
From ML to ML F :
Graphic Type Constraints with Efficient Type Inference

Didier Rémy
INRIA

http://gallium.inria.fr/~remy

Boris Yakobowski
INRIA

http://www.yakobowski.org

Abstract
MLF is a type system that seamlessly mergesML-style type in-
ference with System-F polymorphism. We propose a system of
graphic (type) constraints that can be used to perform type infer-
ence in bothML or MLF. We show that this constraint system is a
small extension of the formalism of graphic types, originally intro-
duced to representMLF types. We give a few semantic preserving
transformations on constraints and propose a strategy for applying
them to solve constraints. We show that the resulting algorithm has
optimal complexity forMLF type inference, and argue that, as for
ML, this complexity is linear under reasonable assumptions.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features—Constraints; Poly-
morphism; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Type structure; D.3.2 [Language Classifi-
cations]: Applicative (functional) languages

General Terms Algorithms, Design, Languages, Theory

Keywords System F, MLF, ML, Unification, Type Inference,
Types, Graphs, Type Constraints, Type Generalization, Type in-
stantiation, Binders.

Introduction
MLF [2] is a type system that combines the power of first-class,
System-F-style polymorphism with the convenience ofML type
inference.MLF is a conservative extension ofML. In particular, all
ML terms are typable inMLF. Moreover, the full power of first-
order polymorphism is also available, as any System-F term can be
typed by using type annotations (containing second-order types).
Still, as inML, all typable expressions have principal types. More-
over, the set of well-typed programs is invariant under a wide class
of program transformations, including let-expansion, let-reduction,
η-expansion of functional expressions, reordering of arguments,
curryfication, and also “abstraction of applications”, which means
that a1 a2 is typable if and only ifapply a1 a2 is (where
apply is λ(f) λ(x) f x). Furthermore, only lambda-bound ar-
guments that are used polymorphically need an annotation; this
makes it very easy for the user to predict where and which annota-
tions to write. Finally,MLF is an impredicative type system, which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

allows embedding polymorphism inside containers; for example,
(∀ (α) α → α) list is a valid type, quite different from the weaker
∀ (α) ((α → α) list). A full comparison betweenMLF and other
extensions of SystemF can be found in [3].

Unfortunately, the power ofMLF has a price.MLF types are
more general than System-F types, making them look unfamiliar.
The original syntactic presentation ofMLF [2] is also quite techni-
cal, and most extensions of the system in this form would require a
large amount of work. Finally, the original type inference algorithm
based on syntactic types has obvious sources of inefficiencies and
we believe that it would not scale up well to large, possibly auto-
matically generated, programs.

Graphic typeshave been introduced as a simpler alternative to
the original syntactic types, in order to solve all three issues [10]. In
this work, we extend graphic types to address the question oftype
inference. We do not adapt the original type inference algorithm [2]
by replacing its unification algorithm on syntactic types with the
new, more efficient unification algorithm on graphic types [10] be-
cause repeatedly translating to and from graphic types would be
both inelegant and inefficient, loosing the quite compact represen-
tation of graphic types. Moreover, we believe that the graphic pre-
sentation is better suited for studying the meta-theoretical proper-
ties ofMLF.

Instead, we propose an entirely graphical presentation of type
inference. Additionally, we highlight the strong ties betweenMLF

andML by parametrizing our type inference system with the actual
set of types that is being used, rediscovering a known efficient type
inference algorithm forML [8, 9]. Our approach is also constraint-
based, hence more general than just a particular type inference
algorithm: we introduce a set of graphic constraint constructs, and
define typing constraints in term of those.

Our contributions are as follows:

• We propose a small set ofgraphic constraints, featuring gener-
alization levels, existential nodes, unification and instantiation
edges. We encode typing problems in terms of those, by defin-
ing a compositional translation fromλ-terms to constraints.

• We show that this system can be seen as a small generalization
of the formalism of graphic types.

• Our constraint system is in fact implicitly parametrized bythe
type system considered and the operation of taking an instance
of a type scheme. We make this last operation explicit for both
ML andMLF, and (re)prove thatML is a subsystem ofMLF.

• We identify a subset of constraints insolved forms, and use
these to give a semantics to our constraints as sets of types.

• We identify a set ofacyclicconstraints, that include all typing
constraints, and have decidable principal solved forms.

1

http://gallium.inria.fr/~remy
http://www.yakobowski.org

• We study the theoretical complexity of solving typing con-
straints and show that under reasonable assumptions, type in-
ference inMLF has linear complexity—as inML. We also ob-
serve that our algorithm has optimal complexity for bothML

andMLF type inference.

Outline of the paper We introduce a graphic presentation ofML
types, extend it to graphic constraints, and define a translation from
source expressions to constraints (§1). We give a brief overview of
MLFand graphic types, and show that graphic constraints are an ex-
tension of graphic types (§2). We define what it means for a graphic
constraint to be solved, both inML andMLF(§3), and present sound
and complete transformations on constraints (§4). We show that a
large class of constraints have principal solutions and introduce a
strategy to reduce any such constraint to an equivalent one in solved
form (§5). We discuss type annotations inMLF (§6). We show that
our strategy for solving constraints leads to an efficient implemen-
tation of type inference (§7). We present a few examples of typings
in §8 and discuss related works in§9.

An online prototypeMLF typechecker and an extended version
of this paper with all proofs are available online athttp: //
gallium. inria. fr/ ~ remy/ mlf/ .

1. Graphic types and constraints
1.1 ML Graphic types

τ1 →

⊥ →

⊥

τ2 →

→

⊥

→

⊥

τ3 →

→

⊥

→

τ ′
3

→

→

⊥

Figure 1. GraphicML types

ML graphic types are first-order (quantifier free)term dags. As
with first-order terms, every node is labeled with a symbol, the
arity of which determines the number of its successors. Symbols
contain at least the arrow→ of arity 2. Variable nodes are labeled
using a pseudo-symbol⊥ of arity 0. However, in first-order term
dags (as opposed to first-order terms), nodes may also be shared,
i.e. there may be differentpaths leading to the same node. Paths
are sequences of integers that are used to designate nodes. The
empty pathǫ designates the root node. Ifk designates noden, k · j
designates thej’th successor ofn. We usually leave· implicit and
write 121 instead of1 ·2 ·1. For illustration, consider the typeτ1 of
Figure 1. The rightmost lowermost node (which is labeled with⊥)
can be designated by either path21 or path22: this is a shared node.
We write〈π〉 for the node designated by pathπ. An edge fromn to
n′ is writtenn ◦−→ n′. For example, inτ1, 〈2〉 ◦−→ 〈21〉.

In ML graphic types, only sharing of variable nodes is signifi-
cant: sharing of inner nodes, such as〈1〉 in type τ ′

3, is not. Thus,
ML graphic types may always be unfolded and read back as trees.
However, before doing so, bottom nodes must all be relabeled, each
with a different type variable, so that all occurrences thatwere
shared in the graph representation become the same type variable
in the unfolding. For instance, the skeleton of the typeτ1 in Fig-
ure 1 represents theML type α → (β → β). Similarly, τ2 rep-
resents(α → α) → (β → β), while bothτ3 and τ ′

3 represent
(α→ α)→ (α→ α).

Type instance6 on ML graphic types captures almost entirely
the corresponding instance relation onML types. In particular,
τ1 6 τ2 6 τ3 6 τ ′

3 holds. However,6 is oriented so that it allows
only more sharing; thusτ ′

3 6 τ3 does not hold, even though theML
types they represent are equal. This permits a simpler definition of

6, thus simpler reasoning1. We then prove that all our results hold
when types are equal up to asimilarity relation≈ that captures
sharing of inner nodes (i.e.τ3 ≈ τ ′

3 holds).
Notice that6 can be decomposed into two more atomic re-

lations, grafting and merging. Grafting adds a subgraph under a
variable node. For example,τ2 is obtained fromτ1 by grafting the
graphic type representingγ → γ under〈1〉. Merging shares some
nodes, which need not be variable nodes. For example,τ3 results
from sharing nodes〈11〉 and 〈21〉 in τ2, while τ ′

3 is obtained by
sharing〈1〉 and〈2〉 in τ3.

1.2 (Graphic) type schemes and generalization

Central toML type inference is the notion of generalization:

Γ ⊢ e : τ α does not appear free inΓ

Γ ⊢ e : ∀ (α) τ
GEN

We must reflect this mechanism in graphic type inference. To this
effect, types are extended intoconstraints. We first introduce a new
type constructorG of arity one, so as to distinguishtypesfrom type
schemes. Indeed, G-nodes indicate where polymorphism may be
introduced. We then associate to each variable node abinding edge2

which goes to the G-node where the variable is bound. Hence, G-
nodes can be seen as introducinggeneralization levels(hence their
names).

In particular, G-nodes are used to typelet constructs and it
is important that they can be nested. Moreover, we do not want
them to appear inside types. Both requirements can be fulfilled by
stratifying constraints: all G-nodes are in the top-most part, above
the type partof the constraint. Each G-node but the root is bound
to another G-node, and can only be accessed by its binding edge.

χ G

g G

→

⊥

→

⊥

χ′ G

g G

→

⊥

→

⊥

χ′′ G

g G

→

⊥

→

Figure 2. Constraints with G-nodes

Figure 2 shows three constraints, each containing two G-nodes,
the root〈ǫ〉 and the nodeg, bound at〈ǫ〉. We extend the syntax
of paths to allow named nodes such asg. For example, in all three
constraints the rightmost lowermost bottom node can be designated
by either〈g · 1 · 2〉, 〈1 · 1〉 or 〈1 · 2〉. In the figures, binding edges
are dotted oriented lines. In the text, we usen ≻−→ g to say that
n is bound atg. Given a noden in χ, there is at most oneg such
that n ≻−→ g, called thebinder of n, and written≻

n. In all three
constraints of Figure 2, we haveg ≻−→ 〈ǫ〉 and 〈11〉 ≻−→ 〈ǫ〉.
Notice that binding edges do not count in arities: inχ, 〈1〉 is the
rightmost arrow node, notg.

The nodeg of constraintχ represents the type scheme∀ (α)
α → β, whereβ is a free variable represented by the node〈11〉
that is bound aboveg; conversely, the node〈g11〉 representing
α is bound atg. By contrast, in the constraintχ′, both variables
are bound aboveg, henceg represents the typeα → β, which

1 This also makes our definitions closer to (usual) implementations, which
use a union-find based representations of types.
2 Using G-nodes and binding edges instead of sequences of explicit ∀ nodes
have many advantages; in particular we gain commutation of adjacent
binders and removal of useless quantification for free.

2

http://gallium.inria.fr/~remy/mlf/
http://gallium.inria.fr/~remy/mlf/

is monomorphic in the context ofg. The root node represents the
same type scheme∀ (β) β → β in all three constraints.

The instance relation6 on ML graphic types can be extended
to an instance relation⊑ on graphic constraints as follows: we
allow any transformation along6 at every type node, except that
nodes can only be merged if they have the same bound. In parallel,
we introduce a third instance operation that consists inraising a
binding edge along another one,i.e.replacing the bounds of a node
n by the bound ofs. This results in extruding the polymorphism
to the enclosing generalization level. Readers familiar with rank-
basedML type inference [8, 9] can recognize the similarity between
raising and adjusting the ranks of two variables about to be unified.

As an example, consider nodes〈g11〉 and 〈g12〉 in Figure 2.
In χ, they cannot be merged. However, node〈g11〉 can be raised,
resulting in the constraintχ′. The merging is now possible, and
results in the constraintχ′′. In summary, we haveχ ⊑ χ′ and
χ′ ⊑ χ′′, and thereforeχ ⊑ χ′′ by transitivity.

1.3 Constraint edges and existential nodes

In order to perform type inference, we only need three more con-
structs: unification and instantiation constraints, both modeled by
constraints edges, and existential nodes.

• A unification edgen1 n2 links two type nodes and means
that n1 and n2 should be merged. (In drawings we do not
represent unification edges whose two extremities are the same
node.)

• An instantiation edgeg n relates a G-nodeg to a type
noden. It requires the type undern to be an instance of the
type scheme represented byg. Being “an instance of” will be
precisely defined in§3.1.

• Existential nodes are type nodes that are only part of the con-
straint structure. Usually they are nodes in which we are not
interestedper se, but only indirectly, in order to constrain other
nodes. For example, the typing of an applicationa1 a2 requires
a1 to have an arrow typeτ whose domain is also the type ofa2.
However, we are eventually only interested in the type resulting
from the application,i.e. the codomain ofτ . We thus introduce
the arrow node ofτ as an existential node.

χ G

G

g

→

⊥

int

n′

→

n

⊥ ⊥

χp G

G

→

⊥

→

int

χ′
p G

G

→

⊥

→

int

Figure 3. Typing id 1

Examples of constraints are given in Figure 3. The constraint χ
is the typing ofid 1, whereid is the identity function. The leftmost
G- nodeg represents the type scheme∀ (α) α → α of id. The
root G-node represents the typing constraint for an application,
as explained above. In particular,n is an existential arrow node
constrained (through an instantiation edge) to be an instance of the
G-nodeg. Finally,n′ is an existential node that represents the type
int of 1 and constrains (through a unification edge) the domain of
n to be an integer.

Neither the instantiation nor the unification constraints are
solved inχ. The unification constraint can be satisfied by graft-
ing the typeint under〈n1〉 and merging this node withn′. The
instantiation constraint can be solved by taking as an instance of
∀ (α) α → α, the identityβ → β itself, and unifying this type

with n, i.e. merging〈n1〉 and〈n2〉. The resulting constraint is de-
picted byχp. In particular, the type of the application is the type
scheme represented by〈ǫ〉, in this case the ground typeint.

About unbound nodes So far, we have only bound variable nodes
and G-nodes; however, this approach lacks some homogeneity.
Instead, we choose to bind all nodes explicitly to the enclosing
G-node they belong to. A fully-bound version of the typeχp of
Figure 3 isχ′

p.

1.4 Putting it all together: typing constraints

Let x range over a denumerable set of variables. Expressions are
those of theλ-calculus enriched withlet bindings. As usual, the
expressionsλ(x) a andlet x = a′ in a bindsx in a but not ina′.

a ::= x | λ(x) a | a a | let x = a in a

To represent typing problems, we use a compositional translation
from source terms totyping constraints. We introduceexpression
nodesas a meta-notation standing for the constraint the expres-
sion represents. An expression node is represented by a rectangu-
lar box in drawings. Expression nodes receive a set of constraint
edges from the typing environment, meant to constrain the nodes
corresponding to the free variables of the expression. Eachedge is
labeled by the variable it constrains. In drawings we represent such
a set of edges as an edge , generally omitting the labels.

Expression nodes can be inductively transformed into simpler
constraints using the rules presented in Figure 4. We followthe log-
ical presentations ofML type inference, where generalization can
be performed at every typing step,i.e. not only atlet constructs3.
Thus each basic expression is typed in its own generalization level,
and the root of a basic constraint will always be a G-node. We have
drawn those nodes in the right-hand sides of Figure 4 in orderto
disambiguate the origin of edges.

xX

⇒

G

⊥

x ∈ X

let x = a1 in a2

⇒

G

a2

G

a1

x

λ(x) a

⇒

G

→

⊥ G

a
⊥x

a1 a2

⇒

G

G

a1

G

a2

→

⊥ ⊥

Figure 4. Typing of primitive expressions

• A variable x is typed as the universal type scheme∀ (α) α.
That is, it is a G-node whose child is a bottom node bound on
the G-node. The bottom node is constrained by the unique edge
annotated byx in the typing environment (if there is no such
edge, the constraint is not closed, thus untypable).

• A let-bindinglet x = a1 in a2 is typed asa2, with the additional
constraint thatx must be an instance ofa1. The other (free)
variables ofa1 anda2 are constrained by the typing environment.

• An abstractionλ(x) a is typed as a type scheme containing an
arrow type. The codomain of the arrow must be an instance of

3 It is well-known that, forML, both presentations are equivalent. However,
this is not the case forMLF.

3

the type ofa. The variables ofa are constrained by the typing
environment, except forx that must unify with the domain of the
arrow.

• An applicationa1 a2 is typed as the codomain of an arrow type
existentially introduced. The domain of the arrow must be an
instance of the type ofa2, while the arrow type itself must be an
instance of the type ofa1. Both sub-expressions are constrained
by the typing environment.

Figure 5 shows the steps transforming the expression node for
λ(x) λ(y) x into a typing constraint. Notice that, in the middle
constraint, the expression node forx receives two unification edges,
one forx and one fory. However the unification edge fory is not
useful, and is ultimately dropped sincey is not free inx.

λ(x) λ(y) x

G

→

⊥ λ(y) x ⊥

x

G

→

⊥ G

→

⊥ x ⊥

⊥

x

y

G

→

⊥ G

→

⊥ G

⊥

⊥

⊥

Figure 5. Typing constraints forλ(x) λ(y) x

2. An overview ofMLFand MLFgraphic types
2.1 MLF types

CombiningML-style type inference with System-F polymorphism
is difficult, as type inference in the presence of first-classpoly-
morphism leads to two competing strategies: should types bekept
polymorphic for as long as possible, or conversely, for as short
as possible? Unfortunately, those two paths are not confluent in
general, leading to two correct but incomparable types for an ex-
pression (assuming equal types for their subexpressions).As an
example, consider the expressionchoose id, where id has type
∀ (α) α → α (which we refer to asσid) and wherechoose has
type∀ (β) β → β → β. In SystemF, we can give this application
both types∀ (γ) (γ → γ)→ (γ → γ) andσid → σid . Yet, neither
one is more general than the other.

To solve this problem,MLF enriches types with a new form of
(bounded) quantification:choose id receives the type∀ (α > σid)
α → α. The variableα is allowed to range over all possible
instances of its boundσid , as indicated by the sign>. We say it is
flexiblybound. Of course, the two occurrences ofα on both sides of
the arrow must simultaneously pick the same instance: the weaker
the argument, the weaker the result. The idea is to keep typesas
polymorphic as possible, in order to be able to recover later—just
by (implicit) instantiation—what they would have been if some part
had been instantiated earlier.

This form of quantification, while expressive, is not yet suffi-
cient. For example, consider the termλ(id : ∀ (α) α → α)
(id 1, id ’c’). It is not typable inML, as the variableid is used on
two arguments with incompatible types,int andchar. In SystemF,
it can be given the typeσid → int × char. However, it would be
incorrect to give it theMLF type∀ (α > σid) α → int ∗ char, as
this type could be instantiated to(int → int) → int ∗ char, which
would erroneously allow the application of the successor function

to a character. Therefore,MLF introduces another form of quantifi-
cation, calledrigidly-bounded quantification and written with an
“=” sign. The above term can be given the type∀ (α = σid) α →
int ∗ char. Rigid quantification is used when polymorphism isre-
quired, as rigid bounds will never be weakened by instantiation.
Interestingly, inlining rigid bounds as inσid → int ∗ char provides
a very good and intuitive approximation of types, correct from a se-
mantic standpoint (albeit not from a type inference point ofview).

2.2 MLFgraphic types

Sharing inside types is of paramount importance inMLF. For exam-
ple, the types∀ (α>σ) ∀ (β>σ) α→ β and∀ (γ>σ) γ → γ are
quite different—the former being more general than the latter as it
can pick different instances ofσ for α andβ. MLF graphic types
have originally been introduced in part to directly capturethese no-
tions inside the representation of types [10]. They also provide a
more canonical representation of types, and permit a straightfor-
ward definition of the type instance relation between types.

→

MLFgraphic type

→

⊥

→

⊥

= →

Its skeleton

→

1

⊥

21

→

2

⊥

21

+ →

Its binding tree

→

⊥

→

⊥

σ = ∀ (α) ∀ (β = ∀ (γ) γ → γ) ∀ (δ > α→ α) β → δ

Figure 6. An example ofMLFgraphic type

MLFgraphic types can be decomposed into a first-order quanti-
fier free skeleton, and abinding treethat tells for every nodewhere
andhow it is bound. In particular, we use edges rather than nodes
for quantifiers, as it leaves the structure invariant by extrusion of
quantifiers. Figure 6 shows an example of a type and its decompo-
sition.

All nodes have a binder. Bottom nodes, which represent vari-
ables, must be bound. Binding non-bottom nodes that are them-
selves bounds of other nodes is important to keep precise track of
sharing and instantiation permissions, as described in thenext sec-
tion. Binding nodes that are not themselves bounds of other nodes
is not strictly necessary, but convenient for the regularity of the pre-
sentation.

We use the notation≻−→ for binding edges, as in graphic con-
straints. However, we must distinguish between flexible andrigid
quantification. Flexible quantification allows instantiation, as in
ML, so we (re)use dotted edges. Rigid quantification uses dashed
edges, as for node〈1〉 in Figure 6. When the nature of binding
edges is unimportant, we draw them as dotted-dashed lines. In the
text we writen

>≻−→ n′ andn =≻−→ n′ for flexible and rigid edges
respectively, or asn ⋄≻−→ n′ where⋄ stands for either> or =.

We write◦−≺ for (◦−→)∪ (←−≺), calledmixed edges. Let−→
range over◦−→, ≻−→ and ◦−≺. We write

∗
−→ for the reflexive

transitive closure of−→, and
+
−→ for the transitive closure. We

write (N −→) for {n′ | ∃n ∈ N, n −→ n′}.
All superpositions of a graphic type with a binding tree do not

form an MLF graphic type. Indeed, the resulting graph must be
well-dominated: the binder of a noden must dominaten for the
relation +◦−≺. In essence, well-domination ensures that scopes are
properly nested. The same property must actually hold in graphic
constraints: in Figure 3, binding〈g1〉 at the root inχ′

p would have
been incorrect. Indeed,g, the binder of〈g11〉, would not have
dominated〈g11〉 (as shown by the path〈ǫ〉 ←−≺ 〈g1〉 ◦−→ 〈g11〉).

4

2.3 The instance relation

Grafting
F ⊥ ⊑G ·

τ

Weakening

·

FI ·
>

⊑W ·

·

=

Merging

·

FRI c

π⋄

τ

c FRI

π′
⋄

τ

⊑M ·

c

π π′⋄

τ

Raising

·

·
⋄′

FRI ·
⋄

⊑R ·

·
⋄′

·

⋄

Figure 7. Instance operations

The instance relation onMLF types⊑ is defined as the compo-
sition of the atomic instantiation steps described schematically in
Figure 7. That is,⊑ is the relation(⊑G ∪ ⊑M ∪ ⊑R ∪ ⊑W)∗.
The annotationsF, FI, andFRI are explained next.

GraftingandMergingoperate on the underlying term structure,
as in ML graphic types. Grafting replaces a bottom node (i.e. a
variable) by an arbitraryMLF type. Merging fuses two isomorphic
subgraphs, as in∀ (α ⋄ τ) ∀ (β ⋄ τ) α→ β ⊑M ∀ (α ⋄ τ) α→ α.
RaisingandWeakeningoperate on the binding tree. As in graphic
constraints, raising is used to extrude polymorphism. If weconsider
theMLF type∀ (α > ∀ (β) β → β) α → α of choose id, raising
the variableβ gives ∀ (β) ∀ (α > β → β) α → α (which is
equivalent to the System-F type ∀ (β) (β → β) → (β → β)).
Weakening turns a flexible binding edge into a rigid one, in order
to require polymorphism.

Taking an instance of a type isimplicit. Thus,⊑must not solely
be sound with respect to the reduction of terms, but also permit
type inference. Indeed, a relation⊑ that is too expressive would
allow—and thus require for principality—guessing polymorphic
types, making type inference undecidable [14]. InMLF, ⊑ is the
restriction of such a larger instance relation≤. The missing opera-
tions in≤ \ ⊑ are then made availableexplicitly, through the use
of user-provided type annotations.

Permissions The instance operations presented in Figure 7 are
only sound in certain contexts. For example, the graphic type of
Figure 6 corresponds to the System-F type∀ (α) (∀ (γ) γ → γ)→
(α → α). A function of this type cannot in general be treated as a
function of type∀ (α) τ → α→ α whereτ is an arbitrary instance
of ∀ (γ) γ → γ, because at least this amount of polymorphism is
required. Hence an operation under the node〈1〉, such as grafting
the node〈11〉, is unsound.

The operations allowed or forbidden on a noden mainly depend
on itspermissions, which are determined by the binding flags> or
= on the binding edges aboven. It is a key point ofMLF that per-
missions depend only on the binding tree—in particular,
they are independent of the variances of type constructors.
There are three permissions:flexible, rigid, andlocked, ab-
breviated by their first letter. A node with permissionx is
said to be anx-node. The permission of a noden is ob-
tained by following the binding edges linking the root ton
in the automaton opposite. Notice that the automaton fol-

F

R

L

lows binding edges in the inverse direction of the one in drawings.
For instance, for node〈11〉, the automaton starts in the initial state
F and ends in the stateL, since〈ǫ〉 =←−≺ 〈1〉 >←−≺ 〈11〉; hence it is
aL-node. Node〈1〉 is aR-node, while all other nodes areF-nodes.

Flexible edges are roughly the analogous ofML quantification
and indicate where polymorphism is provided. Thus, by design,
F-nodes allow all forms of instantiation. Conversely, rigidedges
request polymorphism. Hence, onR or L-nodes, we must at least
forbid the transformation of nodes with flexible edges, in order to
remain sound.

However, there exists an exception. An operation at a node
n can be unsound only if there exists a variable noden′ that is
(transitively) flexibly bound ton. Otherwise, there is either no
polymorphism atn, or it is protected by a rigid edge belown,
which prevents its instantiation. Formally, a noden is said to be
inert and called anI-node, if for any variable noden′ such that
n′ ∗≻−→ n, there is at least one rigid edge betweenn′ andn. Inert
nodes includemonomorphicnodes, on which no variable node is
bound at all (for example all the nodes in a graphic representation
of int → int). Following the reasoning above, all operations are
sound at inert nodes.

We can now reread the definition of⊑ in Figure 7 with permis-
sions in mind. Nodes with permissionF allow all transformations,
including the grafting or variables. Nodes with either permission
R or I allow weakening, raising or merging, either because they
contain no polymorphism (if they are inert), or because the poly-
morphism is protected by a rigid edge, which is preserved by the
transformation.
A more thorough discussion of permissions can be found in [12].

2.4 Graphic constraints as an extension of graphic types

We can see graphic constraints as a small extension ofMLFgraphic
types, which allows reusing all the results already established on
the latter.

G-nodes We addG to the algebra of type constructors and in-
troduce two sortsScheme andType. The symbolG has signature
Type ⇒ Scheme while all others have signatureTypen ⇒ Type
(wheren is the symbol arity); thus G-nodes cannot appear under
nodes of sortType, calledtype nodes. All constraints must be well-
sorted, and we require G-nodes to be flexibly bound. In the follow-
ing, the root of a constraint is always a G-node. We let the letter g
range over G-nodes.

Unification edges A unification problem over graphic types is the
pair of a graphic type and an equivalence relation on its nodes. A
solution of a unification problem is an instance of the type that
makes the nodes equivalent for this relation [12]. This subsumes
the simpler problem of unifying two independent types. Unification
edges are a graphic representation of a unification problem.

On a large class of problems, calledadmissible, unification is
principal; i.e.an admissible problem admits a solution from which
all other solutions are instances. We slightly extend the definition
of admissibility on graphic types [12] for graphic constraints:

DEFINITION 1. We say that a unification edgen1 n2 is
admissibleif either it is admissible on graphic types orn1

+≻−→ g
andn2 ≻−→ g′ whereg andg′ are G-nodes. �

We require unification constraints to relate two type nodes (the
shape of G-nodes, which is in close correspondence with theλ-
terms being typed, must be invariant), and to be admissible.

Existential nodes Existential nodes are nodes that are not reach-
able when following only structure edges. Formally,n is existen-
tial if n and≻

n are not in the same partition for the relation∗◦−→.
Existential nodes can be of any sort. However, we require allex-
istential nodes to be bound on G-nodes. Without this restriction, a
transformation that could be applied to a constraintχ would not be
applicable to a constraintχ′ derived fromχ by adding some un-
constrained existential nodes, thus making reasoning in the system
quite difficult.

5

The restrictions on G-nodes and existential nodes imply that
the binding structure above an existential type noden is n ⋄≻−→

(G >≻−→)∗〈ǫ〉, and all G-nodes have flexible permissions.

Instantiation edges An instantiation edgeg n must connect
a G-node to a type node. We also requiren to be bound on a G-
node (otherwise our system would not be stable by the operation of
taking the instance of a type scheme).

We introduce three operators for transforming constraints.

DEFINITION 2. Letχ be a constraint andN a subset of its nodes.
Therestrictionof χ to N , writtenχ ↾N , is the subgraph composed
of all the nodes ofN and all edges between two nodes ofN . The
removalof N from χ, written χ \ N , is the restriction ofχ to
(〈ǫ〉 ◦−≺)\N , i.e.all the nodes ofχ but those inN . Theprojection
of χ, written proj (χ), is the constraint obtained by removing all
unification and instantiation edges fromχ. �

MLF and ML constraints From now on, we distinguishMLF

constraints (that use the full range ofMLFgraphic types), fromML
constraints in which types are restricted toML graphic types. That
is, ML constraints are constraints in which all nodes have flexible
binding edges, and all type nodes are bound on a G-node.

Typing constraintsare the subset of constraints generated from
λ-terms by the rules of Figure 4. It is straightforward to verify that
they verify all the well-formedness conditions above. Moreover,
they areML constraints: the typing constraints areexactlythe same
in both systems.

PROPERTY1. Typing constraints are well-formedML and MLF

constraints. �

The instance relation on graphic constraints is essentially the
instance relation⊑ on graphic types, and we use the same symbol
for both.

DEFINITION 3. Two constraintsχ andχ′ are such thatχ ⊑ χ′ if
χ andχ′, viewed as graphic types, are in instance relation, and the
binding structure of G-nodes is the same inχ andχ′. �

Said otherwise, G-nodes, which encode the shape of the constraint,
cannot be merged, raised or weakened.

3. Semantics of constraints
3.1 Expanding a type scheme

An instantiation constraintg n requiresn to be an instance
of the type scheme underg; hence, we must define what are the
instances ofg. Of course, we must take into account generalization
levels. In essence, nodes bound aboveg are not generalizable at
the level of g, while those bound under are. We use a uniform
characterization for bothML andMLF.

DEFINITION 4. Theconstraint interiorof a noden, writtenC(n),
is the set(n ∗←−≺) of all nodes transitively bound ton. The
structural interior, writtenI(n), is the restriction of the constraint
interior to nodes structurally reachable fromn, i.e.C(n)∩(n ∗◦−→).

The structural frontier of a noden, written F(n), is the set
(I(n) ◦−→) \ I(n) of the nodes outsideI(n) with a structural
immediate predecessor insideI(n). �

Notice that in anML constraint,n ∈ I(g) implies in factn ≻−→ g.
As an example, consider the first constraint of Figure 9. Let us

focus at noden first. Its constraint interior is composed of itself
andp2. The nodep1 is not in the interior as it is bound aboven.
The structural frontier ofn is composed of the nodesp1 andf ,
reachable fromn andp2 respectively. If we considerg, its structural
interior is composed ofg, n, p1, andp2 while its constraint interior
also contains the leftmost existential arrow node.

The structural interior of a G-nodeg represents the nodes gen-
eralizable at the level ofg. Conversely, it would be unsafe to gener-
alize the nodes in the structural frontier or the nodes below. Thus,
in order to take an instance ofg:

• We copy the skeleton of the structural interior ofg. The shape
of the binding tree depends on whether we perform expansion
in MLF or in ML, as binding trees forML are more restrictive
than forMLF.

• For each noden in the structural frontier we introduce a fresh
bottom node connected to the original noden by a unification
edge. This ensures that all instances ofg will sharen. (Reusing
n directly would result in ill-dominated constraints.)

G

G

g

→ → n

→

p1

→

p2

f →

⊥

G

g′

⊥ → nc

>

→

pc
1

→

pc
2

⊥

fc

G

G

⊥

n

⊥ ⊥

nc

G

Solution-testing

χp ·

τ

Figure 9. Examples ofMLFexpansion and solution-testing

The creation of a fresh instance of a type scheme is calledexpan-
sion. It must be given a “destination” G-node where to bound the
nodes created by the expansion. Expansion is slightly less general
in ML than inMLF, as types inML are more constrained than types
in MLF. The difference will be explained through examples below.

DEFINITION 5 (MLFandML expansion).Let g andg′ be two G-
nodes of a constraintχ. Let n be 〈g · 1〉. Theexpansion ofg at g′

is derived fromχ by:

• adding a copy ofproj (χ ↾ (I(g) ∪ F(g) \ {g})). The copy of
a nodep is calledpc;

• for every nodef in F(g), changingfc into a bottom node
flexibly bound atg′ and adding the unification edgef fc;

• for every nodep ∈ I(g) such thatp ⋄≻−→ g, adding the binding

edgepc ⋄
′

≻−→ p′, where
in ML, (⋄′, p′) is (>, g′) (notice that⋄ is necessarily>)
in MLF, (⋄′, p′) is (⋄, nc) if p is notn, or (>, g′) if p is n.�

An illustration of anMLF expansion is given as the left constraint
in Figure 9. The right-hand side of the constraint is the result of
expanding the G-nodeg atg′. We have highlighted the nodes to be
copied (n, p1, p2 andf , on the left) and their copies (nc, pc

1, pc
2 and

fc, on the right).
Notice that existential nodes and inner constraints are ignored

during expansion, as is illustrated by the unification edge between
p1 andp2 in Figure 9. Indeed, expansion is concerned with the type
structure, not with the constraint structure.

Degenerate type schemesAn interesting subcase occurs whenn
is not bound ong (which implies, by well-domination, thatI(g) is
reduced to{g}). In this case,g introduces no polymorphism, and
there is no generic part to expand. Hence, onlyn is copied, but the
copy will ultimately be unified withn itself, as illustrated in the top
constraint on the right of Figure 9. We say thatg is degenerate.

6

G

χ

→

⊥ G

g

→

⊥ ⊥

⊥

G

χ′

→

⊥

G

g

→

⊥

⊥

G

χ′e

→

⊥

G

g

→

⊥

⊥ →

n1

⊥ ⊥

→

n2

⊥ ⊥

G

χ
MLF

→

⊥

G

g

→

⊥

→

⊥

→

τ
MLF

⊥

→

⊥

G

χML

→

⊥

G

g

→

⊥

→

⊥

→

τML

⊥

→

⊥

G

χ′
ML

→

⊥

G

g

→

⊥

→

Figure 8. Typingλ(x) λ(y) x

ML versusMLF expansion Consider the constraintχ′ in Fig-
ure 8. Disregarding the unification edges onn1 andn2 for now,
the constraintχ′e shows the result of performing anML expansion
of g at 〈ǫ〉 (undern1), and then anMLFexpansion (undern2). The
difference lies in the binders of〈n1 · 1〉 and 〈n2 · 1〉, which we
have highlighted. In theML expansion,〈n1 · 1〉 is bound on〈ǫ〉.
However, in theMLF expansion〈n2 · 1〉 is bound onn2, creating
inner polymorphism, forbidden inML.

Notice that, by definition,MLF expansion is always more gen-
eral thanML expansion: the former can be obtained from the latter
by performing a few raisings afterward.

3.2 Meaning of constraints

We are now ready to give a meaning to constraints, and start by
characterizing solved constraint edges. An instantiationedge is
solved when a fresh instance of the type schemematchesthe target
of the edge,i.e. it unifies with the target without changing the
constraint.

DEFINITION 6 (Propagation).Let e be an edgeg n of
a constraintχ. We call propagation of e in χ, written χe, the
constraint obtained by expandingg at ≻n, and adding a unification
edge betweenn and the root of the expansion. �

Intuitively, propagation enforces the constraint imposedby an in-
stantiation edge by forcing the unification of a copy of the type
scheme with the constrained node. For example the constraint χ′e

in Figure 8 results from performing both anML and anMLF prop-
agation on the unique instantiation edge ofχ′.

DEFINITION 7 (Solved constraint edge).A unification edge ofχ
is solved if its two extremities are merged. An instantiation con-
strainte of χ is solved ifχe ⊑ χ. �

DEFINITION 8. A presolutionof a constraintχ is an instanceχp of
χ in which all constraint edges are solved. Asolutionof χ is a type
τ , witnessedby a presolutionχp of χ, for which the instantiation
edge in the solution-testing constraint of Figure 9 is solved. �

In essence, solutions are all the types which a presolution expands
to, plus all the instances of those types. In particular, theset of solu-
tions is closed by instance. Notice that a solution can be witnessed
by more than one presolution.

DEFINITION 9. Themeaningof a constraint is the set of its solu-
tions. A constraintχ entailsa constraintχ′ if the meaning ofχ
contains the meaning ofχ′. Two constraints areequivalentif they
have the same meaning. We write and⊣⊢ for entailment and
equivalence of constraints. �

It follows from the semantics of constraints that instantiation re-
duces the set of solutions,i.e. if χ ⊑ χ′, thenχ′ χ. Instan-

tiation may sometimes preserve the meaning; however it usually
does not, and a constraint may become unsolvable by instantiation.
Conversely, many constraints not in instance relation may have the
same meaning—for example, constraints having different binding
structure for G-nodes (i.e. constraint shape), as this structure is in-
variant by instantiation.

Examples Consider the constraintχ in Figure 8. We will prove in
the next section that it is equivalent to the last constraintpresented
in Figure 5; hence, it encodes the typing ofλ(x) λ(y) x. In a first
step, we can solve the unification edge by raising node〈g12〉 and
merging nodes〈11〉 and〈g12〉, which results inχ′. However, this is
not a presolution: the constraints imposed by the instantiation edge
are not solved.

Further instantiationsχ
MLF

, χML and χ′
ML are presolutions of

χ, as can be verified by performing an instantiation test. (We have
highlighted the differences between the three constraints.) Notice
thatχ

MLF
is not a presolution inML, as it contains inner polymor-

phism: node〈121〉 is not bound on〈ǫ〉. However, bothχML andχ′
ML

areMLF and ML presolutions ofχ. Interestingly,χ
MLF
⊑ χML ⊑

χ′
ML holds. In fact,χ

MLF
is the principal presolution ofχ in MLF, as

we will prove in§5.
The types corresponding to the expansions ofχ

MLF
, χML and

χ′
ML areτ

MLF
, τML andτML respectively. Henceτ

MLF
andτML are

solutions ofχ (as are all their instances). The graphic typeτML

corresponds to the syntactic (ML) type∀ (α) ∀ (β) α → β → α,
while τ

MLF
represents∀ (α) ∀ (γ > ∀ (β) β → α) α → γ. This

second type corresponds roughly to the System-F type∀ (α) α →
(∀ (β) β → α), with the additional possibility of instantiatingβ.

Presolutions and explicitly typed termsIn our formalism, preso-
lutions are interesting objects in their own right. Indeed,they can
be seen as encoding an entire typing derivation. Given aλ-terma
and a presolutionχp of the typing constraint corresponding toa,
χp can be used to obtain a version ofa where all type informa-
tion is fully explicit [11]; of course, different presolutions will give
different decorations ofa.

Notice that the typing ofλ(y) x in Figure 8 is quite different
in χML andχ′

ML. In χML it is polymorphic in its argument, while it
is not inχ′

ML: node〈g11〉 is bound ong (i.e. to the generalization
node corresponding toλ(y) x) in χML, and to〈ǫ〉 in χ′

ML. This
difference is reflected in the correspondingλ-terms in SystemF:

χML : Λα. Λβ. λ(x : α)
(Λγ. λ(y : γ) x) [β]

χ′
ML : Λα. Λβ. λ(x : α)

λ(y : β) x

9

>

=

>

;

∀ (α) ∀ (β) α→ β → α

Notice that, by construction, each type variable introduced by aΛ
corresponds to a node bound on a G-node. For example, inχML,
α is 〈11〉, β is 〈121〉 andγ is 〈g11〉. In this simple case, the two

7

G

χ

G

g1

⊥

→

→

⊥

G

g2

→ ⊥

G

χ′

→

→

⊥

INST-ELIM -MONO

G

G

+

·

·

⊣⊢ G

G

+

·

·

Figure 10. Simplifying unconstrained existential nodes and de-
generate instantiation edges

λ-terms areβ-convertible, at the level of types. Of course, this does
not hold for all presolutions. For example, another typing for χ is
∀ (β) int→ β → int (obtained by graftingint under〈11〉 in χML),
resulting in aλ-term that is notβ-convertible to the ones above.

RelatingML andMLF It is immediate to prove thatMLFextends
ML. Indeed, theML instance relation is a subrelation of the one
in MLF, and an instantiation edge solved in theML sense is also
solved in theMLFsense (asMLFexpansions are more general).

PROPERTY2. All ML (pre)solutions areMLF (pre)solutions. �

Interestingly,MLF presolutions containing only flexible edges can
always be transformed by raising intoML presolutions. Thus flex-
ible quantification alone is not significantly more expressive than
ML quantification; it just gives more general types—and more op-
portunities to use rigid quantification.

PROPERTY3. Consider anML constraintχ with anMLFpresolu-
tion χp in which all binding edges are flexible. Then there exists
MLF solutions ofχ witnessed byχp that areML types, and those
types are alsoML solutions ofχ. �

4. Reasoning on constraints
We now present a few transformations on constraints that preserve
sets of solutions; most of them also preserve sets of presolutions—a
much stronger result.

Unconstrained existential nodesExistential nodes are meant to
introduce constraint edges. Once those edges have been solved,
the existential nodes become useless, and can be eliminated.
Implementation-wise, this allows saving memory; it also permits
to reason on simpler constraints.

DEFINITION 10. Letn be an existential node of a constraintχ such
that no node inC(n) is the origin or the target of a constraint edge.
We callexistential elimination ofn in χ the constraintχ \ C(n).�

We refer to this operation as EXISTS-ELIM . An example is shown
in Figure 10, where existentially eliminating the nodesg1 andg2 in
χ (whose constraint interiors are highlighted) givesχ′.

LEMMA 1. Existential elimination preserves solutions. �

Solved instantiation edgesExpansion is concerned only with the
nodes of the structural interior of a G-nodeg. A transformation that
does not change this interior leaves the expansion ofg unchanged.
We can in fact lift this property to propagation, and by extension,
to solved instantiation edges:

LEMMA 2. An instantiation edgeg d that is solved in a
constraintχ remains solved in any instance ofχ that leavesI(g)
unchanged. �

This property is quite important for reasoning, as it ensures that
unrelated changes will not break solved edges.

Unification edges The level of generalization we brought to our
graphic representation is small enough that the unificational-
gorithm on unconstrained graphic types [10] can be reused un-
changed. The principality of unification on graphic types also en-
sures that unification edges can always be solved eagerly.

LEMMA 3. Lete be a unification edge ofχ. If unifyinge in χ fails,
χ has no solution. Otherwise, letχ′ be the principal unifier ofe
in χ. Thenχ andχ′ have the same (pre)solutions. �

Interestingly, unification onML graphic types can be solved with
the unification algorithm forMLFgraphic types. This follows from
the facts that type instance forML is a subrelation of type instance
for MLF and that the unification algorithm ofMLF applied toML
graphic types returnsML graphic types. In fact, the unification al-
gorithm needs not check for permissions when the input typesare
ML constraints, since in this case all nodes have flexible permis-
sions. Moreover, the raisings it performs amount to updating gen-
eralization levels when variables are merged, exactly as done in
efficient implementations ofML type inference based on ranks and
term dags [8, 9].

Degenerate instantiation edgesA degenerate G-node contains
no polymorphism, as witnessed by the fact that no “real” fresh
node is created when it is expanded. An instantiation edge leaving
from a degenerate G-node is itself degenerate, in the sense that it
is equivalent to an unification edge. This is described by rule INST-
ELIM -MONO on the right of Figure 10.

LEMMA 4. INST-ELIM -MONOpreserves solutions. �

We can now prove that the constraintχ of Figure 8 is equivalent
to the typing constraint ofλ(x) λ(y) x given in Figure 3. Indeed
the former is obtained from the latter by successively:

1. solving by unification the constraint edge on node〈11〉;

2. performing INST-ELIM -MONO on the G-node corresponding
to the variablex (which we callg), as it is degenerate after the
unification;

3. existentially eliminatingg (whose interior is reduced to{g}).

Thus the equivalence is by Lemmas 3, 4 and 1.

Eager propagation A crucial property of our framework is that
scheme expansion and propagation are essentially4 monotonic w.r.t.
to instance⊑. An important consequence of this property is that
we may propagate any instantiation edge in any constraint without
changing its presolutions.

LEMMA 5. Propagation preserves presolutions. �

This result provides a good test when designing the relation⊑.
Indeed, if it did not hold, it would be impossible to reduce type
inference to propagation (i.e.type scheme instance) and unification.

5. Solving acyclic constraints
In their full generality, our constraints may be used to encode
typing problems with polymorphic recursion, which are already
undecidable inML. Thus we restrict our attention to constraints
in which the instantiation edges induce anacyclicrelation.

DEFINITION 11. A G-node g directly dependson another G-
node g′ if g′ constrains the constraint interior ofg, i.e. ∃n ∈
C(g), g′ n. Thedependencyrelation between G-nodes is the
transitive closure of the “directly depends on” relation. �

4 The propertyχ ⊑ χ
′ =⇒ χ

e ⊑ χ
′e does not hold. However, ifU(χe)

andU(χ′e) are the constraints resulting from solving the unification edges
generated by the propagation inχe andχ

′e, χ ⊑ χ
′ =⇒ U(χe) ⊑

U(χ′e) does hold.

8

DEFINITION 12. A constraintχ is acyclic if the dependency rela-
tion on its G-nodes is a strict partial order. �

Notice that the typing constraints presented in Figure 4 areacyclic:
instantiation edges follow the scopes of the variables of the expres-
sion, which are nested.

5.1 Finding a principal presolution

In acyclic constraints, propagating-then-unifying an instantiation
edge solves that edge.

LEMMA 6. Let e be an instantiation edgeg d of a constraint
χ whered is not in C(g). Let χ′ be the principal unifier of the
unification edges introduced inχe (if this unifier exists). Thenχ′ is
an instance ofχ in whiche is solved. �

The condition onn and C(g) vacuously holds on acyclic con-
straints. It ensures that the interior ofg will not be changed by the
unification. Afterward, the conclusion is simply by idempotency of
propagation-unification.

Acyclic constraints admit a principal presolution, which can be
built using the following strategy.

1. Solve all unification edges by unification.

2. Visit the instantiation edges in an order compatible withthe
dependency relation. On each edgee:

(a) perform a propagation one;

(b) unify the resulting unification edges.

Those operations solvee (Lemma 6). Moreover, since the con-
straint is acyclic, all instantiation edges already visited (hence
solved) remain solved (Lemma 2).

The preservation of presolutions follows from Lemma 3 for steps 1
and 2b and from Lemma 5 for step 2a.

THEOREM1. Acyclic constraints have principal decidable preso-
lutions. �

A corollary of this result is the fact that the (structural) interior of
an unconstrained G-nodeg will never be instantiated in the princi-
pal presolution of a constraint. Hence, after having propagated an
instantiation edgee leaving fromg, it is safe to removee.

COROLLARY 1. Lete be an edgeg n of an acyclic constraint
χ. If C(g) is not the target of a constraint edge, thenχ andχe \ e
are equivalent. Under those hypotheses, we callINST-EXPAND the
replacement ofχ byχe \ e. �

Typability in unannotatedMLFandML Consider a typing con-
straint. It is anML constraint (Property 1). If it is solvable inMLF,
its principal presolution will contain only flexible edges,as propa-
gation and unification do not introduce new rigid edges. Then, by
Property 3, it will have anML solution. Thus, a program without
type annotations is typable inMLF if and only if it is typable in
ML. (However, in general its principal type inML will be a strict
instance of its principal type inMLF).

THEOREM2. Any expression typable without type annotations in
MLF is typable inML. �

Inconsistent constraints We have so far ignored the possibility
that a constraint might become inconsistent while simplifying it.
This situation is in fact implicitly dealt with by our formalism: an
inconsistent constraint (such as a unification edge that would lead to
a constructor clash or a cyclic type) cannot be solved. Thus it cannot
be removed by existential elimination, and will remain unsolved.
Consequently, the constraint has no presolution. Of course, an
implementation can fail as soon as an inconsistency is found.

Efficiency Using the order induced by the dependency relation
ensures that an instantiation edge never needs to be propagated
more than once. Hence, the number of unification steps that can
be performed is bounded by the number of instantiation edgesplus
the number of initial unification edges.

One potential source of inefficiency in the strategy used to find
the principal presolution is that the resulting constraintcan be much
bigger than the solution itself. Hence a better approach (ifwe
are interested only in the solutions) is to apply INST-EXPAND to
perform the propagation, then existential elimination to the nodes
that are no longer constrained. While this does not change time
complexity, it ensures that constraints remain as small as possible
and improves space complexity.

6. Type annotations

κ :

τ

◦

⋄

cκ G

→

τ

=

◦

⋄ τ

>

κ0 :

⊥

→

→

⊥

cκ0
G

→

→

→

⊥

⊥

→

→

⊥

Figure 11. Types of coercion functions

Type annotations are a key toMLF. Interestingly, we do not
use primitive typing constructs to type them. Instead, we add a
denumerable set ofcoercion functionsto the typing environment.

As an example, consider the annotation(a : ∃β ∀ (α) β →
(α → α)). It contains bothuniversaland existentialquantifica-
tion, and expresses thata must be a function, the type of its first
argument being left unspecified, and its return type being exactly
α → α. This annotation can be represented by the typeκ0 of Fig-
ure 11. The existential part is bound at the root “:” node, while the
nodes inside the universal part are bound on〈1〉 or under (in this
simple case they are all bound on〈1〉). More general annotations
are depicted by the pseudo-typeκ of the same figure. In the anno-
tation(a : κ), the typeτ at node〈1〉 insideκ is universallyquanti-
fied. However, the other nodes ofκ, represented by the◦meta-node
notation and bound on the root, areexistentiallyquantified: they can
be instantiated during type inference.

The annotation(a : κ) is desugared as the applicationcκ a,
where the type of the coercioncκ is also shown on Figure 11. Each
side of the arrow is a copy ofτ . Hence, they could a priori be instan-
tiated independently. However, the domain is rigidly bound, mean-
ing that the polymorphism is requested, and thus cannot actually be
weakened by instantiation:a must be of typeτ . On the contrary, the
codomain is flexibly bound, meaning that the polymorphism ispro-
vided, and can freely instantiated. The nodes corresponding to the
existential part ofκ are not duplicated: they are shared between the
domain and the codomain, and will be instantiated simultaneously
on both sides. An example is given by the typecκ0

.
Similarly, the expressionλ(x : κ) a is also syntactic sugar, for

λ(x) let x = (x : κ) in a; an example is given in§8. Notice that
type annotations are part of expressions. Hence, two terms with
different annotations are really different terms and do notusually
have a common, most general type.

7. Complexity of type inference
7.1 Simplifying typing constraints

For homogeneity, typing constraints introduce a G-node forevery
sub-expression, including variables. However, those are superflu-

9

VAR-LET

◦

G

+

◦
⋆

G

+

⊥

◦

+

⊣⊢ ◦

G

+

◦
⋆

◦

+

VAR-ABS

◦

◦

+

◦
⋆

G

+

⊥

◦

+

⊣⊢ ◦

◦

+

◦
⋆

◦

+

Figure 12. Simplifying the typing of variables

ML-EXTRUDE

G

G

g

◦n′

+

·
n

e

⊣⊢ML

G

G

◦
+

·

Condition:

• e is the only instanti-
ation edge leavingg

• g +◦−→ n′

Figure 13. Simplifying ML constraints

G

G

·

G

·

G

G

·

G

·

On the left-hand side, both type
schemes are introduced at the
same level, thus the embedding
is 2. On the right-hand side, one
is inside the other and the em-
bedding is 3.

Figure 14. Type schemes embedding

ous. Indeed,let-bound variables only generate indirections, while
the G-node for aλ-bound variable will ultimately be degenerate.
The corresponding simplifications rules are presented in Figure 12.

In ML typing constraints, the G-nodes for abstractions and
application are also superfluous (hence G-nodes are in fact only
needed forlet-bound expressions). Indeed, as shown in Figure 13,
a type node inside a type scheme that is “used” only once and atthe
nearest generalization node can be extruded entirely.

All simplifications can be performed in linear time either after
the generation of constraints, or on-the-fly during their generation.

7.2 Complexity analysis

While type inference forML is DEXP-TIME complete (when types
need not be output), McAllester has shown [7] that type inference
has complexityO(kn(α(kn) + d)) whereα is the inverse of the
Ackermann function,k is the maximum size of type schemes andd
the maximum embedding of type schemes. (Figure 14 describes
what is meant by embedding of type schemes.) In McAllester’s
analysis,d corresponds to the maximum left-nesting oflet con-
structs,i.e.nestings of the formlet x = (let y = . . . in . . .) in

As argued by McAllester,d is almost always bounded by 5, and
k does not increase with the size of the program. Under those as-
sumptions, type inference inML hasO(nα(n)) complexity, which
is almost linear (the termα(n) is negligible).

Our strategy for solving constraints is quite similar to theone
used in efficient implementations of type inference forML [7, 8]. In
particular, type schemes are also simplified in an innermostfashion.
Unification inMLF can also be performed in timeO(nα(n)) and
the complexity analysis of McAllester forML can be transferred to
our constraints setting—provided we reason on the embedding of

G-nodes instead of the embedding oflet constructs. More precisely,
for our typing constraints, the functiond verifies:

d(x) = 1

d(λ(x) a) = d(a) + 1

d(a b) = max(d(a), d(b)) + 1

d(let x = a in b) = max(d(a) + 1, d(b))

When applying VAR-LET and VAR-ABS, d verifiesd(x) = 0.
Importantlyd does not increase with right-nesting oflet bind-

ings. In particular, a large upper bound ofd is the height of the
biggest function of the program (when written as an abstractsyn-
tax tree). Under the two assumptions that (1) large programsare
composed of cascades of right-nested toplevellet declarations, and
(2) k does not increase with the size of the program, type inference
in our constraints system (thus inMLF) has linear complexity.

Notice that, if we restrict ourselves toML, using the constraint
simplification of Figure 13 will eliminate G-nodes for all sub-
expressions but the left-hand side oflet constructs. We therefore
obtain exactly the same complexity as McAllester.

Our analysis also provides an upper bound for the complexity
of type inference. In the worst case, the maximum size of type
schemesk is bounded by2O(n) and the maximum depth of G-
nodesd is bounded byn. The complexity is thus in2O(n) × n ×
(α(2O(n) × n) + n), i.e. in 2O(n). As ML programs are typable in
MLF if and only if they are typable inML, the complexity bound for
MLFcannot be better that the one forML. We thus have established
the exact complexity bound2O(n) for type inference inMLF.

8. Examples of typings

χ1

λ(x) x

χ2 G

→

⊥ G

⊥

⊥

χ3 G

→

⊥ ⊥

χ4 G

→

⊥

Figure 16. Typingλ(x) x

Figure 16 presents the typing of the identity, valid in bothML

andMLF. The stepχ2 to χ3 is by VAR-ABS. χ4 is by unification.
The resulting principal type is∀ (α) α→ α, abbreviated asσid .

Figure 15 presents the typing oflet y = λ(x) x in y y in MLF.
In χ3 we have developed the expression node fory y. In χ4 we
have replacedλ(x) x by its principal typing and applied VAR-LET
to bothn1 andn2. χ5 is by INST-EXPAND on each instantiation
edge, then by EXISTS-ELIM on g. χ6 is by unification andχ7 by
EXISTS-ELIM onn. The result isσid . The derivation is essentially
the same inML, up to a few nodes bound at〈ǫ〉 in χ5 to χ7.

The last example (Figure 17) uses a type constraint on a pa-
rameter. As explained in Section 6, it expands into the expression
described in constraintχ2. In χ3 we have expanded the expression
nodes for both the abstraction and the applicationcκid

x. We have
also simplified on the fly the instantiation edge oncκid

into a uni-
fication one; this is possible by INST-EXPAND and EXISTS-ELIM .
χ4 is by VAR-ABS onn, then by unification on the redirected uni-
fication edge.χ5 is by unification on the remaining edge.χ6 is by
EXISTS-ELIM onn. Up to a few unimportant differences, the high-
lighted nodes correspond to the constraintχ3 of Figure 15. Simpli-
fying those nodes thus results inχ7. χ8 is by INST-EXPAND on the
instantiation edge, then by EXISTS-ELIM .χ9 is by unification. The
result is the type∀ (α = σid) ∀ (β > σid) α → β, corresponding

10

χ1

let y = λ(x) x
in y y

χ2 y y

λ(x) x

y

χ3 G

G

⊥

n1

λ(x) x

G

⊥

n2

→

⊥ ⊥

χ4 G

G

g

→

⊥

→

⊥ ⊥

χ5 G

→

⊥
→

⊥

→

⊥ ⊥

χ6 G

n →

→

⊥

χ7 G

→

⊥

Figure 15. Typing let y = λ(x) x in y y

χ1 λ(y : ∀ (α) α→ α) y y

χ2 λ(y) let y = cκid
y in y y

wherecκid
= G

→

→

⊥

→

⊥

χ3 G

→

⊥ G

→

→

⊥

→

⊥

G

⊥ n

→

⊥ ⊥

y y ⊥

y

χ4 G

→

G

→

→

⊥

→

⊥

→

⊥ ⊥

y y ⊥

y

χ5 G

→

G

→

n→

⊥

→

⊥

y y ⊥

y

χ6 G

→

→

⊥

G

→

⊥

y y ⊥

y

χ7 G

→

→

⊥

G

→

⊥

⊥

χ8 G

→

→

⊥

→

⊥

→

⊥

χ9 G

→

→

⊥

→

⊥

Figure 17. Typingλ(y : ∀ (α) α→ α) y y

roughly to the System-F typeσid → σid in which instantiating the
occurrence ofσid on the right of the arrow is allowed.

Implementation An MLF type checker (which faithfully imple-
ments the algorithm presented in§5.1) can be found athttp://
gallium.inria.fr/~remy/mlf/. Although graphic types are
used internally, we print the types in syntactic form. Usinga simple
syntactic sugar this nearly always results in quite readable, System-
F-looking types. In particular, this should alleviate doubts thatMLF

types are too complicated to be presented to the programmer.

9. Comparison with other works
A detailed comparison betweenMLF and other extensions of Sys-
temF can be found in [3]. The most closely related work [5] pro-
poses an interesting restriction ofMLF, calledHML, in which rigid
quantification is treated up to sharing and thus inlined, butwhich
requires more type annotations—namely, all parameters of func-
tions that are polymorphic need a type annotation. Interestingly,
this restriction seems to be expressible directly in our framework,
which should thus be easily applicable to perform type inference
in HML. This would provideHML with an efficient type inference
algorithm. Notice that while sharing of rigidly bound nodesis un-
necessary in the definition ofHML, it should remain essential in
the implementation to maintain efficiency.

Another system, calledFPH [13], uses System-F types exter-
nally. However its specification introduces “boxes” insidetypes to
keep track of impredicative instantiations. Since type inference in

FPH is internally performed using theMLF type inference mech-
anisms, and sinceFPH seems to be a subset ofMLF (in fact of
HML), we believe thatFPH and type inference forFPH could also
be expressed in our framework.

More generally, many recent works [4, 13, 6, 5] aim at finding a
type system with second-order polymorphism that assigns System-
F (or simplifiedMLF types) to expressions. All of those systems
are less expressive thanMLF, and our graphic presentation of type
inference should help compare these alternatives—and perhaps ex-
plore others more systematically.

Efficient type inference for ML Efficient type inference algo-
rithms forML have many similarities with our graphic type infer-
ence algorithm. Of course, they all use an efficient graph-based uni-
fication algorithm and reduce type schemes in an inner-outerfash-
ion. More interestingly, they also use a notion of ranks (or frames)
to keep track of generalization levels and perform generalization
more efficiently [7, 8, 9]. Merging two multi-equations in [9] re-
quires them to have the same rank, hence lowering their rank to
the smallest of the two beforehand. Similarly, merging two nodes
in graphic types requires them to have the same bound, hence rais-
ing them to their lowest common binder. Raising binding edges has
also strong similarities with Rule S-LET-ALL of [8].

Type inference as typing constraintsTo the best of our knowl-
edge, Henglein has first expressed type inference as the satisfac-
tion of type-inference constraints, which led him to studying semi-
unification problems [1]. Hence, the obvious similarity between our

11

http://gallium.inria.fr/~remy/mlf/
http://gallium.inria.fr/~remy/mlf/

constraints and his. However, his constraints are interpreted over
simple types while ours are interpreted over graphic types,that gen-
eralize System-F types. Our constraints are therefore more expres-
sive. His constraints avoid the explicit representation ofG-nodes,
and instead read types as type schemes according to the context.
We cannot make this simplification inMLFbecauseMLFexpansion
is more complicated than theML one.

Typing constraints forML have been explored in detail [8].
There are many similarities between this work and ours. Typing
constraints are introduced first, independently of the underlying
language; then a set of sound and complete transformations on
typing constraints are introduced; the type inference algorithm is
finally obtained by imposing a strategy on applications of con-
straint transformations. Moreover, some important steps of both
frameworks can be put in correspondence (solving unification con-
straints, expansion of type-schemes,etc.). However, our constraints
are more concise, for two reasons. Firstly, the graphical represen-
tation of types is more canonical: for instance, we need no rule for
commutation of adjacent binders. Secondly, the underlyingbind-
ing structure of graphic types is reused for describing the binding
constructs of graphic constraints. Hence, the representation of con-
straints requires fewer extension to the representation oftypes, as
the latter is already richer.

Semi-unification As shown by Henglein [1], type inference for
ML reduces to semi-unification problems that are trivially acyclic
by construction—in the absence of polymorphic recursion. Hence,
we should be able to see our constraints as encoding a form of
acyclic graphic-type semi-unification problems. It would certainly
be worth further exploring this point of view. Possibly, we could
enable implicit polymorphic recursion inMLF by allowing some
incompleteness in type inference. (Explicit polymorphic recursion
is already available through type annotations.)

Other versions ofMLF There are two syntactic presentations
of MLF [2, 3]. In the original one [2], the instance relation on
types is not as general as the one proposed when graphic types
were introduced [10] (and further increased later [12]). Hence, the
type inference system we have presented is slightly more general;
however, we do not know of a short, simple, and uncontrivedλ-
term typable in our system but not in the original one.

The extended instance relation has been transferred back tothe
syntactic presentation [3], albeit at some technical cost,and only
in a stratified, restricted version ofMLF in which types are not
as general as those presented here or in the original presentation.
Moreover, type inference has not been addressed in this revised
syntactic version ofMLF.

Conclusion
We have extended the initial presentation of graphic types [10]
to represent typing constraints, for bothML and MLF. Graphic
constraints are simpler than the syntactic constraints that have been
developed forML; in particular they sidestep tedious issues such
asα-renaming or commutations of binders. We obtain a new, fully
graphical presentation ofMLF, where both the specification and the
type inference algorithm are done graphically. This presentation
highlights the very strong ties betweenML and MLF. We have
also shown that type inference forMLF has linear-time complexity
under reasonable assumptions.

By lack of space, type soundness is deferred to another pa-
per [11]. We use presolutions to interpret terms into a fullyexplicit,
Church-style language, which is itself proved sound.

In spite of the overhead inherent to using a slightly uncommon
formalism, reasoning on the meta-theoretical properties of the sys-
tem has shown to be significantly simpler on graphic types than

on syntactic ones. Hence, our graphical approach might be a good
basis for exploring further extensions ofMLFwith richer type struc-
ture, such as recursive types, primitive existentials, higher-order
types, dependent types, or some form of subtyping. This new pre-
sentation ofMLF typechecking as solving of typing constraints is
also a significant simplification ofMLF and a significant step to-
wards its possible use in a full-scale programming language.

Acknowledgments We would like to thank Didier Le Botlan and
Yann Régis-Gianas for numerous helpful suggestions on previous
versions of this work.

References
[1] Fritz Henglein. Type inference with polymorphic recursion. ACM

Transactions on Programming Languages and Systems, 15(2):253–
289, 1993.

[2] Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power of
System-F. InProceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming, pages 27–38, August 2003.

[3] Didier Le Botlan and Didier Rémy. Recasting MLF. Research Report
6228, INRIA, Rocquencourt, BP 105, 78 153 Le Chesnay Cedex,
France, June 2007.

[4] Daan Leijen. A type directed translation of MLF to systemF. In
Proceedings of the 12th ACM SIGPLAN International Conference
on Functional Programming (ICFP’07), Freiburg, Germany, pages
111–122, October 2007.

[5] Daan Leijen. Flexible types: robust type inference for first-class
polymorphism. Technical Report MSR-TR-2008-55, Microsoft
Research, March 2008.

[6] Daan Leijen. HMF: Simple type inference for first-class polymor-
phism. In ICFP’08 [15].

[7] David McAllester. A logical algorithm for ML type inference. In
International Conference on Rewriting Techniques and Applications
(RTA), Valencia, Spain, volume 2706 ofLecture Notes in Computer
Science, pages 436–451. Springer-Verlag, June 2003.

[8] François Pottier and Didier Rémy. The essence of ML type inference.
In Benjamin C. Pierce, editor,Advanced Topics in Types and
Programming Languages, chapter 10, pages 389–489. MIT Press,
2005.

[9] Didier Rémy. Extending ML type system with a sorted equational
theory. Research Report 1766, INRIA, 1992.

[10] Didier Rémy and Boris Yakobowski. A graphical presentation of
MLF types with a linear-time unification algorithm. InProceedings
of the 2007 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation (TLDI’07), pages 27–38,
Nice, France, January 2007. ACM Press.

[11] Didier Rémy and Boris Yakobowski. A Church-style intermediate
language forMLF. Submitted, available athttp://gallium.
inria.fr/~remy/mlf, 2008.

[12] Didier Rémy and Boris Yakobowski. A graphical presentation ofMLF

types with a linear-time incremental unification algorithm. Extended
version, of [10], September 2008.

[13] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones.
FPH: First-class polymorphism for Haskell. In ICFP’08 [15].

[14] Joe B. Wells. Typability and type checking in system F are equivalent
and undecidable.Annals of Pure and Applied Logic, 98(1–3):111–
156, 1999.

[15] Proceedings of the 13th ACM SIGPLAN International Conference
on Functional Programming (ICFP’08), Victoria, British Columbia,
Canada. ACM Press, September 2008.

12

http://gallium.inria.fr/~remy/mlf
http://gallium.inria.fr/~remy/mlf

	Graphic types and constraints
	ML Graphic types
	(Graphic) type schemes and generalization
	Constraint edges and existential nodes
	Putting it all together: typing constraints

	An overview of MLF and MLF graphic types
	MLF types
	MLF graphic types
	The instance relation
	Graphic constraints as an extension of graphic types

	Semantics of constraints
	Expanding a type scheme
	Meaning of constraints

	Reasoning on constraints
	Solving acyclic constraints
	Finding a principal presolution

	Type annotations
	Complexity of type inference
	Simplifying typing constraints
	Complexity analysis

	Examples of typings
	Comparison with other works

