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nat & list

Similar types

type nat = Z | S of nat
type α list = Nil | Cons of α × α list

Similar values

S ( S ( S ( Z )))

Cons (1, Cons (2, Cons (3, Nil )))

Ornament relation

type ornament α natlist : nat → α list with
| Z → Nil
| S xs → Cons (_, xs)

The relation α natlist between nat and α list defines an ornament.
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add & append

let rec add m n = match m with
| Z → n
| S m’ → S (add m’ n)

let rec append m n = match m with
| Nil → n
| Cons(x, m’) → Cons(x, append m’ n)

Coherence
add ( length m) (length n) = length (append m n)
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add & append

Projection

total
(function)

Lifting

partial
(relation)

let rec add m n = match m with
| Z → n
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Lifting

let rec add m n = match m with
| Z → n
| S m’ → S (add m’ n)

let rec append m n = ?
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Lifting

let rec add m n = match m with
| Z → n
| S m’ → S (add m’ n)

let rec append m n = ?

add ( length m) (length n) = length (append m n)

We restrict to syntactic lifting, following the structure of the original
function.
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Lifting

let rec add m n = match m with
| Z → n
| S m’ → S (add m’ n)

〈1〉5 / 27



Lifting

let rec add m n = match m with
| Z → n
| S m’ → S (add m’ n)

let append = lifting add : _ natlist → _ natlist → _ natlist

〈2〉5 / 27



Lifting

let rec add m n = match m with
| Z → n
| S m’ → S (add m’ n)

let append = lifting add : _ natlist → _ natlist → _ natlist
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let rec append m n = match m with
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Lifting

let rec add m n = match m with
| Z → n
| S m’ → S (add m’ n)

let append = lifting add : _ natlist → _ natlist → _ natlist
with #1 <- (match m with Cons(x,_) → x)

Ouput

let rec append m n = match m with
| Nil → n
| Cons(x,m’) → Cons(#1, append m’ n)
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Lifting

let rec add m n = match m with
| Z → n
| S m’ → S (add m’ n)

let append = lifting add : _ natlist → _ natlist → _ natlist
with #1 <- (match m with Cons(x,_) → x)

Ouput

let rec append m n = match m with
| Nil → n
| Cons(x,m’) → Cons(x , append m’ n)
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More examples

About nat & list

◮ Canonical, but trivial example

◮ Still, small enough to be a good running example,
to explain the details of lifting.
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More examples

About nat & list

◮ Canonical, but trivial example

◮ Still, small enough to be a good running example,
to explain the details of lifting.

Many other use cases of lifting

◮ Pure refactoring: nothing to guess, no need for patches

◮ Special case: optimizing data representation

◮ Dealing with administrative stuff, e.g. locations:
Write the code without locations and lift it to the code with locations

◮ Lifting a library, e.g. sets into maps

◮ Composing liftings: relifting lifted code

◮ Decomposing lifting into pure refactoring and a true, but simpler lifting
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Pure refactoring

type exp =

| Const of int

| Add of exp × exp
| Mul of exp × exp

type binop’ = Add’ | Mul’

type exp’ =

| Const’ of int

| Bin’ of binop’ × exp’ × exp’
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| Const i → Const’ i
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| Const of int

| Add of exp × exp
| Mul of exp × exp

type binop’ = Add’ | Mul’

type exp’ =

| Const’ of int

| Bin’ of binop’ × exp’ × exp’

type ornament oexp : exp → exp’ with

| Const i → Const’ i
| Add(u, v) → Bin’(Add’, u, v)
| Mul(u, v) → Bin’(Mul’, u, v)

let rec eval e = match e with

| Const i → i
| Add (u, v) → add (eval u) ( eval v)
| Mul (u, v) → mul (eval u) ( eval v)

let eval ’ = lifting eval : oexp → int

let rec eval ’ e = match e with

| Const’ x → x
| Bin’(Add ’, x , x ’) →

add ( eval ’ x) ( eval ’ x ’)
| Bin’(Mul ’, x , x ’) →

mul ( eval ’ x) ( eval ’ x ’)
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Why not just rely on the typechecker?

◮ We do automatically what the programmer must do manually.

◮ We guarantee that the program obtained is related to the original one

◮ The typechecker misses some places where a change is necessary.
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Why not just rely on the typechecker?

◮ We do automatically what the programmer must do manually.

◮ We guarantee that the program obtained is related to the original one

◮ The typechecker misses some places where a change is necessary.

Permuting values

type bool = False | True

We can safely exchange True and False in some places:

type ornament not : bool → bool with

| True → False
| False → True

The relations between bare and ornamented values are tracked through the
program (by ornament inference).
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(Semi automated) code specialization

◮ Remove a field that is instanciated with unit ⊲

◮ Represent several boolean fields on a single integer

◮ Switch to a representation that can be unboxed (bool option) ⊲
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Our goal

◮ Show that ornaments are a convenient tool for the ML programmer

◮ Design (the building blocks of) a language for meta-programming with
ornamentation in ML

◮ Follow a composable approach, where ornamentation can be combined
with other transformations, e.g. other forms of code inference, mixed
with user interaction, etc.

◮ Lift ML programs to other ML programs

◮ Ensure that ornamentation is well-behaved

◮ Also an experiment in typed-based, user-driven code transformations.
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our inspiration
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Abstraction is our inspiration

Code reuse by abstraction a priori as a design principle, an easy case:

Polymorphic code or a function
Λ(α, β) . . . λ(x : τ, y : σ) M

F

Specialize the code with
type and value arguments

F A

A
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Abstraction is our inspiration

Code reuse by abstraction a priori as a design principle, an easy case:

Polymorphic code or a function
Λ(α, β) . . . λ(x : τ, y : σ) M

F

Specialize the code with
type and value arguments

F A

A

Reuse the code with other
type and value arguments

F B

B

Theorems for free
Parametricity ensures that the code F A and F B behaves the same up to
the differences between A and B .
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Refactoring

base code

A
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Refactoring

base code

A

Find its lifted version
given an ornament specification

B

?
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Refactoring by abstraction a posteriori

Find a generic version
Λ(α, β) λ(x : τ)(y : σ) M

Agen

base code

A

Find its lifted version
given an ornament specification

B

Inference
1
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Refactoring by abstraction a posteriori

Find a most generic version
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Refactoring by abstraction a posteriori

mML

ML

Find a most generic version
Λ(α, β) λ(x : τ)(y : σ) M

Agen
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base code

A = Agen id

Find its lifted version
given an ornament specification
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id Inference
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simplification 4
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Questions & difficulties

The meta-language mML must

◮ trace meta-reductions (easy by stratification)

◮ keep fine-grain invariants to ensure that it can be simplified to ML

◮ trace equalities between expressions for dead branches elimination

◮ have dependent types: type depends on pattern matching branches

The generic version

◮ depends solely on the source, not on the ornament (split of concerns)

◮ we restrict to the syntactic variants: we can only abstract over
data-types that are explicit in the program (constructed or destructed)

◮ we abstract over all possible ornamentations of these data-types,
respecting their recursive structure
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Key Ideas from add to append. . .

◮ Introduce a skeleton (open definition) of nat, to allows for hybrid nats
where the head looks like a nat but the tail need not be a nat.

type α natS = Z’ | S’ of α

◮

⊲

Insert conversions between lists and natS in add to obtain append.

let list2natS a = match a with
| Nil → Z’
| Cons(_,xs) → S’ xs

let natS2list n x = match n with
| Z’ → Nil
| S’ xs → Cons(x , xs)
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| Nil → Z’
| Cons(_,xs) → S’ xs

let natS2list n x = match n with
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Key ideas . . . and to a generic lifting

From add to add_gen: abstract append over the ornament

let append =
let rec add m n =
match list2natS m with
| Z’ → n
| S’ m’ → natS2list (S’ (add m’ n)) (List.hd m)

in add
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Key ideas . . . and to a generic lifting

From add to add_gen: abstract append over the ornament

let add_gen m2natS natS2m n2natS natS2n patch =
let rec add m n =
match m2natS m with
| Z’ → n
| S’ m’ → natS2n (S’ (add m’ n)) ( patch m n)

in add

From add_gen back to append

let append = add_gen list2natS natS2list list2natS natS2list

(fun m _ → match m with Cons(x,_) → x)

From add_gen back to add: by passing the “identity” ornament

let nat2natS = function Z → Z’ | S m → S’ m
let natS2nat n x = match n with Z’ → Z | S’ m’ → S m’

let add = add_gen nat2natS natS2nat nat2natS natS2nat

(fun _ _ → ())
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Staging

We need to

◮ to generate readable code (the one the user would have written)

◮ preserve the computational behavior/complexity, not just the meaning

◮ bring the lifted code back to ML
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◮ bring the lifted code back to ML
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Staging

We need to

◮ to generate readable code (the one the user would have written)

◮ preserve the computational behavior/complexity, not just the meaning

◮ bring the lifted code back to ML

Mark meta-abstractions and meta-applications that have been introduced:

let add_gen = fun m2natS natS2m n2natS natS2n patch //=⇒
let rec add m n =
match m2natS#m with
| Z’ -> n
| S’ m’ -> natS2n# S’ (add m’ n)# patch m n

in add

let append = add_gen# list2natS # natS2list # list2natS # natS2list
# (fun m _ -> match m with Cons(x,_) -> x)
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Meta-reduction of the lifted code

let add_gen = fun m2natS natS2m n2natS natS2n patch //=⇒

let rec add m n =
match m2natS # m with
| Z’ → n
| S’ m’ → natS2n # S’ (add m’ n) # patch m n

in add

let append = add_gen # list2natS# natS2list # list2natS # natS2list
# (fun m _ → match m with Cons(x,_) → x)

◮ Reduce #-redexes at compile time.

◮ All #-abstractions and #-applications can actually be reduced.

◮ This ensured by typing!
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Meta-reduction

let rec append m n =
match (match m with

| Nil → Z’

| Cons(_, xs) → S’ xs) with

| Z’ → n
| S’ m’ →
(match S’ (append m’ n) with

| Z’ → Nil

| S’ zs → Cons(List.hd m, zs))

◮ There remains some redundant pattern matchings...

◮ Decoding list to natS and encoding natS to list .

◮ We can eliminate the last one by reduction
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Elimination of the encoding

let rec append m n =
match (match m with

| Nil → Z’

| Cons(_, xs) → S’ xs) with

| Z’ → n
| S’ m’ →
Cons(List.hd m, append m’ n)
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Eliminating the encoding

let rec append m n =
match (match m with

| Nil → Z’

| Cons(_, xs) → S’ xs) with

| Z’ → n
| S’ m’ → Cons(List.hd m, append m’ n)
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Eliminating the encoding

let rec append m n =
match (match m with

| Nil → Z’

| Cons(_, xs) → S’ xs) with

| Z’ → n

| S’ m’ → Cons(List.hd m, append m’ n)

◮ And the other by extrusion... (commuting matches)
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Eliminating the encoding

let rec append m n =
match m with

| Nil →

(match Z’ with

| Z’ → n

| S’ m’ → Cons(List.hd m, append m’ n))

| Cons(_, xs) →

(match S’ xs’ with

| Z’ → n

| S’ m’ → Cons(List.hd m, append m’ n))
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Eliminating the encoding

let rec append m n =
match m with

| Nil →

n

| Cons(_, xs) →

Cons(List.hd m, append m’ n))

and reducing again

23 / 27



Back to ML

let rec append m n =
match m with
| Nil → n
| Cons ( x , xs)

→ Cons ( List .hd m, append m’ n)
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Back to ML

let rec append m n =
match m with
| Nil → n
| Cons ( x , xs)

→ Cons ( (match m with Cons x → x) , append m’ n)
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Back to ML

let rec append m n =
match m with
| Nil → n
| Cons ( x , xs)

→ Cons ( x , append m’ n)

◮ We obtain the code for append.

◮ This transformation also eliminates all our uses of dependent types.

◮ This is always the case
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In practice

We have a prototype implementation

◮ It follows the process outlined here.

◮ User interface issues: for specifying the instantiation, we take labelled
patches and ornaments.

◮ To build the generic lifting, we transform deep pattern matching into
shallow pattern matching.

◮ We try to recover the shape of the original program in a
post-processing phase, keeping sharing annotations during dupplication

◮ We also expand local polymorphic lets (only a user interface problem)

See http://gallium.inria.fr/~remy/ornaments/

Goal: next version of the prototype for OCaml to run larger examples.
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Discussion

Effects

◮ We use call-by-value, carefully preserving the evaluation order
◮ Should work without surpise in the presence of effects.
◮ A formal result about effects?

Recursion

◮ Modifying the recursive structure. Allowing mutual recursion.
◮ Non-regular types. GADTs.

Patches

◮ Can we write robust patches (that resist to code transformations)?
◮ Combine with some form of code inference (for patches)

Questions

◮ Should we give the user access to the intermediate language mML?
◮ Can we use mML for other purposes?
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Take away

About ornaments

◮ Ornaments are useful in ML, both for software reuse and evolution
◮ Going from the source program to the target program via a generic

lifting that is later instantiated seems the right approach:
◮ correctness by parametricity.
◮ also allows to represent partially instantiated terms (user interface)

◮ We can even generate user-readable code!

Software evolution

◮ Ornaments are one way of doing software evolution.

◮ Software evolution via abstraction a posteriori seems a good principle,
with other potential applications.

◮ Typed languages are a good setting for software evolution/refactoring
that we should also explore further.
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Outline

1 Dependent types

2 A meta-language for ornamentation

3 Encoding ornaments in mML

4 More examples
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The case for dependent types ⊳

What if we add data to the Z constructor too ?

type α stream = End | Continued | More of α × α stream

ornament α natstream : nat → α stream with
| Z → (End | Continued)
| S n → More (_, n)
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| Z → (End | Continued)
| S n → More (_, n)

let natS2stream n x = match n with
| Z’ → (match x with

| true → Continued
| false → End)
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What is the type of natS2stream ?
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Dependent types we introduce can always be eliminated.
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The case for dependent types ⊳

The type may depend on more than the constructor.

type α list01 =
| Nil01
| Cons0 of α list01
| Cons1 of α × α list01

ornament α olist01 : bool list → α list01 with
| Nil → Nil01
| Cons (False, xs) → Cons0 (xs)
| Cons (True, xs) → Cons1 (_, xs)

match m with
| Nil′ → unit
| Cons′ (False,_)→ unit
| Cons′ (True,_)→ α
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Starting from ML

τ, σ ::= α | τ → τ | ζ τ | ∀(α : Typ) τ

a, b ::= x | let x = a in a | fix (x : τ) x . a | a a

| Λ(α : Typ). u | a τ | d τ a | match a with P → a

P ::= d τ x
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Starting from ML

E ::= [] | E a | v E | d( v ,E , a ) | Λ(α : Typ). E | E τ

| match E with P → a | let x = E in a

(fix (x : τ) y . a) v −→β a[x ← fix (x : τ) y . a, y ← v ]

(Λ(α : Typ). v) τ −→β v [α← τ ]

let x = v in a −→β a[x ← v ]

match dj τj (vi )
i with

(dj τj (xji )
i → aj)

j
−→β aj [xij ← vi ]

i

Context-Beta
a −→β b

E [a] −→β E [b]
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From ML to mML

◮ eML: add type-level pattern matching and equalities.

◮ mML: add dependent, meta-abstraction and application.

Reduction (under some typing conditions):

◮ From mML, reduce meta-application and get a term in eML

◮ From eML, eliminate type-level pattern matching and get a term in
ML
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eML

eML is obtained by extending the type system of ML.
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eML

eML is obtained by extending the type system of ML.

Γ = α : Typ,m : nat′ (list α), x : match m with Z′ → unit | S′ _→ α

Consider:
match m with

| Z′ → Nil
| S′ m′ → Cons (x ,m′)
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eML

eML is obtained by extending the type system of ML.

Γ = α : Typ,m : nat′ (list α), x : match m with Z′ → unit | S′ _→ α

Consider:
match m with

| Z′ → Nil
| S′ m′ → Cons (x ,m′)

In the S′ branch, we know m = S′ m′.
Thus:

x : match m with Z′ → unit | S′ _→ α

= match S′ m′ with Z′ → unit | S′ _→ α

= α
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Equalities

We extend the typing environment with equalities:

Γ ::= . . . | Γ, a =τ b

Introduced on pattern matching

Γ ⊢ τ : Sch (di : ∀(αk : Typ)k (τij)
j → ζ (αk)

k)i Γ ⊢ a : ζ (τk)
k

(Γ, (xij : τij [αk ← τk ]
k)j , a =ζ (τk )k

di (τij)
k(xij)

j ⊢ bi : τ)
i

Γ ⊢ match a with (di (τik)
k(xij)

j → bi )
i : τ

Used to prove type equalities
Since terms appears in types, they generate equalities on types, which
allows for implicit conversions:

Γ ⊢ τ1 ≃ τ2 Γ ⊢ a : τ1

Γ ⊢ a : τ2
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Elimination of equalities

We restrict reduction in equalities so that it remains decidable.

Assume a is term an eML a such that Γ ⊢ a : τ , where Γ and τ are in ML.
Then, we can transform a into a well-typed ML term by:

◮ Using an equalities to substitute in terms

◮ Extruding nested pattern matching

◮ Reduding pattern matching

This justifies the use of eML as an intermediate language for ornamentation
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Meta-programming in mML

We introduce a separate type for meta-functions, so that they can only be
applied using meta-application.

(λ♯(x : τ). a) ♯ u −→♯ a[x ← u]

This enables to eliminate all abstractions and applications marked with #.

We restrict types so that meta-constructions can not be manipulated by
the ML fragment.
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Meta-reduction

If there are no meta-typed variables in the context, the meta-reduction
−→♯ will eliminate all meta constructions and give an eML term.

But the meta-reduction also commutes with the ML reduction.

We thus have two dynamic semantics for the same term:

◮ For reasoning, we can consider that meta and ML reduction are
interleaved.

◮ We can use the meta reduction in the first stage to compile an mML
term down to an eML term.
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Dependent functions

We need dependent types for the encoding function:

natS2list : λ♯α. Π(x : natS (list α)).
Π(y : match x with Z′ → unit | S′ _→ α).
list α
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Dependent functions

We need dependent types for the encoding function:

natS2list : λ♯α. Π(x : natS (list α)).
Π(y : match x with Z′ → unit | S′ _→ α).
list α

For the encoding of ornaments to type correctly, we also add:

◮ Type-level functions to represent the type of the extra information.

◮ The ability to abstract on equalities so they can be passed to patches.
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Semantics of ornament specifications

let append = lifting add : α natlist → α natlist → α natlist

We mean:

◮ If ml is a lifting of m (for natlist)

◮ and nl is a lifting of n (for natlist)

◮ then append ml nl is a lifting of add m n (for natlist)
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Semantics of ornament specifications

let append = lifting add : α natlist → α natlist → α natlist

We mean:

◮ If ml is a lifting of m (for natlist)

◮ and nl is a lifting of n (for natlist)

◮ then append ml nl is a lifting of add m n (for natlist)

We build a (step-indexed) binary logical relation on mML, and add an
interpretation for datatype ornaments.

The interpretation of a functional lifting is exactly the interpretation of
function types, replacing “is a lifting of” by “is related to”.
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Datatype ornaments

A datatype ornament naturally gives a relation:

ornament α natlist : nat → α list with
| Z → Nil
| S xs → Cons(_, xs)
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Datatype ornaments

A datatype ornament naturally gives a relation:

ornament α natlist : nat → α list with
| Z → Nil
| S xs → Cons(_, xs)

(Z,Nil) ∈ V[natlist τ ]
(u, v) ∈ V[natlist τ ]

(S u,Cons (a, v)) ∈ V[natlist τ ]
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Datatype ornaments

A datatype ornament naturally gives a relation:

ornament α natlist : nat → α list with
| Z → Nil
| S xs → Cons(_, xs)

(Z,Nil) ∈ V[natlist τ ]
(u, v) ∈ V[natlist τ ]

(S u,Cons (a, v)) ∈ V[natlist τ ]

We prove that the ornamentation functions are correct relatively to this
definition:

◮ if we construct a natural number and a list from the same skeleton,
they are related;

◮ if we destruct related values, we obtain the same skeleton.
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Correctness

◮ Consider a term a−.

◮ Generalize it into a. By the fundamental lemma, a is related to itself.

◮ Construct an instanciation γ+ and the identity instanciation γ−.

◮ γ−(a) and γ+(a) are related.

◮ γ−(a) reduces to a−, preserving the relation.

◮ Simplify γ+(a) into a+ (an ML term), preserving the relation

◮ a− and a+ are related.
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Specialization: unit map ⊳

type α map =

| Node of α map × key × α × α map

| Leaf
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Specialization: unit map ⊳

type α map =

| Node of α map × key × α × α map

| Leaf

Instead of unit map, we could use a more compact representation:

type set =

| SNode of set × key × set
| SLeaf

type ornament mapset : unit map → set with

| Node(l,k,(),r) → SNode(l,k,r)
| Leaf → SLeaf

〈2〉47 / 27



Specialization: unboxing ⊳

type α option =

| None

| Some of α

type booloption =
| NoneBool
| SomeTrue
| SomeFalse

〈1〉48 / 27



Specialization: unboxing ⊳

type α option =

| None

| Some of α

type booloption =
| NoneBool
| SomeTrue
| SomeFalse

type ornament boolopt : bool option → booloption with
| None → NoneBool
| Some(true) → SomeTrue
| Some(false) → SomeFalse
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