Ornaments in Practice

Thomas Williams Pierre-Évariste Dagand Didier Rémy
INRIA

Abstract
Ornaments have been introduced as a way to describe some changes in datatype definitions that preserve their recursive structure, reorganizing, adding, or dropping some pieces of data. After a new data structure has been described as an ornament of an older one, some functions operating on the bare structure can be partially or sometimes totally lifted into functions operating on the ornamented structure. We explore the feasibility and the interest of using ornaments in practice by applying these notions in an ML-like programming language. We propose a concrete syntax for defining ornaments of datatypes and the lifting of bare functions to their ornamented counterparts, describe the lifting process, and present several interesting use cases of ornaments.

Categories and Subject Descriptors D.1.1 [Programming Techniques]: Applicative (Functional) Programming; D.3.3 [Language Constructs and Features]: Data types and structures

General Terms Design, Languages, Experimentation

Keywords Ornament, Datatypes, Code inference, Refactoring, Dependent types, Generalized Algebraic Datatypes, Implicit parameters

1. Introduction
Inductive datatypes and parametric polymorphism were two key new features introduced in the ML family of languages in the 1980’s. Datatypes stress the algebraic structure of data while parametric polymorphism allows to exploit universal properties of algorithms working on algebraic structures. Arguably, ML has struck a balance between a precise classifying principle (datatypes) and a powerful abstraction mechanism (parametric polymorphism).

Datatype definitions are inductively defined as labeled sums and products over primitive types. This restricted language allows the programmer to describe, on the one hand, their recursive structures and, on the other hand, how to populate these structures with data of either primitive types or types given as parameters. A quick look at an ML library reveals that datatypes can be factorized through their recursive structures. For example, the type of leaf binary trees and the type of node binary trees both share a common binary-branching structure:

```
type α ltree =  
  | LLeaf of α  
  | LNode of α ltree × α ltree

let rec ltree n =  
  if n = 0 then LLeaf n  
  else LNode (ltree (n-1)) (ltree n)
```

This realization is mutatis mutandis at the heart of the work on numerical representations (Knuth 1981) in functional settings (Okasaki 1998; Hinze 1998). Having established the structural ties between two datatypes, one soon realizes that both admit strikingly similar functions, operating similarly over their common recursive structures. The user sometimes feels like repeatedly programming the same operations over and over again with only minor variations. The refactoring process by which one adapts existing code to work on another, commonly-structured datatype requires non-negligible efforts from the programmer. Could this process be automated?

Another tension arises from the recent adoption of indexed types, such as Generalized Algebraic Data Types (GADTs) (Cheney and Hinze 2003; Schrijvers et al. 2009; Pottier and Régis-Gianas 2006) or refinement types (Freeman and Pfenning 1991; Schrijvers et al. 2009; Pottier and Régis-Gianas 2006) or refinement types (Freeman and Pfenning 1991; Schrijvers et al. 2009; Pottier and Régis-Gianas 2006) or refinement types (Freeman and Pfenning 1991; Schrijvers et al. 2009; Pottier and Régis-Gianas 2006) or refinement types (Freeman and Pfenning 1991; Schrijvers et al. 2009; Pottier and Régis-Gianas 2006). Indexed datatypes go one step beyond specifying the dynamic structure of data: they introduce a logical information enforcing precise static invariants. For example, while the type of lists is merely classifying data

```
type α list = Nil | Cons of α × α list
```
we can index its definition (here, using a GADT) to bake in an invariant over its length, thus obtaining the type of lists indexed by their length:

```
type α _ = Zero;; type _ succ = Succ
let rec _ vec =  
  | NIL : (zero, α vec)  
  | ICONS : α × (n, α vec) vec → (n succ, α vec)
```

Modern ML languages are thus offering novel, more precise datatypes. This puts at risk the fragile balance between classifying power and abstraction mechanism in ML. Indeed, parametric polymorphism appears too coarse-grained to write program manipulating indifferently lists and vectors (but not, say, binary trees). We would like to abstract over the logical invariants (introduced by indexing) without abstracting away the common, underlying structure of datatypes.

The recent theory of ornaments (McBride 2014) aims at answering these challenges. It defines conditions under which a new datatype definition can be described as an ornament of another. In essence, a datatype ornaments another if they both share the same recursive skeleton. Thanks to the structural ties relating a datatype and its ornament, the functions that operate only on the structure of the original datatype can be semi-automatically lifted to its ornament.

The idea of ornaments is quite appealing but has so far only been explored formally, leaving open the question of whether ornaments are just a theoretician pearl or have real practical applications. This
paper aims at addressing this very question. Although this is still work in progress and we cannot yet draw firm conclusions at this stage, our preliminary investigation is rather encouraging.

Our contributions are fourfold: first, we present a concrete syntax for describing ornaments of datatypes and specifying the lifting of functions working on bare types to ornamented functions operating on ornamented types (§2); second, we describe the algorithm that given such a lifting specification transforms the definition of a function on bare types to a function operating on ornamented types (§2); third, we present a few typical use cases of ornaments where our semi-automatic lifting performs rather well in sections §3 and §4; finally, we have identified several interesting issues related to the implementation of ornaments that need to be investigated in future work (§5).

We have a very preliminary prototype implementation of ornaments that has been used to process the examples presented below, but up to some minor syntactical differences and omitting many type annotations to mimic what could be done if we had ML-style type inference, while our prototype still requires annotations on all function parameters. Examples are thus presented in OCaml-like syntax. Examples in the syntax accepted by our prototype are available online.²

2. Ornaments by examples

Informally, ornaments are relating “similar” datatypes. In this section, we aim at clarifying what we mean by “similar” and justifying why, from a software engineering standpoint, one would benefit from organizing datatypes by their “similarities”.

For example, compare Peano’s natural numbers and lists:

<table>
<thead>
<tr>
<th>Type</th>
<th>Nat</th>
<th>List</th>
</tr>
</thead>
<tbody>
<tr>
<td>nat</td>
<td>=</td>
<td>S _ of _ nat</td>
</tr>
<tr>
<td>α list</td>
<td>=</td>
<td>Nil</td>
</tr>
</tbody>
</table>

The two datatype definitions have a similar structure, which can be put in close correspondence if we map _α list_ to _nat_, _Nil_ to _Z_, and _Cons_ to _S_. Moreover, the constructor _Cons_ takes a recursive argument (of type _α list_) that coincides with the recursive argument of the constructor _S_ of type _nat_. The only difference is that the constructor _Cons_ takes an extra argument of type _α_. Indeed, if we take a list, erase the elements, and change the name of the constructor, we get back a natural number that represents the length of the list, as illustrated below:

S (_S_ (_S_ (_Z_)))

This analysis also admits a converse interpretation, which is perhaps more enlightening from a software evolution perspective: lists can be understood as an extension of natural numbers that is obtained by grafting some information to the _S_ constructor. To emphasize this dynamic, we say that the type _α list_ is an ornament of the type _nat_ with an extra field of type _α_ on the constructor _S_.

One is then naturally led to ask whether functions over natural numbers can be lifted to functions over lists (Dagand and McBride 2014). For instance, the addition of Peano-encoded natural numbers

\[
\text{let rec add } m \ n = \text{match } m \ \text{with}
\]

\[
| Z \rightarrow n \\
| S \ m' \rightarrow S (\text{add } m' \ n)
\]

is strikingly similar to the _append_ function over lists:

\[
\text{let rec append } xs \ ys = \text{match } xs \ \text{with}
\]

\[
| \text{Nil} \rightarrow ys \\
| \text{Cons}(x, \ ys') \rightarrow \text{Cons}(x, \ \text{append } xs' \ ys)
\]

Intuitively, addition can be recovered from the operation on lists by changing the constructors to their counterpart on natural numbers and simultaneously erasing the head field. However, again, from a software engineering perspective, our interest lies in, conversely, being able to lift a function operating on natural numbers to a function operating over its ornament.

The example of _append_ is not a fortunate coincidence: several functions operating on lists admit a counterpart operating solely on integers. Rather than duplicating these programs, we would like to take advantage of this invariant to lift the code operating on numbers over to lists.

One should hasten to add that not every function over lists admits a counterpart over integers: for example, a function _filter_ that takes a predicate _p_ and a list _l_ and returns the list of all the elements satisfying _p_, has no counterpart on integers, as the length of the returned list is not determined by the length of _l_.

2.1 A syntax for ornaments

Informally, an ornament is any transformation of a datatype that preserves its underlying recursive structure. Read from an operational standpoint, this amounts to being able to

- drop the extra information introduced by the ornament,
- transform the arguments of the ornamented type down to the bare type,
- while leaving untouched the structure of both datatypes.

Dropping the extra-information can be easily described by a total projection function from the ornamented type to the bare type. For the _nat/list_ case, the projection is the _length_ function:

\[
\text{let rec length } = \text{function}
\]

\[
| \text{Nil} \rightarrow Z \\
| \text{Cons}(x, \ xs') \rightarrow S(\text{length } xs')
\]

This forms the basis of our syntax for ornaments, leaving aside the verification of the structural equivalence for the moment. Hence, the ornamentation of natural numbers into lists is simply specified by the declaration

\[
\text{let ornament length : list } \rightarrow \text{nat}
\]

subject to certain conditions that we describe now.

The condition by which an ornament “preserves the recursive structure” of its underlying datatype is somewhat harder to characterize syntactically. Let us first clarify what we mean by recursive structure. For a single, regular recursive type, the fields of each constructor can be divided into two sets: the recursive ones (for example, the tail of a list, or the left and right subtrees of a binary tree), and the non-recursive ones (for example, primitive types or parameters). A function preserves the recursive structure of a pair of datatypes (its domain and codomain) if it bijectively maps the recursive fields of the domain datatype (the ornament) onto the codomain datatype (its bare type).

From this definition, binary trees cannot be ornaments of lists, since trees have a constructor with two recursive fields, while lists only have a constant constructor and a constructor with a single recursive field; thus no function from trees to lists can preserve the recursive structure.

While we have a good semantic understanding of these conditions (Dagand and McBride 2013), this paper aims at giving a syntactic treatment. We are thus faced with the challenge of translating these notions to ML datatypes, which supports, for example, mutually-recursive datatypes.

From the categorical definition of ornaments, we can nonetheless extract a few sufficient syntactic conditions for a projection to define an ornament. For the sake of presentation, we will assume that the arguments of datatypes constructors are always ordered, non-recursive fields coming first, followed by recursive fields. The projection _h_ defining the ornament must immediately pattern match on its argument, and the argument must not be used elsewhere. The
constraints are expressed on each clause \(p \rightarrow e \) of this pattern matching:

1. The pattern \(p \) must be of the form \(C^p(p_1, \ldots, p_m; x_1, \ldots, x_n) \) where the \(p_i \) are patterns matching the non-recursive fields, and the \(x_i \)'s are variables matching the recursive fields.

2. The expression \(e \) must be of the form \(C(e_1, \ldots, e_q; h y_1, \ldots, h y_n) \) where the \(e_i \)'s are expressions that do not use the \(x_j \)'s, and the \(y_j \)'s are a permutation of the \(x_i \)'s.

In particular, a constructor \(C \) of the ornamented type will be mapped to a constructor \(C \) of the bare type with the same number of recursive fields.

This rules out all the following functions in the definition of ornaments:

- \texttt{let rec length _ div2 = function}
 - \texttt{| Nil \rightarrow Z}
 - \texttt{| Cons(x, Cons(y, xs)) \rightarrow S(length _ div2 xs)}

The second (recursive) field of \texttt{Cons} is not matched by a variable.

- \texttt{let rec length2 = function}
 - \texttt{| Nil \rightarrow Z}
 - \texttt{| Cons(x, xs) \rightarrow S(S(length2 xs))}

The argument of the outer occurrence of \texttt{S} is not a recursive application of the projection \texttt{length2}.

- \texttt{let rec spine = function}
 - \texttt{| NLeaf \rightarrow Nil}
 - \texttt{| NNode(1, x, r) \rightarrow Cons(x, spine 1)}

The function \texttt{spine} is invalid because it discards the recursive field \(r \), and \texttt{span} is invalid because it duplicates the recursive field \(xs \).

The syntactic restrictions we put on the description of ornament make projections incomplete, i.e., one may cook up some valid ornaments that cannot be described this way, e.g., using arbitrary computation in the projection. However, it seems that interesting ornaments can usually be expressed as valid projections.

As expected, \texttt{length} satisfies the conditions imposed on projections and thus defines an ornament from natural numbers to lists.

Perhaps surprisingly, by this definition, the unit type is an ornament of lists (and, in fact, of any type), witnessed by the following function:

- \texttt{let nil () = Nil}
- \texttt{let ornament nil : unit \rightarrow \alpha list}

This example actually belongs to a larger class of ornaments that removes constructors from their underlying datatype (see more advanced uses of such examples in §3.3). From a type theoretic perspective, this is unsurprising: removing a constructor is simply achieved by \texttt{inserting} a field asking for an element of the empty set. The conditions on the ornament projection can be generalized to work with mutually recursive, non-regular datatypes: the projections become mutually recursive, but all the conditions on recursive calls remain unchanged.

2.2 Lifting functions: syntax and automation

Using the ornament projection, we can also relate a lifted function operating on some ornamented types with the corresponding function operating on their respective bare types. Intuitively, such a coherence property states that the results of the ornamented function are partially determined by the result of the bare function (the function on the bare type).

To give a more precise definition, let us define a syntax of functional ornaments, describing how one function is a lifting of another, and the coherence property that it defines. Suppose we want to lift a function \(f \) of type \(\sigma \rightarrow \tau \) to the type \(\sigma^f \rightarrow \tau^f \) using the ornaments. More precisely, suppose we want this lifting to use the ornaments \(u_\sigma : \sigma^f \rightarrow \sigma \) and \(u_\tau : \tau^f \rightarrow \tau \). We say that \(f^f \) is a coherent lifting of \(f \) with the ornaments \(u_\sigma \) and \(u_\tau \) if and only if it satisfies the equation:

\[
 f(u_\sigma x) = u_\tau (f^f x)
\]

for all \(x \) of type \(\sigma^f \).

This definition readily generalizes to any number of arguments. For example, lifting the function \texttt{add} with the ornament \texttt{length} from natural numbers to lists, the property becomes:

\[
 \text{length}(f^f m n) = \text{add}(\text{length}(m) \times \text{length}(n))
\]

And indeed, taking the function \texttt{append} for \(f^f \) satisfies this property. So we can say that \texttt{append} is a coherent lifting of \texttt{add} with the ornament \texttt{length} for the two arguments and the result. But is it the only one? Can we find it automatically?

So far, we have only specified when a function is a coherent lifting of another. However, the whole point of ornaments is to automate the generation of the code of the lifted function. For instance, we would like to write

- \texttt{let ornament append from add with \{length\} \rightarrow \{length\} \rightarrow \{length\}}

where \(\{length\} \rightarrow \{length\} \rightarrow \{length\} \) specifies the ornaments to be used for the arguments and the result and expect that the compiler would derive the definition of \texttt{append} for us. In practice, we will not exactly get the definition of \texttt{append}, but almost.

To achieve this objective, the coherence property appears to be insufficiently discriminating. For instance, there is a plethora of coherent liftings of \texttt{add} with the ornament \texttt{length} beside \texttt{append}.

Rather than trying to enumerate all of these coherent liftings, we choose to ignore all solutions whose syntactic form is not close enough to the original function. Our prototype takes hints from the syntactic definition of the bare function, thus sacrificing completeness. The system tries to guess the lifting based on the form of the original function and eventually relies on the programmer to supply code that could not be inferred.

Let us unfold this process on the lifting of \texttt{add} along \texttt{length}, as described above where \texttt{add} is implemented as:

- \texttt{let rec add m n = match m with}
 - \texttt{| Z \rightarrow n}
 - \texttt{| S m' \rightarrow S (add m' n)}

The ornament specification \(\{length\} \rightarrow \{length\} \rightarrow \{length\} \) plays several roles. First, its describes how the type \texttt{add} should be transformed to obtain the type of \texttt{append}. Indeed, knowing that \texttt{length} has type \(\alpha \text{ list} \rightarrow \text{nat} \) and \texttt{add} has type \(\text{nat} \rightarrow \text{nat} \rightarrow \text{nat} \), we know that \texttt{append} must have type \(\alpha \text{ list} \rightarrow \alpha \text{ list} \rightarrow \alpha \text{ list} \). Second, it describes how each argument and the result should be lifted. During the lifting process, the ornaments of the arguments and of the result play very different roles: lifting an argument changes the context and thus requires lifting pattern matching, thus introducing additional information in the context; by contrast, lifting the return type requires lifting expressions, and requires additional information to be stored on the ornamented constructors, which general cannot be inferred and will be left to the user.

On our example, the lifting specification says that the arguments \(m \) and \(n \) of the function \texttt{add} are lifted into some arguments \(m_1 \) and \(n_1 \) of the function \texttt{append} such that \texttt{length} \(m_1 \) is \(m \) and \texttt{length} \(n_1 \) is \(n \). The matching on \(m \) can be automatically updated to work on lists instead of numbers, by simply copying the structure of the ornament declaration: the projection returns \(Z \) only when given \(\text{Nil} \), while the constructor \(\text{S}(-) \) is returned for every value matching
Cons(x, -) where - stands for the recursive argument. The variable x is an additional argument to Cons that has no counterpart in S. As a first approximation, we obtain the following skeleton (the left-hand side gray vertical bar is used for code inferred by the prototype):

```
let rec append ml nl = match ml with
| Nil → ml
| Cons(x, ml') → Cons(x, append ml nl)
```

where the expressions a₁ and a₂ are still to be determined. The variable ml' is the lifting of m': if it were used in a pattern matching, this other matching would also have to be lifted. In order to have a valid lifting, we require a₁ to be a lifting of n and a₂ to be a lifting of S(add m' n), both along length.

Remark 1. If multiple constructors map to a single one, a pattern will be split into multiple patterns.

Let us focus on a₁. There are several possible ornaments of n: Indeed, we could compute the length of n and return any list of the same length. However, we choose to return nil because we want to mirror the structure of the original function, and the original function does not destruct n in this case. That is, we restrict lifting of variables so that they are not destructed if they were not destructed in the base version.

In the other branch we know that the value of a₂ must be an ornament of S(add m' n). To mimic the structure of the code, we must construct an ornament of this value here. In this case, it is obvious by inspection of the ornament that there is only one possible constructor. Therefore a₂ must be of the form Cons(a₃, a₄), where a₃ is a term of the type α of the elements of the list and a₄ a lifting of add m' n. Upon encountering a function call to be lifted, the system tries to find a coherent lifting of the function among all previously declared liftings. Here, we know (recursively) that append is lifted from add with ornaments \{length\} → \{length\} → \{length\}. By looking at this specification, it is possible to decide how the arguments must be lifted. Both n and ml must be lifted along length and ml' and nl are such coherent liftings—and the only ones in context.

To summarize, our prototype automatically generates the following code:

```
let rec append ml nl = match ml with
| Nil → ml
| Cons(x, ml') → Cons(x, append ml nl)
```

The notation \([_]\) represents a hole in the code: this part of the code could not be automatically lifted, since it does not appear in the original code, and it is up to the programmer to say what should be done to generate the element of the list.

To obtain the append function, we can put x in the hole, but there are other solutions that also satisfy the coherence property. For example, we could choose to take the first element of n at if it exists or x otherwise. The resulting function would also be a lifting of add, since whatever is in the hole is discarded by length. We are only limited by polymorphism: the element must come from one of the lists. Note also that we could transform the list nil, instead of returning it directly in the Nil case, or do something to the list returned by append ml' n in the Cons case, as long as we do not change the length.

A possible enhancement to our algorithm is to try, in a post-processing pass, to fill the holes with a term of the right type, if it is unique up to program equivalence—for some appropriate notion of program equivalence. Since we are not interested in completeness, we can add the additional constraint that the term does not use any lifted value: the reason is that we do not want to destruct lifted values more than in the unlifted version. With this enhancement, the hole in append could be automatically filled with the appropriate value (but our prototype does not do this yet).

Notice that if we had a version of list carrying two elements per node, i.e., with a constructor Cons₂ of type α × α × list, the Cons branch would be left with two holes:

```
| Cons₂(x₁, x₂, ml') → Cons₂(x₁, append ml nl)
```

This time the post-processing pass would have no choice but leave the holes to be filled by the user, as each of them requires an expression of type α and there are two variables x₁ and x₂ of type α in the context.

Surprisingly, lifting the tail-recursive version add_bis of add:

```
let rec add_bis m n = match m with
| Z → n
| S(m') → add_bis m' (S n)
```

and

```
let ornament append_bis from add_bis
with {length} → {length} → {length}
```

yields a very different function:

```
let rec append_bis ml nl = match ml with
| Nil → ml
| Cons(x, ml') → append_bis ml' (Cons(x, nl))
```

Filling the hole in the obvious way (whether manually or by post-processing), we get the reverse append function.

This example shows that the result of the lifting process depends not only on the observable behavior of a function (as expressed by the coherence property), but also on its implementation. This renders functional lifting sensible to syntactic perturbations: one should have a good knowledge of how the bare function is written to have a good understanding of the function obtained by lifting. Conversely, extensionally equivalent definitions of a single bare functions might yield observably distinct ornamented function, as is the case with append and append_bis.

The implementation of automatic lifting stays very close to the syntax of the original function. This has interesting consequences: we conjecture that if the projection has a constant cost per recursive call, then the (asymptotic) complexity of the lifted function (excluding the complexity of computing what is placed in the holes) is no greater than the complexity of the bare function. The downside is that it is impossible (in general) to obtain the projection function from lifting the identity function fun x → x: the identity runs in constant time while projection does not.

Open question: In this section, we have shown how our prototype exploits the syntactic structure of the bare function to generate coherent liftings. While our heuristics seem “reasonable”, we lack a formal understanding of what “reasonable transformations” are. In particular, parametricity falls short of providing such a mechanism.

3. Use cases

The examples in the previous sections have been chosen for exposition of the concepts and may seem somewhat contrived. In this section, we present two case studies that exercise ornaments in a practical setting. First, we demonstrate the use of lifting operations on a larger scale by transporting a library for sets into a library for maps (\([___]\)). Second, we show that ornaments can be used to direct code refactoring (\([___]\) and \([__]\)), thus interpreting in a novel way the information provided by the ornament as a recipe for software evolution.

3.1 Lifting a library

The idea of lifting functions from a data structure to another carries to more complex structures, beyond the toy example of nat and list. In this section, we lift a (partial) implementation of a set data structure based on unbalanced binary search trees to associative maps. We only illustrate the lifting of the key part of the library:
In this case would be the identity function. This information is
brackets) instead of its projection (surrounded by braces), which
In the specification of mfind
We may now ask for a lifting of our two operations:
Our goal is to lift the two operations empty and find to associativa-
maps. In this process, we shall change the return type of find to
a option to be able to return the value associated to the key. This is
possible because a option can be seen as an ornament of bool where
an extra field has been added to true:

type α option = None | Some of α
let is_some = function
| Some _ → true
| None → false
let ornament is_some : α option → bool

The interface of the map library should be:

type α map =
| MEmpty
| MNode of key × α × α map × α map
val mempty : α map
val mfind : key → α map → α option

We define the type α map as an ornament of set:

let rec find : key → set → bool =
 fun k → function
 | Empty → false
 | Node(k',1,r) →
 | if compare k k' = 0 then true
 | else if compare k k' > 0 then find k l
 | else find k r

Our goal is to lift the two operations empty and find to associativa-
maps. In this process, we shall change the return type of find to
a option to be able to return the value associated to the key. This is
possible because a option can be seen as an ornament of bool where
an extra field has been added to true:

type α option = None | Some of α
let is_some = function
| Some _ → true
| None → false
let ornament is_some : α option → bool

The interface of the map library should be:

type α map =
| MEmpty
| MNode of key × α × α map × α map
val mempty : α map
val mfind : key → α map → α option

We define the type α map as an ornament of set:

let rec keys = function
| MEmpty → Empty
| MNode(k,v,1,r) → Node(k, keys l, keys r)
let ornament keys : α map → set

We may now ask for a lifting of our two operations:

let ornament mempty from empty
 with {keys}
let ornament mfind from find
 with {keys}

In the specification of mfind the first argument should not be lifted,
which is indicated by giving its type key (surrounded by square
brackets) instead of its projection (surrounded by braces), which
in this case would be the identity function. This information is
exploited by the lifting process which can do more automation by
knowing that the argument is not lifted.

The lifting of mfind is only partial, and the system replies with the
lifted code below that contains a hole for the missing piece of
information:

let mempty = MEmpty
let rec mfind = fun k → function
 | MEmpty → None
 | MNode(k',v,1,r) →
 | if compare k k' = 0 then Some (v)
 | else if compare k k' > 0 then mfind k l
 | else mfind k r

That is, the programmer is left with specifying which value should
be included in the map for every key. The solution is of course to
fill the hole with v (which here could be inferred from its type, as v
is the only variable of type α in the current context).

Lifting OCaml’s Set library: As a larger-scale experiment, we
tried to automatically lift parts of OCaml’s Set library to associativa-
maps.

A few functions cannot be lifted into functions of the desired
type: for example, the lift of the for_all function that checks
whether all elements of a set verify a predicate would take as ar-
gument a predicate that only examines the keys, whereas we would
like to be able to examine the key-value pairs. This is because our
theory of ornaments does not handle higher-order functions.

A few other functions can be lifted but their coherence prop-
erties do not capture the desired behavior over maps. For example,
the lift of the equal function on sets of keys to an equal function
on maps would only check for equality of the keys. Indeed, by co-
herence, applying the lifted version to two maps should be the same
as applying equal to the sets of keys of the two maps.

Still, for many functions, the lifting makes sense and, as in the
find example above, the only holes we have to fill are those contain-
ing the values associated to keys. This is a straightforward pro-
cess, at the cost of a few small, manual interventions from the pro-
grammer. Moreover, many of these could be avoided by performing
some limited form of code inference in a post-processing phase.

Open question: In [5] we propose writing patches in a small
language extension that would allow us to fill in the holes left
by the lifting process. This language would aim at declaratively
specifying these lifting operations, allowing them to be processed
in batch without requiring any user interaction.

3.2 Refactoring

Another application of ornaments is related to code refactoring:
upon reorganizing a datatype definition, without adding or remov-
ing any information, we would like to automatically update the pro-
grams manipulating that datatype.

For instance, consider the abstract syntax of a small program-
ning language:

```
type expr =
| Const of int
| Add of expr × expr
| Mul of expr × expr
```
let rec eval = function
| Const(i) → i
| Add(u,v) → eval u + eval v
| Mul(u,v) → eval u × eval v

As code evolves and the language gets bigger, a typical refactoriza-
tion is to use a single constructor for all binary operations and have
a separate datatype of operations, as follows:

```
type binop = Add | Mul
| Const' of int
| BinOp' of binop × expr × expr'
```

By defining the expr’ datatype as an ornament of expr, we get
access to the lifting machinery to transport programs operating over
expr to programs operating over expr’. This ornament is defined
as follows:

```
let rec convert = function
| Const'(i) → Const(i)
| BinOp'(op,u,v) → begin match op with
  | Add' → Add(convert u, convert v)
  | Mul' → Mul(convert u, convert v)
end
```

We may now lift the eval function to the new representation:

```
let ornament eval' from eval
  with {convert} → [int]
```

In this case, the lifting is total and returns the following code:

```
let rec eval' = function
| Const'(i) → i
| BinOp'(op,u,v) → begin match op with
  | Add' → eval' u + eval' v
  | Mul' → eval' u × eval' v
end
```

Quite interestingly, the lifting is completely determined by the
coherence property for strict refactoring applications because the
ornament defines a bijection between the two types (here, \texttt{expr} and \texttt{expr'}). Here, we have hit a sweet spot where the ornament is sufficiently simple to be reversible on each constructor. This allows our system to lift the source program in totality.

Open question: In order to fully automate the refactoring tasks, we crucially rely on the good behavior of the ornament under inversion. However, we cannot hope to give a complete syntactic criterion for such a class of ornaments. We still have to devise a syntactic presentation that would delineate a sufficiently expressive subclass of reversible ornaments while being intuitive.

3.3 Removing constructors

Another subclass of ornaments consists of those that remove some constructors from an existing type. Perhaps surprisingly, there are some interesting uses of this pattern: for example, in a compiler, the abstract syntax may have explicit nodes to represent syntactic sugar since the early passes of the compiler may need to maintain the difference between the sugared and desugared forms. However, one may later want to flatten out these differences and reason in the abstract syntax may have explicit nodes to represent syntactic presentation that would delineate a sufficiently expressive subclass of reversible ornaments while being intuitive.

3.3.1 Removing constructors

Another subclass of ornaments consists of those that remove some constructors from an existing type. Perhaps surprisingly, there are some interesting uses of this pattern: for example, in a compiler, the abstract syntax may have explicit nodes to represent syntactic sugar since the early passes of the compiler may need to maintain the difference between the sugared and desugared forms. However, one may later want to flatten out these differences and reason in the abstract syntax may have explicit nodes to represent syntactic presentation that would delineate a sufficiently expressive subclass of reversible ornaments while being intuitive.

3.3.2 Removing constructors

Another subclass of ornaments consists of those that remove some constructors from an existing type. Perhaps surprisingly, there are some interesting uses of this pattern: for example, in a compiler, the abstract syntax may have explicit nodes to represent syntactic sugar since the early passes of the compiler may need to maintain the difference between the sugared and desugared forms. However, one may later want to flatten out these differences and reason in the abstract syntax may have explicit nodes to represent syntactic presentation that would delineate a sufficiently expressive subclass of reversible ornaments while being intuitive.

3.3.3 Removing constructors

Another subclass of ornaments consists of those that remove some constructors from an existing type. Perhaps surprisingly, there are some interesting uses of this pattern: for example, in a compiler, the abstract syntax may have explicit nodes to represent syntactic sugar since the early passes of the compiler may need to maintain the difference between the sugared and desugared forms. However, one may later want to flatten out these differences and reason in the abstract syntax may have explicit nodes to represent syntactic presentation that would delineate a sufficiently expressive subclass of reversible ornaments while being intuitive.

4. GADTs as ornaments of ADTs

GADTs allow to express more precise invariants on datatypes. In most cases, a GADT is obtained by indexing the definition of another type with additional information. Depending on the invariants needed in the code, multiple indexings of the same bare type can coexist. But this expressiveness comes at a cost: for each indexing, many operations available over the bare type must be reimplemented over the finely-indexed types. Indeed, a well-typed function between two GADTs describes not only a process for transforming the data, but also a proof that the invariants of the result follow from the invariants carried by the input arguments. We would like to automatically generate these functions instead of first duplicating the code and then editing the differences, which is tedious and hinders maintainability.

The key idea is that indexing a type is an example of ornament. Indeed, to transport a value of the indexed type back to the bare type, it is only necessary to drop the indices and constraints embedded in values. The projection will thus map every indexed constructor back to its unindexed equivalent.

Given an ornament \(f \) and an ornament \(g \), we define the composition \(f \circ g \) by lifting \(g \) and then passing it to \(f \). Lifting is implemented over the type \(expr \) whose projection to \(lexpr \) injects \(expr \) into \(lexpr \) in the obvious way:

\[
\begin{align*}
type \ lexpr & = \\
& | \ LConst \ of \ int \\
& | \ LAdd \ of \ lexpr \times lexpr \\
& | \ LMul \ of \ lexpr \times lexpr \\
& | \ Let \ of \ string \times lexpr \times lexpr \\
& | \ Var \ of \ string \\
\end{align*}
\]

Let us consider the example of lists indexed by their length (or vectors) mentioned in the introduction:

\[
\begin{align*}
type \ list & = \ Nil \ | \ Cons \ of \ \alpha \times \alpha \ list \\
type \ zero & = \ Zero \ ; \ type \ _ \ succ = \ Su \\
type \ (_, _) vec & = \\
& | \ INil : (zero, \alpha) vec \\
& | \ ICons : \alpha \times (\alpha, \alpha) vec \to (\alpha \ succ, \alpha) vec \\
\end{align*}
\]

We may define an ornament \(to_list \) returning the list of the elements of a vector (a type signature is required because \(to_list \) uses polymorphic recursion on the index parameter).

\[
\begin{align*}
let \ rec \ to_list & : \ type \ n. \ (n, \alpha) vec \to \alpha \ list = \\
& \ function \\
& \ | \ INil \to \ Nil \\
& | \ ICons(x,\alpha) \to \alpha \ list \\
\end{align*}
\]

In most cases of indexing ornaments, the projection is injective. As for refactoring, the lifting of a function is thus unique. For more complex GADTs, the projection may forget some fields that only serve as a representation of a proof. Since proofs should not influence the results of the program, this ambiguity should not cause any issue.

In practice, lifting seems to work well for many functions. Take for example the \(zip \) function on lists:

\[
\begin{align*}
let \ rec \ zip \ xs \ ys & = \ match \ xs,\ ys \ with \\
& | \ Nil, Nil \to \ Nil \\
& | \ Cons(x,\alpha) \to \alpha \ list \to \alpha \ list \\
& \ _ \to \ failwith \ "different length" \\
\end{align*}
\]

When specifying the lifting of \(zip \), we must also give the types of the ornaments used in the specification because these are necessary to generate a polymorphic type annotation on the \(vzip \) function ensuring that both arguments and the results are vectors of the same length.

\[
\begin{align*}
let \ ornament \ vzip \ from \ zip \ with \\
& \ | \ type \ n. \ (to_list : (n,\alpha) vec \to \alpha \ list) \\
& \to \ (to_list : (n,\beta) vec \to \beta \ list) \\
& \to \ (to_list : (n,\alpha \times \beta) vec \to (\alpha \times \beta) \ list) \\
\end{align*}
\]

This lifting is fully automatic, thus generating the following code:

\[
\begin{align*}
let \ rec \ vzip : \\
& \ | \ type \ n. \ (n, \alpha) vec \to (n, \beta) vec \to (n, \alpha \times \beta) vec \\
& = \ fun \ xs,\ ys \to \ match \ xs,\ ys \ with \\
& | \ INil, INil \to \ Nil \\
& | \ ICons(x,\alpha) \to \alpha \ list, ICons(y,\beta) \to \beta \ list \\
& \ _ \to \ failwith \ "different length" \\
\end{align*}
\]

Observe that the structure of the lifted function is identical to the original. Indeed, the function on vectors could have been obtained simply by adding a type annotation and replacing each constructor by its vector equivalent. The last case of the pattern matching is now redundant, it could be removed in a subsequent pass.

The automatic lifting ignores the indices: the proofs of the invariants enforced by indexing is left to the typechecker. In the case of \(vzip \), the type annotations provide enough information for OCaml’s type inference to accept the program. However, this is not always the case. Take for example the function \(zipm \) that behaves like \(zip \) but truncates one list to match the length of the other:

\[
\begin{align*}
let \ rec \ zipm : \\
& \ | \ type \ n. \ (n, \alpha) vec \to (n, \beta) vec \to (n, \alpha \times \beta) vec \\
& = \ fun \ xs,\ ys \to \ match \ xs,\ ys \ with \\
& | \ INil, INil \to \ Nil \\
& | \ ICons(x,\alpha) \to \alpha \ list, ICons(y,\beta) \to \beta \ list \\
& \ _ \to \ failwith \ "different length" \\
\end{align*}
\]
let rec vzipm xs ys = match xs, ys with
| Nil, _ -> Nil
| _, Nil -> Nil
| Cons(x, xs), Cons(y, ys) -> Cons((x, y), vzipm xs ys)

To lift it to vectors, we need to encode the fact that one type-level natural number is the minimum of two others. This is encoded in the type min:

type (, ,) min =
| MinS : (, ,) min
| MinZl : (, ,) min
| MinZr : (, ,) min

The lifting of zip needs to take an additional argument that contains a witness of type min: this is indicated by adding a “+” sign in front of the corresponding argument in the lifting specification.

let ornament vzipm from zipm with
| n1 n2 nmin. + [(n1, n2, nmin) min]
| -> (to_list : (n1,) vec -> nβ list)
| -> (to_list : (n2, β) vec -> β list)
| -> (to_list : (nmin, α × β) vec -> (α × β) list)

This lifting is partial, and actually fails:

let rec vzipm :
| type n1 n2 nmin. (n1, n2, nmin) min
| -> (n1,) vec -> (n2, β) vec -> (nmin, α × β) vec
| = fun min xs ys -> match xs, ys with
| | Nil | Nil | Nil
| | ICons(x, xz), ICons(y, yz) ->
| | ICons((x, y), vzipm) xs ys)
| | _ _, -> failwith "different length"

Even though it behaves correctly, this function does not typecheck, even if we put a correct witness inside the hole: some type equalities need to be extracted from the witness min. This amounts to writing the following code:

let rec vzipm :
| type n1 n2 nmin. (n1, n2, nmin) min
| -> (n1,) vec -> (n2, β) vec -> (nmin, α × β) vec
| = fun min xs ys -> match xs, ys with
| | Nil | _ ->
| | | (match min with MinZl -> | Nil | | MinZr -> | Nil)
| | | _ , _ , -> (match min with | MinS | _ -> ICons((x, y), vzipm) xs ys)

Generating such a code is out of reach of our current prototype. Besides, it contradicts our simplification hypothesis that ornaments should not (automatically) inspect arguments more than in the original code.

Instead of attempting to directly generate this code, a possible extension to our work would be to automatically search, in a post-processing phase, for a proof of the required equalities to generate code that typechecks, i.e. to generate the above code from the output of the lifting.

5. Discussion

5.1 Implementation

Our preliminary implementation of ornaments is based on a small, explicitly typed language. Once types are erased, it is a strict subset of OCaml: in particular, it does not feature modules, objects, etc., but these are orthogonal to ornaments.

The lifting of ornaments does not depend on type inference, but only on type annotations that results from type inference. Hence, it is sufficient to implement ornaments on a language with explicit types, even to use it in a language with type inference, such as OCaml or Haskell, using the host language type inferences to decorate terms with explicit types, elaborate the ornaments, erase type information, and rerun the host language type inferences on the lifted functions.

Thus, it would not be difficult to integrate our system to OCaml: elaboration of ornaments could be inserted after running type inference to work on the typed abstract syntax tree. Lift the functions, then erase their types to output the resulting code.

The theory of ornaments assumes no side effect. However, as our implementation of lifting preserves the structure of functions, the ornamented code should largely behave as the bare code with respect to the order of computations. Still, we would have to be more careful not to duplicate or delete computations, which could be observed by functions can be received as arguments. Of course, it would also be safer to have some effect type system to guard the programmer against indirect side-effecting performed by lifted functions—but this would already be very useful for bare programs.

5.2 Future work

When the lifting process is partial, it returns code with holes that have to be filled manually. One direction for improvement is to add a post-processing pass to fill in some of the holes by using code inference techniques such as implicit parameters (Chambard and Henry 2012) [Scala], which could return three kinds of answers: a unique solution, a default solution, i.e. letting the user know that the solution is perhaps not unique, or failure. In fact, it seems that a very simple form of code inference might be pertinent in many cases. However, code inference remains an orthogonal issue that should be studied on its own.

A possible extension to avoid manual editing after lifting would be to allow the user to provide the code to be filled in the holes in advance, i.e. in the specification of the lifting. This could take the form of a patch, which would be automatically applied to the output of the lifting process.

Another direction for improvement is to also enable the definition of new ornaments by combination of existing ornaments of the same type. This would be particularly useful for GADTs: an indexed type could then be built from a bare type and a library of useful properties expressed as GADTs.

Also, we are missing a theory of higher-order ornaments. This prevents us from generating useful liftings for a number of functions such as map and filter that are very common in functional programs.

6. Conclusion

We have explored a nonintrusive extension of an ML-like language with ornaments. The description of ornaments by their projection seems quite convenient in most cases. Although our lifting algorithm is syntax-directed and thus largely incomplete, it seems to be rather predictive and intuitive, and it already covers a few interesting applications. In fact, incompleteness improves automation, which seems necessary to make ornaments practical. Still, it would be interesting to have a more semantic characterization of our restricted form of lifting.

Our results are promising, if still preliminary. This invites us to pursue the exploration of ornaments both on the practical and theoretical sides, but more experience is really needed before we can draw definite conclusions.

A question that remains unclear is what should be the status of ornaments: should they become a first-class construct of programming languages, remain a meta-language feature used to preprocess programs into the core language, or a mere part of an integrated development environment?

2014/5/28
References

