
Propagation of type annotations in

Hindler-Milner based type-systems

Didier Rémy

Master internship, 2020

Subject: Propagation of type annotations in
Hindler-Milner based type-systems

Supervisor: Didier Rémy

Location: Centre Inria de Paris

Context

Hindley Milner refers to the ML type system which is at the basis of modern
languages with type inference such as Haskell or OCaml. Type inference for ML
is based on first-order unification, which can be performed in arbitrary order,
with the addition of prenex polymorphism introduced by let-bindings which
impose a synchronization between typechecking (the polymorphic part) of the
bound expression and typechecking its body.

However, several extensions of ML that have been proposed departs from
Hindley-Milner and rely on the propagation of type information that is present
in the source during the type inference process, or even on types of previously
inferred phrases:

• First-class polymorphism relies on the type generalization mechanism to
tell whether polytypes are known, independent of the typing context and
can be instantiated—or just being inferred, still in the typing context, and
cannot be instantiated yet (Garrigue and Rémy, 1999).

Type annotations can be used to turn an inferred, frozen polytype into a
known, instantiable polytype.

Types annotations need not be written exactly at the node that really
needs them: placed above, they will be automatically passed to subexpres-
sions as their expected type during the generation of typing constraints.

• In OCaml, optional labeled arguments also use source type annotations
(and previously inferred types) to help detect missing optional arguments.

1



• Overloading of records labels, which has been recently introduced, uses
contextual type information for disambiguation.

• GADTs introduces type equalities, treated as type abbreviations, with
limited scope, which are a source of ambiguity, since equivalent forms
within the scope of an equality may become incompatible when exiting its
scope (Garrigue and Rémy, 2013).

Type annotations are again used to resolve such ambiguities.

Each of these extensions has been defined independently, more or less precisely,
sometimes formally studied, but in separate works; they have also been imple-
mented in the OCaml type-checker, which is not yet using a modern constraint-
based approach (Pottier, 2014).

Internship description

Motivated by the plan to redesign the implementation of the OCaml type-
checker, the goal of this internship is to revisit propagation of type information
in the context of Hindley Milner, so as to give it a proper formal status and
provide a reference constraint-based implementation (Pottier and Rémy, 2005;
Pottier, 2014).

The solution should cover all scenarios described above (even though all
underlying features need not be present), with as much control as possible to
the way type information can be propagated.

Other forms of type propagation could also be considered. For example,
the Haskell language now uses bidirectional type checking that is limited but
in ad-hoc ways so that only source program annotations are being used and,
more recently, so that propagation does not depend on the order of arguments
in multi-argument applications. This later extension actually uses a local form
of shape inference, proposed earlier (Pottier and Régis-Gianas, 2006).

The propagation of existing type annotations may also be used to propagate
previously inferred types such as the types of imported modules or types of
previous toplevel phrases. Interestingly, such a mechanism may perhaps also
allow a simpler treatment of first-class polymorphism.

References

Jacques Garrigue and Didier Rémy. Extending ML with semi-explicit higher-
order polymorphism. Information and Computation, 155(1/2):134–169, 1999.
URL http://www.springerlink.com/content/m303472288241339/. A pre-
liminary version appeared in TACS’97.

Jacques Garrigue and Didier Rémy. Ambivalent Types for Principal Type In-
ference with GADTs. In 11th Asian Symposium on Programming Languages
and Systems, Melbourne, Australia, December 2013.

2

http://www.springerlink.com/content/m303472288241339/


François Pottier. Hindley-Milner elaboration in applicative style. In ACM
SIGPLAN International Conference on Functional Programming (ICFP),
September 2014. doi: http://dx.doi.org/10.1145/2628136.2628145. URL
http://gallium.inria.fr/~fpottier/publis/fpottier-elaboration.

pdf.

François Pottier and Yann Régis-Gianas. Stratified type inference for generalized
algebraic data types. In ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 232–244, Charleston, South Carolina, January 2006.
doi: http://doi.acm.org/10.1145/1111037.1111058. URL http://gallium.

inria.fr/fpottier/publis/pottier-regis-gianas-popl06.pdf.

François Pottier and Didier Rémy. The essence of ML type inference. In Ben-
jamin C. Pierce, editor, Advanced Topics in Types and Programming Lan-
guages, chapter 10, pages 389–489. MIT Press, 2005. URL http://cristal.

inria.fr/attapl/.

3

http://gallium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf
http://gallium.inria.fr/ fpottier/publis/pottier-regis-gianas-popl06.pdf
http://gallium.inria.fr/ fpottier/publis/pottier-regis-gianas-popl06.pdf
http://cristal.inria.fr/attapl/
http://cristal.inria.fr/attapl/

