
Simple, partial type-inference for System F
based on type-containment

Didier Rémy
INRIA-Rocquencourt

http://pauillac.inria.fr/˜remy

Abstract
We explore partial type-inference for System F based on
type-containment. We consider both cases of a purely func-
tional semantics and a call-by-value stateful semantics. To
enable type-inference, we require higher-rank polymorphism
to be user-specified via type annotations on source terms.
We allow implicit predicative type-containment and explicit
impredicative type-instantiation. We obtain a core language
that is both as expressive as System F and conservative over
ML. Its type system has a simple logical specification and
a partial type-reconstruction algorithm that are both very
close to the ones for ML. We then propose a surface language
where some annotations may be omitted and rebuilt by some
algorithmically defined but logically incomplete elaboration
mechanism.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Polymorphism

General Terms Design, Reliability, Languages, Theory,
Verification

Keywords Type Inference, System F, Polymorphism,
Type Reconstruction, Type Containment, Elaboration

Introduction
ML-style polymorphism has often been considered as a lo-
cal optimal, offering one of the best compromises between
simplicity and expressiveness. It is at the heart of two suc-
cessful families of languages, Haskell and ML. In the last two
decades, both Haskell and ML type systems evolved in sur-
prisingly different directions while retaining their essence.

However, programmers are starting to feel restricted as
programs become bigger and advanced programming pat-
terns are used. The demand for first-class polymorphism
has been increasing. First-class polymorphism is not only
sometimes useful—it is quickly becoming unavoidable!

The reference calculus for first-class polymorphism is Sys-
tem F. Unfortunately, full type inference is undecidable in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

ICFP’05 September 26-28, 2005 Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

System F [Wel94]. Adding first-class polymorphism to ML
should not sacrifice type inference, one of the attractive as-
pects of ML. One approach to keeping type inference is to
reduce it to second-order unification [Pfe88]. However, even
so only provides with a semi-algorithm. Moreover, unintu-
itive explicit marks for type abstractions and applications
are still required.

An alternate approach is to explicitly annotate source
terms with their types, as in Church’s presentation of System
F. This turns type inference into a simple type checking
algorithm. However, type annotations are quickly a burden
to write and often become obtrusive, even for simple ML
programs.

Of course, one wishes to have simultaneously the expres-
siveness of System F, the decidability of its explicitly typed
version, and the convenience of ML-like type inference, if
not full type inference. The idea is thus to bring System
F and ML closer. This can be approached from two oppo-
site directions. Starting with explicitly typed System F, one
may perform some partial type inference so as to alleviate
the need for some (but not all) type annotations. Or con-
versely, starting with ML, one may allow some explicit type
annotations so as to reach most or all of System F programs.

The first approach is known as local type inference [PT00,
OZZ01]. By definition, these solutions cover all of System F.
However, they are not yet conservative over ML, that is,
there remain ML programs that fail to type without annota-
tions. In fact, local type inference allows getting rid of many
silly and annoying type annotations, but fails to make all
of them redundant, so some unintuitive annotations remain
needed [HP99]. Here, we focus on the second approach. By
construction, it leads to conservative extensions of ML.

The simplest method to extend ML with first-class poly-
morphism is to use boxed polymorphism. The idea is to em-
bed first-class polymorphic types into simple types using ex-
plicit injection and projection functions. These coercions can
be automatically attached to data constructors via algebraic
data type definitions, which makes them simple and some-
times transparent to the user. This solution was originally
proposed for existential types [LO94] and then applied to
universal types [Rém94]. Boxed polymorphism is extremely
simple, because ML never sees second-order types. The draw-
back is that boxes are rigid: they need to be declared and
explicitly inserted. Furthermore, the history of the construc-
tion of a polymorphic value is recorded in its type, as the
stacking of boxes.

Odersky and Laüfer [OL96] later observed that some
types need not be boxed. They proposed a type system
where the user can write λz : ∀α. α → α . t, making the
λ-bound variable z available within t at type ∀α. α → α,

as if it were let-bound. Another key feature in the work of
Odersky and Laüfer is to generalize the instance relation
of ML, allowing instantiation of toplevel quantifiers as in
ML but also of inner quantifiers by recursively traversing
arrow types, co-variantly on the right-hand side to instan-
tiate their codomains and contra-variantly on the left-hand
side to generalize their domain. This allows to keep types
as polymorphic as possible and only instantiate them by
need. For instance, λz : ∀α. α → α . λy . z may be typed as
∀ γ.(∀α. α → α) → γ → (∀α. α → α) but still used with
type ∀ γ.(∀α. α → α) → γ → (∀β. (β → β) → (β → β)).
There is a restriction, however, that is essential to allow
simple type-inference: when a type variable such as α above
is instantiated, it can only be replaced with a monotype τ .
This built-in restriction to predicative polymorphism is ac-
tually quite severe, as we shall see. Fortunately, it can be
circumvented by keeping boxed types, which allow more ex-
plicit but impredicative type instantiation, coexisting with
implicit predicative polymorphism [OL96].

Peyton-Jones et al. have recently extended Odersky and
Laüfer’s proposal to propagate type annotations in source
programs [PVWS05a], so that an external type annotation,
such as λz . t : (∀α. α → α) → τ , behaves as if the argu-
ment z was also annotated with type ∀α. α → α. Their type
system, which we hereafter refer to as PVWS, has been in-
geniously tuned. It is also quite involved. The authors claim
that: adding higher-rank polymorphism to ML is so simple
that every implementation of ML-style type inference should
have it. They argue that very few changes need to be made to
adapt an implementation of ML type inference to predicative
higher-rank polymorphism. While we accept their claim, we
find their implementation-based demonstration unconvinc-
ing and their specification too algorithmic and unintuitive.
Indeed, PVWS mixes several features that are often con-
sidered conflicting: (1) ML-like type inference; (2) a form
of contravariant subsumption, and (3) propagation of user-
provided annotations. Type systems that mix (1) and (2)
usually exploit explicit constraints to keep principal types,
which PVWS does not; (3) enforces a strict order in which
type checking must be performed, which usually stand in the
way when inferring principal types. Such an unusual combi-
nation of features does not imply misconception, of course—
and indeed, PVWS has been carefully designed. However, it
should then be studied with a lot of attention [PVWS05b].

Contributions

In this paper, we investigate partial type inference based on
type containment and first-order typing constraints. Our pri-
mary goal is to bring further evidence to Peyton-Jones and
Shields’ claim and thus to provide more insight to PVWS.
Another goal is also to explore the design space and, in par-
ticular, how far one can go within an ML-like type-inference
framework. We have at least four different contributions: A
preliminary, independent result is the soundness of a variant
of Fη for a call-by-value stateful semantics. Our main contri-
bution is the core language FML that brings down System F
to the level of ML—it has a simple logical specification and
a sound and complete first-order type inference algorithm.
A secondary contribution is the surface language F?

ML and
our proposal to split partial type inference in F?

ML into a
composition of two separate orthogonal phases: an algorith-
mic elaboration process into FML, followed by type inference
into FML. Our approach leaves room for variations in the
definition of type-containment relations, which controls the
expressiveness of the core language, and in the elaboration

process. A side contribution is also the exploration of the
design space: our two-phase decomposition has advantages
but also some limitations.

1. System F(6) and some instances
System F is the canonical system for λ-calculus with second-
order polymorphism. However, it may be presented in two
ways. In Church’s view, terms are explicitly typed, including
type annotations on λ-abstractions, and type applications.
Therefore, type-checking only needs to verify that user-
provided type information is correct with respect to the
typing rules. On the opposite, in Curry’s view, terms are
untyped and type-checking must infer the types that should
be assigned to formal parameters in λ-abstractions as well
as the places where type abstractions and type applications
should be inserted. The two views can be reconciled by
considering type inference for terms in Curry’s style as
elaborating an explicitly typed term in Church’s style.

1.1 Terms and types

We assume given a finite or denumerable collection of con-
stants (ranged over by c) and a denumerable collection of
variables (ranged over by z and y). Constants and variables
form identifiers, which we write x. Terms, ranged over by t,
are those of the untyped λ-calculus, i.e., identifiers x, ab-
stractions λz . t, or applications t t′. Application has higher
priority than abstraction and is left-associative i.e. λz . λz′. t
t′ t′′ stands for λz . (λz′. ((t t′) t′′)).

We assume a denumerable collection of type variables
(ranged over by α). Types, ranged over by σ, are type vari-
ables, arrow types σ1 → σ2, and polymorphic types ∀α. σ.
The ∀ symbol acts as a binder for α in σ. Free type vari-
ables in a type σ, which we write ftv(σ), are defined acc-
cordingly. We always consider types equal modulo renam-
ing of bound-type variables. The scope of ∀-quantification
extends to the right as much as possible and arrows are
right-associative. That is, ∀α. σ1 → σ2 → σ3 stands for
∀α. (σ1 → (σ2 → σ3)).

A type variable α occurs positively in α. If α occurs
positively (resp. negatively) in σ, then it occurs positively
(resp. negatively) in σ′ → σ and ∀β. σ when β is distinct
from α, and negatively (resp. positively) in σ → σ′. We
write ftv+(σ) (resp. ftv−(σ)) the sets of type variables that
occur positively (resp. negatively) in σ. We write ftv†(σ) the
set ftv+(σ) \ ftv−(σ), which we call non-negative free type
variables.

A relation R on types is structural if it is reflexive,
transitive and closed under the following properties: if σ1 R
σ2, then ∀α. σ1 R ∀α. σ2 (S-All), σ2 → σ R σ1 →
σ (S-Contra) and σ → σ1 R σ → σ2 (S-Cov). A congruence
is a structural equivalence relation.

Let ≈ be the smallest congruence that allows commu-
tation of adjacent binders, i.e. ∀α. ∀β. σ ≈ ∀β. ∀α. σ, and
removal of redundant binders, i.e. ∀α. σ ≈ σ whenever α
is not free in σ. Most relations on types we will consider
will be subrelations of ≈. Therefore, we could usually treat
types equal modulo ≈. However, we prefer not to do so and
treat ≈ explicitly when needed. A canonical form for ≈-
equivalence is one without redundant quantifiers and where
adjacent quantifiers are listed in order of apparition. Canon-
ical forms are unique (up to renaming of bound-type vari-
ables, but we treat such types as equal). We write canon(σ)
for the canonical form of σ. Subterms of types in canonical
forms are also in canonical form.

Figure 1. Typing rules for F(6)

Var
x : σ ∈ Γ

Γ ` x : σ

Inst
Γ ` t : σ′ σ′ 6 σ

Γ ` t : σ

Gen
Γ ` t : σ α /∈ ftv(Γ)

Γ ` t : ∀α. σ

Fun
Γ, z : σ2 ` t : σ1

Γ ` λz . t : σ2 → σ1

App
Γ ` t1 : σ2 → σ1 Γ ` t2 : σ2

Γ ` t1 t2 : σ1

We write ᾱ for tuples of variables α1, ..αn (and more
generally ē for a sequence of elements of the syntactic class
e) and ∀ ᾱ. σ for ∀α1. .. ∀αn. σ. We write τ for types that do
not contain any universal quantifiers, called monotypes; we
write ρ for types that do not have any outermost universal
quantifiers. We write σ[σ̄/ᾱ] for the simultaneous capture-
free substitution of types σ̄ for variables ᾱ in σ.

1.2 The generic system F(6)

Let F(6) be the type system for the λ-calculus defined
in Figure 1 and parameterized by a binary relation on
types 6 called type containment. A typing context Γ is
a finite mapping from program identifiers to types. The
empty environment is written ∅. We write Γ, x : σ for the
environment that binds x to σ and other program variables
as Γ. We write x : σ ∈ Γ to mean that Γ maps x to σ. We
write ftv(Γ) for

S
x:σ∈Γ ftv(σ). Typing judgments are triples

of the form Γ ` t : σ. We write t ∈ F(6) if (and only if)
there exists a typing environment Γ and a type σ such that
Γ ` t : σ. We may write Γ `X t : σ when we need to remind
that typing judgments refer to the type system X.

Rules Var, App, Fun are the same as in the simply typed
λ-calculus, except that types may here have quantifiers. Rule
Gen allows generalizing the type of an expression over a type
variable that does not appear in the environment. The really
interesting Rule is Inst, which allows replacing the type of
an expression with one of its instances, where the notion of
instance is determined by the relation 6.

System F is obtained by taking ≤F for 6, which is defined
as the smallest relation that satisfies the unique axiom Sub
of Figure 2. (We use 6 to range over arbitrary relations,
while symbols ≤, ≤F, ≤η, etc. denotes specific relations.)
As early as 1984, Mitchell proposed to replace the instance
relation ≤F by a more general relation ≤η, called type con-
tainment, which is defined as the smallest relation satisfying
the rules of Figure 2 [Mit88]. He also showed that a term t is
typable in F(≤η) if and only if there exists a term t′ typable
in F that is η-equal to t. That is, F(≤η) is the typed closure
of F by η-conversion, hence F(≤η) is usually called Fη. It
follows that the relation σ ≤η σ′ holds if and only if there
exists a term t of type σ → σ′ in F that η-reduces to the
identity [Mit88]. Such terms are called coercion functions.

We write ≡ for the kernel of 6. Note that ≤η is a
structural relation. It is also a subrelation of ≈. Conversely,
≤F is not structural and it is not a subrelation of ≈. We
write ≤F

≈ for the composition ≤F ◦ ≈, which is also equal to
≈ ◦ ≤F ◦ ≈ (but not to ≈ ◦ ≤F). The relation ≤F

≈ is still not
structural, but it is a subrelation of ≈. The language F(≤F

≈)
is not System F per se: its typing relation `≤F≈ is larger than

Figure 2. Containment rules for ≤η

Sub
β̄ /∈ ftv(∀ ᾱ. σ)

∀ ᾱ. σ 6 ∀ β̄. σ[σ̄/ᾱ]

Trans
σ 6 σ′ σ′ 6 σ′′

σ 6 σ′′

Arrow
σ′1 6 σ1 σ2 6 σ′2
σ1 → σ2 6 σ′1 → σ′2

All
σ 6 σ′

∀α. σ 6 ∀α. σ′

Distrib
∀α. σ → σ′ 6 (∀α. σ) → ∀α. σ′

`≤F . However, both languages have the same set of typable
terms.

About Rule Distrib It is actually possible to limit uses
of Rule Distrib to cases where α /∈ ftv(σ) and further-
more α ∈ ftv−(σ′) without affecting the type-containment
relation ≤η. We refer to these two limited use of Dis-
trib as Distrib-Right and Distrib-Right-Neg, respectively.
Moreover, Rule Distrib-Right is reversible, i.e. ∀α. σ′ 6
∀α. σ → σ′ whenever α /∈ ftv(σ). So we actually have σ →
∀α. σ′ ≡η ∀α. σ → σ′ whenever α /∈ ftv(σ). Types can be
put in prenex-form by repeatedly applying the rewriting rule
σ → ∀α. σ′ Ã ∀α. σ → σ′ when α /∈ ftv(σ) in any type
context (the side-condition can always be satisfied modulo
appropriate renaming). We write prf(σ) for the prenex-form
equivalent to σ, which is unique up to≈. We also write prf(Γ)
for prf(·) composed with the mapping Γ. For any judgment
Γ `F(≤η) t : σ, the judgment prf(Γ) `F(≤η) t : prf(σ) also
holds. Moreover, there exists a derivation of this judgment
that uses only types in prenex-form in typing judgments.
However, subderivations of ≤η-type-containment judgments
may require the use of types not in prenex-form, e.g. in ap-
plications of Rule Sub.

1.3 Expressiveness of F(≤η)

Coercion functions allow the extrusion of quantifiers and
deep type-specialization. This is convenient in a type in-
ference context because instantiation may be performed
a posteriori. For instance, the term tK equal to λz . λy .
y can be assigned either type ∀α. α → ∀β. β → β, giv-
ing the sub-expression λy . y a polymorphic type, or type
∀α, β. α → β → β. Coercions make both types inter-convertible.
Here, either one is actually a principal type of tK in
F(≤η), i.e. all other types may be obtained by type-
containment [Mit88]. By comparison, there is no type of tK

in System F of which all other types would be ≤F-instances.
For this reason, it has been suggested that F(≤η) would be
a better candidate for type inference [Mit88]—before full
type inference was shown to be undecidable.

The example above shows that some terms have more
types in F(≤η). One may also expect more terms to have
types in F(≤η), although we are not aware of any term of
F(≤η) that has been proved not to be in F. However, the
additional expressive power, if any, does not seem to be very
significant.

1.4 Soundness of F(6)

A typing relation Γ `X t : σ and a reduction relation −→ on
expressions enjoy the subject reduction property if reduction
preserves typing. That is, if Γ `X t : σ and t −→ t′,
then Γ `X t′ : σ. Of course, this result depends on the

particular choice of X and of the reduction relation −→.
In the following, we will consider several type systems F(6)
where 6 is a subrelation of ≤η (or ≤η−). Type soundness
for all of these systems will then follow from type soundness
for F(≤η).

For an effect-free semantics and in the absence of con-
stants, the relation −→ is the transitive closure of the one-
step reduction C[(λz . t1) t2] −→ C[t1[t2/z]] for arbitrary
contexts C. Subject reduction is known to hold in System
F. It then easily follows from the definition of F(≤η) in terms
of F that subject reduction also holds in F(≤η).

Subject reduction is only halfway key to type soundness.
It remains to verify that any well-typed program that is not a
value can be further evaluated, that is, the progress Lemma.
Progress is trivial in the absence of constants. Otherwise, one
can show that both subject reduction and progress lemmas
hold under some hypotheses ensuring subject reduction and
progress for reduction involving constants.

1.5 A stateful sound variant of F(≤η)

For sake of simplicity, we focus on the treatment of the store
and references rather than general side-effecting operations.
It is well-known that combining polymorphism and mutable
store requires some care. Because System F(≤η) is highly
polymorphic, we must be even more careful. In this section
we define a variant Fv(≤η−) of F(≤η) that is safe when
equipped with a call-by-value semantics with side effects.

One way to ensure type soundness in the presence of side
effects is to give type abstraction a call-by-name semantics.
That is, a polymorphic expression must be reevaluated every
time it is specialized. In an explicitly typed calculus, poly-
morphism is introduced by a type abstraction Λα.t, which
freezing the evaluation of t and every use of polymorphism
is obtained by a type application t[σ], which evaluates the
whole expression t (after occurrences of α have been replaced
by σ). This call-by-name semantics of polymorphism affects
all expressions, whether or not their evaluation may produce
side-effects.(Even in the absence of side effects, this modi-
fies sharing of expressions and may change the complexity
of computation significantly.) A variant of this solution is to
restrict generalization to values, which is known as the value-
restriction [Wri95]. More precisely, we may define a class of
non-expansive expressions that includes at least values and
variables, but may also include some other expressions—a
formal definition is given below. This solution is now in use
in most implementations of ML, although many of them still
use a more restrictive definition of non-expansiveness—for
no good reason.

We shall thus, as in ML, restrict Rule Gen so that it
only applies when the expression t is non-expansive. How-
ever, this restriction alone is not sound in F(≤η), because it
can be bypassed by type-containment. For example, consider
the expression tm defined as λy . tr where tr is ref (λz . z).
As in ML, tm can be assigned type ∀α. β → ref (α → α). In-
tuitively, this is correct since then an application tm t0 will
then have the monomorphic type ref (α → α), or more pre-
cisely, will have type ref (τ → τ) for any type τ . The key is
that tm should not have type β → ∀α. ref (α → α), since
otherwise tm t0 would return a reference cell that could be
treated as a polymorphic value. This type seems to be dis-
allowed, since the value restriction prohibits generalization
of the type of tr. Unfortunately, type containment allows
replacing the correct type ∀α. β → ref (α → α) of tm with
the unsound type β → ∀α. ref (α → α). The problem can
be traced back to rule Distrib-Right-Neg, which allows

bypassing the value restriction, and is thus unsound in the
presence of side-effects.

The solution is thus both to restrict rule Gen to non-
expansive expressions and invalidate Rule Distrib-Right-
Neg. Instances or Rule Distrib that are derivable from
other rules are both harmless and useful. This is the case
in particular when type variable α only occurs positively
in ftv(σ). We refer to this special instance of Distrib
as Distrib-Right-Pos. It is actually remarkable, that Rule
Distrib-Right-Pos, which is valid in Fv(≤η−) leads to the
enhanced value restriction as defined by Garrigue [Gar04],
rather than the standard value-restriction [Wri95].

Store semantics

We assume given a denumerable collection of memory loca-
tions m ∈M and restrict constants to the following cases:

c ::= c+ | c− Constants
c+ ::= m Constructors
c− ::= (ref ·) | (!·) | (· := ·) Destructors

Each constant c comes with a fixed arity a(c). The arity of
memory locations is 0. The arities of !·, ref ·, and · := · are,
respectively 0, 1, and 2, as suggested by the notation.

By lack of space, we cannot describe the call-by-value
semantics with store. We refer the reader to an extended
version of this paper [Rém05] or to a detailed presentation
of type-constraints [PR05].

Typing rules with side effects

Non-expansive expressions u ∈ U are defined as follows:

u ::= z | λz . t | (λz1 . ..λzk . u) u1 . . . uk

| c+ u1 . . . uk, k ≤ a(c)
| c− u1 . . . uk, k < a(c)

By construction, reduction of non-expansive expressions
cannot extend the store. Remark that non-expansive
expressions may contain free variables. Substituting non-
expansive expressions for free variables in non-expansive
expressions yields again non-expansive expressions.

We introduce a new invariant type symbol ref of arity
1 to classify expressions that evaluate to store locations.
Invariance mean that an occurrence of a variable in a type
ref σ is both positive and negative and thus never in ftv†(σ).
Moreover, a structural relation 6 must now validate the
following rule:

Ref
σ 6 σ′ σ′ 6 σ

ref σ 6 ref σ′

We write ≤η− for the smallest relation 6 that satisfies rules
Sub, Trans, Arrow, All of Figure 2 and rule Ref.

We also restrict generalization to non-expansive expres-
sions or to non-negative type variables.

Genv

Γ ` t : σ α /∈ ftv(Γ) t ∈ U ∨ α ∈ ftv†(σ)

Γ ` t : ∀α. σ

Let Fv(6) be the type system F(6) where Rule Gen has
been replaced by Rule Genv. Types for constants are defined
by an initial environment Γ0 that contains exactly:

ref · : ∀α. α → ref α
!· : ∀α.ref α → α

· := · : ∀α.ref α → α → α

With these restrictions, we still have Γ0 `Fv(≤η−) tm :
∀α. unit → ref (α → α), but not Γ0 `Fv(≤η−) tm : unit →
∀α. ref (α → α) any longer.

Theorem 1. The language Fv(≤η−) with references is sound.

By lack of space, we refer to [Rém05] for a more formal state-
ment of this result and its proof. Type soundness is shown
in a standard way by combination of subject reduction and
progress lemmas.

1.6 Predicative fragments F(≤F
p) and F(≤η

p)

The predicative fragment of System F is the system F(≤F
p)

obtained by restricting the instance relation ≤F so that only
monotypes can be substituted for type variables1. That is,
≤F

p is the smallest relation satisfying the following rule:

Subp

β̄ /∈ ftv(∀ ᾱ. σ)

∀ ᾱ. σ 6 ∀ β̄. σ[τ̄ /ᾱ]

The predicative fragment of F(≤η) can be defined either
(1) as the typed-closure of F(≤F

p) by η-conversion, or (2) as
F(≤η

p) where ≤η
p is the smallest relation satisfying all rules of

Figure 2 except Rule Sub, which is replaced by Rule Subp.
Fortunately, definitions (1) and (2) are equivalent.

The type system F(≤η
p) is safe, as it is a subset of F(≤η).

This does not imply subject reduction. However, one may
show independently that subject reduction holds in both
F(≤F

p) and in F(≤η
p).

Replacing Distrib by Distrib-Right in the definition
of ≤η

p does not change the relation itself. This is not a con-
sequence of the similar result for the impredicative relation
≤η. Indeed, further replacing Distrib-Right by Distrib-
Right-Neg would lead to a weaker relation than ≤η

p. Hence,
in the case of a call-by-value stateful semantics the language
Fv(≤η−

p) could be safely enriched with a version of Distrib
that requires α in ftv†(σ′) \ ftv(σ). We refer to this Rule as
Distrib-Right-Pos.

1.7 Expressiveness of the predicative fragments

The restriction of Systems F or F(≤η) to their predicative
fragments comes with a significant loss of expressiveness. It
means that polymorphism is limited to simple types. That
is, programs can manipulate values of several types that
differ in their monomorphic parts but must have the same
polymorphic shape. For instance, int → int and bool →
bool can be two specializations of a predicative type, but
(∀α. α → α) → (∀α. α → α) and int → int cannot.

The restriction of rule Sub to rule Subp suggests a large
family of counter-examples. For instance, a polymorphic
function of type ∀α. σ → σ′ can only be used at types σ[τ/α]
where τ is a monotype. Thus, one may need as many copies
of the function as there are different shapes σ at which the
function needs to be used. As a particular case, the apply
function λf . λz . f z does not have a most general type, but
as many types as there are polymorphic shapes for the type
of the function f. This is a general situation that also applies
to iterators such as iter, map, fold, etc.

Unsurprisingly, the well-known encoding of existential
types with universal types in System F is also severely lim-
ited in the predicative fragments. A value v of an existential
type ∃α.σ can be encoded as a function ∀β. (∀α. σ→β) → β.

1 One may also consider a stratification of predicative fragments—
see [Lei91]

Figure 3. Type containment rules for ≤η−
p

Refl
α 6 α

Arrow
σ′1 6 σ1 σ2 6 σ′2
σ1 → σ2 6 σ′1 → σ′2

All-I
σ 6 σ′ α /∈ ftv(σ)

σ 6 ∀α. σ′

All-E
σ[τ/α] 6 ρ

∀α. σ 6 ρ

The use of value v under the name x inside some term t is
encoded as the application of v to λx . t. This application can
be typed in F, giving x the polymorphic type ∀α. σ → σ′

and instantiating β with σ′. In the predicative fragment,
however, σ′ must be a monotype. Hence, the restriction of
existential types to the predicative fragment only allows ex-
pressions that manipulate (encoded) existential types to re-
turn monotypes. Moreover, the type hidden by the abstrac-
tion may only be a monotype. In explicit System F, the
expression pack t as z : ∃β. σ, where σ[σ′/β] is the type of t,
is encoded as Λα. λf : ∀β. σ . f σ′ t where σ′ is the abstract
part of the type. Hence, σ′ must be a monotype τ in F(≤F

p).
As a corollary, encodings of objects [BCP99] do not work
well in the predicative fragments: the object state cannot be
hidden any longer as soon as it references an object.

Indeed, we may exhibit terms than are typable in F but
not in the predicative fragment F(≤F

p). One such term (λz .
z y z) (λz . z y z) is due to Pawel Urzyczyn, according to
Leivant [Lei91]. Stratified versions of System F are more
expressive than System F(≤F

p) [Lei91]. However, they would
not ease type inference.

2. Type inference in the language FML

Full type inference is undecidable in both System F [Wel94]
and F(≤η) [Wel96]—the type-containment relation ≤η is it-
self undecidable [TU02, Wel95]. To the best of our knowl-
edge it is not known whether type inference is decidable for
the predicative fragments. However, Harper and Pfenning
remarked that the reduction of second-order unification to
type inference for System F with explicit placeholders for
type abstractions and applications also applies to the pred-
icative fragment [Pfe88]. Still, we do not know whether full
type inference for F(≤η

p) is decidable, even though predica-
tive type containment ≤η

p is itself decidable [PVWS05b].
We also consider the restriction ≤η−

p of ≤η
p obtained by

removing Rule Distrib from the definition of ≤η
p. That

is, we define ≤η−
p as the smallest relation that satisfies

rules Subp, Trans, Arrow and All. A consequence of
the removal of rule Distrib is that ≤η−

p has a very simple
syntax-directed presentation given by rules of Figure 3.

Lemma 1. ≤η−
p is also the smallest relation 6 that satisfies

the rules of Figure 3.

Lemma 2 (Stability of ≤η−
p by substitution). If σ ≤η−

p σ′

then σ[τ̄ /ᾱ] ≤η−
p σ′[τ̄ /ᾱ].

Actually, the two relations ≤η
p and ≤η−

p coincide on types
in prenex form, as shown by the following lemma due to
Peyton-Jones, Vytiniotis, Weirich and Shields [PVWS05b].

Lemma 3 (Peyton-Jones et al.). σ ≤η
p σ′ if and only if

prf(σ) ≤η−
p prf(σ′).

This provides us with an algorithm for testing ≤η
p by first

projecting both types to their prenex forms and then test-
ing for ≤η−

p (or by deriving a direct algorithm from this
composition [PVWS05b]. Although the restriction ≤η−

p of
≤η

p is primarily introduced to ensure soundness in Fv(≤η−
p),

we may also consider the language F(≤η−
p) in the absence of

side-effects. One advantage is that type inference for F(≤η−
p)

is closer to type inference for ML, especially in its treatment
of generalization. Moreover, working with ≤η−

p is slightly
more convenient than ≤η

p for type inference. We start with
this simpler case and will consider F(≤η

p) and Fv(≤η−
p) in

sections 2.5 and 2.6.

2.1 Terms with type annotations: FML(6)

We leave the relation 6 a parameter of FML(6) so as to
share some of the developments between ≤η−

p and FML(≤η
p).

However, the intention is that the type-containment relation
6 be predicative, i.e. a subrelation of FML(≤η

p).
Thus, the type-containment relations 6 that we shall con-

sider are decidable, and so is 6-constraint resolution, as
we shall see below. However, this is not sufficient to per-
form type inference. In order to avoid guessing polymorphic
types, we now extend terms with type annotations. An an-
notation is a type scheme σ whose free variables ᾱ are locally
bound; we write ∃ ᾱ. σ. While σ represents the explicit (usu-
ally second-order) type information, the existentially bound
variables ᾱ represent the implicit type information, which
will be inferred. That is, type annotations are partial, which
is important to leave room for inference. As a particular
case, the trivial annotations ∃α. α let us infer monomorphic
types, as in ML. We require that type annotations be closed.
This is only for the sake of simplicity. One could easily al-
low type annotations to have free type variables, provided
these are explicitly bound somewhere in the program. This
mechanism, sometimes known as scoped type variables, is dis-
cussed by Peyton Jones and Shields [PS03] and by Pottier
and Rémy [PR]. We let θ range over type annotations.

The syntax of FML(6) is as follows:

t ::= x | λz . t | t1 (t2 : θ) | let z = (t1 : θ) in t2

As usual, expressions may be identifiers x, abstractions λz . t,
or applications t1 (t2 : θ). However, arguments of applica-
tions must now always be explicitly annotated (although
annotations may be trivial). The intuition for annotating
the argument of applications is to avoid guessing the type
of the argument. Indeed, knowing the type of the result of
an application does not tell anything about the type of its
argument. We also allow let-bindings let z = (t1 : θ) in t2,
which mean (λz . t2) (t1 : θ), but which will be typed in a
special way, as in ML. As for applications, an annotation
is required for the expected type of t1, since it cannot be
deduced from the expected type of the whole expression.

2.2 Typing rules

Typing rules for FML(6) are described in Figure 4. They use
judgments of the form Γ ` t : σ as for F(6). These judgments
should be read as checking judgments, where Γ, t and σ are
given. Rules Var, Inst, Gen, and Fun are all taken from
F(6). However, as mentioned above, the intention is that 6
in the right premise of Rule Inst be chosen as an instance of
≤η

p, so as to ensure predicativity. That is, the polymorphic
structure of polymorphic types can only be instantiated by
monotypes. Note that, as opposed to ML, rule Fun allows
its argument to be polymorphic. Despite the appearance,

Figure 4. Typing rules for FML(6)

Var Inst Gen Fun

AppA

Γ ` t1 : σ2[τ̄ /β̄] → σ1 Γ ` t2 : σ2[τ̄ /β̄]

Γ ` t1 (t2 : ∃ β̄. σ2) : σ1

LetA

Γ ` t1 : ∀ ᾱ. σ1[τ̄ /β̄] Γ, z : ∀ ᾱ. σ1[τ̄ /β̄] ` t2 : σ2

Γ ` let z = (t1 : ∃ β̄. σ1) in t2 : σ2

this does not imply guessing polymorphism, as long as the
expected type σ2 → σ1 is given.

Rule AppA (the subscript is to remind the annotation)
is not quite the one of F(6). We must of course take the
annotation of the argument into account: the type of t2,
which is also the domain of the type of t1, must be an
instance of the annotation. The annotation avoids guessing
the polymorphic parts of the expected type of t1 and t2
that cannot be deduced from the expected type of the
application. When the annotation is the trivial one, σ2[τ̄ /ᾱ]
must be a monotype τ2, to be guessed—not a problem,
since it is a monotype. More generally, only monotypes τ̄
need to be guessed in applications. Rule LetA is taken from
ML, except that the annotation on t1 is used to build the
expected type of t1, up to first-order instantiation, much as
in Rule AppA.

Expressiveness. Apart from annotations, the language
FML(6) is as expressive as F(6) for any relation 6. Formally,
let the type erasure of a term t be the λ-term obtained by
dropping all type annotations and replacing all let-bindings
let z = t1 in t2 by (λz . t2) t1. Then, we have t ∈ F(6) if and
only if there exists an expression t′ ∈ FML(6) whose erasure
is t.

Syntactic sugar. While annotations are always required
in applications and let bindings, the trivial annotations may
be used. This is not exactly an absence of annotation, since
the annotation is mandatory and a trivial annotation always
stands for a monomorphic type. In particular, an expression
where all annotations are trivial will be typed as in ML.
For convenience, we may allow let z = t1 in t2 and t1 t2
as syntactic sugar for let z = (t1 : ∃α. α) in t2 and t1
(t2 : ∃α. α), respectively.

The language FML(6) is a conservative extension to ML.
That is, if Γ is an ML environment and t is an ML expression,
i.e. both without any non trivial annotation, then Γ `ML t : τ
if and only if Γ `FML(6) t : τ .

The language does not allow arbitrary expressions to
carry type annotations. However, we can define (t : θ) as
syntactic sugar for let z = (t : θ) in z.

Example. The expression λz . z is well-typed, and can be
given type τ → τ , for any type τ , as in ML. It may also be
given types ∀α. α → α, (∀α. α) → (∀α. α), ∀β.((∀α. α) →
β) → ((∀α. α) → β), etc. none of which is more general than
the other in FML(≤η−

p). In F(≤η
p), the first one is better than

the second-one; (In F(≤η), the first-one is better than all
other ones on this particular example, but this is accidental.)
Hence FML(≤η−

p) does not have principal types in the usual
sense. However, as we shall see below, it has a principal type
for any given polymorphic shape.

Figure 5. Syntax-directed typing rules FA for FML(≤η−
p)

Var-Inst-Rho

x : σ ∈ Γ σ ≤η−
p ρ

Γ ` x : ρ
Gen Fun

AppA-Rho

Γ ` t1 : σ2[τ̄ /β̄] → ρ1 Γ ` t2 : σ2[τ̄ /β̄]

Γ ` t1 (t2 : ∃ β̄. σ2) : ρ1

LetA-Gen-Rho

Γ ` t1 : σ1[τ̄ /β̄] Γ, z : ∀ \Γ. σ1[τ̄ /β̄] ` t2 : ρ2

Γ ` let z = (t1 : ∃ β̄. σ1) in t2 : ρ2

As in ML, the expression λz . z z does not have any mono-
type τ . However, we may explicitly provide the information
that we expect a type of the form (∀α. α → α) → τ → τ
for some τ . Then, the expression is well-typed (and a best
type of that shape may be inferred). We have Γ `

FML(≤η−
p)

λz . z z : ∀β.(∀α. α → α) → β → β.

Typing problems. Let ϕ range over first-order substitu-
tions, simply called substitutions for short, which map type
variables to monotypes. We may distinguish four different
problems:

1. Typability: Given a term t, do there exist a context Γ and
a type σ such that Γ ` t : σ?

2. Typing inference: Given a term t, what are the pairs of
a context Γ and a type σ such that Γ ` t : σ?

3. Type inference: Given a term t and a context Γ, what are
the types σ and substitutions ϕ such that Γϕ ` t : σ?

4. Type checking: Given a term t, a context Γ, and a type
σ, what are the substitutions ϕ such that Γϕ ` t : σϕ?

Note that our definition of typechecking still allows first-
order inference, which is somehow non standard. Neither
typing inference, nor type inference problems have principal
solutions in general in FML(≤η

p), nor in FML(≤η−
p). However,

type checking problems do.

2.3 Syntax-directed typing rules FA

As usual, typing judgments need not use all the flexibility
allowed by the typing rules. That is, typing derivations
can be rearranged to form derivations that follow certain
patterns. In particular, derivations that are driven by the
syntax of the conclusion, called syntax-directed, are the
key to type checking and type inference. Figure 5 presents
an equivalent set of rules for deriving typing judgments in
FML(≤η−

p). We write ∀ \Γ. σ for the type ∀ (ftv(σ) \ ftv(Γ)). σ.
Rules Gen and Fun are unchanged. All syntax-directed

rules but Gen assign ρ-types rather that types to terms. As
opposed to ML, the Gen rule is not removed in the syntax-
directed system. It is the only rule that may (and thus must)
be used first to derive judgments whose conclusion mentions
a type scheme that is not a ρ-type. Hence, it can be used
either as the last rule in a derivation, or in three other places
(and only there): immediately above the left-premise of a
Let rule, the premise of a Fun rule or the premise of another
Gen. Strictly speaking, Rule Gen is not syntax-directed,
unless we take the expected type-scheme as part of the
syntax. It would be possible and obvious to inline it in the
premises of both rules Fun and Let, but this would be more
verbose and less readable. Rule Var-Inst-Rho behaves as

Var followed by Inst; Rule AppA-Rho is a restriction of
Rule AppA so as to conclude ρ-types only (hence the -Rho
suffix). Rule LetA-Gen-Rho behaves as Let (restricted to
ρ-types) with a sequence of Gen above its left premise. As
in ML, this is the most interesting rule. The type scheme
required for t1 is the one requested by the annotation,
but where monomorphic parts may be instantiated. Hence,
its free types variables that do not appear in Γ can be
generalized in the type assigned to z while typechecking t2.
This is the only place where we introduce polymorphism
that is not explicitly given (in FA, Rule Gen may only be
used for polymorphism that is explicitly given). We do so,
much as in ML, and without really guessing polymorphism—
we just have it for free! Shapes of all other polymorphic types
in the premises are never inferred and just taken from some
corresponding type in the conclusion.

If we change all type annotations into ∃β. β in syntax-
directed rules, we obtain exactly the syntax-directed rules
of ML (Gen becomes useless if the expected type is a simple
type). Thus, we depart from ML only by allowing second-
order polymorphic types in annotations and typing judg-
ments. The instantiation, let-polymorphism, and inference
mechanism remain the same. In particular, type inference
(as defined above) relies on first order-unification, which we
shall see now.

First, let us state a series of useful standard Lemmas.

Lemma 4 (Substitution). If Γ `FA t : σ, then there exists
a derivation of Γϕ `FA t : σϕ of the same length for any
substitution ϕ.

We write Γ′ ≤η−
p Γ if dom(Γ) = dom(Γ′) and Γ′(z) ≤η−

p Γ(z)
for each z in dom(Γ),

Lemma 5 (Strengthening). If Γ `FA t : σ and Γ′ ≤η−
p Γ,

then Γ′ `FA t : σ.

The next two lemmas establish the correspondence between
the two presentations of the typing rules.

Lemma 6 (Soundness of syntax-directed rules). Rules Var-
Inst-Rho, AppA-Rho, and LetA-Gen-Rho are derivable
in FML(≤η−

p), (i.e. they may be replaced by chunk of deriva-
tions using rules of FML(≤η−

p)).

Lemma 7. (Completeness of syntax-directed rules) Rules
Inst, AppA, and LetA are admissible in FA, (i.e. adding
them to the rules to the definition of FA does not allow to
derive more judgments).

This direction is more interesting and a bit trickier than
the previous one. There are a few subtleties. Admissibility
of Rule Inst would not be true if ≤η−

p were replaced by
≤η

p in both systems. Admissibility of Rule AppA requires to
follow an application of Rule AppA-Rho with a sequence
of instances of Rule Gen. This would not be true if Gen
were replaced by Genv in both systems—see Rule AppA

v in
Figure 9.

Corollary 8. The syntax-directed rules and the original
rules derive the same judgments.

2.4 Type inference via type constraints

Syntax-directed typing rules open the path to a type infer-
ence algorithm. They show that a typing judgment for an
expression can only hold if some judgment for its immedi-
ate subexpressions also hold. Moreover, the type judgments
for sub-expressions are entirely determined from the original

Figure 6. Syntax of constraints

C ::= true | false | τ = τ | σ ≤ σ
| C ∧ C | ∃α. C | ∀α. C
| x ¹ σ | def x : ∀ᾱ[C].σ in C

Abbreviations:

(∀ᾱ[C].σ) ¹ ρ
M
= ∃ ᾱ.(C ∧ σ ≤ ρ) ᾱ /∈ ftv(ρ)

let x : ∀ᾱ[C].σ in C′
M
= (∃ ᾱ. C) ∧ (def x : ∀ᾱ[C].σ in C′)

let Γ, x : ∀ᾱ[C].σ in C′
M
= let Γ in let x : ∀ᾱ[C].σ in C′

let ∅ in C
M
= C

judgment except for some instantiations of type variables by
monotypes. This is just as in ML and suggests an underlying
first-order type-inference mechanism.

Typing constraints are a general yet simple and intuitive
framework to define type inference algorithms for ML-like
languages [PR05]. Below, we present a brief summary of this
approach and extend it in a straightforward manner to cover
type inference for FML(6). We refer the reader to [PR05] for
a more thorough presentation.

The syntax of type constraints is given in Figure 6.
We use letter C to range over type constraints. Default
atomic constraints are true, false, equality constraints τ = τ ,
and subtyping constraints σ ≤ σ′. We build constraints
by conjunction C ∧ C′, existential quantification ∃α. C, or
universal quantification ∀α. C. Finally, we use two special
forms of constraints for polymorphism elimination x ¹ ρ and
polymorphism introduction def x : ∀ᾱ[C].ρ in C′.

In order to interpret constraints, we need a model in
which we may interpret free type variables. As for ML, we
take the set of closed ground types (monotypes without type
variables) for our model. (Here, we must assume at least
one type constructor of arity 0, e.g. int.) We use letter t
to range over ground types. A ground assignment φ is a
map from all type variables to elements of the model. We
also see φ as a mapping from types to types, by letting
(σ1 → σ2)φ = σ1φ → σ2φ and (∀α. σ)φ = ∀α.(σφα) where
φα is the restriction of φ to dom(φ) \ {α}. (Consistently
with the notation for substitutions, we write σφ for the
application of φ to σ.)

We write φ ° C to mean that C is valid in environment
φ. We take φ ° true and φ 6° false for any φ. We take
φ ° τ = τ ′ if and only if τφ ≤η−

p τ ′φ and We take φ ° σ ≤ σ′

if and only if σφ ≤η−
p σ′φ. Technically, we could identify

the equation τ = τ ′ with the inequation τ ≤ τ ′, since
they coincide. However, for sake of exposition, we prefer
to explicitly transform subtyping constraints into equations
when both sides are monotypes. We take φ ° C ∧ C′ if and
only if φ ° C and φ ° C′. We take φ ° ∃α. C if and only
if there exists a ground type t such that φ[α 7→ t] ° C
(we write φ[α 7→ t] for the environment that maps α to t
and otherwise coincides with φ). We take φ ° ∀α. C if and
only if for every ground type t, we have φ[α 7→ t] ° C.
A constraint C entails a constraint C′ if for every ground
assignment φ, such that φ ° C we also have φ ° C′. We
then write C ° C′. Contraints C and C′ are equivalent if
both C ° C′ and C′ ° C holds.

Def-constraints def x : ∀ᾱ[C].σ in C′ can be interpreted
as C′[∀ᾱ[C].σ/x] (of course, the resolution of constraints will
avoid this substitution). The effect of this substitution is
to expose constraints of the form ∀ᾱ[C].σ ¹ ρ. These are

Figure 7. Solving ≤-constraints

τ ≤ τ ′ −→ τ = τ ′

σ1 → σ2 ≤ α −→ ∃α1α2.(σ1 → σ2 ≤ α1 → α2

∧ α = α1 → α2)
α ≤ σ1 → σ2 −→ ∃α1α2.(α1 → α2 ≤ σ1 → σ2

∧ α = α1 → α2)
σ1 → σ2 ≤ σ′1 → σ′2 −→ σ′1 ≤ σ1 ∧ σ2 ≤ σ′2

∀α. σ ≤ ρ −→ ∃α.(σ ≤ ρ) α /∈ ftv(ρ)
σ ≤ ∀α. σ′ −→ ∀α.(σ ≤ σ′) α /∈ ftv(σ)

Figure 8. Constraint generation rules

[[x : ρ]] = x ¹ ρ
[[λz . t : α]] = ∃β2β1.([[λz . t : β2 → β1]]

∧ α = β2 → β1) β1, β2 6= α
[[λz . t : σ2 → σ1]] = let z : σ2 in [[t : σ1]]

[[t1 (t2 : ∃ β̄. σ2) : ρ1]] = ∃ β̄.([[t1 : σ2 → ρ1]] ∧ [[t2 : σ2]])
β̄ /∈ ftv(ρ1)

[[let z = (t1 : ∃ β̄. σ1)
in t2 : ρ2]] = let z : ∀β̄[[[t1 : σ1]]].σ1 in [[t2 : ρ2]]

[[t : ∀α. σ]] = ∀α.[[t : σ]]

syntactic sugar for ∃ ᾱ.(C ∧ σ ≤ ρ), provided ᾱ /∈ ftv(ρ).
Hence, the scope in a constrained type scheme ∀ᾱ[C].σ is
both C and σ. In fact, rather that using def x : ∀ᾱ[C].ρ in C′

directly, we often use let x : ∀ᾱ[C].ρ in C′ as an abbreviation
for ∃ ᾱ. C ∧ def x : ∀ᾱ[C].ρ in C′.

The solver of [PR05] need only be extended to solve sub-
typing constraints. These can easily be reduced to equality
constraints by repeatedly applying the rules of Figure 7.
(We have left it implicit in the first and second rules that
variables α1 and α2 should not appear free on the left-hand
side). Each rule preserves the meaning of constraints, indeed.
When no rule applies, we are left with equality constraints
of the form τ = τ ′, which are treated as first-order unifi-
cation constraints (the predicate ≤ may be interpreted as
equality on monotypes). Hence, rules of Figure 7 are meant
to be added to rules for solving first-order constraints as well
as structural rules for rearranging constraints (see [PR05]).
Indeed, the rules of Figure 7 can already be found in [OL96].

Lemma 9. The rewriting rules of Figure 7 preserve con-
straint equivalence.

Once the (exposed) subtyping constraints have been re-
solved, the remaining constraints are equality constraints
between monotypes, which can then be resolved by a uni-
fication algorithm, as in [PR05]. The whole simplification
process ends with a constraint in solved from, which deter-
mines a most general solution to the initial problem. Remark
that a type substitution ϕ may always be represented as the
type constraint ∧α∈dom(ϕ)(α = αϕ).

Constraint generation rules

We now describe a type inference algorithm by turning type
checking problems into type constraint problems, which can
then be simplified as described above.

Constraint generation rules are given in Figure 8. They
take as input a type expression t and an expected type
σ and return a constraint that describes the conditions
under which t may be assigned type σ. Maybe surprisingly,

Figure 9. Syntax-directed typing rules for Fv
ML(≤η−

p)

Var-Inst-Rho Genv Fun

AppA
v

Γ ` t1 : σ2[τ̄ /β̄] → ∀ ᾱ. ρ1

Γ ` t2 : σ2[τ̄ /β̄] ᾱ /∈ ftvt1 t2(ρ1)

Γ ` t1 (t2 : ∃ β̄. σ2) : ∀ ᾱ. ρ1

LetA-Genv

Γ ` t1 : σ1[τ̄ /β̄]
Γ, z : ∀ t1\Γ. σ1[τ̄ /β̄] ` t2 : ∀ ᾱ. ρ2 ᾱ /∈ ftvt1,t2(ρ2)

Γ ` let z = (t1 : ∃ β̄. σ1) in t2 : ∀ ᾱ. ρ2

constraint generation does not take a typing context Γ: if
the program t has free program identifiers x, so will the
constraint [[t : σ]]. Then, the constraint may only be valid
when placed in a context of the form let Γ in · that will
assign types to free type variables of t.

Most constraint generation rules can be read straightfor-
wardly and follow syntax-directed typing rules. An identifier
x has type ρ is and only if ρ is an instance of the type of x. A
function λz . t has type α if and only if it has type β2 → β1

where α is of the form β2 → β1 for some types β1, β2; a
function λz . t has a type scheme σ2 → σ1 if and only if t
has type σ1 assuming z has type scheme σ2. The decompo-
sition of applications is also straightforward. To decompose
a let-binding, we first generate a constraint for typechecking
its argument; this constraint is used to build a constrained
type-scheme by generalizing all type variables β̄ that are free
in σ1, but free in Γ. After simplification of [[t1 : σ1]] some
variables of β̄ will in general be further constrained, maybe
so that they can only be monotypes. Generalizing them is
not a problem, since the resolution algorithm will take care
of such dependences, which is one of the elegance of using
type constraints. Finally, an expression t has a type ∀α. σ if
and only if t has type σ for any instance of α.

A type checking problem Γ ` t : σ is equivalent to the
constraint let Γ in [[t : σ]] (which is syntactic sugar for
a sequence of let constraints, as described in Figure 6).
This is stated very precisely and concisely by the fol-
lowing two lemmas. This uses a correspondence mapping
an idempotent substitution ϕ to a solved type constraintV

α∈dom(ϕ) α = αϕ.

Lemma 10 (soundness). If ϕ ° let Γ in [[t : σ]], then Γϕ `
t : σϕ.

Lemma 11 (completeness). If Γϕ ` t : σϕ, then ϕ °
let Γ in [[t : σ]].

We can read back these two theorems into a more traditional
(but not really simpler) formulation.

Corollary 12. Given a typing environment Γ, a program
t, and a type scheme σ, a substitution ϕ is a solution to the
type checking problem Γ ` t : σ if and only if it is a solution
to the constraint let Γ in [[t : σ]].

2.5 Type inference with side-effects

As we have seen in Section 1.5, choosing a call-by-value
semantics and extending the language with side-effects also
implies some changes in the typing rules. Let Fv

ML(≤η−
p) be

the language whose expressions and typing rules are the
same as those of FML(6), except for Rule Gen, which is

Figure 10. New constraint generation rules for Fv
ML(≤η−

p)

[[t1 (t2 : ∃ β̄. σ2) : ∀ ᾱ. ρ1]] =
∃ β̄.([[t1 : σ2 → ∀ ᾱ. ρ1]] ∧ [[t2 : σ2]]) ᾱ = ∅ if t1 t2 ∈ U
[[let z = (u1 : ∃ β̄. σ1) in t2 : ∀ ᾱ. ρ2]] =
let z : ∀β̄[[[u1 : σ1]]].σ1 in [[t2 : ∀ ᾱ. ρ2]] ᾱ = ∅ if t2 ∈ U
[[let z = (t1 : ∃ β̄. σ1) in t2 : ∀ ᾱ. ρ2]] =
∃ β̄.([[t1 : σ1]] ∧ let z : σ1 in [[t2 : ∀ ᾱ. ρ2]]) t1 /∈ U
[[u : ∀α. σ]] = ∀α.[[u : σ]]

replaced by Rule Genv. We may extend the definition of
non-expansive expressions given in Section 1.5 with let z =
u1 in u2. The relation ≤η−

p is a subrelation of ≤η−. Hence,
Fv
ML(≤η−

p) is sound.
Preparing for type inference, we must also review the

syntax-directed typing rules. Of course, we should change
Gen to Genv. Since rule Genv is more restrictive, only non-
negative type variables may be generalized a posteriori in the
type of an expansive expression. As a consequence, the result
of the application (see Rule AppA) may have a polymorphic
type but only if this polymorphism comes from the codomain
σ1 of the type of t1 or from non-negative free type variables
in σ1. Hence, we change Rule AppA-Rho for Rule AppA

v

to allow exactly those variables ᾱ that do not belong to
ftvt1 t2(ρ1) in the type of the application—others may still
be generalized afterward. The notation ftvt̄(σ) where t̄ is a
sequence of expressions stands for ftv(σ) if t̄ ∈ U (i.e. all
expressions of t̄ are non-expansive) and ftv†(σ) otherwise.
Similarly, we change Rule LetA-Gen-Rho to LetA-Genv

which allows ᾱ to be polymorphic in the type of t2. The
sequence of expressions t1, t2 used in the superscript of ftv
controls the expansiveness of let z = (t1 : ∃ β̄. σ1) in t2.
Consistently with the restriction of generalization, we have
also replaced ∀ \Γ. σ1[τ/β̄] by ∀ t1\Γ. σ1[τ̄ /β̄]. The notation
∀ t\Γ. σ stands for ∀ ftvt(σ) \ ftv(Γ). σ. That is, generalizable
variables in the type of t1 are ftv(σ) \ ftv(Γ) as before if t1
is non-expansive, and ftv†(σ) \ ftv(Γ) otherwise.

Constraint generation

Let us first consider the simpler case of the standard value
restriction. That is, we ignore non-negative type variables
which amounts to taking the empty set for ftv†(σ). In this
case, ftvt̄(σ) is ftv(σ) if all expressions of t̄ are non-expansive
and is empty otherwise.

It is then straightforward to extend constraint genera-
tion: we need not add new forms of constraints but only test
for expansiveness during constraint generation and generate
different constraints for non-expansive applications and let-
bindings. The modified rules are summarized in Figure 10
(capture-avoiding side-conditions have been omitted); these
should replace the corresponding rules in Figure 8. Con-
straint resolution then proceeds as before. Lemmas 6, 7, 10,
and 11 extend to Fv

ML(≤η−
p) with standard value restriction.

By lack of space, we refer to the full version [Rém05] for a
discussion of the enhanced value restriction, which requires
enriching the language of type-constraints.

2.6 Type inference for FML(≤η
p)

Unsurprisingly, rules of Figure 5 do not form a syntax-
directed presentation of FML(≤η

p): after replacing ≤η−
p by

≤η
p in Rule Var-Inst-Rho they would defined a typing

relation that does not satisfy Rule Inst. Fortunately, we may

easily reduce type inference for FML(≤η
p) to type inference

for FML(≤η−
p) by first putting typing problems into prenex-

forms. More precisely, let prf(∃ β̄. σ) be ∃ β̄. prf(σ) and prf(t)
be a copy of t where all annotations θ have be replaced by
their prenex-forms prf(θ).

Lemma 13. Judgments Γ `FML(≤η
p) t : σ and prf(Γ) `

FML(≤η−
p)

prf(t) : prf(σ) are equivalent.

This shows that the choice between ≤η−
p and ≤η

p is unim-
portant in predicative systems.

2.7 Recovering impredicativity

An important limitation of FML(≤η−
p) is its predicativity.

Fortunately, there is an easy way to recover impredicativity
by adding an explicit impredicative decidable fragment of
type-containment, say 6I to the implicit predicative type-
containment relation ≤η−

p or ≤η
p, say 6P . Indeed, to obtain

full impredicativity, i.e., in the end, the expressiveness of F,
it suffices that 6I be a larger relation than ≤F. We choose
the relation ≤F

≈, which is better suited for type inference, as
it disregards the order of quantifiers.

Formally, we may simply introduce a collection of coer-
cion functions (i.e. functions that evaluate to the identity)
(: ∃ β̄. σ1 . σ2) with types ∀ β̄. σ1 → σ2 for all pairs (σ1, σ2)
in 6I and with β̄ equal to ftv(σ1) ∪ ftv(σ2). As for annota-
tions, we require coercions to be closed, although this is only
a matter of simplification. This is the purpose of the exis-
tentially bound variables whose scope extends to both sides
of the coercion. We refer to this language as FML(6I , 6P).

We may here take advantage of constrained type schemes
and be slightly more flexible. Let us introduce new forms of
constraints σ1 6 σ2 whose meaning is given by φ ° σ1 6 σ2

if and only if σ1φ 6 σ2φ (for some given relations 6). Then,
we may assign (: ∃ β̄. σ1 . σ2) the constrained type scheme
∀β̄[σ1 6I σ2].σ1 → σ2. This has two advantages: first,
it internalizes the verification of the 6I type-containment;
second, it allows to provide types σ1 and σ2 up to some
monomorphic instantiation. For example, taking ≤F for 6I ,
the coercion (: ∃β. ∀α. α → β → α . σ → τ → σ) is now
valid for any (closed) type τ and type scheme σ; finding out
that β must actually be τ can be left to type inference.

This extension is safe by construction, as long as 6I is a
subrelation of ≤η, since it amounts to giving the identity
a valid type in F(≤η). Regarding type inference, it only
remains to solve 6I type-containment constraints so that
the coercion is well-defined and Rule Var-Inst-Rho applies.

Let us now focus on the particular case of FML(≤F
≈,≤η−

p),
which we shall abbreviate as FML. Type constraints σ1 ≤F

≈ σ2

can be reduced to canon(σ1) ≤F canon(σ2). So we are
left to solving constraints of the form σ1 ≤F σ2. Re-
call that all instances of the relation ≤F are of the form
∀ ᾱ. ρ ≤F ∀ γ̄. ρ[σ̄/ᾱ] with γ̄ /∈ ftv(∀ ᾱ. ρ). Thus, the con-
straint ∀ ᾱ. ρ1 ≤F ∀ γ̄. ρ2 with free type variables β̄ is equiv-
alent to the existence of type schemes σ̄ such that ρ2 and
ρ1[σ̄/ᾱ] are equal modulo α-conversion with variables γ̄
not in ftv(∀ ᾱ. ρ1). That is, it is equivalent to the equality
∀ γ̄. ∃ ᾱ.(ρ1 = ρ2) where ᾱ range over type schemes and ᾱ
and β̄ range over monotypes. This is a (restricted) form of
unification modulo α-conversion and under a mixed prefix
(but no β-reduction is ever involved). Solving such con-
straints is folklore knowledge. We refer the reader to the full
version for details.

Coercion functions are meant to be applied to terms.
Formally, an application requires a type annotation, which in

this case may be exactly the domain of the coercion. We may
avoid repeating the annotation by letting the syntactic sugar
(t : ∃ β̄. σ1 . σ2) stand for (: ∃ β̄. σ1 . σ2) (t : ∃ β̄. σ1).
When a coercion is in application position, it still needs an
annotation, even though the coercion may already carries
all the necessary type information. Hence, we may see t1
(t2 : ∃ β̄. σ1 . σ2) as syntactic sugar for t1 ((t2 : ∃ β̄. σ . σ′) :
∃ β̄. σ′).

There still seem to be some redundancies in coercions
since the polymorphic shape of the expected type σ′2 must
be provided when typechecking a coercion (t : ∃ β̄. σ1 . σ2).
However, σ′2 is only known up to ≤η−

p . That is, in general,
we only have σ2 ≤ σ′2. If we were to take σ′2 for σ2, we would
then be letf with ≤F

≈ ◦ ≤η−
p constraints. However, we have

not explored yet the resolution of such constraints.

Expressiveness The set of raw terms typable in FML(6I , 6P)
is exactly F(6I ◦ 6P). Hence, FML contains terms of both F
and F(≤η−

p)—but not all terms of F(≤η). One may in fact
generalize the idea of explicit coercions by providing typing
evidence for any coercion, which can be done by writing
coercions in FML. We could thus also allow coercions of the
form (: t) where t is a term of FML that η-reduces to the
identity. This way, we would finally reach all of F(≤η). How-
ever, writing coercion functions explicitly is rather heavy.

An alternative way to recover impredicativity is to use
semi-explicit polymorphism [GR97], which simplifies signif-
icantly here, as types of the host language are already of
arbitrary rank.

3. Propagation of annotations in F?
ML

We consider the language FML. However, we first treat co-
ercions as constants, as if we were in FML(≤η−

p). We shall
discuss special elaboration of coercions in Section 3.5 and
elaboration in Fv

ML(≤η−
p) in Section 3.4.

Many type annotations may seem redundant in FML. For
instance, consider the expression let f = (λz . z z : σid →
σid) in f (λy . y : σid), which is well typed, but becomes
ill-typed if we remove the annotation on the application.
However, one may argue that given the type of f, it is obvious
what the annotation on the application should be.

We first show that only the polymorphic skeletons of
annotations, where the monomorphic leaves are stripped off,
actually matter. We refer to them as shapes. Computation
on shapes is simpler than computation on types, because
shapes are closed. We exploit this to propose a preprocessing
step that propagates shapes before typechecking in FML.

3.1 Shapes

Let shapes be closed polymorphic types extended with a
unary type constructor]. Shapes are considered modulo
the absorbing equation] →] =]. A shape is in canonical
form when it contains the minimum number of occurrences
of]. The shape of a polymorphic type σ, written dσe is
obtained from σ by replacing all free type variables of σ
by]. We use S to range over shapes. Shapes capture the
polymorphic structure of types. For example, consider the
type σ0 equal to ∀α1.(∀α2.(α1 → α2) → (β0 → β0)) →
(β1 → β2). Its shape dσe is ∀α1.(∀α2.(α1 → α2) →
(] →])) → (] →]), which can be put in its canonical
form ∀α1. (∀α2. (α1 → α2) →]) →]. By extension, the
shape of an annotation d∃ β̄. σe is simply dσe. A shape
S may be read back as a type annotation, written bSc.
By definition bSc is ∃ ᾱ. σ if S is in canonical form and
syntactically equal to σ[]/ᾱ], and each variable of ᾱ occurs

exactly once in σ. For example, the annotation bdσec is
∃β1, β2 ∀α1. (∀α2. (α1 → α2) → β1) → β2. We sometimes
need to strip off the front quantifiers of a shape S. However,
the resulting type may contain free type variables and must
be reshaped. We write S[for dρe where bSc is of the form
∃ β̄. ∀ ᾱ. ρ.

Our interest for shapes is that only shapes of annotations
matter for type inference. If we write bdtec for the term t
where each annotation θ has been replaced by bdθec, this
property is precisely captured by the following lemma.

Lemma 14. If Γ ` t : σ then Γ ` bdtec : σ.

Since shapes are a projection of types, one could project typ-
ing rules as well, and obtain a “shaping” relation that would
assign shapes to programs. By construction, one would then
expect a property such as if Γ ` t : σ then dΓe ` t : dσe.
However, such a result would not be very useful, since we
already have an algorithm for typechecking.

Conversely, one could hope for some kind of shape-
inference algorithm and by combination with typecheck-
ing at a given shape to solve type inference problems at
unknown shapes. However, shape-inference is of course not
quite realistic if we define it as finding every shape for which
a type could be inferred. However, we may give up complete-
ness, or even soundness, and look for some obvious shape
for which a type might be inferred. Incompleteness may not
be a problem in the context of type reconstruction where we
attempt to rebuild missing type annotations in an obvious
manner and accept to fail if there is no way to do so. Since
type reconstruction is not going to be complete with respect
to some simple logical specification, let it be at least simple
and intuitive!

Thus, we shall now allow unannotated application nodes
t1 t2 and let-binding nodes let z = t1 in t2—here, we mean
no annotation at all and not the trivial annotation ∃β. β,
which we may still write, but explicitly. Since the expected
shape may now be missing, it becomes convenient to simul-
taneously allow explicit annotations on formal parameters of
functions, which we write λz : θ . t. Precisely, let expressions
of the language F?

ML be those of FML extended with the three
constructions above. Finally, we may now define typecheck-
ing in F?

ML(6) by elaboration into terms of FML computing on
shapes to fill in the missing annotations. This is a form of
(incomplete) shape inference that returns both a shape and
an elaborated term of FML. We write shape inference using
judgments of the form Γ `↑ t : S ⇒ t′ where the ↑ is there
to remember that S is inferred. Because F?

ML is a superset
of FML, there are still cases where the expected type, hence
the expected shape, are known. In such cases, elaboration
may be turned into a checking mode: it then uses the given
shape and elaborates subterms from which it can return an
elaborated term. Hence, we recursively define a judgment
Γ `↓ t : S ⇒ t′. Here, Γ, t and S are all given and t′ is re-
turned. The “↓” sign indicates that S is only checked. The
idea of mixing checking and inference modes is taken from
Peyton Jones and Shields [PVWS05a] but goes back to older
works such as local type inference [PT00]. The direction of
arrows is taken from [PVWS05a].

3.2 Elaboration

The two elaboration judgments are defined by the set of
rules of Figure 11. We used variable ε to range over ↑ and
↓. This allows factoring some rules that could otherwise be
written as pairs of rules.

Figure 11. Elaboration rules for F?
ML

Var-C
x : S′ ∈ Γ

Γ `↓ x : S ⇒ x

Var-I
x : S ∈ Γ

Γ `↑ x : S ⇒ x

Fun-C
Γ, z : S2 `↓ t : S1 ⇒ t′

Γ `↓ λz . t : S2 → S1 ⇒ λz . t′

Fun-I
Γ, z :] `↑ t : S ⇒ t′

Γ `↑ λz . t :] → S ⇒ λz . t′

FunA-C
Γ, z : dσe `↓ t : S1 ⇒ t′

Γ `↓ λz : ∃ β̄. σ . t : S2 → S1

⇒ λz . let z = (z : ∃ β̄. σ) in t′

FunA-I
Γ, z : dσe `↑ t : S ⇒ t′

Γ `↑ λz : ∃ β̄. σ . t : dσe → S
⇒ λz . let z = (z : ∃ β̄. σ) in t′

Let-ε
Γ `↑ t1 : S1 ⇒ t′1 Γ, z : S1 `ε t2 : S2 ⇒ t′2

Γ `ε let z = t1 in t2 : S2 ⇒ let z = (t′1 : bS1c) in t′2

LetA-ε
Γ `↓ t1 : dσe ⇒ t′1 Γ, z : dσe `ε t2 : S2 ⇒ t′2

Γ `ε let z = (t1 :∃ β̄. σ) in t2 : S2 ⇒ let z = (t′1 :∃ β̄. σ) in t′2

AppA-C
Γ `↓ t1 : dσe → S ⇒ t′1 Γ `↓ t2 : dσe ⇒ t′2

Γ `↓ t1 (t2 : ∃ β̄. σ) : S ⇒ t′1 (t′2 : ∃ β̄. σ)

AppA-I

Γ `↑ t1 : S ⇒ t′1 S[= S2 → S1 Γ `↓ t2 : dσe ⇒ t′2
Γ `↑ t1 (t2 : ∃ β̄. σ) : S1 ⇒ t′1 (t′2 : ∃ β̄. σ)

App-C
Γ `↑ t1 : S ⇒ t′1 S[= S2 → S′1 Γ `↑ t2 : S′2 ⇒ t′2

Γ `↓ t1 t2 : S1 ⇒ t′1 (t′2 : bS2c)
App-I
Γ `↑ t1 : S ⇒ t′1 S[= S2 → S1 Γ `↑ t2 : S′2 ⇒ t′2

Γ `↑ t1 t2 : S1 ⇒ t′1 (t′2 : bS2c)

Rule Var-C checks that there is a binding for x and
ignores the shape of x. Of course, a certain relation should
hold between S ′ and S. However, this will be verified by later
typechecking in FML, so we may just ignore this condition.
Rule VarA-I reads the shape from the environment Γ. Note
that the best known shape of x is S and not an instance of
S, which would be weaker.

In Rule Fun-C the given shape of the conclusion provides
us with both the shape of the parameter z and the expected
shape of t. We can thus elaborate the premise in checking
mode. Rule Fun-I is just the opposite, since nothing is
known from the conclusion. We thus use shape] for the
parameter and elaborate the premise in inference mode. In
Rule FunA-C we actually have extra information since the
shape of the parameter is known from both the annotation in
the conclusion and the shape of the conclusion. Again, some
relation between dσe and S2 should hold. We use dσe, which
is explicitly given and simply ignore S2 during elaboration.
Still, the let-binding in the elaborated term, which stands for
an additional pure type-annotation, ensures that the correct
relation between σ and S2 will be verified. Rule FunA-I, is
similar except that the premise is called in inference instead
of checking mode.

Cases for let-bindings (Let-ε and LetA-ε) are all very
similar. The left-premise is called in inference mode when
there is no annotation on t1; the right-premise is called in
inference mode when the conclusion is itself in inference

mode. The important detail is that in all cases, variable
z is bound to the best-known-shape dσe or S1, whether
it is taken from the annotation or inferred. In particular,
one cannot “generalize the shape” in any meaningful way.
Indeed, the type inferred for t1 during typechecking may
have free variables that could later be generalized during
typechecking. However, we cannot tell during elaboration,
so we may only assume for the shape of z the best known
shape of t1. Of course, typechecking may later do better!

An annotated application is elaborated in checking mode
(Rule AppA-C) by calling both premises in checking mode,
since all necessary shapes are known. In inference mode
(AppA-I), the left-premise must be called in inference mode
because the expected shape of t1 is not entirely known.
However, only the range of the inferred shape S1 matters and
is used in the elaboration (remember that S[is S stripped
off its toplevel quantifiers and reshaped). Again the domain
S2 should be related to σ in some way, but we may ignore
it here. Rules App-I and App-C deal with the inference
mode. Both premises must be called in inference mode,
since none of the expected shapes is ever entirely known.
The annotation S2 is however taken from the left-hand side.
This choice is somehow arbitrary, but it seems to usually
work better in practice. The difference between inference
and checking modes is that the return shape S1 is given in
checking mode, while it is the range of S[in inference mode.
(In checking mode the range S ′1 of S[, which is ignored,
should be related to S1 in some way.)

By construction, elaboration always keep existing anno-
tations, so it is the identity on terms of FML and idempotent
for terms of F?

ML.

Variations In typing rules for unannotated applications,
we have somehow made arbitrary choices, taking the anno-
tation from the domain of the inferred shape of the func-
tion and discarding the inferred shape of the argument.
In [Rém05], we propose other elaboration rules for appli-
cations that may also sometimes take the shape of the ar-
gument for building the annotation.

3.3 Typechecking in F?
ML

Of course, elaboration may return ill-typed programs, since
shapes are only an approximation of types. Hence the pro-
grams resulting from elaboration must be submitted to type
inference in FML. Actually, well-typedness in F?

ML is simply
defined by means of elaboration in FML.

Definition 1. Let Γ `ε t : σ if and only if there exists an
expression t′ such that dΓe `ε t : dσe ⇒ t′ and Γ ` t′ : σ.

By construction, F?
ML is sound. Elaboration preserves the

type erasure, hence the semantics of terms.
Elaboration rules are given in syntax-directed form and

are deterministic. They straightforwardly define an algo-
rithm that, given Γ and t as input, returns the shape of
t and an elaborated term t′. Thus, type inference problems
in F?

ML can be solved as follows: given Γ and t, let elabo-
ration compute both a term t′ and a shape S such that
Γ `↑ t : S ⇒ t′; let ∃ β̄. σ be bSc; infer a principal sub-
stitution ϕ for the type checking problem Γ ` t′ : σ in
FML and returns the substitution ϕ and the type ∀ \Γϕ. σϕ.
By construction this type inference algorithm is sound and
complete with respect to Definition 1, because propagation
is deterministic and type-checking in FML is sound and com-
plete for the logical specification of FML.

One may argue that Definition 1 does not have a logical
flavor. Indeed, we agree! However, we sustain the claim that
it is simple and easy to understand. Ill-typed programs may
be explained by providing both the elaborated program and
an explanation of why it does not typecheck in FML. Either
the elaborated program is not as expected, and the user
should easily see why since elaboration is simple or he should
understand the type error with respect to the elaborated
program.

3.4 Elaboration with coercions

So far, we have elaborated coercions as constants. How-
ever, we may take advantage of elaboration to allow par-
tial type information on explicit coercions as well. Let us
allow to omit any side of an explicit coercion, i.e. to write
(t : ∃ β̄. . σ2), (t : ∃ β̄. σ1 .) and (t : .) respectively. Elab-
oration must return a fully specified coercion by filling in the
missing part. We do this in the obvious ways, turning a co-
ercion into a simple type annotation or simply discarding it
when insufficient information is available. By lack of space,
we refer to the full version for the corresponding elaboration
rules.

Conversely, we may also allow elaboration to insert coer-
cions that are not user-specified. However, in general, this
would amount to guessing polymorphism. So we should only
insert obvious coercions. In particular, when otherwise elab-
oration would lead to a typechecking error. There are such
opportunities in rules Var-C, FunA-C, and several appli-
cation rules. We say that the annotation S1 is compatible
with the annotation S2, which we write S1 ≤η−

p S2, if there
exists type schemes σ1 and σ2 of shape S1 and S2 such that
σ1 ≤η−

p σ2. For instance, (∀α. α) →] is not compatible with
(∀α. α → α) →].

We may restrict rule Var-C to cases where the shape
S ′ of x is] or is compatible with the expected shape S.
Otherwise, we may elaborate x as if it were (x : .). Similarly,
we may restrict FunA-C to cases where S ′2 is] or compatible
with dσe. Otherwise, we may elaborate λz : ∃ β̄. σ . t as if it
were λz . let z = (z : ∃ β̄. . σ) in t. Rules for applications
have several places where elaboration may obviously lead
to a typechecking failure. We may introduce a coercion on
the function-side or on the argument-side. Or on both sides,
but this would require guessing an intermediate type scheme
at which both coercions would meet. Further investigation
is necessary to find a reasonable and useful strategy for
inserting coerions around applications.

3.5 Elaboration with an imperative semantics

Actually, elaboration does not depend on the differences
between FML(≤η−

p) and Fv
ML(≤η−

p). To safely elaborate pro-
grams for Fv

ML(≤η−
p), we only need to replace typechecking

in FML(≤η−
p) by typechecking in Fv

ML(≤η−
p). We write Fv ?

ML for
the corresponding language. This language is safe by con-
struction, since elaboration preserves the semantics and the
final typechecking ensure type-safety. Of course, type-safety
is not sufficient to make Fv

ML(≤η−
p) an interesting language.

One potential problem is that elaborated programs would
then too often be rejected because of the value-restriction.

For instance, consider an expression t1 of the form (λz .
λy . y) t0 where t0 is a well-typed expansive expression. Let
σid be ∀α. α → α. In F?

ML we have both `↑ t1 : σid and
`↓ t1 : σid. In Fv ?

ML , we do not have `↑ t1 : σid any more,
because this will first infer a monomorphic type and fail to
generalize at the end. Fortunately, we still have `↓ t1 : σid.
Note that if t0 were non-expansive, then t1 would also be

non-expansive and no annotation would be needed—just
to emphasize the benefits of using a larger class of non-
expansive expressions than just values and variables.

As another example consider the expression t2 equal to
let f = (λy . y : σid) in (λz . f) t0. Here, we even have `↑ t2 :
σid because the polymorphic shape of f can be inferred. One
may wonder why an explicit annotation on f is needed, since
F?
ML can infer that λy . y has polymorphic type σid. Indeed,

the problem is that elaboration is performed before type
inference. A solution is to use incremental elaboration as
described in Section 3.6

3.6 Incremental elaboration

Annotating let-bound expressions with ML types has shown
to be sometimes useful. This may seem surprising, since
these types can actually be inferred. The reason is that elab-
oration, which uses annotations, is performed before type-
checking and does not see inferred let-bound polymorphism.
Incremental elaboration is a solution to this problem. In-
stead of performing elaboration of the whole program fol-
lowed by typechecking we may elaborate and typecheckeck
programs by smaller parts, such as toplevel phrases. Con-
sider, for instance, the expression let z1 = t1 in . . . let zn =
tn in t. It can be seen as a succession of n+1 phrases, each of
which but the last one augmenting the initial environment
with a binding zk : σk where σk is the type inferred for tk.

Assuming such a mechanism, no ML-like annotation
would ever be useful on the toplevel bindings of z̄. We may
push this idea further and apply it to local bindings as well
using the tree-structure of let-bindings to order the sequence
of small elaboration followed by typechecking steps. How-
ever, this is getting (slightly) more complicated and loosing
the simplicity of the two-step mechanism so that at the end
the user may not so easily understand the elaboration pro-
cess. Incremental elaboration at the level of toplevel phrases
seems to be a good compromise.

4. Related works and conclusions
We have already widely discussed related works in the in-
troduction and in particular the most closely related one,
PVWS, that inspired this work. Another close work, devel-
oped in parallel with ours, is a recent proposal by Peyton-
Jones et al. [VWP05], which we refer to below as VWP. It
contributes a significant improvement over PVWS.

Leaving impredicativity aside, FML(≤η−
p) and PVWS have

similar, but incomparable, expressiveness. That is, both
have the capability to propagate annotations in both di-
rections. However, they also differ in small details and there
are examples that one can type and the other cannot. Since
our elaboration is defined as a simple preprocessing step, it
can easily be modified, e.g. to match PVWS more closely,
but not entirely.

We have chosen to elaborate applications without prop-
agation of information from the function to the argument
(e.g. App-I), as opposed to PVWS. Our choice is more sym-
metric and keeps the flow of elaboration bottom-up, which is
more intuitive for the user to guess the elaborated program.
Of course, we lose some information this way, at the benefice
of more predictable elaboration and typechecking. Actually,
the result of elaboration is then passed to typechecking, so
some information may still flow sideway, e.g. from the func-
tion side to the argument side. However, such information
does not depend on underneath first-order unification nor on
the order in which typechecking is performed. This is actu-
ally another limit of our separation of elaboration and type-

checking. Incremental elaboration re-introduces some order-
ing in which typechecking must be performed, but in a con-
trolled and intuitive manner.

The language VWP shares a lot with PVWS including
the monolithic algorithmic specification of typechecking.
However, VWP also improves over PVWS in at least two
significant ways. First, checking and inference modes are
carried on types rather than on typing judgments, much
as for colored local type inference [OZZ01]. This provides
with a more precise control of these modes. For instance,
it allows to specify that some part of a type is known
and to be checked while some other part is still unknown
and to be inferred—a capability that we missed in the
elaboration of applications. However, as a result, VWP is
also quite involved and it seems quite difficult to guess in
advance whether a program is typable without running the
algorithm, which can hardly be done mentally or even on
paper.

Second, VWP also allows for impredicative polymor-
phism. The treatment of impredicative polymorphism seems
better integrated in VWP. However, it is also deeply hid-
den into algorithmic inference rules and an ad-hoc multi-
argument typechecking rule for applications. This makes it
difficult to understand the interaction between impredica-
tive instantiation and predicative type-containment, since
both seem to be left implicit, which clearly cannot be the
case.

The monolithic type inference process of VWP seems
to be more powerful in propagating known information
than F?

ML. However, it simultaneously mixes complicated
orthogonal concepts in hard-wired algorithmic rules, and as
PVWS, it lacks a simple specification.

We see at least three directions for future improvements.
Improving the expressiveness of the core language is to be
favored. Finding a stronger relation than ≤η

p for which first-
order constraints would be easily solvable. In particular solv-
ing constraints of the form ≤η−

p ◦ ≤F ◦ ≤η−
p would enable

explicit impredicative instantiation up to predicative con-
tainment by taking this relation for 6I . We should also ex-
plore properties of elaborations in more details, which we
may then advantageously exploit. Finally, elaboration could
probably be made more accurate by introducing variables
ranging over type schemes to represent unknown informa-
tion and avoid assigning them] a priori. This could also
help with the elaboration of impredicative coercions. Hope-
fully, such solutions may avoid the need for more incremen-
tal elaboration, which could be confusing and less intuitive
for the user. However, we might then lose our original goal
to keep type inference within the resolution of first-order
constraints.

If we are to lose this simplicity, we should also compare

with MLF [LBR03, LB04], which was designed so as to allow
impredicative instantiation from the beginning, and does it
rather well, by comparison with impredicative instantiation

in F?
ML. Conversely, MLF does not have type-containment—

and does not allow ≤η
p instantiations—but this does not

seem to be a problem at all in practice. Already present

in MLF is the idea of elaboration to propagate annotations
from interfaces to abstractions inside expressions, although

elaboration used for MLF remains a rather trivial process.

MLF has obviously a more powerful type inference engine
and seems to perform better than F?

ML. However its meta-
theory is also more involved.

Conclusions

In summary, we have proposed a core language FML with
first-order type inference with predicative type containment
and explicit impredicative type-instantiation. A more con-
venient surface language F?

ML may be used to alleviate some
repetitions of type annotations in source programs. It is de-
fined by a simple elaboration procedure into the core lan-
guage.

We believe that the decomposition of type inference into
a simple elaboration procedure that propagates second-order
type annotations followed by a first-order ML-like type in-
ference mechanism is a good compromise between a logical
and an algorithmic presentation. At least, it clearly sepa-
rates the algorithmic elaboration process, which is complete
by definition, but incomplete by nature, from the logical
order-independent specification of type inference.

As observed, small variations in the logical specification,
e.g. in the type-containment relation or the application of
generalization may result in rather different type inference
algorithms. This confirms, if it were necessary, that algorith-
mic specifications of type inference are fragile. Of course, al-
gorithmic elaboration is a remedy. The goal remains to find
expressive type systems with simple logical specifications for
which we have complete inference algorithms.

Acknowledgments

I would like to particularly thank François Pottier for many
fruitful discussions regarding this work. I am also grateful to
Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton
Jones for their useful feedback concerning this paper and,
more generally, for discussions on type inference with type-
containment.

References
[BCP99] Kim B. Bruce, Luca Cardelli, and Benjamin C.

Pierce. Comparing object encodings. Information
and Computation, 155(1/2):108–133, November 1999.

[Gar04] Jacques Garrigue. Relaxing the value restriction. In
International Symposium on Functional and Logic
Programming, volume 2998 of Lecture Notes in
Computer Science, Nara, April 2004. Springer-Verlag.

[GR97] Jacques Garrigue and Didier Rémy. Extending ML with
semi-explicit higher-order polymorphism. In Takayasu
Ito and Mart́ın Abadi, editors, Theoretical Aspects
of Computer Software, volume 1281 of Lecture Notes
in Computer Science, pages 20–46. Springer-Verlag,
September 1997.

[HP99] Haruo Hosoya and Benjamin C. Pierce. How good is
local type inference? Technical Report MS-CIS-99-17,
University of Pennsylvania, June 1999.

[LB04] Didier Le Botlan. MLF: Une extension de ML
avec polymorphisme de second ordre et instanciation
implicite. PhD thesis, University of Paris 7, June 2004.
(english version).

[LBR03] Didier Le Botlan and Didier Rémy. MLF: Raising
ML to the power of system-F. In Proceedings of the
Eighth ACM SIGPLAN International Conference on
Functional Programming, pages 27–38, August 2003.

[Lei91] Daniel Leivant. Finitely stratified polymorphism.
Information and Computation, 93(1):93–113, July
1991.

[LO94] Konstantin Läufer and Martin Odersky. Polymor-
phic type inference and abstract data types. ACM
Transactions on Programming Languages and Sys-
tems, 16(5):1411–1430, September 1994.

[Mit88] John C. Mitchell. Polymorphic type inference and
containment. Information and Computation, 76:211–
249, 1988.

[OL96] Martin Odersky and Konstantin Läufer. Putting type
annotations to work. In ACM Symposium on Principles
of Programming, pages 54–67, St. Petersburg, Florida,
January 21–24, 1996. ACM Press.

[OZZ01] Martin Odersky, Christoph Zenger, and Matthias
Zenger. Colored local type inference. ACM SIGPLAN
Notices, 36(3):41–53, March 2001.

[Pfe88] Frank Pfenning. Partial polymorphic type inference and
higher-order unification. In Proceedings of the ACM
Conference on Lisp and Functional Programming,
pages 153–163. ACM Press, July 1988.

[PR] François Pottier and Didier Rémy. The essence of
ML type inference. Extended version of [PR05] (in
preparation).

[PR05] François Pottier and Didier Rémy. The essence
of ML type inference. In Benjamin C. Pierce,
editor, Advanced Topics in Types and Programming
Languages, chapter 10, pages 389–489. MIT Press,
2005.

[PS03] Simon Peyton Jones and Mark Shields. Lexically-
scoped type variables. Submitted to ICFP 2004, March
2003.

[PT00] Benjamin C. Pierce and David N. Turner. Local type
inference. ACM Trans. Program. Lang. Syst., 22(1):1–
44, 2000.

[PVWS05a] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie
Weirich, and Mark Shields. Practical type inference for
arbitrary-rank types. Submitted to the Journal of
Functional Programming, June 2005.

[PVWS05b] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie
Weirich, and Mark Shields. Practical type inference
for arbitrary-rank types. technical appendix. Private
communication, June 2005.

[Rém94] Didier Rémy. Programming objects with ML-ART:
An extension to ML with abstract and record types.
In Masami Hagiya and John C. Mitchell, editors,
Theoretical Aspects of Computer Software, volume 789
of Lecture Notes in Computer Science, pages 321–346.
Springer-Verlag, April 1994.

[Rém05] Didier Rémy. Simple, partial type-inference for System
F based on type-containment. Full version, September
2005.

[TU02] Jerzy Tiuryn and Pawel Urzyczyn. The subtyping prob-
lem for second-order types is undecidable. Information
and Computation, 179(1):1–18, 2002.

[VWP05] Dimitrios Vytiniotis, Stephanie Weirich, and Simon
Peyton Jones. Boxy type inference for higher-rank
types and impredicativity. Available electronically at ,
April 2005.

[Wel94] Joe B. Wells. Typability and type checking in the
second-order λ-calculus are equivalent and undecidable.
In Proceedings of the Ninth Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 176–185,
1994.

[Wel95] Joe B. Wells. The undecidability of Mitchell’s subtyping
relation. Technical Report 95-019, Computer Science
Department, Boston Univiversity, December 1995.

[Wel96] Joe B. Wells. Typability is undecidable for F+eta.
Technical Report 96-022, Computer Science Depart-
ment, Boston Univiversity, March 1996.

[Wri95] Andrew K. Wright. Simple imperative polymorphism.
Lisp and Symbolic Computation, 8(4):343–355, 1995.

