
Putting Ornaments to work

(master’s intership proposal)

Pierre Dagand and Didier Rémy

December 13, 2013

Introduction to ornaments

Inductive datatypes and parametric polymorphism were two key new features
introduced in the ML family of languages in the 80’s. Datatypes stress the
algebraic structure of data while parametric polymorphism allows to exploit
universal properties of algorithms working on algebraic structures.

Datatype definitions are inductively defined as sum and product combina-
tions of primitive types. It is thus not surprising that datatypes definitions often
look similar to one another. The user has sometimes the feeling of repeatedly
programming the same operations with only minor variations and of stealing
the code from other, similar definitions. One is left wondering whether this cut
and paste could not be automated.

The recent theory of ornaments aims at answering this question. It defines
conditions under which a new datatype definition can be described as an orna-
ment of another. In essence, a datatype ornaments another if they both share
the same recursive skeleton. Once a close correspondence between a datatype
and its ornament has been established, the functions that operate only on the
structure on the original datatype can be semi-automatically lifted to its orna-
ments.

For example, lists can be described as the ornament of the Church encoding
of natural numbers as follows:

type nat = Zero | Succ of nat

type ’a list extends nat =
| Nil extends Zero
| Cons of ’a ∗ ’a list extends Succ

Indeed, lists are nothing but a copy of natural numbers with, after renaming
of data constructors, some additional data of type ’a attached to the Cons con-
structors. Similarly, the option type can be defined as an ornament of booleans:

1



type ’a option extends bool =
| None extends false
| Some of ’a extends true

Now, from the comparison function gt (greater than) on natural numbers

let rec gt (m : nat) (n : nat) : bool =
match m with

| Zero -> false
| Succ m’ ->

match n with

| Zero -> true
| Succ n -> gt m’ n

we ought to be able to automatically obtain the implementation of the function
nth that accesses the n-th element of a list:

let rec nth (m : ’a list ) (n : nat) : ’a option =
match m with

| Nil -> None
| Cons (x, m’) ->

match n with

| Zero -> Some x
| Succ n -> nth m’ n

Indeed, nth behaves on the ornamented types as gt behaves on numbers.

Description of the internship

While the theory of ornaments is relatively well-understood, turning the theory
into practice in a real language remains to be done. This is the goal of the
internship.

This requires extending the core language with a notation for specifying
ornaments and with a mechanism by which functions can be lifted onto their
ornamented version, giving the programmer the ability to specify some extra-
information if required by the ornament.

The code of nth above is completely determined by the ornament and the
comparison function. However, in general, the code of lifted operations might
only be partially determined. The user must then explicitly specify the behavior
of the lifted function on the data introduced by the ornament. This raises
several design issues that haven’t been explored yet in the theory of ornaments.
Recovering inductive definitions—on which the theory of ornament is built—
from the recursive definitions that are more common when programming is
another research topic.

Although the core of the work is on language design, it also touches several
related areas. The theory of ornaments is done in the setting of dependently-
typed languages, using tools from category theory. In the internship, we will
however restrict ourselves to the simpler setting of non-dependent types—at

2



least to start with—using F-omega as our core language. Knowledge of cate-
gory theory is thus not necessary—but it may help to understand the related
literature. On the more practical side, the student should also prototype his
design. In fact, the implementation of ornaments can be seen as a high-level
compilation from the host language extended with ornaments into the lower-
level host language without ornaments. This will very likely raise optimization
issues.

Parts of the work may also be more experimental. For instance, searching
in the existing code base for potential and useful applications of ornaments. Or
developing a small killer-application to demonstrate the benefit and power of
ornaments.

Ornaments may also be useful for code refactoring, when the new data-
structure can be described as an ornament of the older one. When the rep-
resentations are isomorphic, one may expect the transformation of operations
between the two representations to be fully automated.

Hopefully, this internship should confirm the conjecture that ornaments are
a quite useful construct in programming languages with datatypes and poly-
morphism, which will then open the door to many future research directions.

Contact

The work will be conducted at INRIA Rocquencourt in the Gallium team under
the supervision of Pierre Dagand and Didier Rémy. There may also be a pos-
sibility for working part time in the Paris sub-office of INRIA located at Place
d’Italie.

For more information, please contact Pierre-Evariste.Dagand@inria.fr

or Didier.Remy@inria.fr.

References

Conor McBride. Ornamental algebras, algebraic ornaments. Journal of Func-
tional Programming, 2013. URL http://personal.cis.strath.ac.uk/

~conor/pub/OAAO/LitOrn.pdf. To appear.

Pierre-Évariste Dagand and Conor McBride. Transporting functions
across ornaments. Journal of Functional Programming, In press. URL
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/

paper.pdf.

Pierre-Evariste Dagand. Reusability and Dependent Types. PhD thesis, Uni-
versity of Strathclyde, 2013. URL http://gallium.inria.fr/~pdagand/

stuffs/thesis-2011-phd/thesis.pdf.

3

mailto:Pierre-Evariste.Dagand@inria.fr
mailto:Didier.Remy@inria.fr
http://personal.cis.strath.ac.uk/~conor/pub/OAAO/LitOrn.pdf
http://personal.cis.strath.ac.uk/~conor/pub/OAAO/LitOrn.pdf
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/paper.pdf
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/paper.pdf
http://gallium.inria.fr/~pdagand/stuffs/thesis-2011-phd/thesis.pdf
http://gallium.inria.fr/~pdagand/stuffs/thesis-2011-phd/thesis.pdf

