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Motivation

Very similar data structures expressed as algebraic data types:
I trees with values at the leaves, at the nodes, etc
I GADTs encoding different invariants

Very similar functions on these structures

Ornaments (McBride,2010)
I express the link between similar datatypes
I between operations on these types
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Naturals and lists

type nat = Z | S of nat
type α list = Nil | Cons of α × α list

S ( S ( S ( Z )))
Cons(1, Cons(2, Cons(3, Nil)))

Projection function:
let rec length = function
| Nil→ Z
| Cons(x, xs)→ S(length xs)

ornament from length : α list→ nat



Naturals and lists

type nat = Z | S of nat
type α list = Nil | Cons of α × α list

S ( S ( S ( Z )))
Cons(1, Cons(2, Cons(3, Nil)))

Projection function:
let rec length = function
| Nil→ Z
| Cons(x, xs)→ S(length xs)

ornament from length : α list→ nat



Naturals and lists

type nat = Z | S of nat
type α list = Nil | Cons of α × α list

S ( S ( S ( Z )))
Cons(1, Cons(2, Cons(3, Nil)))

Projection function:
let rec length = function
| Nil→ Z
| Cons(x, xs)→ S(length xs)

ornament from length : α list→ nat



Valid ornaments

Intuitively, an ornament match values from an ornamented datatype
to values of a bare type.

I Project the constructors from the ornamented to the bare type
I maybe forget some information
I while keeping the recursive structure of the value

An ornament is defined by a projection function, subject to some
syntactic conditions described in our paper.



Relating functions

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→ Cons(x,append ml’ nl)

Coherence:
length (append ml nl) = add (length ml) (length nl)

project (f_lifted x y) = f (project x) (project y)



Lifting functions

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{length}→ {length}→ {length}

let rec append ml nl = match with
| Nil→ nl
| Cons(x,ml’)→ Cons(???, append ml’ nl)

length ml = m
length nl = n
length ml’ = m’
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Lifting functions

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

let lifting append from add with
{length}→ {length}→ {length}

let rec append ml nl = match ml with
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Filling the missing part

let rec append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→ Cons( ? , append ml’ nl)

I Manually, by intervention of the programmer
I With a patch specifying what should be added where
I Code inference: x makes the most sense here



The other liftings

length (add_lifted ml nl) = add (length ml) (length nl)

let rec rev_append ml nl = match ml with
| Nil→ nl
| Cons(x,ml’)→ rev_append ml’ (Cons(x,nl))

let rec add_bis m n = match m with
| Z→ n
| S m’→ add_bis m’ (S n)



Ornaments for refactoring

type expr =
| Const of int
| Add of expr × expr
| Mul of expr × expr

let rec eval = function
| Const(i)→ i
| Add(u, v)→ eval u + eval v
| Mul(u, v)→ eval u × eval v

type binop = Add’ | Mul’
type expr’ =
| Const’ of int
| BinOp’ of binop × expr’ × expr’
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Ornaments for refactoring (2)

let rec convert : expr’→ expr = function
| Const’(i)→ Const(i)
| BinOp(Add’, u, v)→ Add(convert u, convert v)
| BinOp(Mul’, u, v)→ Mul(convert u, convert v)

ornament from convert : expr’→ expr

let lifting eval’ from eval with {convert}→ _

The projection convert is bijective: the lifting is uniquely defined.

let rec eval’ : expr’→ int = function
| Const’(i)→ i
| BinOp’(Add’, u, v)→ eval’ u + eval’ v
| BinOp’(Mul’, u, v)→ eval’ u × eval’ v
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Lifting data structures

type key
val compare : key→ key→ int
type set = Empty | Node of key × set × set

type α map =
| MEmpty
| MNode of key × α × α map × α map

let rec keys = function
| MEmpty→ Empty
| MNode(k, v, l, r)→ Node(k, keys l, keys r)

ornament from keys : α map→ set



Lifting an higher-order function

let rec exists (p : elt→ bool) (s : set) : bool =
match s with
| Empty→ false
| Node(l, k, r)→ p k

|| exists p l || exists p r

let lifting map_exists from exists
with (_→ +_→ _)→ {keys}→ _

let rec map_exists p m =
match m with
| Empty→ false
| Node(l, k, v, r)→ p k ?

|| map_exists p l || map_exists p r
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GADTs

Several data structures with the same contents but different
invariants, i.e. a constraint on the shape of the type.
Lists and vectors:
type α list = Nil | Cons of α × α list
type zero = Zero type _ succ = Succ
type (_, α) vec =
| VNil : (zero, α) vec
| VCons : α × (n, α) vec→ (n succ, α) vec

let rec to_list : type n. (n, α) vec→ α list =
function
| VNil→ Nil
| VCons(x, xs)→ Cons(x, xs)

ornament from to_list : (γ, α) vec→ α list

The lifting should be unambiguous.



Lifting for GADTs

Automatic for some invariants, we only need to give the expected
type of the function:
let rec zip xs ys = match xs, ys with
| Nil, Nil→ Nil
| Cons(x, xs), Cons(y, ys)→ Cons((x, y), zip xs ys)
| _→ failwith "different length"

let lifting vzip :
type n. (n, α) vec→ (n, β) vec→ (n, α × β) vec
from zip with {to_list}→ {to_list}→ {to_list}

let rec vzip :
type n. (n, α) vec→ (n, β) vec→ (n, α × β) vec
= fun xs ys→ match xs, ys with
| VNil, VNil→ VNil
| VCons(x, xs), VCons(y, ys)→

VCons((x, y), vzip xs ys)
| _→ failwith "different length"
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Conclusion

1. Describing ornaments by projection is a good fit for ML
2. There are ornaments in the wild
3. The automatic lifting is incommplete, but gives good and

predictable results



Questions ?


