Ornamentation in ML

Thomas Williams, Didier Rémy
Inria

Edinburgh, June 20, 2017

1/ 27

nat & list

Similar types

type nat =7 | S of nat
type «o list = Nil | Cons of o x «a list

Similar values

S C S C S C Z H)»
Cons (1, Cons (2, Cons (3, Nil)))

Ornament relation

type ornament « natlist : nat — « list with
| Z — Nil
| S xs — Cons (_, xs)

The relation o natlist between nat and o list defines an ornament.

2 /27

add & append

let rec add m n = match m with
| Z — n
| Sm’ =S (add m’ n)

let rec append m n = match m with

| Nil = n
| Cons(x, m’) — Cons(x, append m’ n)

Coherence
add (length m) (length n) = length (append m n)

(1)3 / 27

add & append

let rec add m n = match m with

| Z = n Projection
| Sm’ =S (add m’ n) total
(function)
let rec append m n = match m with
| Nil = n

| Cons(x, m’) — Cons(x, append m’ n)

Coherence
add (length m) (length n) = length (append m n)

(2)3 / 27

add & append

let rec add m n = match m with

| Z = n Projection
| Sm’ — S (add m’ n) total Lifting
~ (function) partial
le'lc Il\'ﬁlc _a>p;?1end m n = match m with (relation)

| Cons(x, m’) — Cons(x, append m’ n)

Coherence
add (length m) (length n) = length (append m n)

(3)3 / 27

Lifting

let rec add m n = match m with
| Z — n
| Sm’ — S (add m’ n)

let rec append m n =

(1)4 / 27

Lifting

let rec add m n = match m with

| Z — n
| Sm’ — S (add m’ n)

let rec append m n =

add (length m) (length n) = length (append m n)

(2)4 / 27

Lifting

let rec add m n = match m with

| Z = n
| Sm’” - S (add m’ n)

let rec append m n =

add (length m) (length n) = length (append m n)

We restrict to syntactic lifting, following the structure of the original

function.

(3)4 / 27

Lifting

let rec add m n = match m with
| Z — n
| Sm’ — S (add m’ n)

(1)5 / 27

Lifting

let rec add m n = match m with

| Z — n
| Sm’ — S (add m’ n)

let append = lifting add : natlist — natlist — _ natlist

(2)5 / 27

Lifting

let rec add m n = match m with
| Z — n
| Sm’ — S (add m’ n)

let append = lifting add : natlist — natlist — natlist

Ouput

let rec append m n = match m with
| Nil — n
| Cons(x,m’) — Cons(#1, append m’ n)

(3)5 / 27

Lifting

let rec add m n = match m with
| Z — n
| Sm’ — S (add m’ n)
natlist — natlist

let append = lifting add : _ natlist — _
with #1 <- (match m with Cons(x,_) — x)

Ouput
let rec append m n = match m with

| Nil — n
| Cons(x,m’) — Cons(#1, append m’ n)

(4)5 / 27

Lifting

let rec add m n = match m with
| Z — n
| Sm’ — S (add m’ n)
natlist — natlist

let append = lifting add : _ natlist — _
with #1 <- (match m with Cons(x,_) — x)

Ouput
let rec append m n = match m with

| Nil — n
| Cons(x,m’) — Cons(x , append m’ n)

(5)5 / 27

More examples

About nat & list

» Canonical, but trivial example

» Still, small enough to be a good running example,
to explain the details of lifting.

(1)6 / 27

More examples

About nat & list

» Canonical, but trivial example

» Still, small enough to be a good running example,
to explain the details of lifting.

Many other use cases of lifting

v

Pure refactoring: nothing to guess, no need for patches

v

Special case: optimizing data representation

v

Dealing with administrative stuff, e.g. locations:
Write the code without locations and lift it to the code with locations

v

Lifting a library, e.g. sets into maps

v

Composing liftings: relifting lifted code

v

Decomposing lifting into pure refactoring and a true, but simpler lifting

(2)6 / 27

Pure refactoring

type exp = type binop’ = Add’ | Mul’
| Const of int -\ type exp’ =
| Add of exp x exp | Const’ of int
| Mul of exp x exp | Bin’ of binop’ x exp’

X exp’

(1)7 / 27

Pure refactoring

type exp = —\ type binop’ = Add’ | Mul’
| Const of int

type exp’ =
| Add of exp x exp | Const’ of int
| Mul of exp x exp | Bin’ of binop’ x exp’ X exp’

type ornament oexp : exp — exp’ with
| Const i — Const’ i
| AddCu, v) — Bin’(Add’, u, v)
| MulCu, v) — Bin’(Mul’, u, v)

(2)7 / 27

Pure refactoring

type exp = —\ type binop’ = Add’ | Mul’
| Const of int type exp’ =
| Add of exp x exp | Const’ of int

| Mul of exp x exp | Bin’ of binop’ x exp’ X exp’
type ornament oexp : exp — exp’ with

| Const i — Const’ i

| AddCu, v) — Bin’(Add’, u, V)

| MulCu, v) — Bin’(Mul’, u, v)

let rec eval e = match e with
| Const i —i

| Add (u, v) — add (eval u) (eval v)
| Mul (u, v) — mul (eval u) (eval v)

let eval' = lifting eval: oexp — int

(37 / 27

Pure refactoring

type exp = —\ type binop’ = Add’ | Mul’
| Const of int

type exp’ =
| Add of exp x exp | Const’ of int
| Mul of exp x exp | Bin’ of binop’ x exp’ X exp’

type ornament oexp : exp — exp’ with
| Const i — Const’ i
| AddCu, v) — Bin’(Add’, u, v)
| MulCu, v) — Bin’(Mul’, u, v)

let rec eval e = match e with let rec eval' e = match e with

| Const i —i | Const’ x — x

| Add (u, v) — add (eval u) (eval v) | Bin'(Add’', x, x') —

| Mul (u, v) — mul (eval u) (eval v) add (eval' x) (eval’ x')
| Bin'(Mul’, x, x') —

let eval' = lifting eval: oexp — int mul (eval ' x) (eval" x")

(4V7] 27

Why not just rely on the typechecker?

» We do automatically what the programmer must do manually.
» We guarantee that the program obtained is related to the original one

» The typechecker misses some places where a change is necessary.

(1)8 / 27

Why not just rely on the typechecker?

» We do automatically what the programmer must do manually.
» We guarantee that the program obtained is related to the original one

» The typechecker misses some places where a change is necessary.
Permuting values

type bool = False | True
We can safely exchange True and False in some places:

(2)8 / 27

Why not just rely on the typechecker?

» We do automatically what the programmer must do manually.
» We guarantee that the program obtained is related to the original one

» The typechecker misses some places where a change is necessary.

Permuting values
type bool = False | True
We can safely exchange True and False in some places:

type ornament not : bool — bool with
| True — False
| False — True

The relations between bare and ornamented values are tracked through the
program (by ornament inference).

(3)8 / 27

(Semi automated) code specialization

» Remove a field that is instanciated with unit >
» Represent several boolean fields on a single integer

» Switch to a representation that can be unboxed (bool option) >

9 /27

Our goal

Show that ornaments are a convenient tool for the ML programmer

Design (the building blocks of) a language for meta-programming with
ornamentation in ML

Follow a composable approach, where ornamentation can be combined
with other transformations, e.g. other forms of code inference, mixed
with user interaction, etc.

Lift ML programs to other ML programs
Ensure that ornamentation is well-behaved

Also an experiment in typed-based, user-driven code transformations.

10 / 27

our inspiration

(1y11 / 27

Abstraction is our inspiration

Code reuse by abstraction a priori as a design principle, an easy case:

Polymorphic code or a function
Ma,B) ... Ax:7y o) M
F

Specialize the code with
type and value arguments

FA

(211 / 27

Abstraction is our inspiration

Code reuse by abstraction a priori as a design principle, an easy case:

Ponmorphic code or a function
Ma,B) ... Ax:7y o) M
F

A B
Specialize the code with Reuse the code with other
type and value arguments type and value arguments
FA F B

(3Y11 / 27

Abstraction is our inspiration

Code reuse by abstraction a priori as a design principle, an easy case:

Ponmorphic code or a function
Mo, B) .. Ax 7y o) M

A F B
Specialize the code with Reuse the code with other
type and value arguments type and value arguments
FA FB

Theorems for free
Parametricity ensures that the code F A and F B behaves the same up to

the differences between A and B.
(4)11 / 27

Refactoring

base code

A

(112 / 27

Refactoring

base code Find its lifted version
given an ornament specification

A B

(212 / 27

Refactoring by abstraction a posteriori

Find a generic version
A, B) A(x : Ty :) M
Agen
Inference
1
base code Find its lifted version
given an ornament specification
A B

(3Y12 / 27

Refactoring by abstraction a posteriori

Find a generic version
A, B) Mx: T)(y : o) M
Agen
id Inference infer
1 args
base code Find its lifted version
given an ornament specification
A= Agen id B = Agen args

(4)12 / 27

Refactoring by abstraction a posteriori

Find a generic version
Na, BY Mx: 7)(y : o) M infer args 2

Agen
id Inference Agen args
1
reduction 3
simplification 4
base code Find its lifted version
given an ornament specification
A= Agen id B ~ Agen args

(512 / 27

Refactoring by abstraction a posteriori

Find a generic version
Na, B) Mx:1)(y : o) M infer args 2

Agen
id Inference Agen args
1
reduction 3
simplification 4
base code Find its lifted version
given an ornament specification
A= Agen id A~ B B ~ Agen args

(6Y12 / 27

Refactoring by abstraction a posteriori

Find a generic version
Na, BY Mx: 7)(y : o) M infer args 2

Agen
id Inference Agen args
1
meta-reduction 3
simplification 4
base code Find its lifted version
given an ornament specification
A= Agen id A~ B B ~ Agen args

(7V12 / 27

Refactoring by abstraction a posteriori

Find a most generic version
Na, BY Mx: 7)(y : o) M infer args 2

Agen
id Inference Agen args
1
meta-reduction 3
simplification 4
base code Find its lifted version
given an ornament specification
A= Agen id A~ B B ~ Agen args

(8Y12 / 27

Refactoring by abstraction a posteriori

mML
Find a most generic version
Na, B) Mx :7)(y : o) M infer args 2
Agen
id Inference Agen args

1
meta-reduction 3
simplification 4

base code ‘ Find its lifted version
given an ornament specification
A= Agen id A~ B B ~ Agen args

(9Y12 / 27

Questions & difficulties

The meta-language mML must
» trace meta-reductions (easy by stratification)
» keep fine-grain invariants to ensure that it can be simplified to ML
» trace equalities between expressions for dead branches elimination
» have dependent types: type depends on pattern matching branches

The generic version

» depends solely on the source, not on the ornament (split of concerns)

> we restrict to the syntactic variants: we can only abstract over
data-types that are explicit in the program (constructed or destructed)

» we abstract over all possible ornamentations of these data-types,
respecting their recursive structure

13 / 27

Key ldeas from add to append...

» Introduce a skeleton (open definition) of nat, to allows for hybrid nats
where the head looks like a nat but the tail need not be a nat.

type a natS = Z’ | S’ of «
» Insert conversions between lists and natS in add to obtain append.

let list2natS a = match a with
| Nil = 2’
| Cons(C_,xs) — S’ xs
let natS2list n x = match n with >
| Z° — Nil
| S’ xs — Cons(x, xs)

(114 / 27

Key ldeas from add to append...

» Introduce a skeleton (open definition) of nat, to allows for hybrid nats
where the head looks like a nat but the tail need not be a nat.

type a natS = Z’ | S’ of «
» Insert conversions between lists and natS in add to obtain append.

let list2natS a = match a with
| Nil = 2’
| Cons(C_,xs) — S’ xs
let natS2list n x = match n with >
| Z° — Nil
| S’ xs — Cons(x, xs)

let rec append m n =
match list2natS m with
| 22 — n
| S m’” — natS2list (S’ (append m’ n)) (List.hd m)

(214 / 27

Key ideas ...and to a generic lifting

From add to add gen: abstract append over the ornament
let append =
let rec add m n =
match list2natS m with
| Z2 — n
| S m’ — natS2list (S’ (add m’ n)) (List.hd m)
in add

(1)15 / 27

Key ideas ...and to a generic lifting

From add to add gen: abstract append over the ornament
let add gen =
let rec add m n =
match m2natS m with
| Z° — n
| S m’” — natS2n (S’ (add m’ n)) (patch m n)
in add

(2)15 / 27

Key ideas ...and to a generic lifting

From add to add gen: abstract append over the ornament
let add gen m2natS natS2n patch =
let rec add m n =
match m2natS m with
| Z° — n
| S m’” — natS2n (S’ (add m’ n)) (patch m n)
in add

(315 / 27

Key ideas ...and to a generic lifting

From add to add gen: abstract append over the ornament

let add gen m2natS natS2m n2natS natS2n patch =
let rec add m n =

match m2natS m with
| Z° — n
| S m’” — natS2n (S’ (add m’ n)) (patch m n)
in add

(4)15 / 27

Key ideas ...and to a generic lifting

From add to add gen: abstract append over the ornament

let add gen m2natS natS2m n2natS natS2n patch =
let rec add m n =

match m2natS m with
| Z° — n
| S m’” — natS2n (S’ (add m’ n)) (patch m n)
in add

From add gen back to append
let append = add gen list2natS natS2list 1list2natS natS2list

(fun m _ — match m with Cons(x,_) — x)

(5)15 / 27

Key ideas ...and to a generic lifting

From add to add gen: abstract append over the ornament

let add gen m2natS natS2m n2natS natS2n patch =
let rec add m n =

match m2natS m with
| Z° — n
| S m’” — natS2n (S’ (add m’ n)) (patch m n)
in add

From add gen back to append
let append = add gen list2natS natS2list 1list2natS natS2list

(fun m _ — match m with Cons(x,_) — x)

From add gen back to add: by passing the “identity” ornament

let nat2natS = function Z — 2’ | S m — S’ m
let natS2nat n x =matchnwith 2> - 72| S m’” - S m’

let add = add _gen nat2natS natS2nat nat2natS natS2nat
(fun _ _ — O)

(6)15 / 27

Staging

We need to

> to generate readable code (the one the user would have written)

» preserve the computational behavior/complexity, not just the meaning
» bring the lifted code back to ML

(116 / 27

Staging

We need to

> to generate readable code (the one the user would have written)

» preserve the computational behavior/complexity, not just the meaning
» bring the lifted code back to ML

Mark meta-abstractions and meta-applications that have been introduced:

let add gen = fun m2natS natS2m n2natS natS2n patch —
let rec add m n =

match m2natS m with
| Z° ->n

| S m’ -> natS2n S’ (add m’ n)

patch m n
in add

let append = add gen list2natS natS2list

list2natS natS2list
(fun m

_-> match m with Cons(x,) -> x)

(216 / 27

Staging

We need to

> to generate readable code (the one the user would have written)

» preserve the computational behavior/complexity, not just the meaning
» bring the lifted code back to ML

Mark meta-abstractions and meta-applications that have been introduced:
let add gen = fun m2natS natS2m n2natS natS2n patch =
let rec add m n =
match m2natS# m with
| Z° ->n

| S” m’ -> natS2n#S’ (add m’ n) # patch m n
in add

let append = add gen# list2natS # natS2list # list2natS # natS2list
#(fun m _ -> match m with Cons(x,) -> x)

(3Y16 / 27

Meta-reduction of the lifted code

let add gen = fun m2natS natS2m n2natS natS2n patch =

let rec add m n =
match m2natS # m with
| Z° = n
| S m’ — natS2n # S’ (add m’ n) # patch m n
in add

let append = add gen #list2natS# natS2list # list2natS #natS21list
(fun m — match m with Cons(x,) — x)

» Reduce #-redexes at compile time.
» All #-abstractions and #-applications can actually be reduced.

» This ensured by typing!

(1)17 / 27

Meta-reduction of the lifted code

let add gen = fun m2natS natS2m n2natS natS2n patch =

let rec add m n =
match m2natS # m with
| Z° = n
| S m” — natS2n # S’ (add m’ n) # patch m n
in add

let append = add gen # list2natS # natS2list # list2natS # natS2list
(fun m — match m with Cons(x,) — x)

» Reduce #-redexes at compile time.
» All #-abstractions and #-applications can actually be reduced.

» This ensured by typing!

(217 / 27

Meta-reduction

let rec append m n =
match (match m with
| Nil — Z’
| Cons(_, xs) — S’ xs) with

| 22— n
| S m’ —
(match S’ (append m’ n) with
| 22 — Nil

| S zs — Cons(List.hd m, zs))

» There remains some redundant pattern matchings...
» Decoding list to natS and encoding natS to list .

» We can eliminate the last one by reduction

18 / 27

Elimination of the encoding

let rec append m n =
match (match m with
| Nil — Z°
| Cons(_, xs) — S’ xs) with

| Z° — n
| S m’ —
Cons(List.hd m, append m’ n)

19 / 27

Eliminating the encoding

let rec append m n =
match (match m with
| Nil — Z°
| Cons(_, xs) — S’ xs) with

| Z° — n
| S m’” — Cons(List.hd m, append m’ n)

20 / 27

Eliminating the encoding

let rec append m n =
match (match m with
| Nil — Z’
| Cons(_, xs) — S’ xs) with
| Z2 - n
| S” m” — Cons(List.hd m, append m’ n)

» And the other by extrusion... (commuting matches)

21 /27

Eliminating the encoding

let rec append m n =

22 /27

Eliminating the encoding

let rec append m n =
match m with
| Nil —

| Cons(_, xs) —

Cons(List.hd m, append m’ n))

and reducing again

23 / 27

Back to ML

let rec append m n =
match m with
| Nil = n
| Cons (x, xs)
— Cons (List .hd m, append m’ n)

(1)24 / 27

Back to ML

let rec append m n =
match m with
| Nil = n
| Cons (x, xs)
— Cons ((match m with Cons x — x), append m’ n)

(2)24 / 27

Back to ML

let rec append m n =
match m with
| Nil — n
| Cons (x, xs)
— Cons (x, append m’ n)

» We obtain the code for append.
» This transformation also eliminates all our uses of dependent types.

» This is always the case

(324 / 27

In practice

We have a prototype implementation

» It follows the process outlined here.

» User interface issues: for specifying the instantiation, we take labelled
patches and ornaments.

» To build the generic lifting, we transform deep pattern matching into
shallow pattern matching.

» We try to recover the shape of the original program in a
post-processing phase, keeping sharing annotations during dupplication

» We also expand local polymorphic lets (only a user interface problem)

See http://gallium.inria. fr/~remy/ornaments/

Goal: next version of the prototype for OCaml to run larger examples.

25 / 27

http://gallium.inria.fr/~remy/ornaments/

Discussion

Effects
» We use call-by-value, carefully preserving the evaluation order
» Should work without surpise in the presence of effects.
» A formal result about effects?
Recursion
» Modifying the recursive structure. Allowing mutual recursion.
» Non-regular types. GADTs.
Patches
» Can we write robust patches (that resist to code transformations)?
» Combine with some form of code inference (for patches)
Questions

» Should we give the user access to the intermediate language mML?
» Can we use mML for other purposes?

26 / 27

Take away

About ornaments

» Ornaments are useful in ML, both for software reuse and evolution

» Going from the source program to the target program via a generic
lifting that is later instantiated seems the right approach:

> correctness by parametricity.
> also allows to represent partially instantiated terms (user interface)

» We can even generate user-readable code!

Software evolution

» Ornaments are one way of doing software evolution.

» Software evolution via abstraction a posteriori seems a good principle,
with other potential applications.

» Typed languages are a good setting for software evolution/refactoring
that we should also explore further.

27 / 27

QOutline

@ Dependent types

© A meta-language for ornamentation

© Encoding ornaments in mML

@ More examples

28 / 27

Outline

@ Dependent types

20 / 27

The case for dependent types <

What if we add data to the Z constructor too ?

type « stream = End | Continued | More of o X « stream

ornament « natstream : nat — « stream with
| Z — (End | Continued)
| Sn— More (_, n)

(1)30 / 27

The case for dependent types <

What if we add data to the Z constructor too ?

type « stream = End | Continued | More of o X « stream

ornament « natstream : nat — « stream with
| Z — (End | Continued)
| Sn— More (_, n)

let natS2stream n x = match n with
| Z° — (match x with
| true — Continued
| false — End)
| S n” — More (x, n’)

(2)30 / 27

The case for dependent types <

What if we add data to the Z constructor too ?

type « stream = End | Continued | More of o X « stream

ornament « natstream : nat — « stream with
| Z — (End | Continued)
| Sn— More (_, n)

let natS2stream n x = match n with
| Z° — (match x with
| true — Continued

| false — End)
| S n” — More (x, n’)

What is the type of natS2stream 7

(330 / 27

The case for dependent types <

What if we add data to the Z constructor too ?
type « stream = End | Continued | More of o X « stream
ornament « natstream : nat — « stream with

| Z — (End | Continued)
| Sn— More (_, n)

let natS2stream n x = match n with
| Z° — (match x with
| true — Continued
| false — End)
| S n” — More (x, n’)

What is the type of x ?

(match x with Z/ — unit | — «)

(4)30 / 27

The case for dependent types

What if we add data to the Z constructor too ?

type « stream = End | Continued | More of o X « stream

ornament « natstream : nat — « stream with

| Z — (End | Continued)
| Sn— More (_, n)

let natS2stream n x = match n with
| Z° — (match x with
| true — Continued
| false — End)
| S n” — More (x, n’)

What is the type of natS2stream 7

Ma. N(x : natS (list).
M(y : (match x with Z" — unit | §’

= a)). lista

(5)30 / 27

The case for dependent types <

What if we add data to the Z constructor too ?
type « stream = End | Continued | More of o X « stream
ornament « natstream : nat — « stream with

| Z — (End | Continued)
| Sn— More (_, n)

let natS2stream n x = match n with
| Z° — (match x with
| true — Continued
| false — End)
| S n” — More (x, n’)

What is the type of natS2stream 7

Ma. N(x : natS (list).
M(y : (match x with Z/ — unit | S — «)). lista
Dependent types we introduce can always be eliminated.

(6)30 / 27

The case for dependent types

The type may depend on more than the constructor.
type « listOl =
| Nilo1
| ConsO of « list01
| Consl of a x « list01

ornament « olist01 : bool list — « list01 with
| Nil — Nilo1
| Cons (False, xs) — ConsO (xs)
| Cons (True, xs) — Consl (_, xs)

match m with
| Nil" — unit
| Cons’ (False,) — unit
| Cons’ (True,) — «

31 /27

Outline

© A meta-language for ornamentation

32 /27

Starting from ML

T,O i

a,b :

a|T—=7|¢T |V(a:Typ) T
x|letx=ainal|fix(x:7)x.a|laa
A(a:Typ).u|a7|d73a | match awith P — a
dT X

33 / 27

Starting from ML

E =] |Ea|vE|d(V,E,a)|N«a:Typ). E|ET
| match E with P — a |letx=Eina

(fix(x:7m)y.a) v —p alx < fix(x:7)y.a,y < v]|
(A(a: Typ).v) 7 —g v[a 7]
let x=vina —3 a[x < v]
hd7T i i with .
matc :fj 7j (‘,/) wit L g e v
(d; 77 (xi))" = &)

Context-Beta
a —)5 b

Ela] —p E[b]

34 / 27

From ML to mML

» eML: add type-level pattern matching and equalities.

» mML: add dependent, meta-abstraction and application.

Reduction (under some typing conditions):

» From mML, reduce meta-application and get a term in eML

» From eML, eliminate type-level pattern matching and get a term in

ML

35 / 27

eML

eML is obtained by extending the type system of ML.

(1)36 / 27

eML

eML is obtained by extending the type system of ML.
[=a:Typ,m: nat’ (list), x : match mwith Z' — unit | S — «
Consider:
match m with
| Z — Nil
|'S" m" — Cons (x,m’)

(2)36 / 27

eML

eML is obtained by extending the type system of ML.
[=a:Typ,m: nat’ (list), x : match mwith Z' — unit | S — «

Consider:
match m with

| Z — Nil
|'S" m" — Cons (x,m’)

In the S’ branch, we know m=5" m'.

Thus:
x : match mwithZ' —unit|S — «
= match S m' withZ —unit|S —a
= «

(336 / 27

Equalities

We extend the typing environment with equalities:

M= ...|Ma=;b
Introduced on pattern matching
I+ 7:Sch (d; - V(ax : Typ)X (1Y — ¢ (ak)¥) M-a: ¢ ()"
(T o gl = 7Y .2 =¢ e dlm) G F b 7)'
[match a with (d; () (x;Y — b)) = 7

Used to prove type equalities

Since terms appears in types, they generate equalities on types, which
allows for implicit conversions:

I R) MN-a:n
la:n

37 / 27

Elimination of equalities

We restrict reduction in equalities so that it remains decidable.

Assume a is term an eML a such that '+ a: 7, where I and 7 are in ML.
Then, we can transform a into a well-typed ML term by:

» Using an equalities to substitute in terms
» Extruding nested pattern matching

» Reduding pattern matching

This justifies the use of eML as an intermediate language for ornamentation

38 / 27

Meta-programming in mML

We introduce a separate type for meta-functions, so that they can only be
applied using meta-application.

(V(x:7).a)tu —y a[x ¢]

This enables to eliminate all abstractions and applications marked with #.

We restrict types so that meta-constructions can not be manipulated by
the ML fragment.

39 / 27

Meta-reduction

If there are no meta-typed variables in the context, the meta-reduction
—¢ will eliminate all meta constructions and give an eML term.

But the meta-reduction also commutes with the ML reduction.

We thus have two dynamic semantics for the same term:
» For reasoning, we can consider that meta and ML reduction are
interleaved.

» We can use the meta reduction in the first stage to compile an mML

term down to an eML term.

40 / 27

Dependent functions

We need dependent types for the encoding function:

natS2list : Afa. M(x : natS (list @)).
M(y : match x with Z/ — unit | S — «).
list o

(1)41 / 27

Dependent functions

We need dependent types for the encoding function:

natS2list : Aa. M(x : natS (list a)).
M(y : match x with Z/ — unit | S — «).
list o

For the encoding of ornaments to type correctly, we also add:
» Type-level functions to represent the type of the extra information.

» The ability to abstract on equalities so they can be passed to patches.

(2)41 / 27

Outline

© Encoding ornaments in mML

42 / 27

Semantics of ornament specifications

let append = lifting add : « natlist — « natlist — « natlist

We mean:
» If ml is a lifting ofim (for natlist)
» and nl is a lifting of/n (for natlist)

» then append ml nl is a lifting of add m n (for natlist)

(1)43 / 27

Semantics of ornament specifications

let append = lifting add : « natlist — « natlist — « natlist

We mean:
» If ml is a lifting ofim (for natlist)
» and nl is a lifting of/n (for natlist)

» then append ml nl is a lifting of add m n (for natlist)

We build a (step-indexed) binary logical relation on mML, and add an
interpretation for datatype ornaments.

The interpretation of a functional lifting is exactly the interpretation of
function types, replacing “is a lifting of” by “is related to".

(2)43 / 27

Datatype ornaments

A datatype ornament naturally gives a relation:

ornament « natlist : nat — « list with
| Z — Nil
| S xs — Cons(_, xs)

(1)44 / 27

Datatype ornaments

A datatype ornament naturally gives a relation:

ornament « natlist : nat — « list with
| Z — Nil
| S xs — Cons(_, xs)

(u,v) € V[natlist 7]

(Z,Nil) & Vnatlist 7] (S u,Cons (a, v)) € V[natlist 7]

(2V44 / 27

Datatype ornaments

A datatype ornament naturally gives a relation:

ornament « natlist : nat — « list with
| Z — Nil
| S xs — Cons(_, xs)

(u,v) € V[natlist 7]
(S u, Cons (a, v)) € V[natlist 7]

(Z,Nil) € V[natlist 7]

We prove that the ornamentation functions are correct relatively to this
definition:
» if we construct a natural number and a list from the same skeleton,
they are related;

» if we destruct related values, we obtain the same skeleton.

(344 / 27

Correctness

Consider a term a_.

Generalize it into a. By the fundamental lemma, a is related to itself.
Construct an instanciation v4 and the identity instanciation ~y_.
~v—(a) and v (a) are related.

~v—(a) reduces to a_, preserving the relation.

Simplify v (a) into a; (an ML term), preserving the relation

a_ and ay are related.

45 / 27

Outline

@ More examples

46 / 27

Specialization: unit map <

type o map =
| Node of o« map X key X a X « map
| Leaf

(1)47 / 27

Specialization: unit map <

type o map =
| Node of o« map X key X a X « map
| Leaf

Instead of unit map, we could use a more compact representation:

type set =
| SNode of set x key x set
| SLeaf

type ornament mapset : unit map — set with
| Node(l,k,(),r) — SNode(l,k,r)
| Leaf — SLeaf

(2\47 / 27

Specialization: unboxing <

type o option = type booloption =
| None | NoneBool
| Some of « | SomeTrue
| SomeFalse

(1)48 / 27

Specialization: unboxing <

type o option = type booloption =
| None | NoneBool
| Some of « | SomeTrue
| SomeFalse

type ornament boolopt : bool option — booloption with
| None — NoneBool
| Some(true) — SomeTrue
| Some(false) — SomeFalse

(2)48 / 27

	Appendix
	Dependent types
	A meta-language for ornamentation
	Encoding ornaments in mML
	More examples

