicitly parameterized by the type instance rela-
tion and its corresponding unification algorithm. Thus, most of the
technical details can be encapsulated within the instance relation.

that never appears on the left hand-side of an arrow type; this gavewe would like to understand our notion of unification as a particular

quite satisfactory results in the context of Poly-ML and we can ex-
pect similar benefits for ML

6.3 Related works

case of second-order unification. One step in this direction would
be to consider a modular constraint-based presentation of second-
order unification such a%]. Flexible bounds might partly capture,
within principal types, what constraint-based algorithms capture as
partially unresolved multi-sets of unification constraints. Another
example of restricted unification within second-order terms is uni-

Our work is related to all other works that aim at some form of fication under a mixed prefixIB]. However, our notion of prefix
type inference in the presence of higher-order types.The closestynq its role in abstracting polytypes is quite different.

of them is unquestionably Poly-ML7[, with which close con-

nections have already been made. Poly-ML also subsumes previ-actyally, none of the above works did consider subtyping at all.
ous proposals that encapsulate first-class polymorphic values withinThjs is a significant difference with proposals based on local type

datatypes5]. Odersky and Laufer’s proposd(] also falls into

inference R, 24,21] where subtyping is a prerequisite. The addition

a form of toplevel rank-2 quantification, which is not covered by
Poly-ML but is, we think, subsumed by NTL

Rank-2 polymorphism actually allows for full type inferendS][

Furthermore, beyond its treatment of subtyping, local type infer-
ence also brings the idea that explicit type annotations can be prop-
agated up and down the source tree according to fixed well-defined

11]. However, the algorithm proceeds by reduction on source terms rules, which, at least intuitively, could be understood as a prepro-

and is not very intuitive. Rank-2 polymorphism has also been in-
corporated in the Hugs implementation of Haskalf][but with
explicit type annotations. The GHC implementation of Haskell has

recently been released with second-order polymorphism at arbitrary

ranks BJ; however, types at rank 2 or higher must be given explic-

cessing of the source term. Such a mechanism is being used in the
GHC Haskell compiler, and could in principle be added on top of

MLF as well.

Conclusions

We have proposed an integration of ML and System F that com-

bines the convenience of type inference as present in ML and the
expressiveness of second-order polymorphism. Type information is

only required for arguments of functions that are used polymorphi-
cally in their bodies. This specification should be intuitive to the
user. Besides, it is modular, since annotations depend more on the

behavior of the code than on the context in which the code is placed; [

in particular, functions that only carry polymorphism without using
it can be left unannotated.

The obvious potential application of our work is to extend ML-like
languages with second-order polymorphism while keeping full type

inference for a large subset of the language, containing at least all

ML programs. Indeed, we implemented a prototype offMind
verified on a variety of examples that few annotations are actually

required and always at predictable places. However, further investi-

guages (POPL), St. Petersburg Beach, Floridages 42-53, 1996.

[13] A. J. Kfoury and J. B. Wells. A direct algorithm for type inference
in the rank-2 fragment of the second-order lambda -calculuACIK
Conference on LISP and Functional Programmifi§94.

[14] A.J.Kfoury and J. B. Wells. Principality and decidable type inference
for finite-rank intersection types. WCM Symposium on Principles of
Programming Languages (POPLlages 161-174. ACM, Jan. 1999.

15] K. Laufer and M. Odersky. Polymorphic type inference and abstract
data types. ACM Transactions on Programming Languages and Sys-
tems 16(5):1411-1430, Sept. 1994.

[16] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The
Objective Caml system, documentation and user's manual - release
3.05. Technical report, INRIA, July 2002. Documentation distributed
with the Objective Caml system.

[17] Mark P Jones, Alastair Reid, the Yale Haskell Group, and the OGI
School of Science & Engineering at OHSU. An overview of hugs
extensions. Available electronically, 1994-2002.

gations are still needed regarding the syntactic-value polymorphism[18] D. Miller. Unification under a mixed prefix.Journal of Symbolic
restriction and its possible relaxation.

Furthermore, on the theoretical side, we wish to better understand

the concept of “first-order unification of second-order terms”, and,
if possible, to confine it to an instance of second-order unification.
We would also like to give logical meaning to our types and to the
abstraction and instance relations.

7
(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(20]

(11]

[12]

References

H.-J. Boehm. Partial polymorphic type inference is undecidable. In
26th Annual Symposium on Foundations of Computer Scigrces
339-345. IEEE Computer Society Press, Oct. 1985.

L. Cardelli. An implementation of FSub. Research Report 97, Digital
Equipment Corporation Systems Research Center, 1993.

R. D. Cosmo.lsomorphisms of Types: from lambda-calculus to infor-
mation retrieval and language desigBirkhauser, 1995.

L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. InProceedings of the Ninth ACM Conference on Principles of
Programming Langagepages 207-212, 1982.

G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Higher-order
unification via explicit substitutions: the case of higher-order patterns.
In M. Maher, editorJoint international conference and symposium on
logic programmingpages 259-273, 1996.

J. Garrigue. Relaxing the value-restriction. Presented at the
third Asian workshop on Programmaming Languages and Systems
(APLAS), 2002.

J. Garrigue and D. Rémy. Extending ML with semi-explicit
higher-order polymorphism.Journal of Functional Programming
155(1/2):134-169, 1999. A preliminary version appeared in TACS'97.

The GHC Team.The Glasgow Haskell Compiler User’s Guide, Ver-
sion 5.04 2002. ChapteArbitrary-rank polymorphism

P. Giannini and S. R. D. Rocca. Characterization of typings in poly-
morphic type discipline. IThird annual Symposium on Logic in Com-
puter Sciencegpages 61-70. IEEE, 1988.

J. James William O’'Toole and D. K. Gifford. Type reconstruction with
first-class polymorphic values. BIGPLAN '89 Conference on Pro-
gramming Language Design and ImplementatiBortland, Oregon,
June 1989. ACM. also in ACM SIGPLAN Notices 24(7), July 1989.

T. Jim. Rank-2 type systems and recursive definitions. Technical Re-
port MIT/LCS/TM-531, Massachusetts Institute of Technology, Lab-
oratory for Computer Science, Nov. 1995.

T. Jim. What are principal typings and what are they good for? In
ACM, editor, ACM Symposium on Principles of Programming Lan-

Computation14:321-358, 1992.

[19] J. C. Mitchell. Polymorphic type inference and containmenfor-
mation and Computatiqr2/3(76):211-249, 1988.

[20] M. Odersky and K. Laufer. Putting type annotations to workPia-
ceedings of the 23rd ACM Conference on Principles of Programming
Languagespages 54—67, Jan. 1996.

[21] M. Odersky, C. Zenger, and M. Zenger. Colored local type inference.
ACM SIGPLAN Notices36(3):41-53, Mar. 2001.

[22] F. Pfenning. Partial polymorphic type inference and higher-order uni-
fication. InProceedings of the ACM Conference on Lisp and Func-
tional Programmingpages 153-163. ACM Press, July 1988.

[23] F. Pfenning. On the undecidability of partial polymorphic type recon-
struction.Fundamenta Informaticad 9(1,2):185-199, 1993. Prelim-
inary version available as Technical Report CMU-CS-92-105, School
of Computer Science, Carnegie Mellon University, January 1992.

[24] B.C. Pierce and D. N. Turner. Local type inferencePmceedings of
the 25th ACM Conference on Principles of Programming Languages
1998. Full version ilACM Transactions on Programming Languages
and Systems (TOPLAS2(1), January 2000, pp. 1-44.

[25] D. Rémy. Programming objects with ML-ART: An extension to ML
with abstract and record types. In M. Hagiya and J. C. Mitchell,
editors, Theoretical Aspects of Computer Softwavelume 789 of
Lecture Notes in Computer Scienpages 321-346. Springer-Verlag,
April 1994.

[26] J. B. Wells. Typability and type checking in the second order
calculus are equivalent and undecidableNinth annual IEEE Sym-
posium on Logic in Computer Sciengages 176-185, July 1994.

[27] J.B. Wells.Type Inference for System F with and without the Eta Rule
PhD thesis, Boston University, 1996.

[28] A. K. Wright. Simple imperative polymorphisiLisp and Symbolic
Computation8(4):343-355, 1995.

A Unification algorithm

The algorithmunify is specified in Sectiold.5; it takes a prefix
Q and two typeg andt’ and returns a prefix that unifigsandt’
underQ (as described in Theoref) or fails. In fact, the algorithm
unify is recursively defined by an auxiliary unification algorithm
for polytypes:polyunify takes a prefixQ and two type schemes
01 and o, and returns a paifQ’,o’) such thatQ C Q' and (Q')
01C o and(Q) o, Ca.

The algorithmsunify andpolyunify are described in Figui8.
For the sake of comparison with ML, think of the input prefx

Figure 8. Unification algorithm
unlfy (Q/ TN? T///)

— first rewrites all bounds of) in normal form and proceed
by case analysis oft”, 1) :

[

Case (0,0): return Q.
Case (g1 ..17,973 .. 13):
e letQ' beQ in o
e let Q1 beunify (Q',1},1,) for 1<i < n in
e return Q"1
Case (g1 17 .. 15,02 T3 .. T3) with gy # go: fail.
Case (a,1) or (1,0) when(aot') € Q:
e return unify (Q,T,7).
Case (a,1) or (1,a) when(a¢0) € Q
andt ¢ dom(Q) ando ¢ T
o let (Q,_) bepolyunify (Q,0,1) in
o failif (no0) ¢ Q.
e return (Q) <= (a=1)
Case (a1,02) when(age101) € Qand(az02072) € Qand
01 # 02 andoy, 02 are not in7 .
o let (Q,03) bepolyunify (Q,01,02) in
o fail if (n10101) ¢ Q orif (agop02) ¢ Q
e return (Q) < (010103) <= (020203) <= A1 Ao,

polyunify (Q,01,02)
— requiresos, 02, and all bounds irQ to be in normal form
Case (L,0) or(o,L): return (Q,0)
Case (V(Q1) 11,V (Q2) 12) with Q1, Qz2, andQ having disjoint
domains (which usually requires renamingandoy)
e let Qo beunify (QQ1Q2,T1,T2) in
o let (Qs,Q) beQoldom(Q) in
e return (Qs,V(Q) 11)

1Actually, only need to replace types of the foknfa o o) o by
0, which can always be done lazily.

given tounify as a substitution and of the result prefk as an
instance ofQ (i.e. a substitution of the forn®” o Q) that unifiest
andt’. First-order unification of polytypes essentially follows the
general structure of first-order unification of monotypes. The main
differences are that (i) the computation of the unifying substitution
is replaced by the computation of a unifying prefix, (ii) additional
work must be performed when a variable bound to a strict polytype
(i.e. other thanl and not equivalent to a monotype) is being uni-
fied: bounds must be further unified (last caspefyunify) and

the prefix updated accordingly. Auxiliary algorithms are used for
this purpose.

Let arearrangemenbdf a prefixQ be a prefix equivalent t@ ob-
tained by a permutation of bindings Qf

DEFINITION 9. Thesplit algorithmQ7a takes a prefixQ and re-
turns a pair of prefixe§Q1,Q>) such that (i))}Q1Q> is a rearrange-
ment of Q, (i) a € dom(Q;), and (iii) dom(Qy) is minimal (in
other words,Q1 contains only bindings o useful for exporting
the interfacex, andQ, contains the rest). O

Figure 9. Algorithm W F

infer (Q,I',a):
— proceeds by case analysis on expression

Case x: return Q,T (x)
Case A(x) &
let Q1 = (Q,a > 1) with a ¢ dom(Q)
let (Q2,0) = infer (Qq,,x: a,a)
let B ¢ dom(Qz) and(Q3,Q4) = Q27dom(Q)
return Qs,V(Q4) V(B=>0) a —
Case abx

e let (Q1,04) = infer(Q,l,a)

e let (Qq,0p) = infer (Qq,T,b)

o let Qa, Ap, B ¢ dom(QZ)

o let Q3 = unify ((Q2,da>0a,0p>0p,B> 1),

Ua,0p — B)

o let (Q4.Qs) = Qs]dom(Q)
e return (Qq4,V(Qs) B)
Case letx=az in ay:
e let (Qq,01) = infer(Q,T,a1)
e return infer(Qu, (I, x:01),a2)

DEFINITION 10. The abstraction-checkalgorithm (Q) o £7 o’
takes a pref>xQ and two polytypess ando’ such thatQ) o C o
and checks thaiQ) o £ ¢ or fails otherwise. |

DEFINITION 11. TheupdatealgorithmQ < (a ¢ 0) takes a prefix
Qand abindinga <o) such thatt is in the domain of) and returns

a prefix(Qo,a ¢ 0,Q1) such that (i) Qp,a ¢’ 0’,Q1) is a rearrange-
ment ofQ and (ii)dom(Q1) Nftv(o) = 0. The algorithm fails when
there is not such decomposition (because of circular dependencies)
or wheno' is = and(Q) o’ £7 o fails. u]

DEFINITION 12. ThemergealgorithmQ < a Ad’ takes two vari-
ableso anda’ and a prefix of the fornfQgp,a ¢ 0,Q1,a’ o' o’,Qyz)
and returns the prefitQp, a ¢” 0,Qq,0’ =a,Qz) whereo” is > if
botho ande¢’ are>, ande” is = otherwise. O

The implementation of algorithmsplit, update and mergeis
straightforward. The algorithmabstraction-checlcan be reduced

to a simple check on the structure of paths, thanks to the assump-
tion (Q) o C o’. By lack of space, they are all omitted.

B Type inference algorithm

Figure9 defines the type-inference algorithmPior MLF. The
algorithm follows the algorithm W for ML, with only two differ-
ences: first, the algorithm builds a prefixinstead of a substitu-
tion; second, all free type variables notlirare quantified at each
abstraction or application. Since free variable§ @fre indom(Q),
finding quantified variables consists in splitting the current prefix
according tadom(Q), as described by Definitic@.

