
Partial Type Inference with Higher-Order Types

Paolo Herms

17 July 2009

Abstract

The language MLF is an extension of System F that permits robust
first-order partial type inference with second-order polymorphism.

We propose an extension of MLF’s graphical presentation with higher-
order types and reduction at the type level as in System Fω. As inference
of higher-order types won’t be possible in general, the extension introduces
System F-style explicit type abstraction and type application.

1

Abstract

The goal of this work is the basis of a functional programming
language whose type system supports partial type inference in pres-
ence of higher-order polymorphism. Higher-order types enable to
express type operators as functions at the type level and to type
expressions that abstract over type operators.

The starting point of this work is MLF, an extension of Sys-
tem F that permits partial type inference with second-order polymor-
phism. Functions with polymorphic arguments need second-order
types. They can be used to encode existential types, polymorphic
iterators and monads.

The original, syntactical presentation of MLF is quite complex as
it manages a huge amount of technical details and an alternative,
graphical presentation has been proposed. Here, types are directed
acyclic term graphs with additional binding edges. Type inference is
done by solving graphic constraints. This work builds on the graph-
ical presentation extending the constraint system and the solving
mechanism.

Like in ML and unlike in System F, polymorphism is inferred in
MLF without the need for System F-style explicit type abstractions
and type applications. Hence, the language doesn’t provide for such
constructs. However, inference of higher-order types is undecidable
in general and in certain situations it will even be desired to explicitly
determine where type operators are abstract and where, on the con-
trary, the implementation is given, for instance to encode modules.
Therefore, a part of the work is to extend MLF with constructs for
explicit type abstraction and application. As an intermediate result,
we can now type programs where ML-style implicit polymorphism is
mixed with System F-style explicit polymorphism.

The other part of the work is the effective inclusion of β-reduction
rules into the type system to support functions at the type level.
The rules are given in terms of graphical rewrite rules, which are
inspired by the λ-calculus implementation in interaction nets. They
are added to the MLF equivalence relation on types. Design decisions
has been taken to keep the unification algorithm efficient.

The result is MLFω, an extension of MLF with support for explicit
type abstraction and higher-order types.

2

Contents
1 Research Context 4

1.1 MLF . 5
1.2 HML . 6

2 Graphic types and constraints 7
2.1 ML Graphic types . 7
2.2 Polymorphic Graphic Types . 8
2.3 Graphic Constraints . 9

3 Higher-Order Graphic Types 12
3.1 Explicitly-Bound Types . 12
3.2 Explicitly-Bound Graphic Types 12

3.2.1 Explicit binding edges . 12
3.2.2 Constraint edges . 14
3.2.3 Translation . 14
3.2.4 The instance relation . 16
3.2.5 Conversion . 18

3.3 Higher-order types . 18

4 Conclusions 23

A Box 25

3

1 Research Context
One of the main reasons of the success of ML is type inference. The programmer
does not need to write any type annotation and still his programs are guaran-
teed type safe. At the same time, ML provides parametric polymorphism. For
instance, one can write let f = λ (x) x in (f 5, f ”5”). Here, the function f has
the polymorphic type ∀α.α → α, which is once instantiated as int → int and
once as string → string.

An important restriction of ML-polymorphism is that polymorphic argu-
ments are not supported — ML-polymorphism is limited to rank-1. For instance,
the semantically equivalent expression (λ (f) (f 5, f ”5”)) (λ (x) x) is not typable
in ML, as the argument would need to have a polymorphic type. The basic for-
malism for higher-rank polymorphism is System F, for which type-inference is
unfortunately undecidable. That means that the type of every function param-
eter has to be given manually by type annotations. Type-variables appearing
in annotations have to be explicitly introduced by type abstraction and appli-
cation. For instance, the above example is written

(λ (f : ∀ (α) α → α) (f [int] 5, f [string] ”5”)) (Λ (α) λ (x : α) x)

Notice the explicit type abstraction Λ (α) and type applications [int] and [string].
This way, the type system only has to perform type-checking, which is decidable
in System F. However, the need for full type annotations makes System F rather
unusable as a programming language.

Finally, a generalization of System F, Fω allows for first-class type oper-
ators, called higher-order types, where β-reduction is performed at the level
of types. Type operators are first-class if they can be expressed and handled
as first-class functions at the level of types. For instance, we can somewhere
define arrow as λ (α) λ (β) α → β and then write the expression
(λ (f : arrow α β) λ (x) f x) (λ (z) z).1 Or, using type abstraction, we can write
expressions in which type operators are abstracted over, as list in

Λ (list) λ (Nil : ∀ (α) list α) λ (Cs : ∀ (α) α → list α → list α) Cs 5 (Cs 4 Nil)

System Fω is the underlying calculus for the current implementation of the
module system in OCaml. This module system is implemented at a distinct
layer of the rest of the language and it is worth striving for a formalism which
integrates type inference with first-class higher-order types.

A lot of research has been done trying to combine higher-rank polymorphism
with type inference. As complete type inference has been proven undecidable,
such a type inference will necessarily be partial. This means that in any case,
some type annotations will be needed to allow inference of the rest of the pro-
gram. The several research results differ in how much annotation is needed in
programs and where.

1Here, the free type variables mean any type which corresponds to the semantic of a free
type variable in an OCaml phrase. The correct notation for this is ∃α.α but a consequent
adoption of this notation would be too heavy-handed.

4

A first approach is called Local Type Inference. Here, local means that
missing annotations are recovered using only information from adjacent nodes
in the syntax tree. It is an algorithmically driven approach that lacks a clear
annotation rule, that is a rule that tells the programmer where type annotations
have to be given. Furthermore, it is unstable to program transformations. The
current support for rank-2 polymorphism in Haskell is based on this approach.

Currently, the most exhaustive solution to this problem is MLF.

1.1 MLF
The very problem for type inference in System F is the lack of principal types. In
ML, each sub-expression of a program has a type, that is more general than every
other type the expression may be assigned to. This does not work in general
in System F, as illustrated by the following example. Consider the function
choose of type ∀ (β) β → β → β that takes two arguments and returns either
one. If choose is applied to the identity function id, with the type ∀ (α) α → α,
this should have a type like t → t where both occurrences of t are the same
instance of ∀ (α) α → α. Now, we have two options. We can introduce a new
type variable γ and instantiate both occurrences of t as (γ → γ) resulting in the
type ∀ (γ) (γ → γ) → (γ → γ). Or, we can leave both of them polymorphic and
obtain the type (∀ (α) α → α) → (∀ (α) α → α). Now, neither of these types is
more general than the other one. The inner polymorphism of the second one
cannot be recovered by instantiating the first one. Conversely, the first one
cannot soundly be instantiated any further. The crucial information that the
two instances of (∀ (α) α → α) are linked, and that instantiating them together
would be sound, has been lost and we find ourselves with two non confluent
strategies: instantiate as soon as possible or instantiate as late as possible. This
is fatal for type inference, where once taken decisions are difficult to backtrack.

MLF resolves this problem by enriching the type system with two new
forms of bounded quantification. For instance, choose id can receive the type
∀ (γ ≥ ∀ (α) α → α) γ → γ, read γ → γ, where γ is an instance of ∀ (α) α →
α. This way we can always decide to instantiate as late as possible, keeping
the several instances synchronized. This form of quantification is called flex-
ible, because the bound can freely be instantiated further. For instance, if
choose id is applied to succ with the type int → int, then the ∀ (α) α → α in
∀ (γ ≥ ∀ (α) α → α) γ → γ becomes int → int resulting into

choose id succ : ∀ (γ ≥ int → int) γ ≡ int → int

The counterpart of flexible quantification is rigid quantification. It is in-
troduced in MLF to be able to perform inference in the presence of type anno-
tations. For instance, the expression λ (z : ∀ (α) α → α) z z receives the type
∀ (β′ = ∀ (α) α → α)∀ (β′′ ≥ ∀ (α) α → α) β′ → β′′ with the precise meaning
that a polymorphic function is required as parameter.

Even if these types may seem rather unappealing, the result is comforting.
MLF has a clear and simple annotation rule:

5

Only function parameters have to be annotated, in particular if and
only if they are used in a polymorphic way.

For instance, the auto-application λ (z) z z we just saw, must be annotated as
z is used polymorphically, while the identity function need not. So you can
write (λ (z : ∀ (α) α → α) z z) (λ (x) x) which is typed correctly as the identity
automatically receives the polymorphic type ∀ (α) α → α.

Therefore, MLF is a conservative extension of ML. In particular, all ML
terms are typable in MLF. At the same time, it offers the full power of System
F without the need for explicit type abstraction and type application.

Moreover, the set of well-typed programs is invariant under a wide class of
program transformations, including let-expansion, let-reduction, η-expansion,
reordering of arguments, curryfication, and also “abstraction of applications”,
which means that a1 a2 is typable if and only if apply a1 a2 is, with apply defined
as λ (x) λ (x) f x.

Recall that our goal is to find a way to combine (partial) type inference with
higher-order types. Apart from the kinding problem, that is, the well-formedness
of higher-order type expressions, the Fω type equivalence rules which implement
β-reduction could, in principle, be included unchanged into a syntactical pre-
sentation of MLF with a reintroduced form of explicit quantification. However,
the original syntactical presentation of MLF is too technical to enable checking
the formal details of an extension with a reasonable effort.

1.2 HML
One possible approach is to start the work on the simpler and less ambitious
version HML, which has a relatively simple syntactical presentation. HML avoids
the use of rigid quantifiers by just inlining rigidly bound types, which leads to a
loss of information about sharing and as a result requires more type annotations
compared to MLF. The stronger, yet simple, annotation rule in HML is: Function
parameters with a polymorphic type must be annotated. Recall that in MLF
function parameters must be annotated only if they are polymorphically used.

For instance, recall that both type systems reject the self application ω,
defined as λx.x x, because x is used polymorphically, unless it is annotated as
in the expression λ (x : ∀α.α → α) x x (referred to as ω†) which is accepted by
both type systems. Now, the expression λx.ω† x is accepted only by MLF while
HML would reject it, as the parameter has a polymorphic type, though not
used polymorphically. Notice that λx.ω† x is the η-expansion of ω† and the
β-reduction of apply ω†, which are both accepted by HML, where apply stands
for the expression λx.λy.x y.

This shows how the seemingly little difference in the annotation rule leads
HML to be less robust to small program transformations. We preferred therefore
to build on the graphical presentation of MLF, which is more general and well-
understood, to extend it with higher-order types.

6

2 Graphic types and constraints

2.1 ML Graphic types
ML graphic types are directed acyclic term graphs. Every node is labeled with
a symbol. Variable nodes are labeled with the pseudo symbol ⊥, all the other
symbols stand for type operators they represent. At least the arrow → has to
figure among type constructors. Graphic types are generally graphs and not
trees because sub-graphs can be shared. Sharing of variable nodes is important
to mean several occurrences of a type variable within a type, while sharing of
inner nodes as in τ ′3 in Figure 1 is not semantically significant in ML.2 That’s
the reason why ML graphic types can be printed out as trees and read back as
graphs. For instance, τ2, which represents the ML type (α → α) → (β → β), is
different from τ3 because the ⊥-node is shared in the latter. On the contrary,
τ3 and τ ′3 are equivalent to represent both the ML type (α → α) → (α → α).

In ML, the type (α → α) → (β → β) is an instance of α′ → (β → β), graph-
ically represented by τ1, that is, it is less general because the type variable α′

has been substituted or instantiated by the type α → α, which in turn could be
further instantiated to, say int → int. This is captured by the well-defined in-
stance relation on ML types. The instance relation on ML graphic types reflects
the instance relation on ML types, but is a little more fine-grained. In particular
τ1 ≤ τ2 ≤ τ3 ≤ τ ′3 holds but τ ′3 ≤ τ3 does not. Instance on ML graphic types is
defined as the union the two atomic operations grafting, i.e. the substitution of
a ⊥-node by a sub-graph, and merging, the fusion of two isomorphic sub-graphs.
In Figure 1, τ ′3 is an instance of τ3 by merging, which is an instance of τ2 by
merging, which in turn is an instance of τ1 by grafting. Notice how, syntac-
tically, grafting corresponds to substituting the occurrences of a type variable
with a type and merging two ⊥-nodes corresponds to substitute the occurrences
of a type variable by another type variable. For example, (α → α) → (β → β)
becomes (α → α) → (α → α) when merging α and β. Merging two inner nodes
works similarly, except that it has no syntactical correspondence, thus the strict
inclusion of the instance relations. The fact that instantiating τ3 to τ ′3 is some-
how reversible is captured by the reflexive similarity relation ≈ on graphic types,
i.e. τ3 ≈ τ ′3.

→

→⊥

⊥

→

→→

⊥⊥

→

→→

⊥

→

→

⊥

Figure 1: ML Graphic Types

2Implementations of type inference may introduce sharing of inner nodes for efficiency

7

a) b) c) d)
→

→⊥

⊥

→

→⊥

⊥

→

→

⊥

→

⊥

Figure 2: Polymorphic Graphic Types

2.2 Polymorphic Graphic Types
In ML, polymorphism is prenex or rank-1. That is, what an ML type like
α → (β → β) really means is ∀ (α)∀ (β) α → (β → β). Binders can be omitted
in ML, because they would always appear at top-level. In higher-rank type
systems, polymorphic types can appear under type constructors as in ∀ (α) α →
(∀ (β) β → β). Graphically, this is expressed by a binding edge, from the variable
node to the node in front of which the quantifier is introduced. See for instance
the graphic representations of the last two types, we talked about, in Figure 2
a) and b).

While the first two graphic types have a direct correspondence in syntactic
types, this is not the case for the third one. Recall that sharing of inner nodes is
not significant in ML, so this could be similar in System F. On the contrary, the
essence of MLF is precisely the possibility to represent sharing of synchronized
instances, like in the choose id example. Indeed, Figure 2 c) shows the repre-
sentation of the type of the expression choose id: ∀ (γ ≥ ∀ (α) α → α) γ → γ.
Notice the binding edge from the inner arrow-node to the topmost one. It repre-
sents the fact that γ is introduced at the outermost position. At the same time,
γ is constrained to be an instance of ∀ (α) α → α. This is exactly represented
by the sub-graph under the first →. For comparison, see Figure 2 d) which
shows the representation of ∀ (α) α → α. Indeed, if no constraint is given in a
quantification as in ∀ (α)∀ (β) α → (β → β) it actually means that the variable
is an instance of ⊥, which is always true. In full, this type could be written
∀ (α ≥ ⊥)∀ (β ≥ ⊥) α → (β → β) and that is also the reason why unconstrained
variable nodes are labeled with ⊥.

While two instance operations are sufficient to describe the instance relation
on ML graphic types, another two are needed for MLF to operate on the binding
tree: Raising of a binder extrudes polymorphism as in ∀ (α) α → (∀ (β) β → β)
where raising the variable β results in ∀ (α)∀ (β) α → (β → β). Weakening
turns a flexible binding edge into a rigid one. Figure 3 shows the four atomic
instance operations in detail. The instance relation for MLF is then defined as
the transitive union of the four atomic operations. The fact that some oper-
ations may not be allowed for certain nodes in a graphic type is expressed by
a permission system. Roughly, rigidly bound nodes (permission R) and their
sub-graphs (permission L) are protected from instantiations such that required

8

Grafting Weakening

⊥F vG .

τ

.

.FI
≥

vW .

.

=

Merging Raising
.

cFRI

τ

π
¦

c FRI

τ

π′
¦ vM .

c

τ

π π′¦
.

.
¦′

.FRI
¦

vR .

.
¦′

.

¦

Figure 3: Instance operations

polymorphism is preserved, whereas flexibly bound nodes (permission F) can be
freely instantiated. The instance relation for MLF, writtenv, is then defined as
the transitive union of the four atomic operations

(
vG ∪ vW ∪ vM ∪ vR

)∗.
2.3 Graphic Constraints
Graphical type inference is based on graphic constraints. To perform type infer-
ence of an expression, the algorithm generates a graphic constraint by structural
translation of the expression’s syntax tree and then solve it. For the algorithm, a
graphic constraint is solved, when is doesn’t contain any more constraint edges.
Therefore, the algorithmic solution of a graphic constraint is a graphic type - a
type which can be assigned to the expression.

We consider two types of constraint edges: unification edges and instantia-
tion edges.

– A unification edge n1 n2 links two type nodes and means that
the types under n1 and n2 should become equal. It is solved and can be
removed when n1 and n2 can be merged according to the previously defined
instance relation. Of course, this may require other instance operations
before a merge is possible.

– An instantiation edge g n relates a G-node g to a type node n. It
requires the type under n to be an instance of the type scheme represented
by g. It is solved by adding to the constraint an expansion of the type
scheme and a unification edge between its root node and n. This way, the
problem of resolving an instantiation edge is reduced to the resolution of
a unification edge. The expansion of a type scheme is, roughly, a copy of
the type under the G-node.

Each sub-expression is typed at its generalization level at which polymorphism
can be introduced. Graphically, an expression is translated into a constraint

9

Figure 4: Translation of expressions into graphic constraints

graph with a G-node as root, at which every node in the constraint is ini-
tially bound. If the expression is a composition of sub-expressions, these sub-
expressions are recursively translated and their translations’ roots, which in
their turn are again G-nodes, are all bound to the main expressions root node,
too. See Figure 4 for the precise translation rules. The rectangular boxes stand
for the result of the translation function applied to the expression they are la-
beled by. Expressions are translated under a typing environment that contains
constraint edges, each of which labeled by the variable it constraints if it appears
free within the expression.

Figure 5: Translation of λ (x) λ (y) x

10

As an example, we show the type inference of the expression λ (x) λ (y) x. See
at first its incremental translation into a graphic constraint in Figure 5. After
two applications of the abstraction rule and one application of the variable rule,
the simple expression is completely translated. Notice how the unification edge
has the meaning that the codomain of the first arrow should have the same type
as the occurrence of x in the body. The codomain of the second arrow hasn’t
any outgoing unification edge because y doesn’t appear in the body.

Figure 6 shows the evolving inference algorithm on λ (x) λ (y) x. The first
picture shows the actually generated type constraint out of the expression. Here,
an optimization has been applied, which considers that a type scheme with only
a single ⊥-node can directly “pass through” an incoming unification edge. In
the second picture, the unification edge has been solved as the two linked nodes
are merged. In the third picture, the type scheme that constrains the domain of
the first →-type has been expanded, that is a sort of working copy to unify with
has been added. Notice how the node outside the sub-graph’s scope is shared
between the copy and the original graph. Having performed this expansion,
the instantiation edge is solved and can be removed - so can all the nodes
which haven’t got any incoming constraint edges and are not in the root node’s
structural sub-tree, that is have become orphans. The fourth picture shows the
cleaned up constraint, which is further instantiated in the fifth picture, in order
to merge the two linked nodes in the last picture. The constraint has now been
solved and therefore corresponds to the principal type ∀ (α) α → ∀ (β) β → α of
the expression λ (x) λ (y) x.

G

→

⊥ ⊥

G

⊥

→

⊥

G

→

⊥

G

⊥

→

⊥

G

→

⊥

G

⊥

→

⊥

⊥

→

G

→

⊥

⊥

⊥

→

G

→

→

⊥

→

⊥ ⊥

G

→

→

⊥

⊥

Figure 6: Type Inference of λ (x) λ (y) x

11

3 Higher-Order Graphic Types
The goal of this work is to add support for higher-order types to the graphical
presentation of MLF to obtain a language with first-class type-operators in which
most of the types can be inferred. MLF infers polymorphism and implicitly
instantiates polymorphic types when needed and that way avoids completely
explicit type abstractions and type applications. However, the sense of first-
class type-operators is precisely to be able to write expressions that abstract
over the implementation of a type operator in order to apply them later to
its implementation. OCaml modules are modeled that way. Therefore, our
language needs a form of System-F-like explicit type abstraction and application.

3.1 Explicitly-Bound Types
Explicit type abstraction cannot be handled with the original MLF binding
mechanism. If an explicit type variable was represented graphically as just
another flexibly bound bottom node, it could be implicitly instantiated during
type inference and the following type annotation would hold (the expression
would be typable): (Λ (α) λ (x : α) x) : int → int (see Figure 7). This would be
counter intuitive as in System F the type of the left hand side of the annotation
is ∀α.α → α which is polymorphic, though not equal to int → int and can
become int → int only by explicit type application (Λ (α) λ (x : α) x) [int].

Another difference with implicit polymorphism concerns the order of intro-
duction of type variables. The two types ∀ (α)∀ (β) α → β → β and ∀ (β)∀ (α) α →
β → β are equivalent in MLF and have the same graphic representation. This
must not be the case if these type variables are introduced explicitly as in
Λ (α) Λ (β) λ (x : α) λ (y : β) y and Λ (β) Λ (α) λ (x : α) λ (y : β) y. Since the or-
der of type application matters, these two terms must have different types.

This gives the intuition that implicit and explicit type abstraction should be
reflected differently in types. We’ll give them the syntactic types ∀i (α) α → α
and ∀e (α) α → α so as to distinguish whether the type variable was introduced
implicitly or explicitly. ML and MLF types contain only the implicit version,
whereas all System F types are of the explicit one. In MLFω both will occur so
we need the two different syntactic forms simultaneously in the language.3 With
this notation the two types ∀i (α)∀i (β) α → β → β and ∀i (β)∀i (α) α → β → β
are equivalent and ∀e (α)∀e (β) α → β → β and ∀e (β)∀e (α) α → β → β are
different.

3.2 Explicitly-Bound Graphic Types
3.2.1 Explicit binding edges

The adopted solution consists in introducing a new type of binding edge, the
explicit binding edge . (See Figure 8 for an example.) It stands for a

3Of course, this is just one possible notation. In a programming language, one could prefer
a notation where the implicit binder is notated simply ∀ and only the explicit binder, which
will occur much less frequently, is marked specially, like ∀ for instance.

12

G

→

⊥ ⊥G

→

⊥

G

→

→

int int

→

G

→

⊥→

⊥

G

→

→

int int

→

G

→

⊥→

⊥

→

→

int int

→

G

→

→

⊥

→

→

int int

→ →

int

G

→

→

⊥

→

int

G

→

int

Figure 7: Inference of (λ (x : α) x) : int → int

13

∀

∀

→

⊥ →

⊥

→

⊥ →

⊥

Figure 8: ∀iα.∀iβ.α → β → β and ∀eα.∀eβ.α → β → β

delayed flexible edge, that is, an edge that can become flexible at a later point
but that prevents any instantiation till then. To distinguish the order in which
explicit variables are introduced, the corresponding nodes are bound on ∀-nodes.
We choose the symbol ∀ to be of arity 2, where such a ∀-node’s first child is
always the variable node bound on that ∀-node. This way, there will always be
a structural edge and a binding edge between a ∀-node and its variable node,
which will help with type inference.

3.2.2 Constraint edges

The function of the new explicit binding edge is to prevent explicitly introduced
type variables from being instantiated during type inference. For instance, in
Figure 7, if the left-hand bottom node was explicitly bound, the unification edge
could not be solved, as this would require to graft the type int into the bottom
node. This resolves the issue of implicit instantiation of explicit type variables.
However, we still have to be able to instantiate them explicitly, that is, to type
an expression like a [τ] by replacing α in the type of a which must be of the
form ∀eα.τ ′.

For this purpose, we define a new explicit instantiation edge g n that
relates a G-node g to a type node n. Like the original instantiation edge, it
requires the type under n to be an instance of the type scheme represented by
g with, and this is new, the top-most explicit binding edge transformed into an
ordinary flexible binding edge.

3.2.3 Translation

Type inference for expression terms is done starting from the structural trans-
lation of these terms into typing constraints. If expressions are extended with
explicit type abstraction and explicit type application as in System F, we have
to add two new rules to the translation function.

a ::= . . . |Λα.a | a [τ] 4

14

G

∀

int ⊥

G

∀

→

⊥

G

∀

int ⊥

G

∀

→

⊥

∀

→

⊥

G

∀

int →

∀

int

→

int

G

∀

→

∀

int

→

int

G

→

int

→

int

Figure 9: Constraint resolution for (Λα.λx :α.x) [int]

G

∀

⊥ ⊥G
a

α

Λα.a

⇒

G

∀

⊥ ⊥

G
a

G

τ

a[τ]

⇒

Figure 10: Translation rules for explicit type abstraction and application

The two new rules are shown in Figure 10. Recall that the rectangular boxes
stand for the result of the translation function applied to the expression they are
labeled by, and that expressions are translated under a typing environment that
contains constraint edges, each of which labeled by the variable it constraints if
it appears free within the expression.

– A type abstraction Λα.a is typed as a type scheme containing an explicitly
polymorphic type ∀eα.τ , where τ must be an instance of the type of a.
The free variables of a are constrained by the typing environment, except
for occurrences of the type variable α which must be unified with the
explicitly bound type variable of the polymorphic type.

– A type application a [τ] is typed as ∀i (α ≥ τ ′) τ ′′α , where τ ′ must be an
instance of τ and where τ ′′α , which generally contains free occurrences of
α, must be such that ∀eα.τ ′′α is an instance of the type of a.
More precisely, in terms of graphic types, the resulting type is the second
child of an existentially introduced ∀-node, which is constrained to be an
explicit instance of the type of a, and whose first child is constrained to

4where α ranges over type variables and τ ranges over types

15

Grafting Weakening

⊥F vG .

τ

.

.FI
≥

vW .

.

=
.

.FI
≥

vW .

.

e

Merging Raising
.

cFREI

τ

π
¦

c FREI

τ

π′
¦ vM .

c

τ

π π′¦
.

.
¦′

.FRI
¦

vR .

.
¦′

.

¦

Figure 11: Instance operations, extensions wrt. MLF emphasized

be an instance of τ . The free variables of a and the free type variables of
τ are constrained by the typing environment.

3.2.4 The instance relation

The new instance relation on MLFω is still defined as the composition of the
four atomic instantiation steps Grafting, Weakening, Merging and Raising, that
is, v is defined as

(
vG ∪ vW ∪ vM ∪ vR

)∗. See the slightly modified instance
operations in Figure 11. The addition of the new binding edge introduces very
little change, as we have to forbid most instance operations for explicitly bound
nodes, as explained above. To this effect, we assign every explicitly bound node
the new permission E, for explicit. Only Merging is allowed for such E-nodes.

Recall that in general Merging requires the two sub-graphs being fused to
be isomorphic and to be bound at the same position with the same kind of
binder. Thus, the only way to unify an E-node with another node is to raise
the latter node until it is bound at the same position as the E-node and then
to weaken it to explicitly bound, the reason for which the Weakening oper-
ation has been extended. As E-nodes cannot be raised, this is only possible
if the node to unify with is bound at a lower position, so we shall type nei-
ther λ (x : α) Λ (β) λ (y : β) x = y, as this would require unifying α and β, nor
Λ (α) Λ (β) λ (x : α) λ (y : β) x = y. Furthermore, as Grafting is not allowed and
as the translation function generates typing constraints in which all explicitly
bound nodes are ⊥-nodes, we won’t type (Λ (α) λ (x : α) x = 5) either, as this
would require unifying int with α, whose permission is E and E does not allow
grafting.

All this has the desired effect of not implicitly instantiating explicit type
variables. On the other hand, see the example in Figure 12 of how partial
inference correctly works under an explicit binder.

16

G

∀

⊥ ⊥

G

→

⊥ ⊥

⊥⊥

→

G

→

⊥ ⊥

G

⊥

G

→

⊥⊥

G

→

→

→

⊥ bool

G ⊥ ⊥

→

G

Figure 12: Inference of Λ (α) λ (x : α) λ (y) x = y

17

3.2.5 Conversion

It might be useful to switch an expression from explicitly typed to implicitly
typed or vice versa. For the former, we just have to apply a Λ-expression to a
fresh1 type variable; For the latter, we have to introduce a type variable with
a Λ and annotate the expression with a monomorphic type using the new type
variable. See the following examples for explanation.

Assume a ≡ Λγ.Λδ.λ (x : γ) λ (y : δ) y and a ≡ λx.λy.y then

a : ∀eγ.∀eδ.γ → δ → δ

a [∃α′.α′] [∃β′.β′] : ∀iα.∀iβ.α → β → β

a : ∀iα.∀iβ.α → β → β

ΛγΛδ. (a : γ → δ → δ) : ∀eγ.∀eδ.γ → δ → δ

One could think about using some syntactic sugar for the conversions, like
a [] [] for a [∃α.α] [∃β.β] or a :! α, β.α → β → β for ΛγΛδ. (a : γ → δ → δ). What
is remarkable is that we don’t need any new construct in the language.

It might also be useful to change the order of explicit type abstractions of
an expression. For that purpose, we just have to abstract type variables in
the desired order and apply them in the old order to the expression, as in the
following example.

a : ∀eγ.∀eδ.γ → δ → δ

Λδ′.Λγ′.a [γ′] [δ′] : ∀eδ′.∀eγ′.γ′ → δ′ → δ′

3.3 Higher-order types
To represent higher-order types graphically, we introduce two new symbols, λ for
abstraction and @ for application, both of which have arity 2. With these new
symbols, type expression terms can, just as before, be translated into directed
acyclic term graphs just by sharing occurrences of the same variable in the term
tree. Here, λ-introduced variable nodes are bound to the corresponding λ-node.
Precisely, these bindings are explicit, as for explicitly introduced type variables
in expressions, so that the left child of a λ-node is ensured to always be a ⊥-node.
For instance, the term tree of the type expression (λα.λβ.α β β) (λα.λβ.α ∗ β)
is shown in Figure 13 a). This type expression corresponds to the application of
a type operator to the pair type operator. This, given a generic type-operator
with two parameters, returns another type-operator with one parameter, that
applies its argument twice to the original type-operator. So, the result of the
application in the example is a type operator, which given a type, returns the
type of a pair of that type.

Now, somewhere else in a program, we could have written the expression
(5, 4) with the obvious type int∗ int. Can we give to the expression also the type
(λα.λβ.α β β) (λα.λβ.α ∗ β) int?

In System Fω the two types are in the equivalence relation ≡. One of the Fω-
typing rules says that if an expression e has a type τ , which is equivalent to a type

18

a) b)

λ

λ

@

@

⊥⊥

@

λ

λ

∗

⊥ ⊥

λ

@

@

⊥λ

λ

∗

⊥ ⊥

λ

@

⊥

λ

∗

⊥

λ

⊥

∗

λ

⊥

∗

Figure 13: Representation and reduction of (λα.λβ.α β β) (λα.λβ.α ∗ β)

→

→

⊥

→

→→

⊥

≈

Figure 14: Type equivalence: MLF example

τ ′, then e also has the type τ ′. This relation is defined by type equivalence rules,
the most important being the β-reduction rule (λα.τ) τ ′ ≡ τ [α/τ ′]. Graphically,
this rule can be expressed as in Figure 15. The reduction of the example is
shown in Figure 13 b). Here, you can see three times the application of the β-
rule. Note that in Figure 13 b), the whole graph is shifted upwards comparing
to Figure a) and the new root is the node that in Figure a) was the root’s left
child. The last picture is only a rearrangement of the second last one.

As explained in section 2.1, MLF also has an equivalence relation, ≈, which
captures sharing and unsharing of inert nodes, that is, nodes at which no ⊥-
node is transitively, flexibly bound.5 For instance, the two types in Figure 14

5The fact that equivalence by ≈ is restricted to inert nodes wasn’t explained in section 2.1,
where we didn’t consider bindings, yet. However this is a detail that doesn’t bother us, as we
assure by construction that λ-nodes are always inert.

19

@

λ

⊥ τ

τ ′

τ

τ ′

vβ

Figure 15: Type equivalence: reduction of a β-redex

are equivalent by ≈ in MLF, because the middle node is inert. Precisely, this
wouldn’t be true if the ⊥-node was bound to that node, instead of being bound
to the root node.

We have to be careful, though, in simply adding a β-reduction rule to the
equivalence relation. An important property for the decidability of MLF type
inference, is that reversible instance steps always commute to the right with
non-reversible ones. That means that it is possible to instantiate a type τ to
a type τ ′ by a sequence of reversible and non-reversible instance steps, if and
only if it is also possible to perform that instantiation by first making all the
non-reversible steps and only then the reversible ones. Formally τ ≤ τ ′ if and
only if τ (v ∪ ≈)∗ τ ′ if and only if τ v τ ′′ ≈ τ ′ for some τ ′′. This property
allows for an algorithm that performs only non-reversible steps never having
to backtrack. In particular, to perform unification of two types τ1 and τ2, the
algorithm finds a type τ3 such that τ1 v τ3 and τ2 v τ3.

This will no longer work in presence of β-redexes, which may need to
be reduced in order to unify two types. Furthermore, consider the type
(λδ.δ int ∗ δ bool) (λα.α) after its first reduction, graphically shown in Figure
16 a). Here, the sub-graph representing λα.α must be duplicated in order to be
applied twice. In theory, this is allowed, because a λ-node is always inert and
can thus be unmerged, but such an operation was not necessary before within
the type inference algorithm.

Another difficulty we have to take care of is confluence of reduction strategies,
which is necessary for principality of unification. Consider the example in Figure
17. Here, two sub-graphs that contain a redex are unified in a constraint. In
particular the redexes discard their arguments. The solution of this constraint
depends on whether the unification edge is solved first (Figure 17 a) or the redex
is reduced first. If the unification edge is solved first, the two ⊥-nodes have to
be merged (Figure 17 b). This is not necessary if the redexes are reduced first,
because the two ⊥-nodes don’t appear linked any longer. Therefore, the solution
found in b) is not principal.

The correct strategy is to first reduce the redexes appearing within the sub-
graphs to be unified before instantiating further. To verify that this strategy

20

a) b)
@

λ λ

∗

@ @

⊥ int bool

⊥

λ

∗

@ @

int bool

⊥

λ

∗

@ @

int bool

⊥⊥

λ

∗

int bool

Figure 16: Reduction of (λδ.δ int ∗ δ bool) (λα.α)

leads to a complete and sound unification algorithm, we have to prove that6(
v∗β ;v∗

)
⊇ (v ∪ vβ)∗

This would mean that if we can find an arbitrary sequence of instance operations
v and β-reductions vβ from some type τ to some other type τ ′, then we can
also find a sequence in which all the vβ steps appear before all the v steps:

τ
(
v∗β ;v∗

)
τ ′

The proof of this property can be reduced to the proof of commutation of v
and vβ :

(vβ ;v) = (v;vβ)

This proof is left for future works, but it should rely on the fact that v doesn’t
introduce new redexes and that reduction is essentially a rearrangement of sub-
graphs.

To summarize, the new unification algorithm performs ≈ operations if nec-
essary, where ≈ is extended to contain vβ ∪ wβ , defined in Figure 15. Notice
that it already contains vδ ∪ wδ, defined in Figure 18, which is a special case
of inert node unsharing, as explained above. Precisely, the algorithm reduces
each β-redex in the sub-graphs to be unified, duplicating the λ-node and its
sub-graphs, if it is the child of more than one @-node. This done, it proceeds
as before.

See Appendix A for a complete example where, at the end, a sub-graph
graph is duplicated and then β-reduced.

6where ; is the composition of relations: R1; R2 = {(a, b) |∃c.a R1 c ∧ c R2 b}

21

λ

⊥

⊥

int

@

int⊥

@

⊥λ

→

→

G

a)

int⊥

@

⊥λ

→

→

G

int

⊥

→

→

G

b)

⊥

int int

⊥

→

→

G

⊥

int

⊥

→

→

G

Figure 17: Example of confluence problem

22

λ

⊥ τ

τ1

@

τ2

@

τ2

@. . .

τn

@

vδ

@

λ

⊥ τ

τ1

@

λ

⊥ τ

τ2

. . . @

λ

⊥ τ

τn

Figure 18: Type equivalence: unsharing of a redex

4 Conclusions
The goals of the research project were essentially achieved in spite of a long
process of familiarizing with the vast, non-standard research context. We found
a way to combine the implicit polymorphism based on partial type annotation
of MLF with the fully explicit world of System F to introduce features of Fω into
MLF, extending its graphical presentation. The result shows that partial type
inference in presence of higher-order polymorphism is possible and practical and
that is not necessary to reintroduce the need of a huge amount of type anno-
tations as in QML, that leads the formalism to be unusable as a programming
language.

This research could be the basis of the type system of a new functional
programming language, in which modules and functors are first-class objects.
A prototype of this type system is ongoing work. We plan to finish a first version
until the end of the Master project.

We listed some interesting properties which should suffice to show correctness
of the extension but we didn’t carry out the proves. This is left out for future
work.

Another interesting improvement left for future work is to perform inference
for higher-order type variables based on second order matching.

23

References
[1] Didier Le Botlan and Didier Rémy. Recasting MLF. Research Report 6228,

INRIA, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France, June 2007.

[2] Boris Yakobowski. Types et contraintes graphiques : polymorphisme de sec-
ond ordre et inférence. PhD thesis, Université Paris 7, December 2008.

[3] Didier Rémy and Boris Yakobowski. From ML to MLF: Graphic type con-
straints with efficient type inference. In Proceedings of the 13th ACM SIG-
PLAN International Conference on Functional Programming (ICFP’08),
Victoria, British Columbia, Canada, pages 63-74. ACM Press, September
2008.

[4] Benjamin C. Pierce. Types and Programming Languages.The MIT Press,
Massachusetts Institute of Technology Cambridge, Massachusetts 02142

[5] Daan Leijen. Flexible types: robust type inference for first-class polymor-
phism. POPL 2009: 66-77

[6] Claudio V. Russo and Dimitrios Vytiniotis. QML: Explicit First-Class Poly-
morphism for ML. To appear at ML Workshop 2009.

I’d like to thank Didier for his complete support and constant availability.
This work wouldn’t have been possible without our in-depth discussions during
the whole period and his instant proof reading at the end.

Also, I want to thank the whole Gallium team for their warm reception and
their friendly and constructive help, where I learned a lot of things.

Many thanks also to the department at the Università di Pisa, especially to
Prof. Ferrari for his administrative support and commitment, without which
this project wouldn’t have been possible.

24

A Box
This is a full example which helped us to verify how typing performs for the
encoding of a module.

(Λ (Box)
λ (box : ∀e (α) α → Box α)
λ (unbox : ∀e (α) Box α → α)

unbox [int] (box [int] 5)
) [λ (α)∀eβ (α → β) → β]
(Λ (α) λ (x : α) Λ (β) λ (f : α → β) f x)
(Λ (α) λ (b : ∀ (β) (α → β) → β) b [α] (λ (x : α) x))

Indeed, the first three lines can be seen as the signature of a module and the
last three lines as its implementation, while the fourth line is a line of code which
uses the module. The module provides the abstract type operator Box and two
functions box and unbox. Box t represents just an unary tuple, a singleton,
of an element of type t. (Like t1 ∗ t2 represents a binary tuple, a pair, of two
elements of types t1 and t2) The function box constructs such a box and unbox
deconstructs it. For the line of code in the middle, Box is abstract and a box
can only be created and used by the functions in the module.

To make it a little more complicated, the implementation of the type is
based on the Church-encoding of general tuples. An n-tuple is for Church a
function, which takes as argument a function f of type t1 → t2 → . . . → tn → β
and which applies f to all n objects it encapsulates. This way, to use a value
at some position k of a tuple, you just have to apply it to a function which
return its kth argument. For instance if q is the quadruple (a, b, c, d) then
q (λ(x)λ (y) λ (z) λ (w) y) returns b.

In the case of an 1-tuple, the destructor, here called unbox, would apply just
the identity to such a value.

The graphical notation for the example is slightly different, because we used
a graphical editor to create it. See the legend below to find the correspondence
of the several types of edges.

25

G

G

G

G

G

G

GG

G

G

in t

G

G

G

in t

G

in t

G

G

G

@ @

G

@ @

G

G

G

G

G

G

G

G

GG

G

G

in t

G

G

G

in t

G

in t

G

G

G

@ @

G

@ @

G

G

G

G

G

G

G

G

GG

G

G

in t

G

G

in t

G

in t

G

G

G

G

G

@ @

@

@

G

G

G

G

G

G

GG

G

G

in t

G

G

in t

G

in t

G

G

G

G

@ @
@

@

G

G

G

G

G

G

GG

G

G

in t

G

G

in t

G

in t

G

G

G

G

@ @
@

@

@

G

G

G

G

G

G

GG

G

in t

G

G

in t

G

in t

G

G

G

G

@ @

@

@

G

G

G

G

G

G

GG

G

in t

G

G

in t

G

G

G

G

@ @

@

@

G

G

G

G

G

G

G

G

@

@

int

G

G

G

G

G
G

G

@

@

int

G

G

G

G

G

@

@

int

G

G

G

G

@

@

int

G

G

G

@

@

int

G

G

G

@

@

int

G

G

G

@

int

G

G

G

@

int

G

G

@

int

G

@

in t

G

in t

G

in t

G

in t

	Research Context
	MLF
	HML

	Graphic types and constraints
	ML Graphic types
	Polymorphic Graphic Types
	Graphic Constraints

	Higher-Order Graphic Types
	Explicitly-Bound Types
	Explicitly-Bound Graphic Types
	Explicit binding edges
	Constraint edges
	Translation
	The instance relation
	Conversion

	Higher-order types

	Conclusions
	Box

