
Sharing and Unsharing in Hindley Milner

Didier Rémy

Master internship, 2020

Subject: Sharing and unsharing in Hindley Milner

Supervisor: Didier Rémy

Location: Centre Inria de Paris

Context

Hindley Milner refers to the ML type system which is at the basis of modern
languages with type inference such as Haskell or OCaml. For the core language,
the type system is an extension of simple types with toplevel polymorphism;
although its worst-case complexity is exponential, its type inference is quite ef-
ficient in practice, provided types are shared during unification, typically using
using union-find algorithms to represent equivalence classes—and type general-
ization is performed locally.

However, many important extensions of the ML type system that have been
proposed play with type sharing in significant ways.

The simplest form of sharing comes from type abbreviations: they allow
the introduction of type synonyms, which should be expanded on demand to
respect type equalities, but memorized to preserve efficiency and retain type
abbreviations whenever possible when presenting types to the user. This has
been recently studied (Morel, 2019) and should constitute a solid basis to study
other form of type sharing, which is the objective of the internship.

• Object types make a crucial use of type abbreviations: it is a key for
readability that the inferred types retain as much as possible the name of
the class they belong to; object types are recursive by nature, and their
recursive definitions are carefully unfolded so that the open view of the
object type can be directly derived from its graph representation (Rémy
and Vouillon, 1998; Vouillon, 2000).

• First-class polymorphism relies on the ML generalization mechanism to
tell whether polymorphic types are known, now independent of the typing
context and can be instantiated—or just being inferred and cannot be
instantiated yet. To gain in expressiveness, type representations should

1



be unshared as much as possible at generalization sites (Garrigue and
Rémy, 1999)—by contrast with object types.

• GADTs introduce type equations that behaves much as type abbrevia-
tions, but with local scoping, which makes type representations ambigu-
ous when exiting the scope of equations. Ambivalent types, introduced to
separate true ambiguities from accidental ones, rely on type sharing (Gar-
rigue and Rémy, 2013).

• The language of modules may introduce equalities between an abstract
type and its implementation, which may itself be concrete or abstract.
This generate type equivalences that are key to the typeckecking of mod-
ules. Recursive modules, raises the double-vision problem that requires an
additional form of equality where internally one module knows altogether:
its internal concrete view, its identity seen through the over module, and
its fully opaque external view, which should all be equated.

Each of these extensions has been precisely defined and formally studied, but in
separate works; they have also been implemented in the OCaml type-checker,
but not in a modern constraint-based applicative implementation of type infer-
ence (Pottier, 2014).

Internship description

Motivated by the plan to redesign the implementation of the OCaml type-
checker, the goal of this internship is to revisit sharing and unsharing in the
context of Hindley Milner, so as to give it a proper formal status, cover all
difference usages, and provide a reference constraint-based modular implemen-
tation, possibly in applicative style.

Type inference will return an explicitly typed term. Notice however, that
sharing is also a problem with explicit typing, since the size of type annota-
tions may grow in the square of the size of the untyped-program (Jay and
Peyton Jones, 2008). Hence, we should also care about sharing in the explic-
itly typed language, for instance by introducing a let-binding notation in types.
Although not a piority, this could also be explored.

References

Jacques Garrigue and Didier Rémy. Extending ML with semi-explicit higher-
order polymorphism. Information and Computation, 155(1/2):134–169, 1999.
URL http://www.springerlink.com/content/m303472288241339/. A pre-
liminary version appeared in TACS’97.

Jacques Garrigue and Didier Rémy. Ambivalent Types for Principal Type In-
ference with GADTs. In 11th Asian Symposium on Programming Languages
and Systems, Melbourne, Australia, December 2013.

2

http://www.springerlink.com/content/m303472288241339/


Barry Jay and Simon Peyton Jones. Scrap your type applica-
tions. In Mathematics of Program Construction (MPC’08), July
2008. URL https://www.microsoft.com/en-us/research/publication/

scrap-your-type-applications/.

Carine Morel. Type inference and modular elaboration with constraints for ML
extended with type abbreviations. Master’s thesis, Université Paris Diderot-
Paris 7, September 2019. URL https://hal.inria.fr/hal-02361707.

François Pottier. Hindley-Milner elaboration in applicative style. In ACM
SIGPLAN International Conference on Functional Programming (ICFP),
September 2014. doi: http://dx.doi.org/10.1145/2628136.2628145. URL
http://gallium.inria.fr/~fpottier/publis/fpottier-elaboration.

pdf.

Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-oriented
extension to ML. Theory And Practice of Object Systems, 4(1):27–50, 1998. A
preliminary version appeared in the proceedings of the 24th ACM Conference
on Principles of Programming Languages, 1997.

Jérôme Vouillon. Conception et realisation d’une extension du langage ml avec
des objets. PhD thesis, Université Paris Diderot, 2000. URL http://www.

theses.fr/2000PA077234.

3

https://www.microsoft.com/en-us/research/publication/scrap-your-type-applications/
https://www.microsoft.com/en-us/research/publication/scrap-your-type-applications/
https://hal.inria.fr/hal-02361707
http://gallium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf
http://www.theses.fr/2000PA077234
http://www.theses.fr/2000PA077234

