
Ornaments in Practice

Thomas Williams Pierre-Évariste Dagand Didier Rémy
INRIA

{Thomas.Williams,Pierre-Evariste.Dagand,Didier.Remy}@inria.fr

Abstract
Ornaments have been introduced as a way to describe some
changes in datatype definitions that preserve their recursive struc-
ture, reorganizing, adding, or dropping some pieces of data. After
a new data structure has been described as an ornament of an older
one, some functions operating on the bare structure can be par-
tially or sometimes totally lifted into functions operating on the
ornamented structure. We explore the feasibility and the interest
of using ornaments in practice by applying these notions in an
ML-like programming language. We propose a concrete syntax for
defining ornaments of datatypes and the lifting of bare functions
to their ornamented counterparts, describe the lifting process, and
present several interesting use cases of ornaments.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Language
Constructs and Features]: Data types and structures

General Terms Design, Languages, Experimentation

Keywords Ornament, Datatypes, Code inference, Refactoring,
Dependent types, Generalized Algebraic Datatypes, Implicit pa-
rameters

1. Introduction
Inductive datatypes and parametric polymorphism were two key
new features introduced in the ML family of languages in the
1980’s. Datatypes stress the algebraic structure of data while para-
metric polymorphism allows to exploit universal properties of al-
gorithms working on algebraic structures. Arguably, ML has struck
a balance between a precise classifying principle (datatypes) and a
powerful abstraction mechanism (parametric polymorphism).

Datatype definitions are inductively defined as labeled sums and
products over primitive types. This restricted language allows the
programmer to describe, on the one hand, their recursive structures
and, on the other hand, how to populate these structures with data
of either primitive types or types given as parameters. A quick look
at an ML library reveals that datatypes can be factorized through
their recursive structures. For example, the type of leaf binary trees
and the type of node binary trees both share a common binary-
branching structure:

[Copyright notice will appear here once ’preprint’ option is removed.]

type α l t r e e =
| LLeaf of α
| LNode of α l t r e e × α l t r e e

type α ntree =
| NLeaf
| NNode of α ntree × α × α ntree

This realization is mutatis mutandis at the heart of the work
on numerical representations (Knuth 1981) in functional set-
tings (Okasaki 1998; Hinze 1998). Having established the struc-
tural ties between two datatypes, one soon realizes that both admit
strikingly similar functions, operating similarly over their common
recursive structures. The user sometimes feels like repeatedly pro-
gramming the same operations over and over again with only minor
variations. The refactoring process by which one adapts existing
code to work on another, commonly-structured datatype requires
non-negligible efforts from the programmer. Could this process be
automated?

Another tension arises from the recent adoption of indexed
types, such as Generalized Algebraic Data Types (GADTs) (Ch-
eney and Hinze 2003; Schrijvers et al. 2009; Pottier and Régis-
Gianas 2006) or refinement types (Freeman and Pfenning 1991;
Bengtson et al. 2011). Indexed datatypes go one step beyond spec-
ifying the dynamic structure of data: they introduce a logical infor-
mation enforcing precise static invariants. For example, while the
type of lists is merely classifying data

type α l i s t = Nil | Cons of α × α l i s t

we can index its definition (here, using a GADT) to bake in an
invariant over its length, thus obtaining the type of lists indexed by
their length:

type zero = Zero;; type _ succ = Succ
type (_,α) vec =
| IN i l : (zero, α) vec
| ICons : α × (n,α) vec → (n succ, α) vec

Modern ML languages are thus offering novel, more precise
datatypes. This puts at risk the fragile balance between classify-
ing power and abstraction mechanism in ML. Indeed, parametric
polymorphism appears too coarse-grained to write program manip-
ulating indifferently lists and vectors (but not, say, binary trees).
We would like to abstract over the logical invariants (introduced by
indexing) without abstracting away the common, underlying struc-
ture of datatypes.

The recent theory of ornaments (McBride 2014) aims at an-
swering these challenges. It defines conditions under which a new
datatype definition can be described as an ornament of another. In
essence, a datatype ornaments another if they both share the same
recursive skeleton. Thanks to the structural ties relating a datatype
and its ornament, the functions that operate only on the structure of
the original datatype can be semi-automatically lifted to its orna-
ment.

The idea of ornaments is quite appealing but has so far only been
explored formally, leaving open the question of whether ornaments
are just a theoretician pearl or have real practical applications. This

1 2014/5/28

paper aims at addressing this very question. Although this is still
work in progress and we cannot yet draw firm conclusions at this
stage, our preliminary investigation is rather encouraging.

Our contributions are fourfold: first, we present a concrete syn-
tax for describing ornaments of datatypes and specifying the lift-
ing of functions working on bare types to ornamented functions
operating on ornamented types (§2); second, we describe the al-
gorithm that given such a lifting specification transforms the def-
inition of a function on bare types to a function operating on or-
namented types (§2); third, we present a few typical use cases of
ornaments where our semi-automatic lifting performs rather well
in sections §3 and §4; finally, we have identified several interesting
issues related to the implementation of ornaments that need to be
investigated in future works (§5).

We have a very preliminary prototype implementation of orna-
ments that has been used to process the examples presented below,
but up to some minor syntactical differences and omitting many
type annotations to mimic what could be done if we had ML-style
type inference, while our prototype still requires annotations on all
function parameters. Examples are thus presented in OCaml-like
syntax. Examples in the syntax accepted by our prototype are avail-
able online1.

2. Ornaments by examples
Informally, ornaments are relating “similar” datatypes. In this sec-
tion, we aim at clarifying what we mean by “similar” and justify-
ing why, from a software engineering standpoint, one would benefit
from organizing datatypes by their “similarities”.

For example, compare Peano’s natural numbers and lists:
type nat = Z | S of nat
type α l i s t = Nil | Cons of α × α l i s t

The two datatype definitions have a similar structure, which can be
put in close correspondence if we mapα l i s t to nat, Nil to Z, and
Cons to S. Moreover, the constructor Cons takes a recursive argu-
ment (of type α l i s t) that coincides with the recursive argument
of the constructor S of type nat. The only difference is that the con-
structor Cons takes an extra argument of type α. Indeed, if we take
a list, erase the elements, and change the name of the constructor,
we get back a natural number that represents the length of the list,
as illustrated below:

Cons(1, Cons(2, Cons(3, Nil)))
S (S (S (Z)))

This analysis also admits a converse interpretation, which is per-
haps more enlightening from a software evolution perspective: lists
can be understood as an extension of natural numbers that is ob-
tained by grafting some information to the S constructor. To em-
phasize this dynamic, we say that the type α l i s t is an ornament
of the type nat with an extra field of type α on the constructor S.

One is then naturally led to ask whether functions over natural
numbers can be lifted to functions over lists (Dagand and McBride
2014). For instance, the addition of Peano-encoded natural num-
bers

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

is strikingly similar to the append function over lists:
let rec append xs ys = match xs with

| Nil → ys
| Cons(x, xs’)→ Cons(x, append xs’ ys)

Intuitively, addition can be recovered from the operation on lists by
changing the constructors to their counterpart on natural numbers

1 http://cristal.inria.fr/~remy/ornaments/

and simultaneously erasing the head field. However, again, from a
software engineering perspective, our interest lies in, conversely,
being able to lift a function operating on natural numbers to a
function operating over its ornament.

The example of append is not a fortunate coincidence: several
functions operating on lists admit a counterpart operating solely on
integers. Rather than duplicating these programs, we would like
to take advantage of this invariant to lift the code operating on
numbers over to lists.

One should hasten to add that not every function over lists
admits a counterpart over integers: for example, a function f i l t e r
that takes a predicate p and a list l and returns the list of all the
elements satisfying p, has no counterpart on integers, as the length
of the returned list is not determined by the length of l.

2.1 A syntax for ornaments
Informally, an ornament is any transformation of a datatype that
preserves its underlying recursive structure. Read from an opera-
tional standpoint, this amounts to being able to

• drop the extra information introduced by the ornament,
• transform the arguments of the ornamented type down to the

bare type,
• while leaving untouched the structure of both datatypes.

Dropping the extra-information can be easily described by a total
projection function from the ornamented type to the bare type. For
the nat/ l i s t case, the projection is the length function:

let rec length = function
| Nil → Z
| Cons(x, xs)→ S(length xs)

This forms the basis of our syntax for ornaments, leaving
aside the verification of the structural equivalence for the moment.
Hence, the ornamentation of natural numbers into lists is simply
specified by the declaration

let ornament length : l i s t → nat

subject to certain conditions that we describe now.
The condition by which an ornament “preserves the recursive

structure” of its underlying datatype is somewhat harder to charac-
terize syntactically. Let us first clarify what we mean by recursive
structure. For a single, regular recursive type, the fields of each
constructor can be divided into two sets: the recursive ones (for
example, the tail of a list, or the left and right subtrees of a bi-
nary tree), and the non-recursive ones (for example, primitive types
or parameters). A function preserves the recursive structure of a
pair of datatypes (its domain and codomain) if it bijectively maps
the recursive fields of the domain datatype (the ornament) onto the
codomain datatype (its bare type).

From this definition, binary trees cannot be ornaments of lists,
since trees have a constructor with two recursive fields, while lists
only have a constant constructor and a constructor with a single
recursive field; thus no function from trees to lists can preserve the
recursive structure.

While we have a good semantic understanding of these con-
ditions (Dagand and McBride 2013), this paper aims at giving a
syntactic treatment. We are thus faced with the challenge of trans-
lating these notions to ML datatypes, which supports, for example,
mutually-recursive datatypes.

From the categorical definition of ornaments, we can nonethe-
less extract a few sufficient syntactic conditions for a projection to
define an ornament. For the sake of presentation, we will assume
that the arguments of datatypes constructors are always ordered,
non-recursive fields coming first, followed by recursive fields. The
projection h defining the ornament must immediately pattern match
on its argument, and the argument must not be used elsewhere. The

2 2014/5/28

http://cristal.inria.fr/~remy/ornaments/

constraints are expressed on each clause p → e of this pattern
matching:

1. The pattern p must be of the form C†(p1, . . . , pm, x1, . . . , xn)
where the pi are patterns matching the non-recursive fields, and
the xi’s are variables matching the recursive fields.

2. The expression emust be of the formC(e1, . . . , eq, h y1, ..., h
yn) where the ei’s are expressions that do not use the xj’s, and
the yj’s are a permutation of the xi’s.

In particular, a constructor C† of the ornamented type will be
mapped to a constructor C of the bare type with the same number
of recursive fields.

This rules out all the following functions in the definition of
ornaments:
• let rec length_div2 = function

| Nil → Z
| Cons(_,Nil)→ Z
| Cons(x,Cons(y,xs))→ S(length_div2 xs)

The second (recursive) field of Cons is not matched by a vari-
able.
• let rec length2 = function

| Nil → Z
| Cons(x,xs)→ S(S(length2 xs))

The argument of the outer occurrence of S is not a recursive
application of the projection length2.
• let rec spine = function

| NLeaf→ Nil
| NNode(l,x,r)→ Cons(x, spine l)

let rec span = function
| Nil → NLeaf
| Cons(x,xs)→ NNode(span xs, x, span xs)

The function spine is invalid because it discards the recursive
field r, and span is invalid because it duplicates the recursive
field xs.

The syntactic restrictions we put on the description of ornament
make projections incomplete, i.e.. one may cook up some valid
ornaments that cannot be described this way, e.g.. using arbitrary
computation in the projection. However, it seems that interesting
ornaments can usually be expressed as valid projections.

As expected, length satisfies the conditions imposed on projec-
tions and thus defines an ornament from natural numbers to lists.

Perhaps surprisingly, by this definition, the unit type is an orna-
ment of lists (and, in fact, of any type), witnessed by the following
function:

let n i l () = Nil
let ornament n i l : unit → α l i s t

This example actually belongs to a larger class of ornaments that
removes constructors from their underlying datatype (see more
advanced uses of such examples in §3.3. From a type theoretic
perspective, this is unsurprising: removing a constructor is simply
achieved by inserting a field asking for an element of the empty set.

The conditions on the ornament projection can be generalized
to work with mutually recursive, non-regular datatypes: the projec-
tions become mutually recursive, but all the conditions on recursive
calls remain unchanged.

2.2 Lifting functions: syntax and automation
Using the ornament projection, we can also relate a lifted func-
tion operating on some ornamented types with the corresponding
function operating on their respective bare types. Intuitively, such
a coherence property states that the results of the ornamented func-
tion are partially determined by the result of the bare function (the
function on the bare type).

To give a more precise definition, let us define a syntax of
functional ornaments, describing how one function is a lifting of
another, and the coherence property that it defines. Suppose we
want to lift a function f of type σ → τ to the type σ† → τ†

using the ornaments. More precisely, suppose we want this lifting
to use the ornaments uσ : σ† → σ and uτ : τ† → τ . We say that
f† is a coherent lifting of f with the ornaments uσ and uτ if and
only if it satisfies the equation:

f (uσ x) = uτ (f† x)

for all x of type σ†.
This definition readily generalizes to any number of arguments.

For example, lifting the function add with the ornament length
from natural numbers to list, the property becomes:
length (f† xs ys) = add (length xs) (length ys)

And indeed, taking the function append for f† satisfies this prop-
erty. So we can say that append is a coherent lifting of add with the
ornament length for the two arguments and the result. But is it the
only one? Can we find it automatically?

So far, we have only specified when a function is a coherent
lifting of another. However, the whole point of ornaments is to
automate the generation of the code of the lifted function. For
instance, we would like to write

let ornament append from add
with { length}→ { length}→ { length}

where { length}→ { length}→ { length} specifies the orna-
ments to be used for the arguments and the result and expect that the
compiler would derive the definition of append for us. In practice,
we will not exactly get the definition of append, but almost.

To achieve this objective, the coherence property appears to be
insufficiently discriminating. For instance, there is a plethora of co-
herent liftings of add with the ornament length beside append.
Rather than trying to enumerate all of these coherent liftings, we
choose to ignore all solutions whose syntactic form is not close
enough to the original function. Our prototype takes hints from the
syntactic definition of the bare function, thus sacrificing complete-
ness. The system tries to guess the lifting based on the form of the
original function and eventually relies on the programmer to supply
code that could not be inferred.

Let us unfold this process on the lifting of add along length, as
described above where add is implemented as:

let rec add m n = match m with
| Z→ n
| S m’→ S (add m’ n)

The ornament specification { length}→ { length}→ { length}
plays several roles. First, its describes how the type of add should
be transformed to obtain the type of append. Indeed, knowing that
length has typeα l i s t → nat and add has type nat → nat → nat,
we know that append must have typeα l i s t → α l i s t → α l i s t .
Second, it describes how each argument and the result should be
lifted. During the lifting process, the ornaments of the arguments
and of the result play very different roles: lifting an argument
changes the context and thus requires lifting pattern matching,
thus introducing additional information in the context; by contract,
lifting the return type requires lifting expressions, and requires ad-
ditional information to be stored on the ornamented constructors,
which general cannot be inferred and will be left to the user.

On our example, the lifting specification says that the arguments
m and n of the function add are lifted into some arguments ml and
nl of the function append such that length ml is m and length nl
is n. The matching on m can be automatically updated to work on
lists instead of numbers, by simply copying the structure of the
ornament declaration: the projection returnsZ only when given Nil ,
while the constructor S(-) is returned for every value matching

3 2014/5/28

Cons(x,-) where - stands for the recursive argument. The variable
x is an additional argument to Cons that has no counterpart in S.
As a first approximation, we obtain the following skeleton (the
left-hand side gray vertical bar is used for code inferred by the
prototype):

let rec append ml nl = match ml with
| Nil → a1
| Cons(x, ml’)→ a2

where the expressions a1 and a2 are still to be determined. The
variable ml’ is the lifting of m’: if it were used in a pattern match-
ing, this other matching would also have to be lifted. In order to
have a valid lifting, we require a1 to be a lifting of n and a2 to be a
lifting of S(add m’ n), both along length.
Remark 1. If multiple constructors map to a single one, a pattern
will be split into multiple patterns.

Let us focus on a1. There are several possible ornaments of
n: Indeed, we could compute the length of nl and return any list
of the same length. However, we choose to return nl because
we want to mirror the structure of the original function, and the
original function does not destruct n in this case. That is, we restrict
lifting of variables so that they are not destructed if they were not
destructed in the bare version.

In the other branch we know that the value of a2 must be
an ornament of S(add m’ n). To mimic the structure of the
code, we must construct an ornament of this value here. In this
case, it is obvious by inspection of the ornament that there is
only one possible constructor. Therefore a2 must be of the form
Cons(a3,a4), where a3 is a term of the type α of the elements of
the list and a4 a lifting of add m’ n. Upon encountering a func-
tion call to be lifted, the system tries to find a coherent lifting
of the function among all previously declared liftings. Here, we
know (recursively) that append is lifted from add with ornaments
{ length}→ { length}→ { length}. By looking at this specifi-
cation, it is possible to decide how the arguments must be lifted.
Both m and n must be lifted along length and ml’ and nl are such
coherent liftings—and the only ones in context.

To summarize, our prototype automatically generates the fol-
lowing code:

let rec append ml nl = match ml with
| Nil → nl
| Cons(x,ml’)→ Cons(? , append ml’ nl)

The notation ? represents a hole in the code: this part of the code
could not be automatically lifted, since it does not appear in the
original code, and it is up to the programmer to say what should be
done to generate the element of the list.

To obtain the append function, we can put x in the hole, but
there are other solutions that also satisfy the coherence property.
For example, we could choose to take the first element of nl if it
exists or x otherwise. The resulting function would also be a lifting
of add, since whatever is in the hole is discarded by length. We are
only limited by polymorphism: the element must come from one of
the lists. Note also that we could transform the list nl, instead of
returning it directly in the Nil case, or do something to the list
returned by append ml’ nl in the Cons case, as long as we do not
change the lengths.

A possible enhancement to our algorithm is to try, in a post-
processing pass, to fill the holes with a term of the right type, if it is
unique up to program equivalence—for some appropriate notion of
program equilalence. Since we are not interested in completeness,
we can add the additional constraint that the term does not use any
lifted value: the reason is that we do not want to destruct lifted
values more than in the unlifted version. With this enhancement, the
hole in append could be automatically filled with the appropriate
value (but our prototype does not do this yet).

Notice that if we had a version of list carrying two elements per
node, i.e.. with a constructor Cons2 of type α × α × α l i s t , the
Cons branch would be left with two holes:

| Cons2(x1, x2, ml’)→
Cons2(? , ? , append ml’ nl)

This time the post-precessing pass would have no choice but leave
the holes to be filled by the user, as each of them requires an
expression of type α and there are two variables x1 and x2 of type
α in the context.

Surprisingly, lifting the tail-recursive version add_bis of add:
let rec add_bis m n = match m with

| Z→ n
| S(m’)→ add_bis m’ (S n)

let ornament append_bis from add_bis
with { length}→ { length}→ { length}

yields a very different function:
let rec append_bis ml nl = match ml with

| Nil → ml
| Cons(x,ml’)→

append_bis ml’ (Cons(? ,nl))

Filling the hole in the obvious way (whether manually or by post-
processing), we get the reverse append function.

This example shows that the result of the lifting process depends
not only on the observable behavior of a function (as expressed
by the coherence property), but also on its implementation. This
renders functional lifting sensible to syntactic perturbations: one
should have a good knowledge of how the bare function is written
to have a good understanding of the function obtained by lifting.
Conversely, extensionally equivalent definitions of a single bare
functions might yield observably distinct ornamented function, as
is the case with append and append_bis.

The implementation of automatic lifting stays very close to the
syntax of the original function. This has interesting consequences:
we conjecture that if the projection has a constant cost per recursive
call, then the (asymptotic) complexity of the lifted function (ex-
cluding the complexity of computing what is placed in the holes) is
no greater than the complexity of the bare function. The downside
is that it is impossible (in general) to obtain the projection function
from lifting the identity function fun x→ x: the identity runs in
constant time while projection does not.

Open question: In this section, we have shown how our prototype
exploits the syntactic structure of the bare function to generate
coherent liftings. While our heuristics seem “reasonable”, we lack a
formal understanding of what “reasonable transformations” are. In
particular, parametricity falls short of providing such a mechanism.

3. Use cases
The examples in the previous sections have been chosen for expo-
sition of the concepts and may seem somewhat contrived. In this
section, we present two case studies that exercise ornaments in a
practical setting. First, we demonstrate the use of lifting operations
on a larger scale by transporting a library for sets into a library for
maps (§3.1). Second, we show that ornaments can be used to direct
code refactoring (§3.2 and §3.3), thus interpreting in a novel way
the information provided by the ornament as a recipe for software
evolution.

3.1 Lifting a library
The idea of lifting functions from a data structure to another carries
to more complex structures, beyond the toy example of nat and
l i s t . In this section, we lift a (partial) implementation of a set data
structure based on unbalanced binary search trees to associative
maps. We only illustrate the lifting of the key part of the library:

4 2014/5/28

type key
val compare : key → key → in t
type set = Empty | Node of key × set × set

let empty : set = Empty

let rec f ind : key → set → bool =
fun k→ function

| Empty→ false
| Node(k’,l,r)→

if compare k k’ = 0 then true
else if compare k k’ > 0 then f ind k l
else f ind k r

Our goal is to lift the two operations empty and find to associa-
tive maps. In this process, we shall change the return type of find to
α option to be able to return the value associated to the key. This is
possible because α option can be seen as an ornament of bool where
an extra field has been added to true:

type α option = None | Some of α
let is_some = function

| Some _→ true
| None→ false

let ornament is_some : α option → bool

The interface of the map library should be:
type α map =

| MEmpty
| MNode of key × α × α map × α map

val mempty : α map
val mfind : key → α map→ α option

We define the type α map as an ornament of set :
let rec keys = function

| MEmpty→ Empty
| MNode(k,v,l,r)→ Node(k, keys l, keys r)

let ornament keys : α map→ set

We may now ask for a lifting of our two operations:
let ornament mempty from empty

with {keys}
let ornament mfind from f ind

with [key]→ {keys}→ {is_some}

In the specification of mfind the first argument should not be lifted,
which is indicated by giving its type key (surrounded by square
brackets) instead of its projection (surrounded by braces), which
in this case would be the identity function. This information is
exploited by the lifting process which can do more automation by
knowing that the argument is not lifted.

The lifting of mfind is only partial, and the system replies with
the lifted code below that contains a hole for the missing piece of
information:

let mempty = MEmpty
let rec mfind = fun k→ function

| MEmpty→ None
| MNode(k’,v,l,r)→

if compare k k’ = 0 then Some(?)
else if compare k k’ > 0 then mfind k l
else mfind k r

That is, the programmer is left with specifying which value should
be included in the map for every key. The solution is of course to
fill the hole with v (which here could be inferred from its type, as v
is the only variable of type α in the current context).

Lifting OCaml’s Set library: As a larger-scale experiment, we
tried to automatically lift parts of OCaml’s Set library to associa-
tive maps.

A few functions cannot be lifted into functions of the desired
type: for example, the lift of the for_all function that checks
whether all elements of a set verify a predicate would take as ar-
gument a predicate that only examines the keys, whereas we would

like to be able to examine the key-value pairs. This is because our
theory of ornaments does not handle higher-order functions.

A few other functions can be lifted but their coherence proper-
ties do not capture the desired behavior over maps. For example,
the lift of the equal function on sets of keys to an equal function
on maps would only check for equality of the keys. Indeed, by co-
herence, applying the lifted version to two maps should be the same
as applying equal to the sets of keys of the two maps.

Still, for many functions, the lifting makes sense and, as in the
find example above, the only holes we have to fill are those con-
taining the values associated to keys. This is a straightforward pro-
cess, at the cost of a few small, manual interventions from the pro-
grammer. Moreover, many of these could be avoided by performing
some limited form of code inference in a post-processing phase.

Open question: In §5, we propose writing patches in a small
language extension that would allow us to fill in the holes left
by the lifting process. This language would aim at declaratively
specifying these lifting operations, allowing them to be processed
in batch without requiring any user interaction.

3.2 Refactoring
Another application of ornaments is related to code refactoring:
upon reorganizing a datatype definition, without adding or remov-
ing any information, we would like to automatically update the pro-
grams manipulating that datatype.

For instance, consider the abstract syntax of a small program-
ming language:

type expr =
| Const of in t
| Add of expr × expr
| Mul of expr × expr

let rec eval = function
| Const(i)→ i
| Add(u,v)→ eval u + eval v
| Mul(u,v)→ eval u × eval v

As code evolves and the language gets bigger, a typical refactoriza-
tion is to use a single constructor for all binary operations and have
a separate datatype of operations, as follows:

type binop = Add’ | Mul’
type expr’ =

| Const’ of in t
| BinOp’ of binop × expr’ × expr’

By defining the expr’ datatype as an ornament of expr, we get
access to the lifting machinery to transport programs operating over
expr to programs operating over expr’. This ornament is defined
as follows:

let rec convert = function
| Const’(i)→ Const(i)
| BinOp(op,u,v)→ begin match op with

| Add’→ Add(convert u, convert v)
| Mul’→ Mul(convert u, convert v)

end
let ornament convert : expr’→ expr

We may now lift the eval function to the new representation:
let ornament eval ’ from eval

with {convert}→ [in t]

In this case, the lifting is total and returns the following code:
let rec eval ’ = function

| Const’(i)→ i
| BinOp’(op,u,v)→ begin match op with

| Add’→ eval ’ u + eval ’ v
| Mul’→ eval ’ u × eval ’ v

end

Quite interestingly, the lifting is completely determined by the
coherence property for strict refactoring applications because the

5 2014/5/28

ornament defines a bijection between the two types (here, expr
and expr’). Here, we have hit a sweet spot where the ornament is
sufficiently simple to be reversible on each constructor. This allows
our system to lift the source program in totality.

Open question: In order to fully automate the refactoring tasks,
we crucially rely on the good behavior of the ornament under
inversion. However, we cannot hope to give a complete syntactic
criterion for such a class of ornaments. We still have to devise a
syntactic presentation that would delineate a sufficiently expressive
subclass of reversible ornaments while being intuitive.

3.3 Removing constructors
Another subclass of ornaments consists of those that remove some
constructors from an existing type. Perhaps surprisingly, there are
some interesting uses of this pattern: for example, in a compiler,
the abstract syntax may have explicit nodes to represent syntactic
sugar since the early passes of the compiler may need to maintain
the difference between the sugared and desugared forms. However,
one may later want to flatten out these differences and reason in the
subset of the language that does not include the desugared forms—
thus ensuring the stronger invariant that the sugared forms do not
appear as inputs or ouputs.

Concretely, the language of expressions defined in the previous
section (§3.2) could have been defined with a let construct (denoted
by lexpr). The type expr is a subset of lexpr : we have an ornament
of lexpr whose projection to_lexpr injects expr into lexpr in the
obvious way:

type lexpr =
| LConst of in t
| LAdd of lexpr × lexpr
| LMul of lexpr × lexpr
| Let of st r ing × lexpr × lexpr
| Var of st r ing

let rec to_lexpr : expr → lexpr = function
| Const n→ LConst n
| Add(e1,e2)→ LAdd(to_lexpr e1, to_lexpr e2)
| Mul(e1,e2)→ LMul(to_lexpr e1, to_lexpr e2)

let ornament to_lexpr : expr → lexpr

As with the refactoring, lifting a function f operating on lexpr
over to expr is completely determined by the coherence property.
Still for the lifting to exist, the function f must verify the coher-
ence property, namely that the images of f without sugared inputs
are expressions without sugared outputs, and the lifting will fail
whenever the system cannot verify this property, either because the
property is false or because of the incompleteness of the verifica-
tion. For example, the following function mul_to_add introduces a
let:

let mul_to_add = function
| LMul(LConst 2, x)→

let n = gen_name() in
Let(n, x, Add(Var n,Var n))

| y→ y
Hence, it is rejected:

let ornament mul_to_add’ from mul_to_add
with {expr_to_lexpr}→ {expr_to_lexpr}

4. GADTs as ornaments of ADTs
GADTs allow to express more precise invariants on datatypes.
In most cases, a GADT is obtained by indexing the definition
of another type with additional information. Depending on the
invariants needed in the code, multiple indexings of the same bare
type can coexist. But this expressiveness comes at a cost: for each
indexing, many operations available over the bare type must be
reimplemented over the finely-indexed types. Indeed, a well-typed

function between two GADTs describes not only a process for
transforming the data, but also a proof that the invariants of the
result follow from the invariants carried by the input arguments.
We would like to automatically generate these functions instead of
first duplicating the code and then editing the differences, which is
tedious and hinders maintainability.

The key idea is that indexing a type is an example of ornament.
Indeed, to transport a value of the indexed type back to the bare
type, it is only necessary to drop the indices and constraints em-
bedded in values. The projection will thus map every indexed con-
structor back to its unindexed equivalent.

Let us consider the example of lists indexed by their length (or
vectors) mentioned in the introduction:

type α l i s t = Nil | Cons of α × α l i s t
type zero = Zero;; type _ succ = Su
type (_,α) vec =
| IN i l : (zero, α) vec
| ICons : α × (n,α) vec → (n succ, α) vec

We may define an ornament to_list returning the list of the
elements of a vector (a type signature is required because to_list
uses polymorphic recursion on the index parameter).

let rec to_list : type n. (n, α) vec → α l i s t =
function
| IN i l → Nil
| ICons(x,xs)→ Cons(x,xs)

let ornament to_list : (’l,α) vec → α l i s t
In most cases of indexing ornaments, the projection is injective.

As for refactoring, the lifting of a function is thus unique. For
more complex GADTs, the projection may forget some fields that
only serve as a representation of a proof. Since proofs should not
influence the results of the program, this ambiguity should not
cause any issue.

In practice, lifting seems to work well for many functions. Take
for example the zip function on lists:

let rec zip xs ys = match xs, ys with
| Nil , Nil → Nil
| Cons(x,xs), Cons(y,ys)→ Cons((x,y), zip xs ys)
| _→ f a i lw i th "different length"

When specifying the lifting of zip , we must also give the types of
the ornaments used in the specification because these are necessary
to generate a polymorphic type annotation on the vzip function
ensuring that both arguments and the results are vectors of the same
length.

let ornament vzip from zip with
type n. {to_list : (n,α) vec → α l i s t }

→ {to_list : (n,β) vec → β l i s t }
→ {to_list : (n,α × β) vec → (α × β) l i s t }

This lifting is fully automatic, thus generating the following code:
let rec vzip :

type n. (n, α) vec → (n, β) vec → (n, α × β) vec
= fun xs ys→ match xs, ys with
| INi l , IN i l → IN i l
| ICons(x,xs), ICons(y,ys)→

ICons((x,y), vzip xs ys)
| _→ f a i lw i th "different length"

Observe that the structure of the lifted function is identical to the
original. Indeed, the function on vectors could have been obtained
simply by adding a type annotation and replacing each constructor
by its vector equivalent. The last case of the pattern matching is
now redundant, it could be removed in a subsequent pass.

The automatic lifting ignores the indices: the proofs of the
invariants enforced by indexing is left to the typechecker. In the
case of vzip , the type annotations provide enough information for
OCaml’s type inference to accept the program. However, this is not
always the case. Take for example the function zipm that behaves
like zip but truncates one list to match the length of the other:

6 2014/5/28

let rec zipm xs ys = match xs, ys with
| Nil , _→ Nil
| _, Nil → Nil
| Cons(x,xs), Cons(y,ys)→ Cons((x,y), zipm xs ys)

To lift it to vectors, we need to encode the fact that one type-level
natural number is the minimum of two others. This is encoded in
the type min.

type (_,_,_) min =
| MinS : (α,β,γ) min
→ (α su, β su, γ su) min

| MinZl : (ze, α, ze) min
| MinZr : (α, ze, ze) min

The lifting of zipm needs to take an additional argument that con-
taints a witness of type min: this is indicated by adding a “+” sign
in front of the corresponding argument in the lifting specification.

let ornament vzipm from zipm with
type n1 n2 nmin.

+ [(n1, n2, nmin) min]
→ {to_list : (n1,α) vec → α l i s t }
→ {to_list : (n2,β) vec → β l i s t }
→ {to_list : (nmin,α × β) vec → (α × β) l i s t }

This lifting is partial, and actually fails:
let rec vzipm :

type n1 n2 nmin. (n1,n2,nmin) min
→ (n1,α) vec → (n2,β) vec → (nmin,α × β) vec

= fun min xs ys→ match xs, ys with
| INi l , IN i l → IN i l
| ICons(x,xs), ICons(y,ys)→

ICons((x,y), vzipm ? xs ys)
| _,→ f a i lw i th "different length"

Even though it behaves correctly, this function does not typecheck,
even if we put a correct witness inside the hole: some type equal-
ities need to be extracted from the witness min. This amounts to
writing the following code:

let rec vzipm :
type l1 l2 lm. (l1, l2, lm) min→

(α, l1) vec → (β, l2) vec → (α × β,lm) vec =
fun min xs ys→ match xs, ys with

| INi l , _→
(match min with MinZl → IN i l | MinZr→ IN i l)

| _, VNil→
(match min with MinZr→ IN i l | MinZl → IN i l)

| ICons(x,xs), ICons(y,ys)→
(match min with
| MinS min’→ ICons((x,y), vzipm min’ xs ys))

Generating such a code is out of reach of our current prototype.
Besides, it contradicts our simplification hypothesis that ornaments
should not (automatically) inspect arguments more than in the
original code.

Instead of attempting to directly generate this code, a possible
extension to our work would be to automatically search, in a post-
processing phase, for a proof of the required equalities to generate
code that typechecks, i.e. to generate the above code from the ouput
of the lifting.

5. Discussion
5.1 Implementation
Our preliminary implementation of ornaments is based on a small,
explicitly typed language. Once types are erased, it is a strict subset
of OCaml: in particular, it does not feature modules, objects, etc.,
but these are orthogonal to ornaments.

The lifting of ornaments does not depend on type inference, but
only on type annotations that results from type inference. Hence, it
is sufficient to implement ornaments on a language with explicit
types, even to use it in a language with type inference, such as

OCaml or Haskell, using the host language type inferencer to dec-
orate terms with explicit types, elaborate the ornaments, erase type
information, and rerun the host language type inferencer on the
lifted functions.

Thus, it would not be difficult to integrate our system to OCaml:
elaboration of ornaments could be inserted after running type in-
ference to work on the typed abstract syntax tree, lift the functions,
then erase their types to output the resulting code.

The theory of ornaments assumes no side effect. However, as
our implementation of lifting preserves the structure of functions,
the ornamented code should largely behave as the bare code with
respect to the order of computations. Still, we would have to be
more careful not to duplicate or delete computations, which could
be observed when functions can be received as arguments. Of
course, it would also be safer to have some effect type system to
guard the programmer against indirect side-effecting performed by
lifted functions—but this would already be very useful for bare
programs.

5.2 Future work
When the lifting process is partial, it returns code with holes that
have to be filled manually. One direction for improvement is to add
a post-processing pass to fill in some of the holes by using code
inference techniques such as implicit parameters (Chambard and
Henry 2012; Scala), which could return three kinds of answers: a
unique solution, a default solution, i.e.. letting the user know that
the solution is perhaps not unique, or failure. In fact, it seems that
a very simple form of code inference might be pertinent in many
cases. However, code inference remains an orthogonal issue that
should be studied on its own.

A possible extension to avoid manual editing after lifting would
be to allow the user to provide the code to be filled in the holes
in advance, i.e. in the specification of the lifting. This could take
the form of a patch, which would be automatically applied to the
output of the lifting process.

Another direction for improvement is to also enable the defi-
nition of new ornaments by combination of existing ornaments of
the same type. This would be particularly useful for GADTs: an
indexed type could then be built from a bare type and a library of
useful properties expressed as GADTs.

Also, we are missing a theory of higher-order ornaments. This
prevents us from generating useful liftings for a number of func-
tions such as map and f i l t e r that are very common in functional
programs.

6. Conclusion
We have explored a nonintrusive extension of an ML-like language
with ornaments. The description of ornaments by their projection
seems quite convenient in most cases. Although our lifting algo-
rithm is syntax-directed and thus largely incomplete, it seems to
be rather predictive and intuitive, and it already covers a few inter-
esting applications. In fact, incompleteness improves automation,
which seems necessary to make ornaments practical. Still, it would
be interesting to have a more semantic characterization of our re-
stricted form of lifting.

Our results are promising, if still preliminary. This invites us
to pursue the exploration of ornaments both on the practical and
theoretical sides, but more experience is really needed before we
can draw definite conclusions.

A question that remains unclear is what should be the status of
ornaments: should they become a first-class construct of program-
ming languages, remain a meta-language feature used to preprocess
programs into the core language, or a mere part of an integrated de-
velopment environment?

7 2014/5/28

References
J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.

Refinement types for secure implementations. ACM Transactions on
Programming Languages and Systems, 33(2), 2011. .

P. Chambard and G. Henry. Experiments in generic programming: runtime
type representation and implicit values. Presentation at the OCaml Users
and Developers meeting, Copenhagen, Denmark, sep 2012. URL http:
//oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf.

J. Cheney and R. Hinze. First-class phantom types. Technical report,
Cornell University, 2003.

P.-E. Dagand and C. McBride. A categorical treatment of ornaments. In
Logics in Computer Science, 2013. .

P.-É. Dagand and C. McBride. Transporting functions across ornaments.
Journal of Functional Programming, 2014. .

T. Freeman and F. Pfenning. Refinement types for ML. In Programming
Language Design and Implementation, pages 268–277, 1991. .

R. Hinze. Numerical representations as Higher-Order nested datatypes.
Technical report, 1998.

D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 2nd Edition. Addison-Wesley, 1981. ISBN 0-201-03822-6.

C. McBride. Ornamental algebras, algebraic ornaments. Journal of Func-
tional Programming, 2014. To appear.

C. Okasaki. Purely functional data structures. Cambridge University Press,
1998. ISBN 978-0521663502.

F. Pottier and Y. Régis-Gianas. Stratified type inference for generalized
algebraic data types. In Principles of Programming Languages, pages
232–244, 2006. .

Scala. Implicit parameters. Scala documentation. URL http://docs.
scala-lang.org/tutorials/tour/implicit-parameters.
html.

T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Complete
and decidable type inference for GADTs. In International Conference
on Functional Programming, pages 341–352, 2009. .

8 2014/5/28

http://oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf
http://oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf
http://docs.scala-lang.org/tutorials/tour/implicit-parameters.html
http://docs.scala-lang.org/tutorials/tour/implicit-parameters.html
http://docs.scala-lang.org/tutorials/tour/implicit-parameters.html

	Introduction
	Ornaments by examples
	A syntax for ornaments
	Lifting functions: syntax and automation

	Use cases
	Lifting a library
	Refactoring
	Removing constructors

	GADTs as ornaments of ADTs
	Discussion
	Implementation
	Future work

	Conclusion

