Type systems for programming languages

Didier Rémy

Academic year 2020-2021
Version of August 25, 2022
Contents

1 Introduction 7

1.1 Overview of the course 7

1.2 Requirements 9

1.3 About Functional Programming 9

1.4 About Types 9

1.5 Acknowledgment 11

2 The untyped λ-calculus 13

2.1 Syntax 13

2.2 Semantics 15

 2.2.1 Strong v.s. weak reduction strategies 15
 2.2.2 Call-by-value semantics 16

2.3 Answers to exercises 18

3 Simply-typed lambda-calculus 21

3.1 Syntax 21

3.2 Dynamic semantics 21

3.3 Type system 22

3.4 Type soundness 25

 3.4.1 Proof of subject reduction 26
 3.4.2 Proof of progress 28

3.5 Simple extensions 30

 3.5.1 Unit 30
 3.5.2 Boolean 30
 3.5.3 Pairs 31
 3.5.4 Sums 32
 3.5.5 Modularity of extensions 32
 3.5.6 Recursive functions 33
 3.5.7 A derived construct: let-bindings 33

3.6 Exceptions 35

 3.6.1 Semantics 35
CONTENTS

5.3.3 Mutually recursive functions ... 105

6 Fomega: higher-kinds and higher-order types 109
 6.1 Introduction ... 109
 6.2 From System F to System F^\omega 110
 6.2.1 Properties ... 111
 6.3 Expressiveness .. 113
 6.3.1 Distrib pair in System F^\omega 113
 6.3.2 Abstracting over type operators 113
 6.3.3 Encoding of existential types 114
 6.3.4 Church encoding of non-regular ADT 115
 6.3.5 Encoding GADT—with explicit coercions 117
 6.4 Beyond F^\omega ... 118

7 Logical Relations 123
 7.1 Introduction .. 123
 7.1.1 Parametricity .. 123
 7.2 Normalization of simply-typed \lambda-calculus 125
 7.3 Observational equivalence .. 127
 7.4 Logical rel in simply-typed \lambda-calculus 129
 7.4.1 Logical equivalence for closed terms 129
 7.4.2 Logical equivalence for open terms 130
 7.5 Logical rel. in F ... 133
 7.5.1 Logical equivalence for closed terms 134
 7.6 Applications .. 139
 7.7 Extensions .. 141
 7.7.1 Natural numbers .. 141
 7.7.2 Products .. 141
 7.7.3 Sums .. 142
 7.7.4 Lists .. 142
 7.7.5 Existential types ... 142
 7.7.6 Step-indexed logical relations 143
 7.8 Proofs and Solution to Exercises 144

8 Type reconstruction 147
 8.1 Introduction .. 147
 8.2 Type inference for simply-typed \lambda-calculus 148
 8.2.1 Constraints ... 148
 8.2.2 A detailed example ... 149
 8.2.3 Soundness and completeness of type inference 151
 8.2.4 Constraint solving ... 152
CONTENTS

8.3 Type inference for ML .. 154
 8.3.1 Milner’s Algorithm ... 154
 8.3.2 Constraints ... 155
 8.3.3 Constraint solving by example .. 158
 8.3.4 Type reconstruction ... 161
8.4 Type annotations ... 164
 8.4.1 Explicit binding of type variables 165
 8.4.2 Polymorphic recursion ... 168
 8.4.3 mixed-prefix .. 169
8.5 Equi- and iso-recursive types ... 170
 8.5.1 Equi-recursive types .. 170
 8.5.2 Iso-recursive types ... 172
 8.5.3 Algebraic data types ... 172
8.6 HAM(X) ... 173
8.7 Type reconstruction in System F ... 176
 8.7.1 Type inference based on Second-order unification 176
 8.7.2 Bidirectional type inference .. 176
 8.7.3 Partial type inference in MLF .. 178
8.8 Proofs and Solution to Exercises .. 178

9 Overloading ... 181
 9.1 An overview ... 181
 9.1.1 Why use overloading? .. 181
 9.1.2 Different forms of overloading 182
 9.1.3 Static overloading .. 183
 9.1.4 Dynamic resolution with a type passing semantics 183
 9.1.5 Dynamic overloading with a type erasing semantics 184
 9.2 Mini Haskell ... 184
 9.2.1 Examples in MH .. 185
 9.2.2 The definition of Mini Haskell 186
 9.2.3 Semantics of Mini Haskell .. 187
 9.2.4 Elaboration of expressions .. 189
 9.2.5 Summary of the elaboration 190
 9.2.6 Elaboration of dictionaries 192
 9.3 Implicitly-typed terms .. 194
 9.4 Variations ... 199
Chapter 1

Introduction

These are course notes for part of the master course *Typing and Semantics of functional Programming Languages* taught at the MPRI (Parisian Master of Research in Computer Science\footnote{Master Parisian de Recherche en Informatique.}) in 2010, 2011, 2012.

The aim of the course is to provide students with the basic knowledge for understanding modern programming languages and designing extensions of existing languages or new languages. The course focuses on the semantics of programming languages.

We present programming languages formally, with their syntax, type system, and operational semantics. We then prove soundness of the semantics, *i.e.* that *well-typed programs cannot go wrong*. We do not study full-fledged languages but their core calculi, from which other constructions can be easily added. The underlying computational language is the untyped λ-calculus, extended with primitives, store, *etc.*

1.1 Overview of the course

These notes only cover part of the course, described below in the paragraph *Typed languages*. Here, we give a brief overview of the whole course to put the study of *Typed languages* into perspective.

Untyped languages. Although all the programming languages we study are *typed*, their underlying computational model is the *untyped* λ-calculus. That is, types can be dropped after type checking and before evaluation.

Therefore, the course starts with a few reminders about the untyped λ-calculus, even though those are assumed to be known. We show how to extend the pure λ-calculus with constants and primitives and a few other constructs to make it a small programming language. This is also an opportunity to present source program transformations and compi-
lution techniques for function languages, which do not depend much on types. This part is taught by Xavier Leroy.

Typed languages Types play a central role in the design of modern programming languages, so they also play a key role in this course. In fact, once we restrict our study to functional languages, the main differences between languages lie more often in the differences between their type systems than between other aspects of their design.

Hence, the course is primarily structured around type systems. We remind the simply-typed λ-calculus, the simplest of type systems for functional languages, and show how to extend it with other fundamental constructs of programming languages.

We introduce polymorphism with System F. We present ML as a restriction of System F for which type reconstruction is simple and efficient. We actually introduce a slight generalization $HM(X)$ of ML to ease and generalize the study of type reconstruction for ML. We discuss techniques for type reconstruction in System F—but without formalizing the details.

We present existential types, first in the context of System F, and then discuss their integration in ML.

Finally, we study the problem of overloading. Overloading differs from other language constructs as the semantics of source programs depend on their types, even though types should be erased at runtime! We thus use overloading as an example of elaboration of source terms, whose semantics is typed, into an internal language, whose semantics is untyped.

Towards program proofs Types, as in ML or System F, ensure type soundness, *i.e.* that programs do not go wrong. However useful, this remains a weak property of programs. One often wishes to write more accurate specifications of the actual behavior of programs and prove the implementation correct with respect to them. Finer invariants of data-structures may be expressed within types using *Generalized Algebraic Data Types* (GADT); or one step further using dependent types. However, one may also describe the behavior of programs outside of proper types *per se*, by writing logic formulas as pre and post conditions, and verifying them mechanically, *e.g.* with a proof assistant. This spectrum of solutions will be presented by Yann Regis-Gianas.

Subtyping and recursive types The last part of the course, taught by Giuseppe Castagna, focuses on subtyping, and in particular on semantic subtyping. This allows for very precise types that can be used to describe semi-structured data. Recursive types are also presented in this context, where they play a crucial role.
1.2 Requirements

We assume the reader familiar with the notion of programming languages. Some experience of programming in a typed functional language such as ML or Haskell will be quite helpful. Some knowledge in operational semantics, \(\lambda\)-calculus, terms, and substitutions is needed. The reader with missing background may find relevant chapters in the book *Types And Programming Languages* by Pierce (2002).

1.3 About Functional Programming

The term *functional programming* means various things. Functional programming views functions as ordinary data which, in particular, can be passed as arguments to other functions and stored in data structures.

A common idea behind functional programming is that repetitive patterns can be abstracted away as functions that may be called several times so as to avoid code duplication. For this reason, functional programming also often loosely or strongly discourages the use of modifiable data, in favor of effect-free transformations of data. (In contrast, the mainstream object-oriented programming languages view objects as the primary kind of data and encourage the use of modifiable data.)

Functional programming languages are traditionally *typed* (Scheme and Erlang are exceptions) and have close connections with logic. We will focus on typed languages. Because functional programming puts emphasis on reusability and sharing multiple uses of the same code, even in different contexts, they require and make heavy use of *polymorphism*; when programming in the large, abstraction over implementation details relies on an expressive module system. Types unquestionably play a central role, as explained next.

Functional programming languages are usually given a precise and formal semantics derived from the one of the \(\lambda\)-calculus. The semantics of languages differ in that some are *strict* (ML) and some are *lazy* (Haskell) Hughes (1989). This difference has a large impact on the language design and on the programming style, but has usually little impact on typing.

Functional programming languages are usually *sequential* languages, whose model of evaluation is not concurrent, even if core languages may then be extended with primitives to support concurrency.

1.4 About Types

A *type* is a concise, formal description of the behavior of a program fragment. For instance, \texttt{int} describes an expression that evaluates to an integer; \texttt{int }\rightarrow\texttt{ bool} describes a function that maps an integer argument to a boolean result; \texttt{(int }\rightarrow\texttt{ bool }) \rightarrow \texttt{(list int }\rightarrow\texttt{ list int }) describes a function that maps an integer predicate to an integer list transformer.
Types must be sound. That is, programs must behave as prescribed by their types. Hence, types must be checked and ill-typed programs must be rejected.

Types are useful for quite different reasons: They first serve as machine-checked documentation. More importantly, they provide a safety guarantee. As stated by Milner (1978), “Well-typed expressions do not go wrong.” Advanced type systems can also guarantee various forms of security, resource usage, complexity, etc. Types encourage separate compilation, modularity, and abstraction. Reynolds (1983) said: “Type structure is a syntactic discipline for enforcing levels of abstraction.” Types can be abstract. Even seemingly non-abstract types offer a degree of abstraction. For example, a function type does not tell how a function is represented at the machine level. Types can also be used to drive compiler optimizations.

Type-checking is compositional: type-checking an application depends on the type of the function and the type of the argument and not on their code. This is a key to modularity and code maintenance: replacing a function by another one of the same type will preserve well-typedness of the whole program.

Type-preserving compilation Types make sense in low-level programming languages as well—even assembly languages can be statically typed! as first popularized by Morrisett et al. (1999). In a type-preserving compiler, every intermediate language is typed, and every compilation phase maps typed programs to typed programs. Preserving types provides insight into a transformation, helps debug it, and paves the way to a semantics preservation proof (Chlipala, 2007). Interestingly enough, lower-level programming languages often require richer type systems than their high-level counterparts.

Typed or untyped? Reynolds (1985) nicely sums up a long and rather acrimonious debate: “One side claims that untyped languages preclude compile-time error checking and are succinct to the point of unintelligibility, while the other side claims that typed languages preclude a variety of powerful programming techniques and are verbose to the point of unintelligibility.” A sound type system with decidable type-checking (and possibly decidable type inference) must be conservative.

Later, Reynolds also settles the debate: “From the theorist’s point of view, both sides are right, and their arguments are the motivation for seeking type systems that are more flexible and succinct than those of existing typed languages.”

Today, the question is rather whether to use basic types (e.g. as in ML or System F) or sophisticated types (e.g. with dependent types, logical assertions, affine types, capabilities and ownership, etc.) or full program proofs as in the compcert project (Leroy, 2006)!

Explicit v.s. implicit types? The typed v.s. untyped flavor of a programming language should not be confused with the question of whether types of a programming language are explicit or implicit.
Annotating programs with types can lead to a lot of redundancies. Types can even become extremely cumbersome when they have to be explicitly and repeatedly provided. In some pathological cases, they may even increase the size of source terms non linearly. This creates a need for a certain degree of type reconstruction (also called type inference), where the source program may contain some—but not all—type information.

When the semantics is untyped, i.e. types could in principle be entirely left implicit, even if the language is typed. A well-typed program is then one that is the type erasure of a (well-typed) explicitly-typed program. However, full type reconstruction is undecidable for expressive type systems, leading to partial type reconstruction algorithms.

An important issue with type reconstruction is its robustness to small program changes. Because type systems are compositional, a type inference problem can often be expressed as a constraint solving problem, where constraints are made up of predicates about types, conjunction, and existential quantification.

1.5 Acknowledgment

These course notes are based on and still contain a lot of material from a previous course taught for several years by François Pottier.
Chapter 2

The untyped λ-calculus

In this course, λ-calculus is the underlying computational language. The λ-calculus supports natural encodings of many programming languages (Landin, 1965), and as such provides a suitable setting for studying type systems. Following Church’s thesis, any Turing-complete language can be used to encode any programming language. However, these encodings might not be natural or simple enough to help us in understanding their typing discipline. Using λ-calculus, most of our results can also be applied to other languages (Java, assembly language, etc.).

The untyped λ-calculus and its extension with the main constructs of programming languages have been presented in the first part of the course taught by Xavier Leroy. Hereafter, we just recall some of the notations and concepts used in our part of the course.

2.1 Syntax

We assume given a denumerable set of term variables, denoted by letter x. Then λ-terms, also known as terms and expressions, are given by the grammar:

$$a ::= x \mid \lambda x. a \mid a \ a \mid \ldots$$

This definition says that an expression a is a variable x, an abstraction $\lambda x. a$, or an application $a_1 a_2$. The “…” is just a place holder for more term constructs that will be introduced later on. Formally, the “…” is taken empty in the current definition of expressions. However, we may later extend expressions, for instance with let-bindings using the meta-notation:

$$a ::= \ldots \mid \text{let } x = a \text{ in } a$$

which means that the new set of expressions is to be understood as:

$$a ::= x \mid \lambda x. a \mid a \ a \mid \text{let } x = a \text{ in } a$$

The expression $\lambda x. a$ binds variable x in a. We write $[x \mapsto a_0]a$ for the capture avoiding substitution of a_0 for x in a. Terms are considered equal up to the renaming of bound
variables. That is \(\lambda x_1. \lambda x_2. x_1 \ (x_1 \ x_2) \) and \(\lambda y. \lambda x. y \ (y \ x) \) are really the same term. And \(\lambda x. \lambda x. a \) is equal to \(\lambda y. \lambda x. a \) when \(y \) does not appear free in \(a \).

When inspecting the structure of terms, we often need to open up a \(\lambda \)-abstraction \(\lambda x. a \) to expose its body \(a \). Then, \(a \) usually contains free occurrences of \(x \) (that were bound in \(\lambda x. a \)). When doing so, we may assume, \(\text{w.l.o.g.} \)\(^\text{1} \) that \(x \) is fresh for (i.e. does not appear free in) any given set of finite variables.

Concrete v.s. abstract syntax For our meta-theoretical study, we are interested in the abstract syntax of expressions rather than their concrete syntax. Hence, we like to think of expressions as their abstract syntax trees. Still, we need to write expressions on paper, i.e. strings of characters, hence we need some concrete syntax for terms. The compromise is to have some concrete syntax that is in one-to-one correspondence with the abstract syntax.

An expression in concrete notation, e.g. \(\lambda x. \lambda y. x \ y \) must be understood as its abstract syntax tree (next on the right).

For convenience, we may sometimes introduce syntactic sugar as shorthand; it should then be understood by its expansion into some primitive form. For instance, we may introduce multi-argument functions \(\lambda x y. a \) as a short hand for \(\lambda x. \lambda y. a \) just for conciseness of notation on paper or readability of examples, but without introducing a new form of expressions into the abstract syntax. (Although, studying multi-parameter functions would also be possible, and then this would not be syntactic sugar, but this is not the route we take here.)

When studying programming languages formally, the core language is usually kept as small as possible avoiding the introduction of new constructs that can already be expressed with existing ones—or are trivial variations on existing ones. Indeed, redundant constructs often obfuscate the essence of the semantics of the language.

Exercise 1 Write a datatype term to represent the abstract syntax of the untyped \(\lambda \)-calculus.

(Solution p. [18])

Exercise 2 Higher Order Abstract Syntax (HOAS) uses the binding and \(\alpha \)-conversion mechanisms of the host language (here OCaml) to implement bindings and \(\alpha \)-conversion of the concrete language. The parametric version of HOAS is moreover parameterized by the type of variables.

```ocaml
type 'a pterm =
  | PVar of 'a
  | PFun of ('a -> 'a pterm)
  | PApp of 'a pterm * 'a pterm
```

\(^1\)without lost of generality.
2.2. SEMANTICS

For example, we may define

\[
\text{let } h = \text{PApp} (\text{PFun} (\text{fun} \ f \rightarrow \text{PApp} (\text{PVar} f, \text{PVar} f)), \text{PFun} (\text{fun} \ x \rightarrow \text{PVar} x))
\]

Notice that \(h \) is polymorphic in the type of term variables. What term of the \(\lambda \)-calculus does it represent? \((\text{Solution p. 18})\)

Write a function \(\text{to}_{-}\text{term} \) that translates from terms in HOAS (of type \(\text{pterm} \)) into terms in concrete syntax (of type \(\text{term} \)). \((\text{Solution p. 18})\)

2.2 Semantics

The semantics of the \(\lambda \)-calculus is given by a small-step operational semantics, i.e. a reduction relation between \(\lambda \)-terms. It is also called the dynamic semantics since it describes the behavior of programs at runtime, i.e. when programs are executed.

2.2.1 Strong v.s. weak reduction strategies

For the pure \(\lambda \)-calculus, one can allow a full reduction, i.e. reduction can be performed in any context, in particular under \(\lambda \)-abstractions. This implies that a term can be reduced in many different ways, depending on which redex is reduced first. Despite this, reduction in the \(\lambda \)-calculus is confluent: for terms that are strongly normalizing, i.e. do not contain infinite reduction path, then all possible reduction paths end up on the same normal form: the calculus is confluent.

By contrast, programming languages are usually given a weak reduction strategy, i.e. reduction does not occur under abstractions. The main reason for this choice is simplicity and efficiency of reduction.

The most commonly used strategy is call-by-value, where arguments are reduced before being substituted for the formal parameter of functions. However, some languages also use a call-by-name strategy that delays the evaluation of arguments until they are actually used. In fact, rather than call-by-name, one usually implements a call-by-need strategy, which as call-by-name delays the evaluation of arguments, but as call-by-value shares this evaluation: that is, the occurrence of an argument that is used requires its evaluation, but all other occurrences of the argument see the result of the evaluation and do not have to reevaluate the argument if needed. This is however more delicate to formalize and one often uses call-by-name semantics as an approximation of call-by-need semantics.

Although programming languages implement weak reduction strategies, it would make perfect sense to define their semantics in two steps, first using using full reduction, and then restricting the reduction paths to obtain the actual strategy. Full reduction may be used to model some program transformations, such as partial evaluation, that are performed at compile time. Another advantage of this two-step approach is that weak reduction strategies are a particular case of full reduction. Hence, (positive) properties can be established once
for all for full reduction and will also hold for weak reduction strategies, including both
Call-by-value semantics, and will also hold for weak reduction strategies, including both
call-by-value and call-by-name.
call-by-name.
However, the metatheoretical properties, such as type soundness, are often simpler to
establish for weak reductions strategies. Despite some advantages of the two step-approach
to the semantics of programming languages, we will not pursue it here. We instead directly
start with a weak reduction strategy. Still, we will informally discuss at certain places some
of the properties that would hold if we had followed the more general approach.

2.2.2 Call-by-value semantics

We choose a call-by-value semantics. When explaining references, exceptions, or other forms
of side effects, this choice matters. Otherwise, most of the type-theoretic machinery applies
to call-by-name or call-by-need—actually to any weak reduction strategy—just as well.

In the pure λ-calculus, the values are the functions:

\[v ::= \lambda x. a | \ldots \]

Variables are not values in the call-by-value λ-calculus. We only evaluate closed terms, hence
a variable should never appear in an evaluation context. Notice that any function is a value
in the call-by-value λ-calculus, in particular, \(a \) is an arbitrary term. In a strong reduction
setting, we could also evaluate the body of the function \(a \), and then, \(a \) should thus not
contain any β-redex.

The reduction relation \(a_1 \rightarrow a_2 \) is inductively defined:

\[
\begin{align*}
\beta_v && (\lambda x. a) v \rightarrow [x \mapsto v]a \\
\text{Context} && a \rightarrow a' \\
\text{Context} && e[a] \rightarrow e[a']
\end{align*}
\]

\([x \mapsto V] \) is the capture avoiding substitution of \(V \) for \(x \). We write \([x \mapsto V]a\) its application to
a term \(a \). Evaluation may only occur in call-by-value evaluation contexts, defined as follows:

\[e ::= [] a | v [] | \ldots \]

Notice that we only need evaluation contexts of depth one, thanks to repeated applications of
Rule \text{CONTEXT}. An evaluation context of arbitrary depth may be defined as a stack of one-hole
contexts:

\[\bar{e} ::= [] | e[\bar{e}] \]

Exercise 3 Define the semantics of the call-by-name λ-calculus.

(Solution p. 18)

Exercise 4 Give a big-step operational semantics for the call-by-value λ-calculus. Compare
it with the small-step semantics. What can you say about non terminating programs? How
can this be improved?

(Solution p. 19)
2.2. **SEMANTICS**

Exercise 5 Write an interpreter for a call-by-value λ-calculus. Modify the interpreter to have a call-by-name semantics; then a call-by-need semantics. You may instrument the evaluation to count the number of evaluation steps.

Recursion

Recursion is inherent in λ-calculus, hence reduction may not terminate. For example, the term $(\lambda x.x \ x) (\lambda x.x \ x)$ known as Δ reduces to itself, and so may reduce forever.

A slight variation on Δ is the fix-point combinator Y, defined as

$$\lambda g. (\lambda x.x \ x) (\lambda z. g \ (z \ z))$$

Whenever applied to a functional G, it reduces in a few steps to $G \ (Y \ G)$, which is not yet a value. In a call-by-value setting, this term actually reduces forever—before even performing any interesting computation step. Therefore, we instead use its η-expanded version Z that guards the duplication of the generator G:

$$\lambda g. (\lambda x.x \ x) (\lambda z. g \ (\lambda v. z \ z \ v))$$

Exercise 6 Check that $Y \ G$ reduces for ever. Check that $Z \ G$ does not. Check that $Z \ G \ v$ behaves as expected—unfolds the recursion after the body of G has been evaluated.

Exercise 7 Define the fixpoint combination Z in OCaml—without using `let rec`. Why do you need the `−rectype` option? Use Z to define the factorial function (still without using `let rec`).

(Solution p. 19)
2.3 Answers to exercises

Solution of Exercise 1

\[
\begin{align*}
type & \quad var = \text{string} \\
type & \quad term = \\
& \quad \mid \text{Var of } var \\
& \quad \mid \text{Fun of } var \times term \\
& \quad \mid \text{App of } term \times term
\end{align*}
\]
Define in this abstract syntax the term \(funaa\).

Solution of Exercise 2

\[(\lambda f. f f)(\lambda x. x).\]

Solution of Exercise 2, Question 2

\[
\begin{align*}
\text{let } & \quad \text{gensym } = \text{let } n = \text{ref 0 in fun } () \rightarrow \text{incr } n; \text{"x" \cdot string_of_int } !n; \\
\text{let rec } & \quad \text{to_term } = \text{function} \\
& \quad \mid \text{PFun } f \rightarrow \text{let } x = \text{gensym()} \text{ in Fun } (x, \text{to_term } (f x)) \\
& \quad \mid \text{PApp } (f, g) \rightarrow \text{App } (\text{to_term } f, \text{to_term } g) \\
& \quad \mid \text{PVar } x \rightarrow \text{Var } x \\
\text{let } & \quad t = \text{to_term } h \\
\text{val } & \quad t : \text{term } = \text{App } (\text{Fun } (\text{"x2"}, \text{App } (\text{Var } \text{"x2"}, \text{Var } \text{"x2"})), \text{Fun } (\text{"x1"}, \text{Var } \text{"x1"}))
\end{align*}
\]

Solution of Exercise 3

Values are unchanged. Evaluation contexts only allow the evaluation in function position:
\[e ::= [\] a\]
As a counterpart, \(\beta\)-reduction must not require its argument to be evaluated. Hence the call-by-name \(\beta_n\) rule is:
\[(\lambda x. a_0) a \rightarrow [x \mapsto a]a_0 \quad (\beta_n)\]
Solution of Exercise 4

The big-step semantics defines an evaluation relation \(\mathcal{E} \vdash a \rightsquigarrow v \) where \(\mathcal{E} \) is an evaluation environment that maps variables to values. The relation is defined by inference rules:

- **Eval-Fun**
 \[\mathcal{E} \vdash \lambda x. a \rightsquigarrow \lambda x. a \]

- **Eval-Var**
 \[x \mapsto v \in \mathcal{E} \quad \mathcal{E} \vdash x \rightsquigarrow v \]

- **Eval-App**
 \[\begin{array}{c}
 \mathcal{E} \vdash a_1 \rightsquigarrow \lambda x. a \\
 \mathcal{E} \vdash a_2 \rightsquigarrow v_2 \\
 \mathcal{E}, x \mapsto v_2 \vdash a \rightsquigarrow v
 \end{array} \quad \mathcal{E} \vdash a_1 a_2 \rightsquigarrow v \]

Rule **Eval-Fun** says that a function is a value and evaluates to itself. Rule **Eval-App** evaluates both sides of an application. Provided the left-hand side evaluates to a function \(\lambda x. a \), we may evaluation \(a \) in an extended context where \(x \) is mapped to the evaluation of the right-hand side. The results of the evaluation of \(a \) is then the result of the evaluation of the application.

Notice that the definition is partial: if the left-hand side does not evaluate to a function (e.g., it could be a free variable), then the evaluation of the application is not defined. Similarly, the evaluation of a variable that is not bound in the environment is undefined.

Furthermore, the evaluation is also undefined for programs that loops, such as \((\lambda x. x \ x) \ (\lambda x. x \ x)\): one will attempt to build an infinite evaluation derivation, but as this never ends, we cannot formally say anything about its evaluation.

Solution of Exercise 7

The definition contains an auto-application of a \(\lambda \)-bound variable \(\text{fun} \ x \to x \ x \). In OCaml, this is ill-typed, as it requires \(x \) to have both types \(\alpha \) and \(\alpha \to \beta \) simultaneously, which is only possible if \(\alpha \) is a recursive type \((\ldots (\alpha \to \ldots) \to \alpha)\). With the -rectype option, one can defined:

```ocaml
let zfix g = (fun x -> x x) (fun z -> g (fun v -> z z v))
let gfact f n = if n > 0 then n * f (n-1) else 1
let fact = zfix gfact;;
let six = fact 3;;
```

which correctly evaluates \(\text{six} \) to the integer 6.
Chapter 3

Simply-typed lambda-calculus

This chapter is an introduction to typed languages. The formalization will be subsumed by that of System F in the next chapter. We still give all the definitions and the proofs of the main results in this simpler setting for pedagogical purposes. Their generalization in the more general setting of System F will then be easier to understand.

3.1 Syntax

We give an explicitly typed version of the simply-typed λ-calculus. Therefore, we modify the syntax of the λ-calculus to add type annotations for parameters of functions. In order to avoid confusion, we write M instead of a for explicitly typed expressions.

$$M ::= x | \lambda x : \tau . M | M M | \ldots$$

As earlier, the “...” are a place holder for further extensions of the language. Types are denoted by letter τ and defined by the following grammar:

$$\tau ::= \alpha | \tau \to \tau | \ldots$$

where α denotes a type variable. We assume given a denumerable collection of type variables. This definition says that a type τ is a type variable α, or an arrow type $\tau_1 \to \tau_2$.

3.2 Dynamic semantics

The dynamic semantics of the simply-typed λ-calculus is obtained by modifying the dynamic semantics of the λ-calculus in the obvious way to accommodate for type annotations of function parameters, which are just ignored. Values and evaluation contexts become:

$$V ::= \lambda x : \tau . M | \ldots$$

$$E ::= [] M | V [] | \ldots$$
The *reduction relation* $M_1 \rightarrow M_2$ is inductively defined by:

\[
\begin{align*}
\beta_v & : (\lambda x : \tau. M) V \rightarrow [x \mapsto V]M \\
\text{Context} & : M \rightarrow M' \rightarrow E[M] \rightarrow E[M']
\end{align*}
\]

The semantics of simply-typed λ-calculus is obviously type erasing, i.e. as we shall see in the next section (§3.3).

3.3 Type system

In typed λ-calculi, not all syntactically well-formed programs are accepted—only well-typed programs are. Well-typedness is defined as a 3-place predicate $\Gamma \vdash M : \tau$ called a *typing judgment*.

The *typing context* Γ (also called a typing environment) is a finite sequence of bindings of program variables to types. The empty context is written \emptyset. A typing context Γ can be extended with a new binding τ for x with the notation $\Gamma, x : \tau$. To avoid confusion between the new binding and any other binding that may appear in Γ, we disallow typing contexts to bind the same variable several times. This is not restrictive because bound variables can always be renamed in source programs to avoid name clashes. A typing context can then be thought of as a finite function from program variables to their types. We write $\text{dom}(\Gamma)$ for the set of variables bound by Γ and $\Gamma(x)$ for the type τ bound to x in Γ, which implies that x is in $\text{dom}(\Gamma)$. We write $x : \tau \in \Gamma$ to mean that Γ maps x to τ, and $x \not\in \text{dom}(\Gamma)$ to mean that $x \not\in \text{dom}(\Gamma)$.

Typing judgments are defined inductively by the following inference rules:

\[
\begin{align*}
\text{VAR} & : \Gamma \vdash x : \Gamma(x) \\
\text{ABS} & : \Gamma, x : \tau_1 \vdash M : \tau_2 \quad \Gamma \vdash \lambda x : \tau_1. M : \tau_1 \rightarrow \tau_2 \\
\text{APP} & : \Gamma \vdash M_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash M_2 : \tau_1 \quad \Gamma \vdash M_1 M_2 : \tau_2
\end{align*}
\]

By our convention on well-formedness of typing contexts, the premise of rule ABS carries the implicit assumption $x \not\in \text{dom}(\Gamma)$. This condition can always be satisfied, since x is bound in the expression $\lambda x : \tau. M$ and can be renamed if necessary.

Notice that the specification is extremely simple. In the simply-typed λ-calculus, the definition is *syntax-directed*. That is, at most one rule applies for an expression; hence, the shape of the derivation tree for proving a judgment $\Gamma \vdash M : \tau$ is fully determined by the shape of the expression M. This is not true of all type systems.

A typing derivation is a proof tree that witnesses the validity of a typing judgment: each node is the application of a typing rule. A proof tree is either a single node composed of an axiom (a typing rule without premises) or a typing rule with as many proof-subtrees as typing judgment premises.

For example, the following is a *typing derivation* for the compose function in the empty
environment where Γ stands for $f : \tau_1 \rightarrow \tau_2; g : \tau_0 \rightarrow \tau_1; x : \tau_0$.

\[
\begin{array}{c}
\text{VAR} \\
\Gamma \vdash f : \tau_1 \rightarrow \tau_2 \\
\text{VAR} \\
\Gamma \vdash g : \tau_0 \rightarrow \tau_1 \\
\text{VAR} \\
\Gamma \vdash x : \tau_0 \\
\text{APP} \\
\Gamma \vdash f \ (g \ x) : \tau_2 \\
\text{ABS} \\
\Gamma \vdash \lambda x : \tau_0. \ (g \ x) : (\tau_0 \rightarrow \tau_1) \rightarrow \tau_0 \rightarrow \tau_2 \\
\end{array}
\]

This derivation is valid for any choice of τ_1 and τ_2. Conversely, every derivation for this term must have this shape, for some τ_1 and τ_2.

This suggests a procedure for type inference: build the shape of the derivation from the shape of the expression. Then, solve the constraints on types so that the derivation is valid. This informal procedure to search for possible derivations is justified formally by the inversion lemma, which describes how the subterms of a well-typed term can be typed.

Lemma 1 (Inversion of typing rules) Assume $\Gamma \vdash M : \tau$.

- If M is a variable x, then $x \in \text{dom}(\Gamma)$ and $\Gamma(x) = \tau$.
- If M is $M_1 \ M_2$ then $\Gamma \vdash M_1 : \tau_2 \rightarrow \tau$ and $\Gamma \vdash M_2 : \tau_2$ for some type τ_2.
- If M is $\lambda x : \tau_0. \ M_1$, then τ is of the form $\tau_0 \rightarrow \tau_1$ and $\Gamma, x : \tau_0 \vdash M_1 : \tau_1$.

The inversion lemma is a basic property that is used in many places when reasoning by induction on terms. Although trivial in our simple setting, stating it explicitly avoids informal reasoning in proofs; in more general settings, this may be a difficult lemma that requires reorganizing typing derivations.

In our settings, the typing rules are *syntax-directed*, That is, for any given well-formed expression, at most one typing rule may apply. Then, the shape of the typing derivation tree is unique and fully determined by the shape of the term.

Moreover, each term has actually a unique type. Hence, typing derivations are unique, in a given typing context. The proof is a straightforward induction on the structure of terms.

Explicitly-typed terms can thus be used to describe typing derivations (up to the typing context) in a precise and concise way, because terms of the language have a concrete syntax. This enables reasoning by induction on terms, which is often lighter than reasoning by induction on typing derivations, since terms are concrete objects while derivations are in the meta-language of mathematics.

This also makes typechecking a trivial recursive function that checks that for each expression that the unique candidate typing rule can be correctly instantiated.

Of course, the existence of syntax-directed typing rules relies on type information present in source terms. Uniqueness of typing derivations can be easily lost if some type information
Explicitly \textit{v.s.} implicitly typed? Our presentation of simply-typed \(\lambda \)-calculus is \textit{explicitly typed} (we also say in \textit{church-style}), as parameters of abstractions are annotated with their types. Simply-typed \(\lambda \)-calculus can also be \textit{implicitly typed} (we also say in \textit{curry-style}) when parameters of abstractions are left unannotated, as in the plain \(\lambda \)-calculus.

We may easily translate explicitly-typed expressions into implicitly-typed ones by dropping type annotations. This is called \textit{type erasure}. We write \([M]\) for the type erasure of \(M\), which is defined by structural induction on \(M\):

\[
\begin{align*}
[x] & \triangleq x \\
[\lambda x: \tau. M] & \triangleq \lambda x. [M] \\
[M_1 \ M_2] & \triangleq [M_1] [M_2]
\end{align*}
\]

The erasure of a term \(M\) of System \(F\) is an untyped \(\lambda \)-term \(a\).

Conversely, can we convert implicitly-typed expressions back into explicitly-typed ones, that is, can we reconstruct the missing type information? This is equivalent to finding a typing derivation for implicitly-typed terms. It is called \textit{type reconstruction} (or \textit{type inference} and is much more involved than just type-checking explicitly typed terms—see the chapter on type inference (§8).

\textbf{Untyped semantics} Observe that although the reduction carries types at runtime, types do not actually contribute to the reduction. Intuitively, the semantics of terms is the same as that of their type erasure.

Formally, we must be more careful, as terms and their erasure do not live in the same world. Instead, we may say that the two semantics coincide by putting them into correspondence.

The semantics is said to be \textit{untyped} or \textit{type-erasing} if any reduction step on source terms can be reproduced in the untyped language between their type erasures (direct simulation), and conversely, a reduction step after type erasure can also be traced back in the typed language as a reduction step between associated source terms (inverse simulation). Formally, this can be stated as follows:

\textbf{Lemma 2 (direct simulation)} \textit{If} \(M_1 \rightarrow M_2\) \textit{then} \([M_1] \rightarrow [M_2]\).

\textbf{Lemma 3 (inverse simulation)} \textit{If} \([M] \rightarrow a\), \textit{then there exists} \(M'\) \textit{such that} \(M \rightarrow M'\) \textit{and} \([M'] = a\).
3.4. TYPE SOUNDNESS

Diagramatically, we have

\[
\begin{array}{c}
M_1 \xrightarrow{\beta} M_2 \\
\downarrow \quad \downarrow \\
a_1 \xrightarrow{\beta} a_2
\end{array}
\]

Direct simulation

\[
\begin{array}{c}
M_1 \xrightarrow{\iota} M_2 \\
\downarrow \quad \downarrow \\
a_1 \xrightarrow{\iota} a_2
\end{array}
\]

Inverse simulation

The combination of both lemmas establishes a bisimulation between explicitly-typed terms and implicitly-typed ones.

In our simple setting this is a one-to-one correspondence, and the proof is immediate and not very interesting. The proof will be done in the more general case of System F. In general (and this will be the case in System F) there may be reduction steps on source terms that involve only types and that have no counter-part on compiled terms. In this case we may split the reduction relation into \(\rightarrow_\iota\) that deals with those steps without counter-part on type-erasures and other steps such as \(\rightarrow_\beta\) that are reproduced type-erasures. The \(\iota\)-reduction must be terminating (see the statement of bisimulation for System-F in §4.4.5).

Exercise 8 (Short, but difficult) How would you write the two previous lemmas in the presence of \(\iota\)-steps. What could happen if \(\iota\)-reduction were not terminating?

(Solution p. 44)

Having a type-erasing semantics is an important property of a language: it simplifies its meta-theoretical study since its semantics does not depend on types. It also means that types can be ignored at runtime.

Be aware that an implicitly typed language does not necessarily have a type-erasing semantics. In Haskell, for instance, types drive the semantics via the choice of type classes even though they are inferred. In fact, Haskell surface programs are elaborated by compiling type classes away into an internal typed language which itself has an erasing semantics.

3.4 Type soundness

Type soundness is often known as Milner’s slogan “Well-typed expressions do not go wrong” What is a formal statement of this? By definition, a closed term \(M\) is well-typed if it admits some type \(\tau\) in the empty environment. By definition, a closed, irreducible term is either a value or stuck. A closed term must converge to a value, diverge, or go wrong by reducing to a stuck term. Milner’s slogan now has a formal meaning:

Theorem 1 (Type Soundness) Well-typed expressions do not go wrong.

The proof of type soundness is by combination of Subject Reduction (Lemma 2) and Progress (Lemma 3). This syntactic proof method is due to Wright and Felleisen (1994).
CHAPTER 3. SIMPLY-TYPED LAMBDA-CALCULUS

Theorem 2 (Subject reduction) Reduction preserves types: if $M_1 \rightarrow M_2$, then for any type τ such that $\emptyset \vdash M_1 : \tau$, we also have $\emptyset \vdash M_2 : \tau$.

Theorem 3 (Progress) A well-typed, closed term is either reducible or a value: if $\emptyset \vdash M : \tau$, then there exists M' such that $M \rightarrow M'$ or M is a value.

Progress also says that no stuck term is well-typed. We sometimes use an equivalent formulation of progress: a closed, well-typed irreducible term is a value, i.e. if $\emptyset \vdash M : \tau$ and $M \not\rightarrow$ then M is a value.

3.4.1 Proof of subject reduction

Subject reduction is proved by induction over the hypothesis $M_1 \rightarrow M_2$. Thus, there is one case per reduction rule. In the pure simply-typed λ-calculus, there are just two such rules: β-reduction and reduction under an evaluation context.

Type preservation by β-reduction.

In the proof of subject reduction for the β-reduction case, the hypotheses are

$$(\lambda x : \tau. M) V \rightarrow [x \mapsto V]M \quad \emptyset \vdash (\lambda x : \tau. M) V : \tau_0 \quad (1)$$

and the goal is $\emptyset \vdash [x \mapsto V]M : \tau_0 \quad (3)$.

To proceed, we decompose the hypothesis (2): by inversion (Lemma 1), its derivation of (2) must be of the form:

$$\begin{array}{c}
\text{ABS} \\
\text{API}
\end{array}
\frac{x : \tau \vdash M : \tau_0 \quad (4)}{
\emptyset \vdash (\lambda x : \tau. M) : \tau \rightarrow \tau_0 \quad \emptyset \vdash V : \tau \quad (5)}
\frac{}{
\emptyset \vdash (\lambda x : \tau. M) V : \tau_0 \quad (2)}$$

We expect the conclusion (3) to follow from (4) and (5). Indeed, we could conclude with the following lemma:

Lemma 4 (Value substitution) If $x : \tau \vdash M : \tau_0$ and $\emptyset \vdash V : \tau$, then $\emptyset \vdash [x \mapsto V]M : \tau_0$.

In plain words, replacing a formal parameter with a type-compatible actual argument preserves types. Unsurprisingly, this lemma must be suitably generalized so that it can be proved by structural induction over the typing derivation for M:

Lemma 5 (Value substitution, strengthened) If $x : \tau, \Gamma \vdash M : \tau_0$ and $\emptyset \vdash V : \tau$, then $\Gamma \vdash [x \mapsto V]M : \tau_0$.

The proof is then straightforward provided we have a weakening lemma (stated below) in the case for variables. (In the case for abstraction, the variable for the parameter can—and must—be chosen different from the variable x.) This closes the β-reduction proof case for type preservation.
Exercise 9 Write all the details of the proof of value substitution.

The weakening we have used in the proof of type preservation for β-reduction is:

Lemma 6 (Weakening) If $\emptyset \vdash V : \tau_1$ then $\Gamma \vdash V : \tau_1$.

We may actually prove a simplified version adding only one binding at a time, as the general case follows as a corollary. However, the lemma must also be strengthened.

Remark 1 Strengthening will often be needed for properties of interest in this course, which are about explicitly-typed terms, or equivalently, typing derivations, and proved by structural induction, i.e. by induction and case analysis on the structure of the term (or its derivation), because well-typedness of subterms may involve a larger typing context than the one used for the inclosing term. Therefore, properties stated for a term M must hold not under a particular context in which M is typed but under all extensions of such a context.

Lemma 7 (Weakening, strengthened) If $\Gamma \vdash M : \tau$ and $y \notin \text{dom}(\Gamma)$, then $\Gamma, y : \tau' \vdash M : \tau$.

Proof: The proof is by structural induction on M, applying the inversion lemma:

Case M is x: Then x must be bound to τ in Γ. Hence, it is also bound to τ in $\Gamma, y : \tau'$. We conclude by rule Var.

Case M is $\lambda x : \tau_2. M_1$: W.l.o.g., we may choose $x \notin \text{dom}(\Gamma)$ and $x \neq y$. We have $\Gamma, x : \tau_2 \vdash M_1 : \tau_1$ with $\tau_2 \rightarrow \tau_1$ equal to τ. By induction hypothesis, we have $\Gamma, x : \tau_2, y : \tau' \vdash M_1 : \tau_1$. Thanks to a permutation lemma, we have $\Gamma, y : \tau', x : \tau_2 \vdash M_1 : \tau_1$ and we conclude by Rule Abs.

Case M is $M_1 M_2$: easy.

Exercise 10 Write the details of the application case for weakening.

Exercise 11 Try to prove the unstrengthened version and see where you get stuck.

Lemma 8 (Permutation lemma) If $\Gamma \vdash M : \tau$ and Γ' is a permutation of Γ, then $\Gamma' \vdash M : \tau$.

The result is obvious since a permutation of Γ does not change its interpretation as a finite function, which is all what is used in the typing rules so far (this will no longer be the case when we extend Γ with type variable declarations). Formally, the proof is by induction on M.
Type preservation by reduction under an evaluation context.

The first hypothesis is $M \rightarrow M'$ (1) where, by induction hypothesis, this reduction preserves types (2). The second hypothesis is $\emptyset \vdash E[M] : \tau$ (3) where E is an evaluation context. The goal is $\emptyset \vdash E[M'] : \tau$ (4).

Observe that type checking is compositional: only the type of the subexpression in the hole matters, not its exact form, as stated by the compositionality Lemma, below. The context case immediately follows from compositionality, which closes the proof of subject reduction.

Lemma 9 (Compositionality) If $\emptyset \vdash E[M] : \tau$, then, there exists τ' such that:

- $\emptyset \vdash M : \tau'$, and
- for every term M' such that $\emptyset \vdash M' : \tau'$, we have $\emptyset \vdash E[M'] : \tau$.

The proof is by cases over E; each case is straightforward.

Remark 2 Informally, τ' is the type of the hole in the context E, itself of type τ; we could write the pseudo judgment $\emptyset \vdash E[\tau'] : \tau$. (This judgment could also be defined by formal typing rules, of course.)

3.4.2 Proof of progress

Progress (Theorem 3) says that (closed) well-typed terms are either reducible or values. It is proved by structural induction over the term M. Thus, there is one case per construct in the syntax of terms.

In the pure λ-calculus, there are just three cases: variable; λ-abstraction; and application. The case of variables is void, since a variable is never well-typed in the empty environment. The case of λ-abstractions is immediate, because a λ-abstraction is a value. In the only remaining case of an application, we show that M is always reducible.

Assume that $\emptyset \vdash M : \tau_1$ and M is an application $M_1 M_2$. By inversion of typing rules, there exist types τ_1 and τ_2 such that $\emptyset \vdash M_1 : \tau_2 \rightarrow \tau_1$ and $\emptyset \vdash M_2 : \tau_2$. By induction hypothesis, M_1 is either reducible or a value V_1. If M_1 is reducible, so is M because $\llbracket \rrbracket M_2$ is an evaluation context and we are done. Otherwise, by induction hypothesis, M_2 is either reducible or a value V_2. If M_2 is reducible, so is M because $V_1 \llbracket \rrbracket$ is an evaluation context and we are done. Otherwise, because V_1 is a value of type $\tau_1 \rightarrow \tau_2$, it must be a λ-abstraction by classification of values (Lemma 10 below), so $V_1 V_2$ is a β-redex, hence reducible.

Interestingly, the proof is constructive and corresponds to an algorithm that searches for the active redex in a well-typed term.

In the last case, we have appealed to the following property:

Lemma 10 (Classification of values) Assume $\emptyset \vdash V : \tau$. Then,
3.4. **TYPE SOUNDNESS**

- if \(\tau \) is an arrow type, then \(V \) is a \(\lambda \)-abstraction;

- \(\ldots \)

Proof: By cases over \(V \):

- if \(V \) is a \(\lambda \)-abstraction, then \(\tau \) must be an arrow type;

- \(\ldots \)

Because different kinds of values receive types with different head constructors, this classification is injective, and can be inverted, which gives exactly the conclusion of the lemma.

In the pure \(\lambda \)-calculus, classification is trivial, because *every value is a \(\lambda \)-abstraction*. Progress holds even in the absence of the well-typedness hypothesis, *i.e.* in the untyped \(\lambda \)-calculus, because *no term is ever stuck!*

As the programming language and its type system are extended with new features, however, type soundness is no longer trivial. Most type soundness proofs are shallow but large. Authors are often tempted to skip the “easy” cases, but these may contain hidden traps!

This calls for mechanized proofs that ensure case coverage while trivial cases should be automatically dischargeable.

Warning! Sometimes, the combination of two features is *unsound*, even though each feature, in isolation, is sound. This is problematic, because researchers like studying each feature in isolation, and do not necessarily foresee problems with the combination. This will be illustrated in this course by the interaction between references and polymorphism in ML.

In fact, a few such combinations have been implemented, deployed, and used for some time before they were found to be unsound! For example, this happened for call/cc + polymorphism in SML/NJ [Harper and Lillibridge, 1991]; and for mutable records with existential quantification in Cyclone [Grossman, 2006].

Soundness versus completeness Because the \(\lambda \)-calculus is a Turing-complete programming language, whether a program goes wrong is an *undecidable* property. (Assuming that it is possible to go wrong, *i.e.*, the calculus is not the pure \(\lambda \)-calculus, since progress holds in \(\lambda \)-calculus even for untyped programs, as we have noticed above.) As a consequence, *any sound, decidable type system must be incomplete*, that is, it must reject some valid programs.

Type systems can be *compared* against one another via encodings, so it is sometimes possible to prove that one system is more expressive than another. However, whether a type system is “sufficiently expressive in practice” can only be assessed via *empirical* means. It can take a lot of intuition and experience to determine whether a type system is, or is not, expressive enough in practice.
Exercise 12 The subject reduction is often stated as “reduction preserve typings”. A typing of a term \(M \) is a pair \((\Gamma, \tau)\) such that \(\Gamma \vdash M : \tau \). Define a relation \(\sqsubseteq \) on typings such that \(M \sqsubseteq M' \) means that all typings of \(M \) are also typings of \(M' \). Restate subject reduction using the relation \(\sqsubseteq \) and prove it. (Solution p. 44)

3.5 Simple extensions

In this section, we introduce simple extensions to the calculus, mainly adding new constants and new primitives. These extensions will look very similar in one another and we will see how they can be factored out in the case of System F.

3.5.1 Unit

This is one of the simplest extension. We just introduce a new type \texttt{unit} and a constant value () of that type.

\[
\tau ::= \ldots | \text{unit} \quad V ::= \ldots | () \quad M ::= \ldots | ()
\]

Reduction rules are unchanged, since () is already a value. The following typing rule is introduced:

\[
\begin{array}{c}
\text{Unit} \\
\hline \\
\Gamma \vdash () : \text{unit}
\end{array}
\]

Exercise 13 Check that type soundness is preserved. (Solution p. 44)

Notice that the classification Lemma is no longer degenerate.

3.5.2 Boolean

\[
V ::= \ldots | \text{true} | \text{false} \quad M ::= \ldots | \text{true} | \text{false} | \text{if} M \text{ then } M \text{ else } M
\]

We add only one evaluation context, since only the condition should be reduced:

\[
E ::= \ldots | \text{if } [] \text{ then } M \text{ else } M
\]

In particular, if \(V \text{ then } E \text{ else } M \) or if \(V \text{ then } E \text{ else } M \) are not evaluation contexts, because \(M \) and \(N \) must not be both evaluated before the conditional has been resolved. Instead, once the condition is a value, the conditional can be reduced to the relevant branch and dropping the other one, by one of the two new reduction rules:

\[
\text{if true then } M_1 \text{ else } M_2 \rightarrow M_1 \quad \text{if false then } M_1 \text{ else } M_2 \rightarrow M_2
\]

We also introduction a new type, \texttt{bool}, to classify booleans.

\[
\tau ::= \ldots | \text{bool}
\]
The new typing rules are:

\[
\begin{align*}
\text{True} & : \Gamma \vdash \text{true} : \text{bool} \\
\text{False} & : \Gamma \vdash \text{false} : \text{bool} \\
\text{IfThenElse} & : \Gamma \vdash M_0 : \text{bool} \quad \Gamma \vdash M_1 : \tau \quad \Gamma \vdash M_2 : \tau \\
& \quad \Gamma \vdash \text{if } M_0 \text{ then } M_1 \text{ else } M_2 : \tau
\end{align*}
\]

Exercise 14 *Give the new cases for the classification lemma (without proving them). Check that progress is preserved.*

(Solution p. 45)

Exercise 15 *Describe the extension of the \(\lambda\)-calculus with integers addition, and multiplication. (We do not ask to recheck the meta-theory, just to give the changes to the syntax and static and dynamic semantics, as we did above for booleans.)*

(Solution p. 45)

3.5.3 Pairs

To extend the simply-typed \(\lambda\)-calculus with pairs, we extend values, expressions, and evaluation contexts as follows:

\[
\begin{align*}
i & ::= 1 | 2 \\
M & ::= \ldots | (M, M) | \text{proj}_i M \\
V & ::= \ldots | (V, V) \\
E & ::= \ldots | ([], M) | (V, []) | \text{proj}_i []
\end{align*}
\]

Notice that the components of the pair are evaluated from left-to-right. At this stage, it could be left unspecified as the language is pure. However, it should be fixed when we later extend the language with side effects—even if the user should avoid side effects during evaluation of the components of a pair. This orientation from left-to-right is somewhat arbitrary—but more intuitive than the opposite order!

We introduce one new reduction rule (in fact, two rules if we inlined \(i\)):

\[
\text{proj}_i (V_1, V_2) \rightarrow V_i
\]

Product types are introduced to classify pairs, together with two new typing rules:

\[
\begin{align*}
\tau & ::= \ldots | \tau \times \tau \\
\text{PAIR} & : \Gamma \vdash M_1 : \tau_1 \quad \Gamma \vdash M_2 : \tau_2 \\
& \quad \Gamma \vdash (M_1, M_2) : \tau_1 \times \tau_2 \\
\text{PROJ} & : \Gamma \vdash M : \tau_1 \times \tau_2 \\
& \quad \Gamma \vdash \text{proj}_i M : \tau_i
\end{align*}
\]

Exercise 16 *Check that subject reduction is preserved when adding pairs.*

(Solution p. 45)

Exercise 17 *Modify the semantics to evaluate pairs from right to left. Would this be sound? Would this be still call-by-value?*

(Solution p. 46)
3.5.4 Sums

Values, expressions, evaluation contexts are extended:

\[
M ::= \ldots | \text{inj}_i M | \text{case } M \text{ of } V \circ V \\
V ::= \ldots | \text{inj}_i V \\
E ::= \ldots | \text{inj}_i [] | \text{case } [] \text{ of } V \circ V
\]

A new reduction rule is introduced:

\[
\text{case } \text{inj}_i V \text{ of } V_1 \circ V_2 \rightarrow V_i V
\]

Sum types are added to classify sums:

\[
\tau ::= \ldots | \tau + \tau
\]

Two new typing rules are introduced:

\[
\begin{array}{c}
\text{INJ} \\
\Gamma \vdash M : \tau_i \\
\Gamma \vdash \text{inj}_i M : \tau_1 + \tau_2
\end{array}
\begin{array}{c}
\text{CASE} \\
\Gamma \vdash M : \tau_1 + \tau_2 \\
\Gamma \vdash V_1 : \tau_1 \rightarrow \tau \\
\Gamma \vdash V_2 : \tau_2 \rightarrow \tau \\
\Gamma \vdash \text{case } M \text{ of } V_1 \circ V_2 : \tau
\end{array}
\]

Notice A property of the simply-typed \(\lambda\)-calculus is lost: expressions do not have unique types anymore, i.e. the type of an expression is no longer always determined by the expression. Uniqueness of types may however be recovered by using a type annotation in injections:

\[
V ::= \ldots | \text{inj}_i V \text{ as } \tau
\]

and modifying the typing rules and reduction rules accordingly. Although, the later variant is more verbose (and so not chosen in practice) it is easier and thus usually the one chosen for meta-theoretical studies.

Exercise 18 Describe the extension with the option type.

3.5.5 Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

- a new type constructor, to classify values of a new shape;
- new expressions, to \textit{construct} and \textit{destruct} values of a new shape.
- new typing rules for new forms of expressions;
- new reduction rules, to specify how values of the new shape can be destructed;
- new evaluation contexts, but just to propagate reduction under the new constructors.

Then, in each case,
• subject reduction is preserved because types of new redexes are preserved by the new reduction rules.

• progress is preserved because the type system ensures that the new destructors can only be applied to values such that at least one of the new reduction rules applies.

Moreover, the extensions are independent: they can be added to the λ-calculus alone or mixed altogether. Indeed, no assumption about other extensions (the “...”) has ever been made, except for the classification lemma which requires, informally, that *values of other shapes have types of other shapes*. This is obviously the case in the extensions we have presented: the unit has the unit type, pairs have product types, and sums have sum types.

In fact, all these extensions could have been presented as several instances of a more general extension of the λ-calculus with constants, for which type soundness can be established uniformly under reasonable assumptions relating the typing rules and reduction rules for constants. This is the approach that we will follow in the next chapter (§4).

3.5.6 Recursive functions

Programs in the simply-typed λ-calculus always terminate. In particular, fix points of the λ-calculus cannot be typed. To recover recursion, we may introduce recursive functions as follows. Values and expressions are extended with a fix-point construct:

\[V := \ldots | \mu f : \tau. \lambda x. M \]

\[M := \ldots | \mu f : \tau. \lambda x. M \]

A new reduction rule is introduced to unfold recursive calls:

\[(\mu f : \tau. \lambda x. M) V \rightarrow [f \mapsto \mu f : \tau. \lambda x. M][x \mapsto V]M \]

Types are *not* extended, as we already have function types, *i.e.* types won’t tell the difference between a function and a recursive function. A new typing rule is introduced:

\[
\text{FixAbs} \quad \frac{\Gamma, f : \tau_1 \rightarrow \tau_2 \vdash \lambda x : \tau_1. M : \tau_1 \rightarrow \tau_2}{\Gamma \vdash \mu f : \tau_1 \rightarrow \tau_2. \lambda x. M : \tau_1 \rightarrow \tau_2}
\]

In the premise, the type \(\tau_1 \rightarrow \tau_2 \) serves as both an assumption and a goal. This is a typical feature of recursive definitions.

Notice that we have syntactically restricted recursive definitions to functions. We could allow the definition of recursive values as well. However, the definition of recursive expressions that are not syntactically values is more difficult, as their semantics may be undefined and their efficient compilation is problematic—no good solution has been found yet.

3.5.7 A derived construct: let-bindings

The let-binding construct "let \(x : \tau = M_1 \) in \(M_2 \)" can be viewed as syntactic sugar for the β-redex "(\(\lambda x : \tau. M_2 \)) M_1". The latter form can be type-checked only by a derivation of the
following shape:

\[
\begin{array}{c}
\text{ABS} \\
\hline
\Gamma, x : \tau_1 \vdash M_2 : \tau_2 \\
\text{App} \\
\hline
\Gamma \vdash \lambda x : \tau_1. M_2 : \tau_1 \to \tau_2 \\
\Gamma \vdash M_1 : \tau_1 \\
\end{array}
\]

This means that the following derived rule is sound and complete for let-bindings (a derived rule is a rule that abbreviates a prefix of a derivation tree):

\[
\begin{array}{c}
\text{LETMONO} \\
\hline
\Gamma \vdash M_1 : \tau_1 \\
\Gamma, x : \tau_1 \vdash M_2 : \tau_2 \\
\Gamma \vdash \text{let } x : \tau_1 = M_1 \text{ in } M_2 : \tau_2
\end{array}
\]

In the derived form \text{let } x : \tau_1 = M_1 \text{ in } M_2 the type of \(M_1 \) must be given explicitly, although by uniqueness of types, it is fully determined by the expression \(M_1 \) and is thus redundant. If we replace the derived form by a primitive form \text{let } x = M_1 \text{ in } M_2 we could use the following primitive typing rule.

\[
\begin{array}{c}
\text{LETMONO} \\
\hline
\Gamma \vdash M_1 : \tau_1 \\
\Gamma, x : \tau_1 \vdash M_2 : \tau_2 \\
\Gamma \vdash \text{let } x = M_1 \text{ in } M_2 : \tau_2
\end{array}
\]

Remark 3 The primitive form is not necessary a better design choice however. Derived forms are more economical, since they do not extend the core language, and should be used whenever possible. Minimizing the number of language constructs is at least as important as avoiding extra type annotations in an explicitly-typed language. Moreover, removing redundant type annotations is the problem of type reconstruction and we should not bother too much about it in the explicitly-typed version of the language.

Sequences The sequence “\(M_1; M_2 \)” is a derived construct of let-bindings; it can be viewed as additional syntactic sugar that expands to \text{let } x : \text{unit} = M_1 \text{ in } M_2 where \(x \neq M_2 \).

Exercise 19 Recover the typing rule for sequences from this syntactic sugar.

A derived construct: \text{let rec} The construct “\text{let rec } (f : \tau) x = M_1 \text{ in } M_2” can also be viewed as syntactic sugar for “\text{let } f = \mu f : \tau. \lambda x. M_1 \text{ in } M_2”. The latter can be type-checked only by a derivation of the form:

\[
\begin{array}{c}
\text{FIXABS} \\
\hline
\Gamma, f : \tau \to \tau_1; x : \tau \vdash M_1 : \tau_1 \\
\text{LETMONO} \\
\hline
\Gamma \vdash \mu f : \tau \to \tau_1; \lambda x. M_1 : \tau \to \tau_1 \\
\Gamma, f : \tau \to \tau_1 \vdash M_2 : \tau_2 \\
\end{array}
\]

This means that the following derived rule is sound and complete:

\[
\begin{array}{c}
\text{LETREC Mono} \\
\hline
\Gamma, f : \tau \to \tau_1; x : \tau \vdash M_1 : \tau_1 \\
\Gamma, f : \tau \to \tau_1 \vdash M_2 : \tau_2 \\
\Gamma \vdash \text{let rec } (f : \tau \to \tau_1) x = M_1 \text{ in } M_2 : \tau_2
\end{array}
\]
3.6 Exceptions

Exceptions are a mechanism for changing the normal order of evaluation (usually, but not necessarily, in case something abnormal occurred).

When an exception is raised, the evaluation does not continue as usual: Shortcutting normal evaluation rules, the exception is propagated up into the evaluation context until some handler is found at which the evaluation resumes with the exceptional value received; if no handler is found, the exception reaches the toplevel and the result of the evaluation is the exception instead of a value.

Because exceptions may break the flow of evaluation, they cannot be described as just new constants and primitives.

3.6.1 Semantics

We extend the language with a constructor form to raise an exception and a destructor form to catch an exception; we also extend the evaluation contexts:

\[M ::= \ldots | \text{raise } M | \text{try } M \text{ with } M \quad E ::= \ldots | \text{raise } [] | \text{try } [] \text{ with } M \]

However, we do not treat \text{raise } V as a value, since \text{raise } V stops the normal order of evaluation. Instead, we introduce three reduction rules to propagate and handle exceptions:

- \text{Raise}: \(F[\text{raise } V] \rightarrow \text{raise } V \)
- \text{Handle-Val}: \(\text{try } V \text{ with } M \rightarrow V \)
- \text{Handle-Raise}: \(\text{try raise } V \text{ with } M \rightarrow M \ V \)

Rule \text{Raise} propagates an exception one level up in the evaluation contexts, but not through a handler. This is why the rule uses an evaluation context \(F \), which stands for any evaluation context \(E \) other than \text{try } [] with \(M \).

The handling of exceptions is then treated by two specific rules: Rule \text{Handle-Raise} passes an exceptional value to its handler; Rule \text{Handle-Val} removes the handler around a value.

Example Assume that \(K \) is \(\lambda x. \lambda y. y \) and \(M \rightarrow V \). We have the following reduction:

\[
\begin{align*}
\text{try } K \ (\text{raise } M) \text{ with } \lambda x. x & \quad \text{by CONTEXT} \\
\rightarrow \text{try } K \ (\text{raise } V) \text{ with } \lambda x. x & \quad \text{by RAISE} \\
\rightarrow \text{try raise } V \text{ with } \lambda x. x & \quad \text{by HANDLE-RAISE} \\
\rightarrow (\lambda x. x) \ V & \quad \text{by } \\
\rightarrow V &
\end{align*}
\]

In particular, we do not have the following reduction sequence, since \text{raise } V is not a value, hence the \(K \ (\text{raise } V) \) does not reduce to \(\lambda y. y \):

\[
\text{try } K \ (\text{raise } V) \text{ with } \lambda x. x \not\rightarrow \text{try } \lambda y. y \text{ with } \lambda x. x \rightarrow \lambda y. y
\]
3.6.2 Typing rules

We assume given a fixed type \texttt{exn} for exceptional values. The new typing rules are:

\[
\begin{align*}
\text{Raise} & \quad \frac{
\Gamma \vdash M : \texttt{exn}
}{
\Gamma \vdash \text{raise } M : \tau
}
\end{align*}
\]

\[
\begin{align*}
\text{Try} & \quad \frac{
\Gamma \vdash M_1 : \tau \quad \Gamma \vdash M_2 : \texttt{exn} \to \tau
}{
\Gamma \vdash \text{try } M_1 \text{ with } M_2 : \tau
}
\end{align*}
\]

There are some subtleties: \texttt{raise} turns an expression of type \texttt{exn} into an exception. Consistently, the handler has type \texttt{exn} \to \tau, since it receives as argument the value of type \texttt{exn} that has been raised. The expression \texttt{raise} \texttt{M} can have any type, since the current computation is aborted. In \texttt{try} \texttt{M}_1 \texttt{with} \texttt{M}_2, \texttt{M}_2 must return a value of the same type as \texttt{M}_1, since the evaluation will proceed with either branch depending on whether the evaluation of \texttt{M}_1 raises an exception or returns a value.

Type of exceptions What can we choose for \texttt{exn}? Well, any type could do. Choosing \texttt{unit}, exceptions would carry no information. Choosing \texttt{int}, exceptions would carry an integer that could be used, \textit{e.g.}, to report some error code. Choosing \texttt{string}, exceptions would carry a string that could be used to report error messages. Or better, exception could be of a sum type to allow any of these alternatives to be chosen when the exception is raised.

This is the approach followed by ML. However, since the set of exceptions is not known in advance, ML declares a new type \texttt{exn} for exceptions and allows adding new cases to the sum later on as needed. This is called an extensible datatype. (Until recently, the type of exceptions was the only extensible datatypes in OCaml, but since version 4.02, the user may define his own.)

As a counterpart checking for exceptions can’t be exhaustive without a “catch all” branch, since further cases could always be added later. Notice that although new constructors may be added, the type of exception is fixed in the whole program, to \texttt{exn}. This is essential for type soundness, since the handling and raising of exceptions must agree globally on the type \texttt{exn} of exceptional values as it is not passed around.

Notice that exception constructors must have closed types since the type \texttt{exn} has no parameter.

Type soundness How do we state type soundness, since exceptions may be uncaught? By saying that this is the only “exception” to progress:

Theorem 4 (Progress) A well-typed, irreducible term is either a value or an uncaught exception. if \(\emptyset \vdash M : \tau\) and \(M \rightarrow\), then \(M\) is either \(v\) or \texttt{raise} \(v\) for some value \(v\).

Exercise 20 Do all well-typed closed programs still terminate in the presence of exceptions?

(Solution p. [40])
3.6.3 Variations

Structured exceptions We have assumed that there is a unique exception, which could itself be a sum type. This simulates having multiple exceptions where each one is identified by a tag and may carry values of different types. However, having multiple exceptions as primitive would amount to redefining sum types within the mechanism of exceptions; this would just bringing more complications without any real gain.

On uncaught exceptions Usage of exceptions may vary a lot in programs: some exceptions are used for fatal errors and abort the program while others may be used during normal computation, e.g., for quickly returning from a deep recursive call. However, an uncaught exception is often a programming error—even exceptions raised to abort the whole program must usually be caught for error reporting or cleaning up before exiting. It may be surprising that uncaught exceptions are not considered as static errors that should be detected by the type system.

Unfortunately, detecting uncaught exceptions require more expressive type systems and the existing solutions are often complicated for some limited benefit. This explains why they are not often used in practice.

The complication comes from the treatment of functions, which have some latent effect of possibly raising or catching an exception when applied. To be precise, the analysis must therefore enrich types of functions with latent effects, which is quite invasive and obfuscating.

Uncaught exceptions are checked in the language Java, but they must be declared. See Leroy and Pessaux (2000) for an analysis of uncaught exceptions in ML.

Small variation Once raised, exceptions are propagated step-by-step by Rule Raise until they reach a handler or the toplevel. The semantics could avoid the step-by-step propagation of exceptions by handling exceptions deeply inside terms. It suffices to replace the three reduction rules by:

\[
\text{Handle-Val'}: \quad \text{try } V \text{ with } M \rightarrow V \quad \text{try } \bar{F}[\text{raise } V] \text{ with } M \rightarrow M V
\]

where \(\bar{F}\) is sequence of \(F\)-contexts, i.e. a handler-free evaluation context of arbitrary depth. In this case, uncaught exceptions are of the form \(\bar{F}[\text{raise } V]\). This semantics is perhaps more intuitive—but it is equivalent.

Exceptions with bindings Benton and Kennedy (2001) have argued for merging let-bindings with exception handling into a unique form let \(x = M_1\) with \(M_2\) in \(M_3\). The expression \(M_1\) is evaluated first and, if it returns a value, it is substituted for \(x\) in \(M_3\), as if we had evaluated let \(x = M_1\) in \(M_3\); otherwise, i.e., if it raises an exception raise \(V\), then the exception is handled by \(M_2\), as if we had evaluated try \(M_1\) with \(M_2\).
This combined form captures a common pattern in programming that has no elegant workaround:

\[
\begin{align*}
\texttt{let rec read_config_in_path filename (dir :: dirs) \to} \\
\texttt{let fd = open_in (Filename.concat dir filename)} \\
\texttt{with Sys_error \rightarrow \text{read_config} \text{ filename dirs in}} \\
\text{read_config_from_fd fd}
\end{align*}
\]

This form is also better suited for program transformations, as argued by Benton and Kennedy (2001).

The separate let-binding and exception handling constructs are obviously particular cases of the new combined construct. Conversely, encoding the new construct \(\text{let } x = M_1 \text{ with } M_2 \text{ in } M_3 \) with \texttt{let} and \\texttt{try} is not so easy. In particular, it is not equivalent to: \texttt{try (let } x = M_1 \text{ in } M_3 \text{) with } M_2 \! \). In this expression, \(M_3 \) could raise an exception that would then be handled by \(M_2 \), which is not intended.

There are several encodings in the combined form into simple exceptions, but none of them is very readable, and all of them introduce some source of inefficiency. For instance, one may use a sum datatype to tell whether \(M_1 \) raised an exception:

\[
\text{\begin{verbatim}
\text{case (try Val } M_1 \text{ with } \lambda y. \text{Exc } y \text{) of (Val: } \lambda x. M_3 \circ \text{Exc: } M_2 \text{)}
\end{verbatim}}
\]

Alternatively, one may freeze the continuation \(M_3 \) while handling the exception:

\[
\text{\begin{verbatim}
(try let } x = M_1 \text{ in } \lambda() \text{. } M_3 \text{ with } \lambda y. \lambda() \text{. } M_2 \text{ y} \text{) ()}
\end{verbatim}}
\]

The extra allocation for the sum or the closure for the continuation are sources of inefficiency which the primitive combined form can easily avoid.

\textbf{Exercise 21} Describes the dynamic semantics of the \texttt{let } \(x = M_1 \text{ with } M_2 \text{ in } M_3 \text{ construct, formally.}

\textit{(Solution p. 46)}

A similar construct has been added in OCaml, version 4.02, allowing exceptions to be combined with pattern matching. The previous example can now be written:

\[
\begin{align*}
\texttt{let rec read_config_in_path filename (dir :: dirs) \to} \\
\text{match open_in (Filename.concat dir filename) with} \\
| \text{fd} \rightarrow \text{read_config_from_fd fd} \\
| \text{exception Sys_error \rightarrow \text{read_config} \text{ filename dirs}}
\end{align*}
\]

\textbf{Exercise 22 (try finalize)} A finalizer is some code that should be run in case of both normal and exceptional evaluation. Write a function \texttt{finalize} that takes four arguments \(f, x, g, \) and \(y \) and returns the application \(f \ x \) with finalizing code \(g \ y \). i.e. \(g \ y \) should be called before returning the result of the application of \(f \) to \(x \) whether it executed normally or raised an exception. (You may try first without using binding mixed with exceptions and then using it.) this construct.

\textit{(Solution p. 46)}
3.7 References

In the ML vocabulary, a reference cell, also called a reference, is a dynamically allocated block of memory that holds a value and whose content can change over time. A reference can be allocated and initialized (ref), written (:=), and read (!). Expressions and evaluation contexts are extended as follows:

\[M ::= \ldots \mid \text{ref } M \mid M := M \mid ! M \]
\[E ::= \ldots \mid \text{ref } [] \mid [] := M \mid V := [] \mid ! [] \]

A reference allocation expression is not a value. Otherwise, by \(\beta \)-reduction, the program:

\[(\lambda x: \tau. (x := 1; ! x)) \text{ (ref 3)}\]

which intuitively should yield 1, would reduce to:

\[(\text{ref 3}) := 1; ! (\text{ref 3})\]

which intuitively yields 3. How shall we solve this problem? The expression (ref 3) should first reduce to a value: the address of a fresh cell. That is, not just the content of a cell matters, but also its address, since writing through one copy of the address should not affect a future read via another copy.

3.7.1 Language definition

Formally, we extend the simply-typed \(\lambda \)-calculus calculus with memory locations:

\[M ::= \ldots \mid \ell \]
\[V ::= f \ldots \mid \ell \]

A memory location is just an atom (that is, a name). The value found at a location \(\ell \) is obtained by indirection through a memory (or store). A memory \(\mu \) is a finite mapping of locations to closed values. A configuration is a pair \(M / \mu \) of a term and a store. The operational semantics (given next) reduces configurations instead of expressions.

The semantics maintains a no-dangling-pointers invariant: the locations that appear in \(M \) or in the image of \(\mu \) are in the domain of \(\mu \). Initially, the store is empty, and the term contains no locations, because, by convention, memory locations cannot appear in source programs. So, the invariant holds.

If we wish to start reduction with a non-empty store, we must check that the initial configuration satisfies the no-dangling-pointers invariant. Because the semantics now reduces configurations, all existing reduction rules are augmented with a store, which they do not touch:

\[(\lambda x: \tau. M) V / \mu \rightarrow [x \mapsto V]M / \mu \]
\[E[M] / \mu \rightarrow E[M'] / \mu' \quad \text{if } M / \mu \rightarrow M' / \mu'\]
Three new reduction rules are added:

\[
\begin{align*}
\text{ref } V \mu & \rightarrow \ell / \mu[\ell \mapsto V] \quad \text{if } \ell \notin \text{dom}(\mu) \\
\ell := V / \mu & \rightarrow (\ell / \mu[\ell \mapsto V] \\
! \ell / \mu & \rightarrow \mu(\ell) / \mu
\end{align*}
\]

In the last two rules, the no-dangling-pointers invariant guarantees \(\ell \in \text{dom}(\mu) \).

The type system is modified as follows. Types are extended:

\[\tau ::= \ldots \mid \text{ref } \tau\]

Three new typing rules are introduced:

\[
\begin{array}{c|c|c}
\text{Ref} & \text{Set} & \text{Get} \\
\hline
\Gamma \vdash M : \tau & \Gamma \vdash M_1 : \text{ref } \tau & \Gamma \vdash M : \text{ref } \tau \\
\Gamma \vdash \text{ref } M : \text{ref } \tau & \Gamma \vdash M_2 : \text{unit} & \Gamma \vdash ! M : \tau \\
\end{array}
\]

Is that all we need? The preceding setup is enough to typecheck source terms, but does not allow stating or proving type soundness. Indeed, we have not yet answered these questions:

What is the type of a memory location \(\ell \)? When is a configuration \(M / \mu \) well-typed? A location \(\ell \) has type \(\text{ref } \tau \) when it points to some value of type \(\tau \).

Intuitively, this could be formalized by a typing rule of the form:

\[
\frac{\mu, \emptyset \vdash \mu(\ell) : \tau}{\mu, \Gamma \vdash \ell : \text{ref } \tau}
\]

Then, typing judgments would have the form \(\mu, \Gamma \vdash M : \tau \). Typing judgments would no longer be inductively defined (or else, every cyclic structure would be ill-typed). Instead, co-induction would be required. Moreover, if the value \(\mu(\ell) \) happens to admit two distinct types \(\tau_1 \) and \(\tau_2 \), then \(\ell \) admits types \(\text{ref } \tau_1 \) and \(\text{ref } \tau_2 \). So, one can write at type \(\tau_1 \) and read at type \(\tau_2 \): this rule is unsound!

A simpler, and sound, approach is to fix the type of a memory location when it is first allocated. To do so, we use a store typing \(\Sigma \), a finite mapping of locations to types. Then, a location \(\ell \) has type \(\text{ref } \tau \) “when the store typing \(\Sigma \) says so.”

\[
\Sigma, \Gamma \vdash \ell : \text{ref } \Sigma(\ell)
\]

Typing judgments now have the form \(\Sigma, \Gamma \vdash M : \tau \). The following typing rules for stores and configurations ensure that the store typing predicts appropriate types

\[
\begin{array}{c|c|c}
\text{Store} & \text{Config} \\
\hline
\forall \ell \in \text{dom}(\mu), \quad \Sigma, \emptyset \vdash \mu(\ell) : \Sigma(\ell) & \Sigma, \emptyset \vdash M : \tau \\
\vdash \mu : \Sigma & \vdash M / \mu : \tau
\end{array}
\]

Remarks:

\footnote{This could happen, for example, in the presence of sum types (described in \S 3.5.4), when expressions do not have unique types any longer.}
• This is an inductive definition. The store typing Σ serves both as an assumption (Loc) and a goal (Store). Cyclic stores are not a problem.

• The store typing is used only in the definition of a “well-typed configuration” and in the typechecking of locations. Thus, it is not needed for type-checking source programs, since the store is empty and the empty-store configuration is always well-typed.

3.7.2 Type soundness

The type soundness statements are slightly modified in the presence of the store, since we now reduce configurations:

Theorem 5 (Subject reduction) Reduction preserves types: if $M / \mu \rightarrow M' / \mu'$ and $\vdash M / \mu : \tau$, then $\vdash M' / \mu' : \tau$.

Theorem 6 (Progress) If M / μ is a well-typed, irreducible configuration, then M is a value.

Inlining Config subject reduction can also be restated as:

Theorem 7 (Subject reduction, expanded) If $M / \mu \rightarrow M' / \mu'$ and $\Sigma, \emptyset \vdash M : \tau$ and $\vdash \mu : \Sigma$, then there exists Σ' such that $\Sigma', \emptyset \vdash M' : \tau$ and $\vdash \mu' : \Sigma'$.

This statement is correct, but too weak—its proof by induction will fail in one case. Let us look at the case of reduction under a context. The hypotheses are:

$M / \mu \rightarrow M' / \mu'$ and $\Sigma, \emptyset \vdash E[M] : \tau$ and $\vdash \mu : \Sigma$

Assuming compositionality, there exists τ' such that:

$\Sigma, \emptyset \vdash M : \tau'$ and $M', (\Sigma, \emptyset \vdash M' : \tau') \Rightarrow (\Sigma, \emptyset \vdash E[M'] : \tau)$

Then, by the induction hypothesis, there exists Σ' such that:

$\Sigma', \emptyset \vdash M' : \tau'$ and $\vdash \mu' : \Sigma'$

Here, we are stuck. The context E is well-typed under Σ, but the term M' is well-typed under Σ', so we cannot combine them. We are missing a key property: the store typing grows with time. That is, although new memory locations can be allocated, the type of an existing location does not change. This is formalized by strengthening the subject reduction statement:

Theorem 8 (Subject reduction, strengthened) If $M / \mu \rightarrow M' / \mu'$ and $\Sigma, \emptyset \vdash M : \tau$ and $\vdash \mu : \Sigma$, then there exists Σ' such that $\Sigma', \emptyset \vdash M' : \tau$ and $\vdash \mu' : \Sigma'$ and $\Sigma \subseteq \Sigma'$.

At each reduction step, the new store typing Σ' extends the previous store typing Σ. Growing the store typing preserves well-typedness (a generalization of the weakening lemma):
Lemma 11 (Stability under memory allocation) If $\Sigma \subseteq \Sigma'$ and $\Sigma, \Gamma \vdash M : \tau$, then $\Sigma', \Gamma \vdash M : \tau$.

This allows establishing a strengthened version of compositionality:

Lemma 12 (Compositionality) Assume $\Sigma, \emptyset \vdash E[M] : \tau$. Then, there exists τ' such that:

- $\Sigma, \emptyset \vdash M : \tau'$,
- for every Σ' and M', if $\Sigma \subseteq \Sigma'$ and $\Sigma', \emptyset \vdash M' : \tau'$, then $\Sigma', \emptyset \vdash E[M'] : \tau'$.

Let us now look again at the case of reduction under a context. The hypotheses are:

$\Sigma, \emptyset \vdash E[M] : \tau$ and $\vdash \mu : \Sigma$ and $M / \mu \rightarrow M' / \mu'$

By compositionality, there exists τ' such that:

$\Sigma, \emptyset \vdash M : \tau'$

$\forall \Sigma', \forall M', (\Sigma \subseteq \Sigma') \Rightarrow (\Sigma', \emptyset \vdash M' : \tau') \Rightarrow (\Sigma', \emptyset \vdash E[M'] : \tau')$

By the induction hypothesis, there exists Σ' such that:

$\Sigma', \emptyset \vdash M' : \tau'$ and $\vdash \mu' : \Sigma'$ and $\Sigma \subseteq \Sigma'$

The goal immediately follows.

Exercise 23 Prove subject reduction and progress for simply-typed λ-calculus equipped with unit, pairs, sums, recursive functions, exceptions, and references.

3.7.3 Tracing effects with a monad

Haskell adopts a different route and chooses to distinguish effectful computations (Peyton Jones and Wadler, 1993; Peyton Jones, 2009).

```
return : $\alpha \rightarrow \text{IO } \alpha$
bind : $\text{IO } \alpha \rightarrow (\alpha \rightarrow \text{IO } \beta) \rightarrow \text{IO } \beta$
main : $\text{IO } ()$
newIORef : $\alpha \rightarrow \text{IO } (\text{IORef } \alpha)$
readIORef : $\text{IORef } \alpha \rightarrow \text{IO } \alpha$
writeIORef : $\text{IORef } \alpha \rightarrow \alpha \rightarrow \text{IO } ()$
```

Haskell offers many monads other than IO. In particular, the ST monad offers references whose lifetime is statically controlled.
3.7.4 Memory deallocation

In ML, memory deallocation is implicit. It must be performed by the runtime system, possibly with the cooperation of the compiler. The most common technique is garbage collection. A more ambitious technique, implemented in the ML Kit, is compile-time region analysis (Tofte et al., 2004).

References in ML are easy to typecheck, thanks to the no-dangling-pointers property of the semantics. Making memory deallocation an explicit operation, while preserving type soundness, is possible, but difficult. This requires reasoning about aliasing and ownership. See Charguéraud and Pottier (2008) for citations. See Pottier and Protzenko (2013) for the language Mezzo designed especially for the explicit control of resources. The meta-theory of such languages may become quite intricate (Pottier, 2013).

Further reading

For a textbook introduction to λ-calculus and simple types, see Pierce (2002). For more details about syntactic type soundness proofs, see Wright and Felleisen (1994).
3.8 Ommitted proofs and answers to exercises

Solution of Exercise 8

See the statement of bisimulation for System-F in §4.4.5 in particular lemmas 21 and ??.

Solution of Exercise 10

Case M is $M_1 M_2$: By inversion of the judgment $\Gamma \vdash M : \tau$, we must have $\Gamma \vdash M_1 : \tau_2 \rightarrow \tau$ and $\Gamma \vdash M_2 : \tau_2$ for some τ_2. By induction hypothesis, we have $\Gamma, y : \tau' \vdash M_1 : \tau_2 \rightarrow \tau$ and $\Gamma, y : \tau' \vdash M_2 : \tau_2$, respectively. We conclude by an application of Rule App.

Solution of Exercise 11

As a hint, the problem in the case for abstraction.

Solution of Exercise 12

$M \sqsubseteq M'$ \iff $\forall \Gamma, \forall \tau, (\Gamma \vdash M : \tau \implies \Gamma \vdash M' : \tau)$

Subject reduction can then be stated as $(\rightarrow) \subseteq (\sqsubseteq)$. We prove it as follows:

Proof: Since (\rightarrow) is the smallest relation that satisfies rules Beta and Context, it suffices to show that \sqsubseteq also satisfies rules Beta and Context.

Case Beta: Assume that $\Gamma \vdash (\lambda x : \tau_0. M) V : \tau$. Then $\Gamma \vdash [x \mapsto V] M : \tau$ follows by the substitution Lemma.

Case Context: Assume $M \sqsubseteq M'$. Let us show $E[M] \sqsubseteq E[M']$. Assume $\Gamma \vdash E[M] : \tau$. Then $\Gamma \vdash E[M'] : \tau$ follows by compositinality.

Solution of Exercise 13

Formally, we must revisit all the proofs. Auxiliary lemmas such as permutation and weakening still hold without any problem: in the proof by structural induction, there is a new case for unit expressions, which is proved by an application of the same rule, Unit but with possibly a different context Γ.

In the proof of subject reduction, nothing need to be changed.

In the proof of progress, we have a new case for closed expressions, i.e. ϵ, which happens to be a value, so it trivially satisfied the goal. Notice that although we do not need to invoke the classification for the new case of the ϵ expression, we still need to recheck the
classification lemma, which is used in the case for application. The proof of the classification lemma is achieved by filling in the dots with a new case for a value of type `unit` that must be `()`, so that the classification can still be inverted.

Solution of Exercise 14

The new case for the classification Lemma is that a value of type `bool` must be a boolean, i.e. either `true` or `false` (5).

For the proof of progress, we assume that $\emptyset \vdash M : \tau$ (6) and show that M is either a value or reducible (4??) by structural induction on M. We have two new cases:

Case M is `true` or `false`: In both cases, M is a value.

Case M is `if M_0 then M_1 else M_2`: By inversion of typing rules applied to (6), we have $\emptyset \vdash M_0 : bool, \emptyset \vdash M_1 : \tau$, and $\emptyset \vdash M_2 : \tau$. If M_0 is a value, then, since it is of type `bool`, it must be `true` or `false` by (5), and in both cases, M reduces by either one of the two new rules. Otherwise, by induction hypothesis, M_0 must be reducible, and so is M by rule `CONTEXT` since if `[]` then M_1 else M_2 is an evaluation context. This ends the proof.

Solution of Exercise 15

This is very similar to the case of boolean, except that we introduce a denumerable collection of integer constants $(\bar{n})_{n \in \mathbb{N}}$.

$$V ::= \ldots \mid \bar{n} \quad M ::= \ldots \mid n \mid M + M \mid M \times M$$

We add only evaluation contexts:

$$E ::= \ldots \mid [] + M \mid V + [] \mid [] \times M \mid V \times []$$

two reduction rules are:

$$\bar{n} + \bar{m} \rightarrow \bar{n + m} \quad \bar{n} \times \bar{m} \rightarrow \bar{n \times m}$$

and the following typing rules:

INT

$$\Gamma \vdash \bar{n} : int$$

PLUS

$$\Gamma \vdash M_1 : \text{int} \quad \Gamma \vdash M_2 : \text{int} \quad \Gamma \vdash M_1 + M_2 : \text{int}$$

TIMES

$$\Gamma \vdash M_1 : \text{int} \quad \Gamma \vdash M_2 : \text{int} \quad \Gamma \vdash M_1 \times M_2 : \text{int}$$

Solution of Exercise 16

The proof of subject reduction is by cases on the reduction rule. We have two new reduction rules for each the projection, which can be factorized as follows:

$$\text{proj}_i (V_1, V_2) \rightarrow$$
We assume that $\Gamma \vdash \text{proj}_i (V_1, V_2) : \tau$ (2??). By inversion of typing of judgment, we know that the derivation of (2) ends with:

$$
\begin{array}{c}
\text{Pair} \quad \frac{
\Gamma \vdash V_1 : \tau_1 \quad \Gamma \vdash V_2 : \tau_2
}{
\Gamma \vdash (V_1, V_2) : \tau_1 \times \tau_2}
\end{array}
$$

with τ of the form $\tau_1 \to \tau_2$. We must show that $\Gamma \vdash V : i \tau_i$ which is either one of the hypotheses (1) or (3).

Solution of Exercise 17

Just exchange M and V in the definition of evaluation contexts. This does not break soundness of course. The semantics is still call-by-value.

Solution of Exercise 20

No, because exceptions allow to hide the type of values that they communicate, and one may create a recursion without noticing it from types.

For instance, take the type $	ext{exn}$ equal to $\tau \to \tau$ where τ is $\text{unit} \to \text{unit}$. You may then define the inverse coercion functions between types $\tau \to \tau$ and τ:

- $\text{fold} = \lambda f : \tau \to \tau. \lambda x : \text{unit}. \text{let } z = \text{raise } f \text{ in } ()$
- $\text{unfold} = \lambda f : \tau. \text{try let } z = f () \text{ in } \lambda x : \tau. x \text{ with } \lambda y : \tau \to \tau. y$

Therefore, we may define the term ω as $\lambda x. (\text{unfold } x) \ x$ and the term ω (fold ω) whose reduction does not terminate.

Solution of Exercise 21

We need a new evaluation context:

$$E ::= \ldots \mid \text{let } x = E \text{ with } M_2 \text{ in } M_3$$

and the following reduction rules:

- Raise: $F[\text{raise } V] \longrightarrow \text{ raise } V$
- Handle-Val: $\text{let } x = V \text{ with } M_2 \text{ in } M_3 \longrightarrow [x \mapsto V]M_3$
- Handle-Raise: $\text{let } x = \text{raise } V \text{ with } M_2 \text{ in } M_3 \longrightarrow M_2 V$

Solution of Exercise 22
This may also be written, more concisely:

```ocaml
let finalize f x g y =
  let result = try f x with exn → g y; raise exn in
  g y; result
```

An alternative that does not duplicate the finalizing code and could be inlined is:

```ocaml
type 'a result = Val of 'a | Exc of exn
let finalize f x g y =
  let result = try Val (f x) with exn → Exc exn in
  g y;
  match result with Val x → x | Exc exn → raise exn
```

As a counterpart, this allocated an intermediate result.
Chapter 4

Polymorphism and System F

4.1 Polymorphism

Polymorphism is the ability for a term to simultaneously admit several distinct types. Polymorphism is indispensable [Reynolds, 1974]: if a list-sorting function is independent of the type of the elements, then it should be directly applicable to lists of integers, lists of booleans, etc.. In short, it should have polymorphic type:

$$\forall \alpha. (\alpha \to \alpha \to \text{bool}) \to \text{list } \alpha \to \text{list } \alpha$$

which can then be instantiated to any of the monomorphic types:

$$(\text{int} \to \text{int} \to \text{bool}) \to \text{list int} \to \text{list int} \quad (\text{bool} \to \text{bool} \to \text{bool}) \to \text{list bool} \to \text{list bool} \quad \ldots$$

In the absence of polymorphism, the only ways of achieving this effect are either to manually duplicate the list-sorting function at every type (*no-no!*); or to use subtyping and claim that the function sorts lists of values of any type:

$$(\top \to \top \to \text{bool}) \to \text{list } \top \to \text{list } \top$$

(The type \top is the type of all values, and the supertype of all types.) This leads to loss of information and subsequently requires introducing an unsafe downcast operation. This was the approach followed in Java before generics were introduced in 1.5.

Moreover, polymorphism seems to come almost for free, as it is already implicitly present in simply-typed λ-calculus. Indeed, all types of the compose functions are

$$(\tau_1 \to \tau_2) \to (\tau_0 \to \tau_1) \to \tau_0 \to \tau_2$$

among which is

$$(\alpha_1 \to \alpha_2) \to (\alpha_0 \to \alpha_1) \to \alpha_0 \to \alpha_2$$

which is principal, as all other types can be recovered by instantiation of the variables. By
saying that this term admits the polymorphic type
\[\forall \alpha_1 \alpha_2. (\alpha_1 \to \alpha_2) \to (\alpha_0 \to \alpha_1) \to \alpha_0 \to \alpha_2 \]
we make polymorphism internal to the type system.

Polymorphism is a step on the road towards type abstraction. Intuitively, if a function that sorts a list has polymorphic type
\[\forall \alpha. (\alpha \to \alpha \to \text{bool}) \to \text{list } \alpha \to \text{list } \alpha \]
then it knows nothing about \(\alpha \)—it is parametric in \(\alpha \)—so it must manipulate the list elements abstractly: it can copy them around, pass them as arguments to the comparison function, but it cannot directly inspect their structure. In short, within the code of the list sorting function, the variable \(\alpha \) is an abstract type.

Parametricity In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it. For instance, the polymorphic type \(\forall \alpha. \alpha \to \alpha \) has only one inhabitant, namely the identity. Similarly, the type of the list sorting function
\[\forall \alpha. (\alpha \to \alpha \to \text{bool}) \to \text{list } \alpha \to \text{list } \alpha \]
reveals a “free theorem” about its behavior! Basically, sorting commutes with \((\text{map } f)\), provided \(f \) is order preserving. Note that there are many inhabitants of this type (e.g. a function that sorts in reverse order, or a function that removes duplicates) but they all satisfy this free theorem. This phenomenon was studied by Reynolds \(1983\) and by Wadler \(1989, 2007\), among others. An account based on an operational semantics is offered by Pitts \(2000\).

Ad hoc versus parametric polymorphism Let us begin a short digression. The term “polymorphism” dates back to a 1967 paper by Strachey \(2000\), where ad hoc polymorphism and parametric polymorphism were distinguished. There are two different (and sometimes incompatible) ways of defining this distinction:

- With parametric polymorphism, a term can admit several types, all of which are instances of a common polymorphic type: \(\text{int } \to \text{int}, \text{bool } \to \text{bool}, \ldots \) and \(\forall \alpha. \alpha \to \alpha \).

 With ad hoc polymorphism, a term can admit a collection of unrelated types: \(\text{int } \to \text{int } \to \text{int}, \text{float } \to \text{float } \to \text{float}, \ldots \) but not \(\forall \alpha. \alpha \to \alpha \to \alpha \).

- With parametric polymorphism, untyped programs have a well-defined semantics. (Think of the identity function.) Types are used only to rule out unsafe programs.

 With ad hoc polymorphism, untyped programs do not have a semantics: the meaning of a term can depend upon its type (e.g. \(2 + 2 \)), or, even worse, upon its type derivation (e.g. \(\lambda x. \text{show } (\text{read } x) \)).
4.2 Polymorphic λ-calculus

By the first definition, Haskell’s *type classes* [Hudak et al., 2007] are a form of (bounded) parametric polymorphism: terms have *principal* (qualified) *type schemes*, such as:

$$\forall \alpha. \text{Num} \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \alpha$$

Yet, by the second definition, type classes are a form of ad hoc polymorphism: untyped programs do not have a semantics. This ends the digression.

4.2 Polymorphic λ-calculus

The System F, (also known as: the polymorphic λ-calculus; the second-order λ-calculus; F_2) was independently defined by Girard (1972) and Reynolds (1974).

4.2.1 Types and typing rules

Types of the simply-typed λ-calculus are extended with polymorphic types:

$$\tau ::= \alpha \mid \tau \Rightarrow \tau \mid \forall \alpha. \tau$$

How are the syntax and semantics of terms extended? There are several variants, depending on whether one adopts an *implicitly-typed* or *explicitly-typed* presentation of terms and a *type-passing* or a *type-erasing* semantics.

In the explicitly-typed variant (Reynolds, 1974), there are term-level constructs for introducing and eliminating the universal quantifier (we recall the previous rules of simply-typed λ-calculus in gray):

$$M ::= x \mid \lambda x: \tau. M \mid M \ M \mid \Lambda \alpha. M \mid M \ \tau$$

We write F for the set of explicitly-typed terms.

Type variables are explicitly bound and appear in type environments:

$$\Gamma ::= \emptyset \mid \Gamma, x : \tau \mid \Gamma, \alpha$$
We extend our previous convention to form environments: \(\Gamma, \alpha\) extends \(\Gamma\) with a new variable \(\alpha\), provided \(\alpha \not\in \Gamma\), i.e. \(\alpha\) is neither in the domain nor in the image of \(\Gamma\). We also require that environments be closed with respect to type variables. That is, we require \(\text{ftv}(T) \subseteq \text{dom}(\Gamma)\) to form \(\Gamma, x : \tau\). This additional requirement is a matter of convenience. It allows fewer judgments, since judgments with open contexts are not allowed. However, open contexts can always be closed by adding a prefix composed of a sequence of its free type variables. Hence, a loose definition of contexts (without this requirement) can also be used, and the differences would be insignificant.

Well-formedness of environments and types may be defined (recursively) by inference rules (Rule \(\text{WfEnvV ar}\) depends on well-formedness of types while Rule \(\text{WfTypeV ar}\) depends on well-formedness of environments):

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{WfEnvEmpty})</td>
<td>(\vdash \emptyset)</td>
<td>(\vdash \emptyset)</td>
</tr>
<tr>
<td>(\text{WfEnvTvar})</td>
<td>(\vdash \Gamma \quad \alpha \not\in \text{dom}(\Gamma))</td>
<td>(\vdash \Gamma, \alpha)</td>
</tr>
<tr>
<td>(\text{WfEnvVar})</td>
<td>(\vdash \Gamma \quad \tau \quad x \not\in \text{dom}(\Gamma))</td>
<td>(\vdash \Gamma, x : \tau)</td>
</tr>
<tr>
<td>(\text{WfTypeVar})</td>
<td>(\vdash \Gamma \quad \alpha \in \Gamma)</td>
<td>(\vdash \Gamma \quad \alpha \vdash \tau)</td>
</tr>
<tr>
<td>(\text{WfTypeArrow})</td>
<td>(\vdash \Gamma \quad \tau_1 \quad \tau_2)</td>
<td>(\vdash \Gamma \quad \tau_1 \rightarrow \tau_2)</td>
</tr>
<tr>
<td>(\text{WfTypeForall})</td>
<td>(\vdash \Gamma, \alpha \quad \tau)</td>
<td>(\vdash \Gamma \quad \forall \alpha. \tau)</td>
</tr>
</tbody>
</table>

Notice the absence of the premises \(\vdash \Gamma\) in Rule \(\text{WfEnvVar}\) since well-formedness of \(\Gamma\) is recursively implied by the well-formedness of \(\tau\) in \(\Gamma\). Similarly, the well-formedness of \(\Gamma\) is required in Rule \(\text{WfTypeVar}\) but not in rules \(\text{WfTypeArrow}\) and \(\text{WfTypeForall}\).

There is a choice whether well-formedness of environments should be made explicit or left implicit in typing rules.

Explicit well-formedness amounts to adding well-formedness premises to every rule where the environment or some type that appears in the conclusion did not appear in any premise. Namely:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Var})</td>
<td>(x : \tau \in \Gamma)</td>
<td>(\Gamma \vdash x : \tau)</td>
</tr>
<tr>
<td>(\text{Tapp})</td>
<td>(\Gamma \vdash M : \forall \alpha. \tau) (\quad \Gamma \vdash \tau')</td>
<td>(\Gamma \vdash M ; \tau' : ; [\alpha \mapsto \tau']\tau)</td>
</tr>
</tbody>
</table>

Explicit well-formedness is more precise and better suited for mechanized proofs. It is also recommended for (more) complicated type systems. However, it is a bit verbose and distracting for System F. The two styles are really equivalent. Formally, we choose to leave well-formedness implicit. However, for documentation purposes, we will indicate the well-formedness premises in the definition of typing rules.

4.2.2 Semantics

We need the following reduction for type abstraction:

\[
(\Lambda \alpha. M) \; \tau \rightarrow [\alpha \mapsto \tau] M
\]
Then, there is a choice regarding whether type abstraction should stop the evaluation, or let reduction proceed.

Type-passing semantics In most presentations of System F, type abstraction blocks the evaluation and is defined as follows:

\[E ::= [\] M | V | [\] \tau \quad V ::= \lambda x: \tau. M | \Lambda \alpha. M \]

This is a *type-passing* semantics. Indeed, \(\Lambda \alpha.((\lambda y : \alpha. y) V) \) is a value while its type erasure is \((\lambda y. y)[V]\) is not—and can be further reduced.

The type-passing semantics is perhaps more natural in a language with a call-by-value semantics since type abstraction stops evaluation exactly as value abstraction. However, it does not fit our view that the untyped semantics should pre-exist and that a type system is only a predicate that selects a subset of the well-behaved terms, since type abstraction alters the semantics.

In particular, it introduces a discontinuity between monomorphic and polymorphic types. Assume for example that \(f \) is list flattening of type \(\forall \alpha. \text{list} (\text{list} \alpha) \rightarrow \text{list} \alpha \) and \(\circ \) is the composition function \(\Lambda \alpha_1. \Lambda \alpha_0. \Lambda \alpha_2. \lambda f : \alpha_0 \rightarrow \alpha_2. \lambda g : \alpha_1 \rightarrow \alpha_0. \lambda x : \alpha_1. f \ g \ x \); then, the monomorphic function \((f \ \text{int}) \ (\circ \ \text{int} \ (\text{list} \ \text{int}) \ (\text{list} \ (\text{list} \ \text{int})))\) \((f \ (\text{list} \ \text{int}))\) reduces to \(\lambda x: \text{int}. f \ \text{int} \ (f \ (\text{list} \ \text{int}) \ x)\), while its more general polymorphic version

\[\Lambda \alpha. (f \ \alpha) \ (\circ \ \alpha \ (\text{list} \ (\text{list} \ \alpha)) \ (\text{list} \ (\text{list} \ \alpha))) \ (f \ (\text{list} \ \alpha)) \]

is irreducible. This discontinuity is disturbing especially in an implicitly-typed language such as ML, where type inference infers the most general version, which behaves less efficiently than its less general monomorphic variant.

Furthermore, since the type-passing semantics requires both values and types to exist at runtime, it can lead to a *duplication of machinery*. Compare type-preserving closure conversion in type-passing ([Minamide et al., 1996](#)) and in type-erasing ([Morrisett et al., 1999](#)) styles.

Type-erasing semantics To recover a type-erasing semantics (also called an *untyped semantics*), we need to allow evaluation under type abstraction:

\[E ::= [\] M | V | [\] \tau | \Lambda \alpha. [\] \quad V ::= \lambda x: \tau. M | \Lambda \alpha. V \]

Accordingly, we only need a weaker version of \(\iota \)-reduction:

\[(\Lambda \alpha. V) \ \tau \rightarrow [\alpha \mapsto \tau]V \quad (\iota_{\tau}) \]

We now have:

\[\Lambda \alpha. ((\lambda y : \alpha. y) V) \rightarrow \Lambda \alpha. V \]

We will show below that this defines a type-erasing semantics, indeed.
As an apparent drawback, the type-erasing semantics does not allow a typecase; however, typecase can be simulated by viewing runtime type descriptions as values [Crary et al., 2002].

On the opposite the type-erasing semantics, has several advantages: it does not alter the semantics of untyped terms; it coincides with the semantics of ML—and, more generally, with the semantics of most programming languages. It also exhibits difficulties when adding side effects while the type-passing semantics keeps them hidden.

For all these reasons, we prefer the type-erasing semantics, which we chose in the rest of this course. Notice that we allow evaluation under a type abstraction as a consequence of choosing a type-erasing semantics—and not the converse.

The two views may be reconciled by restricting type abstraction to value-forms (which include values and variables), that is, by only allowing value-forms $\Lambda \alpha . M$ when M is itself a value-form. Under this restriction, the type-passing and type-erasing semantics coincide. Indeed, closed type abstractions are then always type abstraction of values, and evaluation under type abstraction even if allowed may never be used. We will choose this restriction as a way to preserve type soundness when adding side effects to the language.

Implicitly-typed v.s. explicitly-typed variants We presented the explicitly-typed variant of System F. This is simpler for the meta-theoretical study while the implicitly typed version, and in particular its interesting ML subset, may be more convenient to use in practice. Fortunately, most meta-theoretical properties of the explicitly-typed version can then be transferred to the implicitly-typed version—so that proofs do not have to be redone in a different setting when putting theory into practice!

4.2.3 Extended System F with datatypes

System F is quite expressive: it enables the encoding of data structures. For instance, the Church encoding of pairs in the untyped λ-calculus is actually well-typed in System F:

- $\textit{Pair} \triangleq \Lambda \alpha_1 . \Lambda \alpha_2 . \lambda x_1 : \alpha_1 . \lambda x_2 : \alpha_2 . \Lambda \beta . \lambda y : \alpha_1 \rightarrow \alpha_2 \rightarrow \beta . y \ x_1 \ x_2$
- $\textit{proj}_i \triangleq \Lambda \alpha_1 . \Lambda \alpha_2 . \lambda y : \forall \beta . (\alpha_1 \rightarrow \alpha_2 \rightarrow \beta) \rightarrow \beta . y \ a_i (\lambda x_1 : \alpha_1 . \lambda x_2 : \alpha_2 . x_i)$
- $[\textit{Pair}] \triangleq \lambda y . \lambda x_1 . \lambda x_2 . \lambda y . y \ x_1 \ x_2$
- $[\textit{proj}_i] \triangleq \lambda y . (\lambda x_1 . \lambda x_2 . x_i)$

Notice the use of first-class polymorphism in the definition of \textit{proj}_i. This is general in the encoding of datatypes.

Natural numbers, List, etc. can also be encoded.

Unit, Pairs, Sums, etc. can also be added to System F as primitives. We can then proceed as for simply-typed λ-calculus. However, we may also take advantage of the expressive type system of System F to deal with such extensions in a more elegant way: thanks to polymorphism, we need not add new typing rules for each extension. We may instead add
4.2. **POLYMORPHIC λ-CALCULUS**

one typing rule for constants and parametrize the definition by an initial typing environment \(\Delta \) for constants. This allows sharing the meta-theoretical developments between the different extensions.

Adding primitive pairs Let us first illustrate datatypes on an example, adding primitive pairs to System \(F \). We will then generalize the presentation to parametrize the extension as suggested above.

We introduce a new type constructor \((\cdot \times \cdot)\) of arity 2 to classify pairs:

\[\tau ::= \alpha \mid \tau \rightarrow \tau \mid \forall \alpha. \tau \mid \tau \times \tau \]

Expressions are extended with a constructor \((\cdot, \cdot)\) and two destructors \(\text{proj}_1 \) and \(\text{proj}_2 \) with the respective signatures:

\[
\begin{align*}
\text{Pair} : & \forall \alpha_1, \forall \alpha_2, \alpha_1 \rightarrow \alpha_2 \rightarrow \alpha_1 \times \alpha_2 \\
\text{proj}_i : & \forall \alpha_1, \forall \alpha_2, \alpha_1 \times \alpha_2 \rightarrow \alpha_i
\end{align*}
\]

that forms the initial typing environment \(\Delta \). We need not add any new typing rule, but instead type programs in the initial environment \(\Delta \).

This allows for the formation of partial applications of constructors and destructors. Hence, values are extended as follows:

\[V ::= \ldots \mid \text{Pair} \mid \text{Pair} \tau \mid \text{Pair} \tau \tau \mid \text{Pair} \tau \tau V \mid \text{Pair} \tau V V \mid \text{proj}_1 \mid \text{proj}_2 \mid \text{proj}_1 \tau \mid \text{proj}_2 \tau \]

We add the two following reduction rules:

\[
\text{proj}_i \; \tau_1 \; \tau_2 \; (\text{Pair} \; \tau'_1 \; \tau'_2 \; V_1 \; V_2) \rightarrow V_i \quad (\delta_{\text{pair}})
\]

Notice that, for well-typed programs, \(\tau_i \) and \(\tau'_i \) will always be equal, but the reduction will not check this at runtime. This could be enforced by replacing \(\delta \) with the following rule:

\[
\text{proj}_i \; \tau_1 \; \tau_2 \; (\text{Pair} \; \tau_1 \; \tau_2 \; V_1 \; V_2) \rightarrow V_i \quad (\delta'_{\text{pair}})
\]

The two semantics coincide on well-typed terms, but differ on ill-typed terms where \(\delta'_{\text{pair}} \) may block when rule \(\delta_{\text{pair}} \) would progress, ignoring type errors. Interestingly, using \(\delta'_{\text{pair}} \) simplifies the proof obligation in subject reduction but introduces a more stronger proof obligation in progress.

Notice that since pairs are defined by applying the pair constructor to two arguments, the programmer must first specify the types of the components although those could be uniquely determined from the arguments of the pair. Even though this is a bit more verbose that strictly necessary, it should not be considered as a problem in an explicitly-typed presentation, as removing redundant type annotations is the task of type reconstruction.

A general approach Adding other datatypes such as booleans, integers, strings, lists, trees, etc. and operations on them can be done similarly. However, all these extensions
are quite similar. Hence, we propose a general approach for adding constants to System F, which can then be instantiated independently—or simultaneously—to each of the previous cases: provided the dynamic semantics of constraints agree with their static semantics (some requirements must be satisfied in order to instantiate the general approach), the soundness of the extension then automatically follows.

We assume given a collection of constants, written with letter \(c \), each of which given with a fix arity written \(\text{arity} (c) \). Constants must actually be partitioned into constructors (written \(C \)) and destructors (written \(d \)); moreover, we disallow nullary destructors\(^1\).

Expressions are extended with constant expressions.

\[
M ::= x | \lambda x : \tau . M | M M | \Lambda \alpha . M | M \tau | c
\]

The difference between constructors and destructors lies in the fact that full application of constructors are values while full applications of destructors are not—they must be reduced. Partial applications of constants are always values. Hence, the following definition of values:

\[
V ::= \lambda x : \tau . M | \Lambda \alpha . V | C \tau_1 \ldots \tau_i V_1 \ldots V_n | d \tau_1 \ldots \tau_j V_1 \ldots V_k
\]

where \(n \) is less or equal to the arity of \(C \) and \(k \) is strictly less than the arity of \(d \). The semantics of constants is given by providing, for each destructor \(d \) a relation \(\delta_d \) defined by a set of \(\delta \)-rules of the form:

\[
d \tau_1 \ldots \tau_j V_1 \ldots V_k \rightarrow M \quad (\delta_d)
\]

We assume given a collection of type constructors \(G \), with their arity, written \(\text{arity} (G) \). Types are extended as follows.

\[
\tau ::= \ldots | G \tau_1 \ldots \tau_n
\]

We assume that types respect the arities of type constructors, i.e. \(n \) is equal to \(\text{arity} (G) \) in the expressions \(G \tau_1 \ldots \tau_n \).

The typing of constants is given by the initial typing environment \(\Delta \), which binds each constant \(c \) of arity \(n \) to a type of the form \(\forall \alpha_1 . \ldots \forall \alpha_j . \tau_1 \rightarrow \ldots \tau_n \rightarrow \tau \). When \(c \) is a constructor \(C \), we require that the top most type constructor of \(\tau \) not be an arrow, but some type constructor \(G \). We then say that \(C \) is a \(G \)-constructor. We require that \(\Delta \) be well-formed (in the empty environment, hence closed). Constants are typed as variables, except that their types are looked up in \(\Delta \):

\[
\frac{\text{CST}}{\frac{c : \tau \in \Delta}{\Gamma \vdash c : \tau}}
\]

Taking typing constraints into account, we may give a more restrictive characterization of well-typed values: in the presentation above \(i \) is at most the number of quantified variables in the type scheme of the constructor, and whenever \(n \) is non zero, \(i \) is equal to this number. And

\(^1\)Nullary polymorphic destructors introduce pathological cases to maintain the semantics type-erasing—for little benefit in return.
similarly for destructors. For instance, if C is a constructor (respectively, d is a destructor) of arity q and of type $∀\alpha_1⋯\alpha_p.\tau'_1→⋯\tau'_q→\tau$, then values will contain:

$$C \mid C\ τ_1 \mid ... \ C\ τ_1 ... τ_p \mid C\ τ_1 ... τ_p\ V_1 \mid ... \ C\ τ_1 ... τ_p\ V_1 ... V_q$$

and

$$c \mid c\ τ_1 \mid ... \ c\ τ_1 ... τ_p \mid c\ τ_1 ... τ_p\ V_1 \mid ... \ c\ τ_1 ... τ_p\ V_1 ... V_{q-1}$$

Of course, we need assumptions to relate typing and reduction of constants.

Definition 1 δ-reduction is sound if it preserves typings and ensures progress for primitives. That is

- If $\bar{\alpha} \vdash M_1 : \tau$ and $M_1 \xrightarrow{\delta} M_2$ then $\bar{\alpha} \vdash M_2 : \tau$.
- If $\bar{\alpha} \vdash M_1 : \tau$ and M_1 is of the form $d\ τ_1 ... τ_k\ V_1 ... V_n$ where $n = \text{arity}(d)$, then there exists M_2 such that $M_1 \xrightarrow{\delta} M_2$.

Intuitively, progress for constants means that the domain of destructors is at least as large as specified by their type in Δ.

We will show below that soundness of δ-rules is sufficient to ensure soundness of the extension.

For example, to add a unit constant, we only introduce a type constant unit and a constructor () of arity 0 of type unit. As no primitive is added, δ-reduction is obviously sound. Hence, the extension of System F with unit is sound.

Exercise 24 (Pairs as constants) Reformulate the extension of System F with pairs as constants. Check soundness of the δ-rules.

(Solution p. 84)

Exercise 25 (Conditional) Give a presentation of boolean with a conditional as constants. Is this sound? Isn’t there something wrong? Would you know how to fix it?

(Solution p. 84)

Exercise 26 (List) 1) Formulate the extension of System F with lists as constants. 2) Check that this extension is sound.

(Solution p. 84)

Extending System F with a fixpoint The call-by-value fixpoint combinator Z (see §2) is not typable in System F—indeed this would allow program to loop while all programs terminate in System F.

However, we may introduce a fixpoint as a binary primitive with the following typing assumption:

$$\text{fix} : ∀\alpha. ∀\beta. ((\alpha → \beta) → \alpha → \beta) → \alpha → \beta \in \Delta$$

and the reduction rule:

$$\text{fix}\ τ_1\ τ_2\ V_1\ V_2 \xrightarrow{\delta_{\text{fix}}} V_1 (\text{fix}\ τ_1\ τ_2\ V_1)\ V_2$$
CHAPTER 4. POLYMORPHISM AND SYSTEM F

It is straightforward to check the soundness of this extension: Progress is by construction, since fix does not destruct values. As for subject reduction, assume \(\Gamma \vdash \text{fix}\ \tau_1 \tau_2 V_1 V_2 : \tau \).

By inversion of typing rules, \(\tau \) must be equal to \(\tau_2 \), \(V_1 \) and \(V_2 \) must be of respective types \((\tau_1 \rightarrow \tau_2) \rightarrow \tau_1 \rightarrow \tau_2 \) and \(\tau_1 \) in the typing context \(\Gamma \). We may then easily build a derivation of the judgment \(\Gamma \vdash V_1 (\text{fix} \ \tau_1 \tau_2 V_1) V_2 : \tau \).

Exercise 27 (Recursion with datatypes) In ML a one-constructor datatype can be used to emulate recursive types, namely a type \(\text{Any} \) such that a value of type \(\text{any} \rightarrow \text{any} \) can be converted to a value of type \(\text{any} \), and conversely. Give the definition in ML. Describe the extension as the addition of new constants. Verify the soundness of \(\delta \)-rules.

Use this extension to define a call-by-value fixpoint operator of type

\[
((\text{any} \rightarrow \text{any}) \rightarrow \text{any} \rightarrow \text{any}) \rightarrow \text{any} \rightarrow \text{any}
\]

in ML without using \texttt{let rec} or implicit recursive types (the \texttt{--rectypes} option). (See Exercise 7 for a definition of the fix-point in the \(\lambda \)-calculus or in ML with recursive types.)

(Solution p. 85)

4.3 Type soundness

We prove type soundness for System F with constants, assuming the soundness of \(\delta \)-reduction.

The structure of the proof is similar to the case of simply-typed \(\lambda \)-calculus and follows from subject reduction and progress. Subject reduction uses the following auxiliary lemmas: inversion of typing rules (Lemma 13), permutation (Lemma 14), weakening (Lemma 15), expression substitution (Lemma 16), type substitution (Lemma 17), and compositionality of typing (Lemma 18).

Lemma 13 (Inversion of typing rules) Assume \(\Gamma \vdash M : \tau \).

- If \(M \) is a variable \(x \), then \(x \in \text{dom}(\Gamma) \) and \(\Gamma(x) = \tau \).
- If \(M \) is \(\lambda x:\tau_0.M_1 \), then \(\tau \) is of the form \(\tau_0 \rightarrow \tau_1 \) and \(\Gamma, x : \tau_0 \vdash M_1 : \tau_1 \).
- If \(M \) is \(M_1 M_2 \) then \(\Gamma \vdash M_1 : \tau_2 \rightarrow \tau \) and \(\Gamma \vdash M_2 : \tau_2 \) for some type \(\tau_2 \).
- If \(M \) is a constant \(c \), then \(c \in \text{dom}(\Delta) \) and \(\Delta(x) = \tau \).
- If \(M \) is \(M_1 \tau_2 \) then \(\tau \) is of the form \([\alpha \mapsto \tau_2]\tau_1 \) and \(\Gamma \vdash M_1 : \forall \alpha.\tau_1 \).
- If \(M \) is \(\Lambda\alpha.M_1 \), then \(\tau \) is of the form \(\forall \alpha.\tau_1 \) and \(\Gamma, \alpha \vdash M_1 : \tau_1 \).

Lemma 14 (Permutation) If \(\Gamma \) and \(\Gamma' \) are two well-formed permutations, then \(\Gamma \vdash M : \tau \) iff \(\Gamma' \vdash M : \tau \).
4.3. TYPE SOUNDNESS

Proof: Formally, the proof is by induction on \(M \). The key is the observation that when \(\Gamma \) and \(\Gamma' \) are both well-formed and permutations of one another, they are equivalent as partial functions, i.e. they give the same bindings and can be extended in the same manner.

Lemma 15 (Weakening) If \(\Gamma \vdash M : \tau \) and \(\Gamma, \Gamma' \vdash M : \tau \), then \(\Gamma, \Gamma' \vdash M : \tau \).

Proof: It suffices to prove the lemma when \(\Gamma' \) is either \(x : \tau' \) or \(\alpha \), since the general case follows by induction on the length of \(\Gamma' \). We may prove both simultaneously, by induction on \(M \). The proof is similar to the one for simply-typed \(\lambda \)-calculus—we just have more cases.

Case \(M \) is \(y \): By inversion of typing, the judgment must be derived with rule \(\text{Var} \), hence \(y : \tau \) is in \(\Gamma \) and a fortiori \(y : \tau \) is in \(\Gamma, \Gamma' \). We may thus conclude with rule \(\text{Var} \).

Case \(M \) is \(c \): By inversion of typing, the judgment must be derived with rule \(\text{Cst} \), hence we have \(y : \tau \) is in \(\Delta \) and we may conclude with rule \(\text{Cst} \).

Case \(M \) is \(\lambda y : \tau_1, M_2 \): W.l.o.g. we may choose \(y \) disjoint from \(\Gamma \) and \(\Gamma' \) (1). By inversion of typing, the judgment must be derived with rule \(\text{Abs} \) hence \(\Gamma, y : \tau_1 \vdash M_1 : \tau_2 \) where \(\tau \) is \(\tau_1 \rightarrow \tau_2 \). Since \(\Gamma, y : \tau \) is well-formed, by (1), both \(\Gamma, y : \tau_1, \Gamma' \) and \(\Gamma, \Gamma', y : \tau_1 \) are well-formed (2). By induction hypothesis, we have \(\Gamma, x : \tau_1, \Gamma' \vdash M_2 : \tau_2 \). Using the permutation lemma and (2), we have \(\Gamma, \Gamma', x : \tau_1 \vdash M_2 : \tau_2 \). We conclude with rule \(\text{Abs} \).

Case \(M \) is \(\Lambda \beta, M_1 \): W.l.o.g, we may choose \(\beta \) disjoint from \(\Gamma \) and \(\Gamma' \) (3). By inversion of typing, the judgment must be derived with rule \(\text{TAbs} \) hence \(\Gamma, \beta \vdash M_1 : \tau_1 \) with \(\forall \beta. \tau_1 \) equal to \(\tau \). Since \(\Gamma, \beta \) is well-formed, by (3), both \(\Gamma, \beta, \Gamma' \) and \(\Gamma, \Gamma', \beta \) are well-formed (4). By induction hypothesis, we have \(\Gamma, \beta, \Gamma' \vdash M_1 : \tau_1 \). We use the permutation lemma to obtain \(\Gamma, \Gamma', \alpha \vdash M_1 : \tau_1 \) and conclude with Rule \(\text{Tabs} \).

Case \(M \) is \(M_1 M_2 \) or \(M_1 \tau_1 \): By inversion of typing, induction hypothesis applied to the premises, and \(\text{App} \) or \(\text{TApp} \) to conclude.

Lemma 16 (Expression substitution, strengthened)
If \(\Gamma, x : \tau_0, \Gamma' \vdash M : \tau \) and \(\Gamma \vdash M_0 : \tau_0 \) then \(\Gamma, \Gamma' \vdash [x
Rightarrow M_0] M : \tau \).

We have strengthened the lemma with an arbitrary context \(\Gamma' \) as for the simply-typed \(\lambda \)-calculus. We have also generalized the lemma with an arbitrary context \(\Gamma \) on the left and an arbitrary expression \(M \), as this does not complicate the proof (and the stronger result will be used later). The proof is similar to the one for the simply-typed \(\lambda \)-calculus, with just a few more cases.

Exercise 28 Write the details of the proof.
Lemma 17 (Type substitution, strengthened)

If $\Gamma, \alpha, \Gamma' \vdash M : \tau$ and $\Gamma \vdash \tau_0$ then $\Gamma, \theta \Gamma' \vdash \theta M : \theta \tau$ where θ is $[\alpha \mapsto \tau_0]$.

As for expression substitution, we have strengthened the lemma and generalized it using an arbitrary environment instead of the empty environment, as it does not complicate the proof, but yields a stronger result. This lemma resembles the one for expression substitutions. However, the substitution must also apply to the environment Γ' and the result type τ since α may appear free in them.

The proof is by induction on M. The interesting cases are for type and value abstraction, which required the strengthened version with an arbitrary typing context Γ' on the right. Then, the proof is straightforward. (Details of the proof p. 86)

Exercise 29 Write the details of the proof.

Lemma 18 (Compositionality) If $\Gamma \vdash E[M] : \tau$, then there exists a sequence of type variables $\vec{\alpha}$ and τ' such that $\Gamma, \vec{\alpha} \vdash M : \tau'$ and all M' verifying $\Gamma, \vec{\alpha} \vdash M' : \tau'$ also verify $\Gamma \vdash E[M'] : \tau$.

Proof: The proof is by case on E. Each case is easy. The main difference with the simply-typed λ-calculus is that the case for type abstraction $\Lambda \alpha. E_0$ requires to extend the environment with type variables.

Notice that M' is typechecked in the context Γ extended with $\vec{\alpha}$, since the hole in the context E may be under type abstractions. We use the notation $\vec{\alpha}$ for a (possibly empty) sequence of type variables.

Theorem 9 (Subject Reduction) Reduction preserves typings.

If $\Gamma \vdash M : \tau$ and $M \rightarrow M'$ then $\Gamma \vdash M' : \tau$.

The proof is by induction over the derivation of $M \rightarrow M'$. Using the previous lemmas and the subject-reduction assumption for δ-reduction, the proof is straightforward.

Proof: By induction over the derivation of $M \rightarrow M'$, then by inversion of the typing derivation of $\Gamma \vdash M : \tau$ (1).

Case $(\lambda x : \tau_1 . M_1) V \rightarrow [x \mapsto V] M_1$: By inversion, the typing derivation of (1) is of form:

\[
\frac{\text{App}}{\varepsilon} \quad \frac{\text{Abs}}{\text{App}} \quad \Gamma \vdash \lambda x : \tau'. M_1 : \tau' \rightarrow \tau \quad \Gamma \vdash V : \tau' \quad \Gamma \vdash (\lambda x : \tau'. M_1) V : \tau}
\]
The value-substitution Lemma applied to (2) and (3) gives the expected result.

Case \((\Lambda \alpha.V)\, \tau_0 \rightarrow [\alpha \mapsto \tau_0]V\): By inversion of (1), we have \(\Gamma, \alpha \vdash V : \tau_1\) (4) where \(\tau\) is \([\alpha \mapsto \tau_0]\tau_1\). The type-substitution Lemma applied to (4) gives the expected result \(\Gamma \vdash [\alpha \mapsto \tau_0]V : \tau\).

Case \(E[M_0] \rightarrow E[M'_0]\): The hypothesis is \(M_0 \rightarrow M'_0\). Assume \(\Gamma \vdash E[M_0] : \tau\). By compositionality, there is some type \(\tau_0\) and type variables \(\bar{\alpha}\) such that \(\Gamma, \bar{\alpha} \vdash M_0 : \tau_0\) (5) and for all \(M'_0\) such that \(\Gamma, \bar{\alpha} \vdash M'_0 : \tau_0\), we have \(\Gamma \vdash E[M'_0] : \tau\). Therefore it suffices to show \(\Gamma, \bar{\alpha} \vdash M'_0 : \tau_0\), which holds by induction hypothesis applied to (5).

The classification lemma, which is a key to progress, is slightly modified to account for polymorphic types and constructed types. We need to state the lemma under an arbitrary set of type variables \(\bar{\alpha}\) instead of the empty context—because evaluation is allowed under type abstractions.

Lemma 19 (Classification) Assume \(\bar{\alpha} \vdash V : \tau\)

- If \(\tau\) is an arrow type, then \(V\) is either a function or a partial application of a constant to values.
- If \(\tau\) is a polymorphic type, then \(V\) is either a type abstraction of a value or a partial application of a constant to types.
- If \(\tau\) is a constructed type, then \(V\) is constructed value.

The last case can be refined by partitioning constructors into their associated type-constructor: If the top-most type constructor of \(\tau\) is \(G\), then \(V\) is a value constructed with a \(G\)-constructor.

The proof is similar to the one for simply-typed \(\lambda\)-calculus.

Progress is restated as follows:

Theorem 10 (Progress, strengthened) A well-typed, irreducible closed term is a value: if \(\bar{\alpha} \vdash M : \tau\) and \(M \not\rightarrow\), then \(M\) is some value \(V\).

The theorem has been strengthened, using a sequence of type variables \(\bar{\alpha}\) for the typing context instead of the empty environment. It can then be proved by induction and case analysis on \(M\), relying mainly on the classification lemma and the progress assumption for \(\delta\)-reduction.

Proof: By induction on (the derivation of) \(M\). Assume \(\bar{\alpha} \vdash M : \tau\) and \(M\) is irreducible.

Case \(M\) is \(x\): This is not possible since \(x\) is not well-typed in \(\bar{\alpha}\).

Case \(M\) is \(c\): Then \(M\) is a value (a fully applied constructor or a partially applied destructor), as expected.
Case M is $\lambda x: \tau. M_1$: Then M is a value, as expected.

Case M is $M_1 M_2$: Then, $\bar{\alpha} \vdash M_1 : \tau_2 \rightarrow \tau_1$ and $\bar{\alpha} \vdash M_2 : \tau_2$. Since the left application is an evaluation context, M_1 is irreducible. Hence, by induction hypothesis, M_1 is a value. Since the right application of a value is an evaluation context, M_2 is irreducible. Hence, by induction hypothesis, M_2 is also a value. Since the application $M_1 M_2$ itself cannot be reduced, M_1 is not a function. Since it has an arrow type, it follows from the classification lemma that it a partial application of a constant to values. Hence, M is itself the application of a constant to values. Since it cannot be reduced, it follows from the progress assumption for δ-rules that it is not a full application of a destructor. Hence, it is either a full application of a constructor or a partial application of a constant to values. In both cases, M is a value.

Case M is $\Lambda \beta. M_1$: Then, $\bar{\alpha}, \beta \vdash M_1 : \tau_1$. Since type abstraction is an evaluation context M_1 is irreducible. Hence, by induction hypothesis, M_1 is a value and so is M.

Case M is $M_1 \tau_1$: Then, $\bar{\alpha} \vdash M_1 : \forall \alpha. \tau_2$ with τ equal to $[\alpha \mapsto \tau_1] \tau_2$. Since type application is an evaluation context, M_1 is irreducible. Hence, by induction hypothesis, M_1 is a value. Since M is irreducible M_1 is not a type abstraction. Since M_1 has a polymorphic type, it follows from the classification lemma that M_1 is an application of a constant c to types (as it is not a type abstraction). Since it is irreducible, it follows from the progress assumption for δ-rules that c is a destructor or the application is partial. In both cases M is a value.

Theorem 11 (Normalization) Reduction terminates in pure System F.

This is also true for arbitrary reductions and not just for call-by-value reduction. This is a difficult proof, which generalizes the proof method for the simply-typed λ-calculus. It is due to Girard (1972) (see also Girard et al. (1990)).

4.4 Type erasing semantics

We have presented the explicitly-typed variant of System F. In this section, we verify that this semantics is type erasing. Hence, there is an implicitly-typed presentation of System F.

4.4.1 Implicitly-typed System F

The implicitly-typed version of System F, can be defined as follows. The syntax of terms and their dynamic semantics are those of the untyped λ-calculus extended with constants. However, we only accept a subset of terms of the λ-calculus, retaining only those that are the type erasure of a term in F.

We write $\lbrack F \rbrack$ for the set of implicitly-typed terms and F for the set of explicitly-typed terms. We use letters a, v, and e to range over implicitly-typed terms, values, and evaluation contexts, reusing the same notations as for the untyped λ-calculus.
4.4. TYPE ERASING SEMANTICS

The set of terms may also be characterized by typing rules that operate directly on unannotated terms. These are obtained from the typing rules of F by dropping all type information in terms. They are presented in Figure 4.2. We use the prefix if- to distinguish them from the typing rules for explicit System F.

Unsurprisingly, as a result of erasing type information in terms, the rules that introduce and eliminate the universal quantifier are no longer syntax-directed.

Remark 4 Notice that the explicit introduction of variable α in the premise of Rule Tabs contains an implicit side condition $\alpha \not\in \Gamma$ due to the assumption on the formation of typing environments.

In implicitly-typed System F, as in ML, the introduction of type variables in typing context is often left implicit. (In some extensions of System F, type variables may carry a kind or a bound and must be explicitly introduced.) If we chose to do so, we would need an explicit side-condition on Rule Tabs as follows:

\[
\begin{align*}
\Gamma \vdash a & : \tau \\
\alpha \not\in \Gamma & \quad \alpha \not\in \Gamma \\
\Gamma \vdash a : \forall \alpha.\tau
\end{align*}
\]

Omitting the side condition would lead to unsoundness. Below on the left-hand side is a type derivation for a type cast ($\text{Obj} \cdot \text{magic}$ in OCaml), which is equivalent to using an ill-formed context (on the right-hand side):

A good intuition is that a judgment $\Gamma \vdash a : \tau$ corresponds to the logical assertion $\forall \bar{\alpha}. (\Gamma \Rightarrow (a : \tau))$, where $\bar{\alpha}$ are the free type variables of the judgment, taken in any order. In this
view, corresponds to the axiom:

\[\forall \alpha. (P \Rightarrow Q) \equiv P \Rightarrow (\forall \alpha. Q) \text{ if } \alpha \neq P \]

which without the side condition is obviously wrong.

The next lemma, states that the two definitions of \([F]\)—or, equivalently, the two type systems for implicitly-typed System F and explicitly type System F—coincide. The proof is immediate.

Lemma 20 \(\Gamma \vdash a : \tau\) in implicitly-typed System F if and only if there exists an explicitly-typed expression \(M\) whose erasure is \(a\) such that \(\Gamma \vdash M : \tau\).

For example, consider the term \(a_0\) in \([F]\) equal to \(\lambda f xy. (f x, f y)\). A version that carries explicit type abstractions and annotations is:

\[\Lambda \alpha_1. \Lambda \alpha_2. \lambda f : \forall \alpha. \alpha \rightarrow \alpha. \lambda x : \alpha_1. \lambda y : \alpha_1. (f \alpha_1 x, f \alpha_2 y) \]

This admits the polymorphic type:

\[\tau_2 \triangleq \forall \alpha_1. \forall \alpha_2. (\forall \alpha. \alpha \rightarrow \alpha) \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \alpha_1 \times \alpha_2 \]

This begs the question: which of the two types \(\tau_1\) or \(\tau_2\) is more general? Type \(\tau_1\) requires the second and third arguments to admit a common type, while type \(\tau_2\) requires the first argument to be polymorphic.

Exercise 30 (Distrib pair, disjoint types) Find two terms \(a_1\) and \(a_2\) such that \(a_1\) has type \(\tau_1\) but not type \(\tau_2\), and conversely for \(a_2\). (Just give the terms \(a_1\) and \(a_2\), you do not have to prove well-typedness or ill-typedness.)

This suggests that the two types are not comparable, that is, neither one can be an instance of the other.

Intuitively, one may think semantically of (i.e. interpret) a closed type as the set of terms of that type, and of instance as inclusion between types. With such a view in mind then \(\tau_1\) and \(\tau_2\) are indeed incomparable. This does not imply that \(a_0\) does not have a principal type: there could exist a type \(\tau_0\) that contains \(a_0\) and that is included in the intersection of (the interpretations of) \(\tau_1\) and \(\tau_2\). Indeed, one can do so in a richer system, such as System \(F^\omega\).

Exercise 31 (Distrib pair in \(F^\omega\)) Only if you know System \(F^\omega\): find a type \(\tau_0\) for \(a_0\) in System \(F^\omega\) that is more general than both \(\tau_1\) and \(\tau_2\), i.e. from which \(\tau_1\) and \(\tau_2\) can be obtained by rule \(\text{Inst-Gen}\).
4.4. TYPE ERASING SEMANTICS

4.4.2 Type instance

To reason formally, we must first define what it means for τ_2 to be an *instance* of τ_1—or, equivalently, for τ_1 to be *more general* than τ_2. Several definitions are possible. In System F, *to be an instance* is usually defined by the rule:

\[
\begin{align*}
\text{Inst-Gen} & \quad \vec{\beta} \not\in \forall \vec{\alpha}. \tau \\
\frac{\forall \vec{\alpha}. \tau \leq \forall \vec{\beta}. [\vec{\alpha} \mapsto \vec{\tau}] \tau}{\forall \vec{\alpha}. \tau \leq \forall \vec{\beta}. [\vec{\alpha} \mapsto \vec{\tau}] \tau}
\end{align*}
\]

Notice that $\vec{\alpha}$ and $\vec{\beta}$ stands of (possibly empty) sequences of type variables. One can show that, if $\tau_1 \leq \tau_2$, then any term that has type τ_1 has also type τ_2; that is, the following rule is admissible\(^2\) in the implicitly-typed version:

\[
\begin{align*}
\text{Sub} & \quad \Gamma \vdash a : \tau_1 \\
\frac{\tau_1 \leq \tau_2}{\Gamma \vdash a : \tau_2}
\end{align*}
\]

Perhaps surprisingly, the rule is not derivable\(^3\) in our presentation of System F. Although, we have the following derivation,

\[
\begin{align*}
\text{Inst} & \quad \Gamma, \vec{\beta} \vdash a : \forall \vec{\alpha}. \tau \\
\text{Gen} & \quad \Gamma, \vec{\beta} \vdash a : [\vec{\alpha} \mapsto \vec{\tau}] \tau \\
\frac{\Gamma \vdash a : \forall \vec{\beta}. [\vec{\alpha} \mapsto \vec{\tau}] \tau}{\Gamma \vdash a : \forall \vec{\alpha}. \tau}
\end{align*}
\]

the premise $\Gamma, \vec{\beta} \vdash a : \forall \vec{\alpha}. \tau$ can only be justified from the assumption $\Gamma \vdash a : \forall \vec{\alpha}. \tau$ by an application of weakening (the side condition $\vec{\beta} \not\in \forall \vec{\alpha}. \tau$ of rule Gen ensures that $\Gamma, \vec{\beta}$ is well-formed.) Otherwise, in context Γ alone, $\vec{\tau}$ would not necessarily be well-formed, as required by rule Gen.

However, in a version of System F that does not introduce type variables explicitly in Γ, then weakening of type variables would be built-in and implicit and the rule Sub would become derivable. (This shows that the notion of derivability is somewhat fragile as it depends on the presentation of the rules.)

We may also wonder what is the counter-part of the instance relation in explicitly-typed System F. Assume $\Gamma \vdash M : \tau_1$ and $\tau_1 \leq \tau_2$. How can we see M with type τ_2? Since explicitly-typed terms have unique types, the term M of type τ_1 cannot itself also have type τ_2. However, we can wrap M with a *retyping context* that transforms a term of type τ_1 to one of type τ_2. Since $\tau_1 \leq \tau_2$, the types τ_1 and τ_2 must be of the form $\forall \vec{\alpha}. \tau$ and $\forall \vec{\beta}. [\vec{\alpha} \mapsto \vec{\tau}] \tau$ where $\vec{\beta} \not\in \forall \vec{\alpha}. \tau$. W.l.o.g, we may assume that $\vec{\beta} \not\in \Gamma$ (6), as it may always be satisfied up to a renaming of bound variables $\vec{\beta}$. Then, we have the pseudo-derivation on the left-hand side (where the weakening lemma is used as a pseudo-typing rule Weakening), which can be

\(^2\)A rule is *admissible* if adding the rule does not change the validity of judgments. That is, it may just allow for more derivations of already valid judgments.

\(^3\)A rule is *derivable* if it can be replaced by a sub-derivation tree with the same premises and conclusion.
abbreviated by the admissible typing rule Sub given on the right-hand side.

\[
\begin{align*}
\text{Weakening} & \quad \frac{\Gamma \vdash M : \forall \alpha. \tau}{\frac{\beta \neq \forall \alpha. \tau}{\Gamma, \beta \vdash M : \forall \alpha. \tau}} \quad (6) \\
\text{Tapp}^* & \quad \frac{\Gamma, \beta \vdash M : \forall \alpha. \tau}{\Gamma, \beta \vdash M \, \tilde{\tau} : \forall \alpha. \tilde{\tau}} \\
\text{Tabs}^* & \quad \frac{\Gamma \vdash \Lambda \beta. M \, \tilde{\tau} : \forall \beta. \tilde{\tau}}{\Gamma \vdash \Lambda \beta. M \, \tilde{\tau}}
\end{align*}
\]

Admissible rule:

\[
\frac{\Gamma \vdash M : \forall \alpha. \tau}{\Gamma \vdash M : \forall \alpha. \tau} \quad \text{Sub}
\]

In \mathbf{F}, we rather write subtyping as a judgment $\Gamma \vdash \tau_1 \leq \tau_2$ instead of the binary relation $\tau_1 \leq \tau_2$ to also mean $\Gamma \vdash \tau_1$ and $\Gamma \vdash \tau_2$ and so simultaneously keep track of the well-formedness of types.

In the previous example, the subtyping judgment $\Gamma \vdash \tau_1 \leq \tau_2$ has been witnessed by the wrapping context $\Lambda \beta. [\,] \tilde{\tau}$. Since this context is only composed of type abstractions and type applications, it changes the type of the term put in the hole without changing its behavior and it is called a retyping context. More generally, we may allow arbitrary wrappings of type abstractions and type applications around expressions. As in the example, they never change the type erasure. Retyping contexts are thus defined by the following grammar:

\[\mathcal{R} ::= [\,] | \Lambda \alpha. \mathcal{R} | \mathcal{R} \tau\]

(Notice that retyping contexts are arbitrarily deep here, by contrast with single-node evaluation contexts E defined earlier.)

We could also define a typing judgment $\Gamma \vdash \mathcal{R}[\tau_1] : \tau_2$ for retyping contexts as equivalent to $\Gamma, x : \tau_1 \vdash \mathcal{R}[x] : \tau_2$ whenever x does not appear in \mathcal{R}—or using primitive typing rules. Then, the following property holds by compositionality of typing: if $\Gamma \vdash M : \tau_1$ and $\Gamma \vdash \mathcal{R}[\tau_1] : \tau_2$, then $\Gamma \vdash \mathcal{R}[M] : \tau_2$.

We can now give another equivalent definition of subtyping, based on retyping contexts:

$\Gamma \vdash \tau_1 \leq \tau_2$ if and only if there exists a retyping context \mathcal{R} such that $\Gamma \vdash \mathcal{R}[\tau_1] : \tau_2$.

Notice that retyping contexts (e.g. type-instance) can only change topmost polymorphism. In particular, they cannot weaken the result types of functions or strengthen the types of their arguments.

4.4.3 Type containment in System \mathbf{F}_η

Type containment is another, more expressive, syntactic notion of instance, introduced by Mitchell (1988), that can also transform inner parts of types. It can be defined syn-
4.4. TYPE ERASING SEMANTICS

By the following set of rules:

\[
\begin{align*}
\text{Inst-Gen} & : \; \exists \bar{\eta} \cdot \forall \bar{\alpha}. \tau \\
\forall \bar{\alpha}. \tau & \leq \forall \bar{\beta}. \left[\bar{\alpha} \mapsto \bar{\tau} \right] \tau
\end{align*}
\]

\[
\begin{align*}
\text{Distributivity} & : \; \forall \alpha. (\tau_1 \to \tau_2) \leq (\forall \alpha. \tau_1) \to (\forall \alpha. \tau_2) \\
\text{Congruence-\text{V}} & : \; \tau_1 \leq \tau_2 \\
\forall \alpha. \tau_1 & \leq \forall \alpha. \tau_2
\end{align*}
\]

\[
\begin{align*}
\text{Congruence-\text{\rightarrow}} & : \; \tau_2 \leq \tau_1 \to \tau_1' \leq \tau_2 \to \tau_1'
\end{align*}
\]

\[
\begin{align*}
\text{Transitivity} & : \; \tau_1 \leq \tau_2 \to \tau_3 \\
\tau_1 & \leq \tau_3
\end{align*}
\]

With this larger instance relation, Rule \text{Sub} is no longer admissible—as it allows to type more terms. However, it remains sound. That is, adding Rule Sub as a primitive typing rule does not break type soundness. The resulting type system is known as System F_η, since it is also the closure of System F by η-expansion; that is, a term is in System F_η if and only if it is the η-conversion of a term in System F.

Exercise 32 1) Show that $\forall \alpha. \tau \equiv \tau$ whenever $\alpha \notin \text{ftv}(\tau)$. 2) Show that rule \text{Distributivity} can be replaced by the weaker rule:

\[
\begin{align*}
\text{Distrib-Right} & : \; \alpha \notin \text{ftv}(\tau_1) \\
\forall \alpha. (\tau_1 \to \tau_2) & \leq \tau_1 \to (\forall \alpha. \tau_2)
\end{align*}
\]

(Solution p. 87)

One may wonder what System F_η brings to System F that it does not already have. Consider the identity function id in $[F]$; it has type $\forall \alpha. \alpha \to \alpha$ but also many other incomparable types. For example, it has type $(\forall \alpha. \alpha) \to \forall \alpha. \alpha \to \alpha$—even though a function of that type can never be applied, as there is no value of type $\forall \alpha. \alpha$ that could be passed as argument; it also has the more interesting type $\forall \alpha. (\forall \alpha. \alpha \to \alpha) \to (\alpha \to \alpha)$. While these types are incomparable in $[F]$, they become comparable in System F_η. For example, in System F_η, we have:

\[
\tau_{id} \leq \left((\forall \alpha. \alpha) \to (\forall \alpha. \alpha) \forall \beta. (\beta \to \beta) \to (\beta \to \beta) \right) \leq \forall \beta. (\forall \alpha. \alpha) \to (\beta \to \beta)
\]

The type $\forall \alpha. \alpha \to \alpha$ is actually a principal type for id in System F_η. Similarly, the function ch defined below has a principal type in System F_η:

\[
ch \triangleq \lambda x. \lambda y. \text{if } M \text{ then } x \text{ else } y : \forall \beta. \beta \to \beta \to \beta
\]

Still, many expressions do not have most general types in System F_η. To see the difficulty, consider the application $chid$ of ch to id. How can it be typed? If we keep id polymorphic, then $chid$ has type $(\forall \alpha. \alpha \to \alpha) \to (\forall \alpha. \alpha \to \alpha)$, say τ_1; if, on the opposite, we instantiate id, then $chid$ has type $\forall \alpha. (\alpha \to \alpha) \to (\alpha \to \alpha)$, say τ_2—as in ML where type schemes are automatically instantiated when used. These two types are incomparable in System F. Although, we have $\tau_1 \leq \tau_2$ in System F_η (as witnessed by the coercion context
\(\lambda x : \forall \alpha. \alpha \to \alpha. \Delta \alpha. ([\tau_2] \alpha) (x \alpha) \) and can thus give \(chid \) the type \(\tau_2 \) and still use it at type \(\tau_1 \), this is more by chance than the general case: If we replace \(ch \) by \(ch_3 \), which chooses between three arguments, then \(ch_3 \ id \) does not have a principal type in System \(F_\eta \).

System \(F_\eta \) increases the expressiveness of System \(F \) by enriching its type instance relation—without modifying the language of types (and other typing rules than \(\text{sub} \)). To obtain even more principal types, Le Botlan and Rémy (2009) have suggested that the language of types should be enriched with a new form of quantification \(\forall \alpha \geq \tau_1. \tau_2 \) to mean, intuitively, the set of types \([\alpha \mapsto \tau]\) \(\tau_2 \) when \(\tau \) ranges over the set of instances of \(\tau_1 \). This internalizes the instance relation within the language of types. This allows to give \(chid \) the type \(\forall (\beta \geq \forall \alpha. \alpha \to \alpha). \beta \to \beta \) and recovering \((\forall \alpha. \alpha \to \alpha) \to (\forall \alpha. \alpha \to \alpha)\) and \(\forall \alpha. (\alpha \to \alpha) \to (\alpha \to \alpha) \) by choosing particular instances of \(\forall \alpha. \alpha \to \alpha \) for \(\beta \). By contrast with System \(F_\eta \), this approach also works for the more general example of \(ch_3 \ id \).

The language \(\text{MLF} \) has been designed for partial type reconstruction where programs are partially annotated. The user need only to provide the types of parameters of functions that are used polymorphically. The type systems is setup to implicitly use available polymorphism but never guess polymorphism. Available polymorphism comes either from type generalization as in \(\text{ML} \) or from user-provided type annotations. Every expression has a principal type—according to the given type annotations. See (Le Botlan and Rémy, 2009; Rémy and Yakobowski, 2008) for details.

4.4.4 A definition of principal typings

A typing of an expression \(M \) is a pair \(\Gamma, \tau \) such that \(\Gamma \vdash M : \tau \). Ideally, a type system should satisfy the principal typings property (Wells, 2002):

\[
\text{Every well-typed term } M \text{ admits a principal typing – one whose instances are exactly the typings of } M.
\]

Whether this property holds depends on a definition of instance. The more liberal the instance relation, the more hope there is of having principal typings.

The instance relations we have previously considered are defined syntactically. The absence of principal typings with respect to a syntactic definition of instance may result from a bad choice of the instance relation. To avoid arbitrariness, Wells (2002) introduced a more semantic notion of instance. He notes that, once a type system is fixed, a most liberal notion of instance can be defined, a posteriori, by:

\[
\text{A typing } \theta_1 \text{ is more general than a typing } \theta_2 \text{ if and only if every term that admits } \theta_1 \text{ admits } \theta_2 \text{ as well.}
\]

This is the largest reasonable notion of instance: \(\leq \) is defined as the largest relation such that a subtyping principle is admissible.
This definition can be used to prove that a system does not have principal typings, under any reasonable definition of “instance”. Then, which systems have principal typings? The simply-typed \(\lambda \)-calculus has principal typings, with respect to a substitution-based notion of instance (See lesson on type inference). Wells (2002) shows that neither System \(F \) nor System \(F_\eta \) have principal typings. It was shown earlier that System \(F_\eta \)'s instance relation is undecidable (Wells, 1995; Tiuryn and Urzyczyn, 2002) and that type inference for both System \(F \) and System \(F_\eta \) is undecidable (Wells, 1999).

There are still a few positive results. Some systems of intersection types have principal typings (Wells, 2002) – but they are very complex and have yet to see a practical application.

A weaker property is to have principal types. Given an environment \(\Gamma \) and an expression \(M \) is there a type \(\tau \) for \(M \) in \(\Gamma \) such that all other types of \(M \) in \(\Gamma \) are instances of \(\tau \). Damas and Milner’s type system (coming up next) does not have principal typings but it has principal types and decidable type inference.

4.4.5 Type soundness for implicitly-typed System \(F \)

Subject reduction and progress imply the soundness of the explicitly-typed version of System \(F \). What about the implicitly-typed version? Can we reuse the soundness proof for the explicitly-typed version? Can we pullback subject reduction and progress from \(F \) to \([F]\)?

For progress, given a well-typed term \(a \) in \([F]\), can we find a term \(M \) in \(F \) whose erasure is \(a \) and such that \(M \) is a value or reduces, and so conclude that \(a \) is a value or reduces? For subject reduction, given a term \(a_1 \) of type \(\tau \) in \([F]\) that reduces to \(a_2 \), can we find a term \(M_1 \) in \(F \) whose erasure is \(a_1 \) and show that \(M_1 \) reduces to a term \(M_2 \) whose erasure is \(a_2 \) to conclude that the type of \(a_2 \) is the type of \(a_1 \)? In both cases, this reasoning requires a type-erasing semantics. We claimed that the explicitly-typed System \(F \) has an erasing semantics. We now verify it.

There is a difference with the simply-typed \(\lambda \)-calculus because the reduction of type applications on explicitly-typed terms is dropped by type erasure, hence the two reductions cannot coincide exactly. The way to formalize this is to split reduction steps into \(\beta \delta \)-steps corresponding to \(\beta \) or \(\delta \) rules that must be preserved by type erasure, and \(\iota \)-steps corresponding to the reduction of type applications that disappear during type erasure. This can be summarized in the following diagram:

\[
\begin{align*}
M_0 & \xrightarrow{\iota} M'_0 \xrightarrow{\beta \delta} M_1 & M_j & \xrightarrow{\iota} M'_j \xrightarrow{\beta \delta} M_{j+1} & M_n & \xrightarrow{\iota} V \\
a_0 & \xrightarrow{\beta \delta} a_1 \quad \cdots \quad a_j & \xrightarrow{\beta \delta} a_{j+1} \quad \cdots \quad a_n = v
\end{align*}
\]

We say that we establish a bisimulation between reduction on typed-terms and their erasure up to \(\iota \)-steps. The bisimulation can be decomposed into a direct and a inverse simulation.
Lemma 21 (Direct simulation) The reduction in F is simulated in $[F]$ up to ι-steps. Assume $\Gamma \vdash M : \tau$. Then:

1) If $M \overset{\iota}{\rightarrow} M'$, then $[M] = [M']$
2) If $M \overset{\beta\delta}{\rightarrow} M'$, then $[M] \overset{\beta\delta}{\rightarrow} [M']$

The inverse direction is more delicate to state, since type erasure is not bijective: there are usually many expressions of F whose type erasure is a given expression in $[F]$.

Lemma 22 (Inverse simulation) Assume $\Gamma \vdash M : \tau$ and $[M] \overset{\iota}{\rightarrow} a$. Then, there exists a term M' such that $M \overset{\iota}{\rightarrow} M'$ and $[M'] = a$.

Of course, the semantics can only be type erasing if δ-rules do not themselves depend on type information. First, we need δ-reduction to be defined on type erasures. We may prove the theorem directly for some concrete examples of δ-reduction.

However, keeping δ-reduction abstract is preferable to avoid repeating the same reasoning many times. Then, we must assume that it is such that type erasure establishes a bisimulation for δ-reduction taken alone.

Assumption on δ. We assume that for any explicitly-typed term M of the form $d \tau_1 \ldots \tau_j V_1 \ldots V_k$ such that $\Gamma \vdash M : \tau$, both of the following properties hold:

(Direct bisimulation) If $M \overset{\delta}{\rightarrow} M'$, then $[M] \overset{\delta}{\rightarrow} [M']$.

(Inverse bisimulation) If $[M] \overset{\iota}{\rightarrow} M'$ and $[M'] \overset{\delta}{\rightarrow} a$, then there exists M' such that $M \overset{\delta}{\rightarrow} M'$ and a is the type-erasure of M'.

In most cases, the assumption on δ-reduction is obvious to check. Notice however, that in general the δ-reduction on untyped terms is larger than the projection of δ-reduction on typed terms, because it pattern matches on the shapes of values but ignoring types. However, if we restrict δ-reduction to implicitly-typed terms, then it usually coincides with the projection of reduction of explicitly-typed terms.

Exercise 33 Consider the explicitly-typed System F with pairs of the exercise 24 (p. 57). Add pairs in the untyped λ-calculus. Show that δ-reduction in the untyped λ-calculus is larger than the image of the δ-reduction in the explicitly-typed calculus. Verify that type erasure is a bisimulation for δ-reduction.

The direct simulation (Lemma 21) is straightforward to establish. The inverse simulation is slightly more delicate because there may be many antecedents of a given type erasure. We use a few easy helper lemmas to keep the proof clearer.

Lemma 23

(1) A term that erases to $\vec{e}[a]$ is of the form $\vec{E}[M]$ where \vec{E} is \vec{e} and $[M]$ is a; moreover, we may assume that M does not start with a type abstraction nor a type application.
4.4. TYPE ERASING SEMANTICS

(2) If \bar{E} erases to the empty context then \bar{E} is a retyping context \mathcal{R}.

(3) If $\mathcal{R}[M]$ is in ι-normal form, then \mathcal{R} is of the form $\Lambda \vec{\alpha}.[] \bar{\tau}$.

The main helper lemma is:

Lemma 24 (Inversion of type erasure) Assume $\lceil M \rceil = a$

- If a is x, then M is of the form $\mathcal{R}[x]$
- If a is c, then M is of the form $\mathcal{R}[c]$
- If a is $\lambda x. a_1$, then M is of the form $\mathcal{R}[\lambda x: \tau. M_1]$ with $\lceil M_1 \rceil = a_1$
- If a is $a_1 a_2$, then M is of the form $\mathcal{R}[M_1 M_2]$ with $\lceil M_i \rceil = a_i$

The proof is by an induction on M.

Lemma 25 (Inversion of type erasure for well-typed values) Assume $\Gamma \vdash M : \tau$ and M is ι-normal. If $\lceil M \rceil$ is a value v, then M is a value V. Moreover,

- If v is $\lambda x. a_1$, then V is $\Lambda \vec{\alpha}. \lambda x: \tau. M_1$ with $\lceil M_1 \rceil = a_1$.
- If v is a partial application $c v_1 \ldots v_n$ then V is $\mathcal{R}[c \bar{\tau} V_1 \ldots V_n]$ with $\lceil V_i \rceil = v_i$.

The proof is by induction on M. It uses the inversion of type erasure, then analysis of the typing derivation to restrict the form of retyping contexts. (Details of the proof p. [88])

Corollary 26 Let M be a well-typed term in ι-normal form whose erasure is a

- If a is $(\lambda x. a_1) v$ then M is of the form $\mathcal{R}[(\lambda x: \tau. M_1) V]$, with $\lceil M_1 \rceil$ equal to a_1 and $\lceil V \rceil$ equal to v.
- If a is a full application $c v_1 \ldots v_n$ then M is of the form $\mathcal{R}[c \bar{\tau} V_1 \ldots V_n]$ with $\lceil V_i \rceil = v_i$.

(Proof p. [88])

We may now prove inverse simulation. It suffices to prove it when M is ι-normal. The general case follows, since one may first ι-reduce M to a normal form M_0, while preserving typings, thanks to subject reduction and type erasure; the lemma can then be applied to M_0 instead of M. Notice that this reasoning relies on the termination of ι-reduction. Indeed, if ι-reduction could diverge, it is unlikely that the semantics would be type erasing.

Termination of ι-reduction follows indirectly from the termination of reduction in System F. Its direct proof is also immediate, as ι-reduction strictly decreases the number of type abstractions.
The proof is by induction on the reduction of \([M]\). We assume \(M\) is in \(\iota\)-normal form.

Case \([M]\) is \((\lambda x. a_1) \nu : By Corollary [20] \(M\) is of the form \(R[(\lambda x : \tau_1. M_1) \nu]\). Since \(R\) is an evaluation context, \(M\) reduces to \(R[[x \mapsto \nu] M_1]\) whose erasure is \([x \mapsto \nu] a_1\), i.e. \(a\).

Case \([M]\) is \(e[a_1]\) and \(a_1 \rightarrow a_2\): By Lemma [23] \(M\) is of the form \(E[M_1]\) where \([E]\) is \(\bar{e}\) and \([M_1]\) is \(a_1\). By compositionality (Lemma [18], \(M_1\) is well-typed. Since \(M\) is \(\iota\)-normal and \(E\) is an evaluation, \(M_1\) is also \(\iota\)-normal. By induction hypothesis, \(M_1\) reduces in one \(\beta\delta\)-step to a term \(M_2\) whose erasure is \(a_2\). Hence, by \(M\) reduces in one \(\beta\delta\)-step to the term \(E[M_2]\) whose erasure is \(\bar{e}[a_2]\), i.e. \(a\).

Case \([M]\) is a full application \((d \ v_1 \ldots \ v_n)\) and reduces to \(a\): By Corollary [20] \(M\) is of the form \(R[M_0]\) where \(M_0 = d \tau \ V_1 \ldots V_n\ a [V_i]\ is \(v_i\). Since \([M_0]\ \rightarrow a\), by the inverse assumption for \(\delta\)-rules, there exists \(M_0'\) such that \(M_0 \rightarrow_\delta M_0'\) and \([M_0']\) is \(a\). Let \(M'\) be \(R[M_0']\). Since \(R\) is an evaluation context, we have \(M \rightarrow_\delta M'\) and \([M']\) is \(a\).

We may now easily transpose subject reduction and progress from the implicitly-typed version to the implicitly-typed version of System \(F\).

Theorem 12 (Type soundness for implicitly-typed System \(F\))

Progress and subject reduction holds in implicitly-typed System \(F\).

Proof: Assume that \(\Gamma \vdash a_1 : \tau\). By Lemma [20] there exists a term \(M_1\) such that \(\Gamma \vdash M_1 : \tau\). and \([M_1]\) is \(a_1\).

Progress: Let \(M_2\) be the \(\iota\)-normal form of \(M_1\). By direct simulation, \([M_2]\) is \(a\). By subject reduction, we have \(\Gamma \vdash M_2 : \tau\). By progress in \(F\), either \(M_2 \rightarrow_\beta \delta M_2\) and so does \(a\), by direct simulation (Lemma [21]) or \(M_2\) is a value and so is its erasure \(a_1\) (by observation).

Subject reduction: Assume \(a_1 \rightarrow a_2\). By inverse simulation (Lemma [22]), there exists a term \(M_2\) such that \(M_1 \rightarrow_* \beta_\delta M_2\) and \([M_2]\) is \(a_2\). By subject reduction in \(F\), we have \(\Gamma \vdash M_2 : \tau\). By Lemma [20] we have \(\Gamma \vdash a_2 : \tau\), as expected.

Remarks The design of advanced typed systems for programming languages is usually done in explicitly-typed version, with a type-erasing semantics in mind, but this is not always checked in details (and sometimes not even made very clear). While the direct simulation is usually straightforward, the inverse simulation is often harder. As the type system gets more complicated, reduction at the level of types also gets more involved. It is important and not always obvious that type reduction terminates and is rich enough to never block reductions that could occur in the type erasure.
For example, Crétin and Rémy (2012) extend System F_η with abstraction over retyping functions, but keep the type systems bridled to preserve the type erasure semantics.

Bisimulation is a standard technique to show that compilation preserves the semantics given in small-step style. For example, it is heavily used in the CompCert project (Leroy, 2006) to prove the correctness of a compiler from C to assembly code, using the Coq proof assistant. The compilation from C to assembly code is decomposed into a chain of transformation using a dozen of successive intermediate languages; each of the transformation is then proved to be semantic preserving using bisimulation techniques.

4.5 Polymorphism and references

In this chapter, we have just shown how to extend simply-typed λ-calculus with polymorphism. In the previous chapter we have shown how to extend simply-typed λ-calculus with references. Can these extensions be combined together?

When adding references, we noted that type soundness relies on the fact that every reference cell (or memory location) has a fixed type. Otherwise, if a location had two types $\text{ref } \tau_1$ and $\text{ref } \tau_2$, one could store a value of type τ_1 and read back a value of type τ_2. Hence, it should also be unsound if a location could have type $\forall \alpha. \text{ref } \tau$ (where α appears in τ) as it could then be specialized to both types $\text{ref } [\alpha \mapsto \tau_1]\tau$ and $\text{ref } [\alpha \mapsto \tau_2]\tau$. By contrast, a location ℓ can have type $\text{ref } (\forall \alpha. \tau)$: this says that ℓ stores values of polymorphic type $\forall \alpha. \tau$, but ℓ, as a value, is viewed with the monomorphic type $\text{ref } (\forall \alpha. \tau)$.

4.5.1 A counter example

Still, if System F is naively extended with references, it allows the construction of polymorphic references, which breaks subject reduction:

\begin{verbatim}
let y : \forall \alpha. \text{ref } (\alpha \rightarrow \alpha) =
 \Lambda \alpha. \text{ref } (\alpha \rightarrow \alpha) (\lambda z : \alpha. z)
in (y \text{bool}) := (\text{bool } \mapsto \text{bool}) \text{not};
!(\text{int } \mapsto \text{int}) (y \text{ (int)}) 1 / \emptyset

\rightarrow^* \text{not } 1 / \ell \mapsto \text{not}
\end{verbatim}

The program is well-typed, but reduces to the stuck expression "\text{not } 1". So what went wrong? As described on the right-hand side, the fault is that the location is written at type $\text{bool } \mapsto \text{bool}$ and read back at type $\text{int } \mapsto \text{int}$. This is permitted because the location has a polymorphic type $\forall \alpha. \text{ref } \alpha \rightarrow \alpha$. So this must be wrong. Indeed, the first reduction step uses the following
rule (where V is $\lambda x : \alpha. x$ and τ is $\alpha \to \alpha$).

\[
\begin{array}{c}
\text{CONTEXT} \\
\frac{\text{ref } \tau \ V \ / \ \emptyset \ \to \ l / l \to V}{\Lambda \alpha. \text{ref } \tau \ V \ / \ \emptyset \ \to \ \Lambda \alpha. l / l \to V}
\end{array}
\]

While we have

\[
\alpha \vdash \text{ref } \tau \ V \ / \ \emptyset : \text{ref } \tau
\]

and

\[
\alpha \vdash l / l \to V : \text{ref } \tau
\]

We have

\[
\vdash \Lambda \alpha. \text{ref } \tau \ V \ / \ \emptyset : \forall \alpha. \text{ref } \tau
\]

but not

\[
\vdash \Lambda \alpha. l / l \to V : \forall \alpha. \text{ref } \tau
\]

Hence, the context case of subject reduction breaks.

The typing derivation of $\Lambda \alpha. l$ requires a store typing Σ of the form $l : \tau$ and a derivation of the form (according to Rule \text{Loc} given below, page 4.5.2):

\[
\text{Tabs}
\frac{\Sigma, \alpha \vdash \ell : \text{ref } \tau}{\Sigma \vdash \Lambda \alpha. l : \forall \alpha. \text{ref } \tau}
\]

However, the typing context Σ, α is ill-formed as α appears free in Σ. Instead, a well-formed premise should bind α earlier as in $\alpha, \Sigma \vdash \ell : \text{ref } \tau$, but then, Rule \text{Tabs} cannot be applied.

By contrast, the expression $\text{ref } \tau \ V$ is pure, so Σ may be empty:

\[
\frac{\alpha \vdash \text{ref } \tau \ V : \text{ref } \tau}{\emptyset \vdash \Lambda \alpha. \text{ref } \tau \ V : \forall \alpha. \text{ref } \tau}
\]

The expression $\Lambda \alpha. l$ is correctly rejected as ill-typed, so $\Lambda \alpha. \text{ref } \tau \ V$ should also be rejected.

There is a fix to the bug known as this mysterious slogan:

\[
\text{One must not abstract over a type variable that might, after evaluation of the term, enter the store typing.}
\]

Indeed, this is what happens in our example. The type variable α which appears in the type of V is abstracted in front of $\text{ref } \tau \ V$. When $\text{ref } \tau \ V$ reduces, $\alpha \to \alpha$ becomes the type of the fresh location l, which appears in the new store typing. This is all well and good, but how do we enforce this slogan?

In the context of ML, a number of rather complex historic approaches have been followed: see Leray (1992) for a survey. Then came Wright (1995), who suggested an amazingly simple solution, known as the value restriction: only value forms can be abstracted over.

\[
\text{Tabs}
\frac{\Gamma, \alpha \vdash U : \tau}{\Gamma \vdash \Lambda \alpha. U : \forall \alpha. \tau}
\]

\text{Value forms:}

\[
U ::= x \mid V \mid \Lambda \alpha. U \mid U \tau
\]

The problematic proof case vanishes, as we now never $\beta\delta$-reduce under type abstraction, only ι-reduction is possible. Subject reduction holds again. Let us prove it.
4.5.2 Internalizing configurations

A configuration M / μ is an expression M in a memory μ. Intuitively, the memory can be viewed as a recursive extensible mutable record. The configuration M / μ may be viewed as the recursive definition (of values) $\text{let rec } m : \Sigma = \mu \text{ in } [\ell \mapsto m.\ell]M$ where Σ is a store typing for μ. The store typing rules are coherent with this view. For instance, allocation of a reference is a reduction of the form:

$$\text{let rec } m : \Sigma = \mu \text{ in } E[\text{ref } \tau V] \rightarrow \text{let rec } m,\ell : \tau = \mu,\ell \mapsto v \text{ in } E[m.\ell]$$

For this transformation to preserve well-typedness, it is clear that the evaluation context E must not bind any type variable appearing in τ; otherwise, we are violating the scoping rules.

Let us clarify the typing rules for configurations:

```
\begin{align*}
\text{CONFIG} & \quad \alpha \vdash M : \tau \quad \alpha \vdash \mu : \Sigma \\
& \quad \alpha \vdash M / \mu : \tau \\
\text{STORE} & \quad \forall \ell \in \text{dom}(\mu), \quad \alpha, \Sigma, \emptyset \vdash \mu(\ell) : \Sigma(\ell) \\
& \quad \alpha \vdash \mu : \Sigma
\end{align*}
```

Closed configurations must be typed in an environment composed of type variables. No new type variables is never introduced during reduction. These type variables may appear in the store typing during reduction, there are thus placed in front the store typing and cannot be generalized.

Judgments are now of the form $\alpha, \Sigma, \Gamma \vdash M : \tau$ although we may see α, Σ, Γ as a whole typing context Γ'. For locations, we need a new context formation rule:

```
\begin{align*}
\text{WfEnvLoc} & \quad \vdash \Gamma \\
& \quad \Gamma \vdash \tau \\
& \quad \ell \notin \text{dom}(\Gamma) \\
& \quad \vdash \Gamma, \ell : \tau
\end{align*}
```

This allows locations to appear anywhere. However, in a derivation of a closed term, the typing context will always be of the form α, Σ, Γ where Σ only binds locations (to arbitrary types) and Γ does not bind locations.

The typing rule for memory locations (where Γ is of the form α, Σ, Γ') is:

```
\begin{align*}
\text{LOC} & \quad \Gamma \vdash \ell : \text{ref} \Gamma(\ell)
\end{align*}
```

In System F, typing rules for references need not be primitive. We may instead treat them as constants of the following types:

```
ref: \forall \alpha. \alpha \rightarrow \text{ref} \alpha \\
(!): \forall \alpha. \text{ref} \alpha \rightarrow \alpha \\
(=): \forall \alpha. \text{ref} \alpha \rightarrow \alpha \rightarrow \text{unit}
```

They are all destructors (event ref) with the obvious arities.
The δ-rules are adapted to carry explicit type parameters:

$$\text{ref } \tau V / \mu \rightarrow \ell / \mu[\ell \mapsto V] \quad \text{if } \ell \notin \text{dom}(\mu)$$

$$\ell := (\tau) V / \mu \rightarrow () / \mu[\ell \mapsto V]$$

$$!\tau \ell / \mu \rightarrow \mu(\ell) / \mu$$

Type soundness can now be stated as

Lemma 27 δ-rules preserve well-typedness of closed configurations.

Theorem 13 (Subject reduction) Reduction of closed configurations preserves well-typedness.

Lemma 28 A well-typed closed configuration M/μ where M is a full application of constants ref, (!), and (:=) to types and values can always be reduced.

Theorem 14 (Progress) A well typed irreducible closed configuration M/μ is a value.

As a sanity check, the problematic program is now syntactically ill-formed:

```
let y : $\forall \alpha. \text{ref } (\alpha \rightarrow \alpha) = \Lambda \alpha. \text{ref } (\alpha \rightarrow \alpha) (\lambda z : \alpha. z)$ in
(y bool) := (bool $\rightarrow$ bool) not;
!(int $\rightarrow$ int) (y (int)) 1
```

Indeed, $\text{ref } (\alpha \rightarrow \alpha) (\lambda z : \alpha. z)$ is not a value, but the application of a unary destructor to a value, so the expression $\Lambda \alpha. \text{ref } (\alpha \rightarrow \alpha) (\lambda z : \alpha. z)$ is not allowed.

Consequences With the value restriction, some pure programs become ill-typed, even though they were well-typed in the absence of references. This style of introducing references in System F (or in ML) is not a conservative extension.

Assuming functions map and id of respective types $\forall \alpha. \text{list } \alpha \rightarrow \text{list } \alpha$ and $\forall \alpha. \alpha \rightarrow \alpha$, the expression $\Lambda \alpha. \text{map } \alpha (id \alpha)$ is now ill-typed. A common work-around is to perform a manual η-expansion $\Lambda \alpha. \Lambda y : \text{list } \alpha. \text{map } \alpha (id \alpha) y$. However, in the presence of side effects, η-expansion is not semantics preserving, so this must not be done blindly.

In practice, the value restriction can be slightly relaxed by enlarging the class of value forms to a syntactic category of so-called non-expansive terms—terms whose evaluation will definitely not allocate new reference cells. Non-expansive terms form a strict superset of value forms. Garrigue (2004) relaxes the value restriction in a more subtle way, which is justified by a subtyping argument. For instance, the following expressions may be well-typed:

- $\Lambda \alpha.((\lambda x : \tau. U) U)$ because the inner expression is non-expansive;
- $\Lambda \alpha. (\text{let } x : \tau = U \text{ in } U)$, which is its syntactic sugar;
- let $x : \forall \alpha. \text{list } \alpha = \Lambda \alpha. (M_1 M_2)$ in M because α appears only positively in the type of $\text{eapp} M_1 M_2$.
OCaml implements both refinements.

In fact, $\Lambda \alpha.M$ need only be forbidden when α appears negatively in the type of some exposed expansive terms where exposed subterms are those that do not appear under some λ-abstraction. For instance, the expression

$$\text{let } x : \forall \alpha. \text{int} \times (\text{list } \alpha) \times (\alpha \to \alpha) = \Lambda \alpha. (\text{ref } (1 + 2), (\lambda x : \alpha. x) \text{ Nil}, \lambda x : \alpha. x) \text{ in } M$$

may be well-typed because α appears only in the type of the non-expansive exposed expressions $\lambda x : \alpha. x$ and positively in the type of expansive expression $(\lambda x : \alpha. x) \text{ Nil}$.

(This refinement is not implemented in OCaml, though.)

Remark Experience has shown that the value restriction is tolerable. Even though it is not conservative, the search for better solutions has been pretty much abandoned.

In a type-and-effect system (Lucassen and Gifford, 1988; Talpin and Jouvelot, 1994), or in a type-and-capability system (Charguéraud and Pottier, 2008), the type system indicates which expressions may allocate new references, and at which type. There, the value restriction is no longer necessary—but these systems are heavy. However, if one extends a type-and-capability system with a mechanism for hiding state, which remains useful even in those systems, the need for the value restriction re-appears.

Pottier and Protzenko (2012) are designing a language Mezzo where mutable states is tracked quite precisely, with permissions, ownership, linear types that even enable a reference to even change the type of its values over time, which is called strong update.

4.6 Damas and Milner’s type system

Damas and Milner’s type system Milner (1978) offers a restricted form of polymorphism, while avoiding the difficulties associated with type inference in System F. This type system is at the heart of Standard ML, OCaml, and Haskell.

The idea behind the definition of ML is to make a small extension of simply-typed λ-calculus that enables to factor out several occurrences of the same subexpression a_1 in a term of the form $[x \mapsto a_1]a_2$ using a let-binding form let $x = a_1$ in a_2 so as to avoid code duplication.

Expressions of the simply-typed λ-calculus are extended with a primitive let-binding, which can also be viewed as a way of annotating some redexes $(\lambda x.a_2) a_1$ in the source program. This actually provides a simple intuition behind Damas and Milner’s type system: a closed term has type τ if and only if its let-normal form has type τ in simply-typed λ-calculus. A term’s let-normal form is obtained by iterating the following rewrite rule, in any context:

$$\text{let } x = a_1 \text{ in } a_2 \quad \rightarrow \quad a_1; [x \mapsto a_1]a_2$$

Notice that we use a sequence starting with a_1 and not just $[x \mapsto a_1]a_2$. This is to enforce well-typedness of a_1 in the pathological case where x does not appear free in a_2. If we
disallow this pathological case (e.g. well-formedness could require that \(x\) always occurs in \(a_2\)) then we could just use the more intuitive rewrite rule:

\[
\text{let } x = a_1 \text{ in } a_2 \rightarrow [x \mapsto a_1]a_2
\]

This intuition suggests type-checking and type inference algorithms. However, these algorithms are not practical, because they have intrinsic exponential complexity; and separate compilation prevents reduction to let-normal forms.

In the following, we study a direct presentation of Damas and Milner’s type system, which does not involve let-normal forms. It is practical, because it leads to an efficient type inference algorithm (presented in chapter \(\S8\)); and it supports separate compilation.

4.6.1 Definition

The language ML is usually presented in its implicitly-typed version, where *terms* are given by:

\[
a ::= x \mid c \mid \lambda x.a \mid a\ a \mid \text{let } x = a \text{ in } a \mid \ldots
\]

The *let* construct is no longer sugar for a \(\beta\)-redex but a primitive form that will be typed especially.

The language of types lies between those for simply-typed \(\lambda\)-calculus and System \(F\); it is stratified between *types* and *type schemes*. The syntax of *types* is that of simply-typed \(\lambda\)-calculus, but a separate category of *type schemes* is introduced:

\[
\tau ::= \alpha \mid \tau \rightarrow \tau \mid \ldots \quad \sigma ::= \tau \mid \forall \alpha.\sigma
\]

All quantifiers must appear in prenex position, so type schemes are less expressive than System-\(F\) types. We often write \(\forall \bar{\alpha}.\tau\) as a short hand for \(\forall \alpha_1\ldots \forall \alpha_n.\tau\). When viewed as a subset of System \(F\), one must think of *type schemes* are the primary notion of types, of which *types* are a subset.

An ML typing context \(\Gamma\) binds program variables to *type schemes*. In the implicitly-typed presentation, type variables are often introduced implicitly and not part of \(\Gamma\). However, we keep below the equivalent presentation where type variables are declared in \(\Gamma\). Judgments now take the form \(\Gamma \vdash a : \sigma\). Types form a subset of type schemes, so type environments and judgments can contain types too.

The standard, non-syntax-directed presentation of ML is given in Figure 4.3. Rule \(\text{Let}\) moves a type scheme into the environment, which \(\text{Var}\) can exploit. Rule \(\text{Abs}\) and \(\text{App}\) are unchanged. \(\lambda\)-bound variables receive a monotype. Rule \(\text{Gen}\) and \(\text{Inst}\) are as in implicitly-typed System \(F\), except that *type variables are instantiated with monotypes*.

For example, here is a type derivation that exploits polymorphism (writing \(\Gamma\) for \(f : \ldots\)):
4.6. DAMAS AND MILNER’S TYPE SYSTEM

\[\text{iml-Var} \quad \Gamma \vdash x : \Gamma(x) \quad \text{iml-Cst} \quad \Gamma \vdash c : \Delta(c) \]
\[\text{iml-Abs} \quad \Gamma, x : \tau_0 \vdash a : \tau \quad \Gamma \vdash \lambda x. a : \tau_0 \rightarrow \tau \]
\[\text{iml-App} \quad \Gamma \vdash a_1 : \tau_2 \rightarrow \tau_1 \quad \Gamma \vdash a_2 : \tau_2 \]
\[\Gamma \vdash a_1 \ a_2 : \tau_1 \]
\[\text{iml-Let} \quad \Gamma \vdash a_1 : \sigma_1 \quad \Gamma, x : \sigma_1 \vdash a_2 : \sigma_2 \quad \Gamma \vdash \text{let } x = a_1 \text{ in } a_2 : \sigma_2 \]
\[\text{iml-Gen} \quad \Gamma, \alpha \vdash a : \sigma \quad \Gamma \vdash a : \forall \alpha. \sigma \]
\[\text{iml-Inst} \quad \Gamma \vdash a : \forall \alpha. \sigma \quad \Gamma \vdash a : [\alpha \mapsto \tau]\sigma \]

Figure 4.3: Typing rules for ML

\[\forall \alpha. \alpha \rightarrow \alpha. \) for an implicitly-typed term (omitting the iml- prefix of typing rules):

\[\text{VAR} \quad \alpha, z : \alpha \vdash z : \alpha \quad \text{VAR} \quad \Gamma \vdash f : \forall \alpha. \alpha \rightarrow \alpha \]
\[\text{ABS} \quad \alpha \vdash \lambda z. z : \alpha \rightarrow \alpha \quad \text{APP} \quad \Gamma \vdash f 0 : \text{int} \rightarrow \text{bool} \]
\[\text{GEN} \quad \emptyset \vdash \lambda z. z : \forall \alpha. \alpha \rightarrow \alpha \quad \text{INST} \quad \Gamma \vdash f \text{true} : \text{bool} \]
\[\text{LET} \quad \emptyset \vdash \text{let } f = \lambda z. z \text{ in } (f 0, f \text{ true}) : \text{int} \times \text{bool} \]

Notice that Rule [GEN] is used above [LET] (on the left-hand side), and [INST] is used below [VAR]. In fact, we will see below that every type derivation can be transformed into one of this form.

As a counter-example, the term \(\lambda f. (f 0, f \text{ true}) \) is ill-typed. Indeed, as it contains no “let” construct, it is type-checked exactly as in simply-typed \(\lambda \)-calculus, where it is ill-typed, because \(f \) must be assigned a type \(\tau \) that must simultaneously be of the form \(\text{int} \rightarrow \tau_1 \) and \(\text{bool} \rightarrow \tau_2 \), but there is no such type. Recall that this term is well-typed in implicitly-typed System F because \(f \) can be assigned, for instance, the polymorphic type \(\forall \alpha. \alpha \rightarrow \alpha \).

While we rather use implicitly-typed terms in programs, we usually prefer to use an explicitly-typed presentation of ML in proofs. We thus identify a subset of terms of System F whose type erasure coincide with terms of ML. The subset of terms is defined by the following syntax:

\[M \in eML ::= x \mid c \mid \lambda x : \tau. M \mid M \ M \mid \Lambda \alpha. M \mid M \ \tau \mid \text{let } x : \sigma = M \text{ in } M \ldots \]

where \(\tau \) and \(\sigma \) are ML-types and type schemes and not arbitrary System-F types. The typing rules for explicitly-typed terms are given on Figure 4.4.

These are restrictions of the typing rules of System-F to terms and types of ML. Therefore, if \(\Gamma \vdash_{eML} M : \sigma \) then \(\Gamma \vdash_{F} M : \sigma \). In particular, explicitly-typed terms of ML have unique typing derivations—and actually unique types—as in System-F.

Unfortunately, the converse is not true—when \(M \) is syntactically in ML and \(\Gamma \) and \(\sigma \) are well-formed in \(eML \), of course. Hence, the relation \(\vdash_{eML} \) cannot be defined as the restriction of \(\vdash_{F} \) to ML environments terms and type schemes.

Exercise 34 Find a term \(M \) that is syntactically in \(eML \) and a type scheme \(\sigma \) such that
CHAPTER 4. POLYMORPHISM AND SYSTEM F

\[
\begin{array}{c}
\text{eml-Var} & \text{eml-Cst} & \text{eml-Abs} & \text{eml-App} \\
\Gamma \vdash x : \Gamma(x) & \Gamma \vdash c : \Delta(c) & \Gamma, x : \tau_0 \vdash M : \tau & \Gamma \vdash \lambda x : \tau_0.M : \tau_0 \rightarrow \tau \\
\Gamma \vdash M_1 : \tau_1 & \Gamma, x : \tau_0 \vdash M_2 : \tau_2 & \Gamma \vdash c : \Delta & \Gamma \vdash M_1 : \tau_1 \\
\end{array}
\]

\[
\begin{array}{c}
\text{eml-Let} & \text{eml-Tabs} & \text{eml-App} & \text{eml-Tapp} \\
\Gamma \vdash M_1 : \sigma_1 & \Gamma, x : \sigma_1 \vdash M_2 : \sigma_2 & \Gamma, \alpha \vdash M : \sigma & \Gamma \vdash \Lambda \alpha. M : \forall \alpha. \sigma \\
\Gamma \vdash \text{let } x : \sigma = M_1 \text{ in } M_2 : \sigma_2 & \Gamma \vdash \lambda x : \tau_0. Q : \tau_0 \rightarrow \tau & \Gamma \vdash Q_1 : \tau_2 \rightarrow \tau_1 & \Gamma \vdash Q_1.Q_2 : \tau_2 \\
\end{array}
\]

Figure 4.4: Typing rules for eML (explicitly-typed ML)

\[
\begin{array}{c}
\text{xml-Tabs} & \text{xml-Abs} & \text{xml-App} & \text{xml-VarInst} & \text{xml-CstInst} \\
\Gamma, \alpha \vdash Q : \tau & \Gamma, x : \tau_0 \vdash Q : \tau & \Gamma \vdash \lambda x : \tau_0. Q : \tau_0 \rightarrow \tau & \forall \alpha. \tau = \Gamma(x) & \forall \alpha. \tau = \Delta(c) \\
\Gamma \vdash \Lambda \alpha. Q : \forall \alpha. \tau & \Gamma \vdash \lambda x : \tau_0. Q : \tau_0 \rightarrow \tau & \Gamma \vdash Q_1 : \tau_2 \rightarrow \tau_1 & \Gamma \vdash x \bar{\tau} : [\alpha \mapsto \bar{\tau}]\tau & \Gamma \vdash c \bar{\tau} : [\alpha \mapsto \bar{\tau}]\tau \\
\end{array}
\]

Figure 4.5: Typing rules for xML

\[
\Gamma \vdash F M : \sigma \text{ holds but } \Gamma \vdash eML M : \sigma \text{ does not hold}. \quad \text{(Solution p. 89)}
\]

4.6.2 Syntax-directed presentation

Explicitly-typed terms of ML have unique typing derivations—and actually unique types—as in System-F. By contrast with explicitly-typed terms, implicitly-typed terms have several types, since parameters of functions are not annotated, but also several typing derivations, since places for type abstraction and type applications are not specified either, much as in System F.

Interestingly, there is a syntax-directed presentation of implicitly-typed ML terms where the shape of typing derivations is entirely determined by the term and is thus unique. Taking the explicitly-typed view, this amounts to restricting the source terms so that there is no choice for placing type abstraction and type applications.

Let xML be the subset of explicitly-typed ML defined by the following grammar

\[
\begin{align*}
N \in xML & ::= \Lambda \alpha. Q \\
Q & ::= x \bar{\tau} \mid Q \cdot Q \mid \lambda x : \tau. Q \mid \text{let } x : \sigma = N \text{ in } Q
\end{align*}
\]

where \(\tau \) here ranges over simple types and such that all type variables are fully instantiated. That is, we request that the arity of \(\bar{\tau} \) in \(x \bar{\tau} \) be the arity of \(\alpha \) in the type scheme \(\forall \alpha. \tau \) assigned to the variable \(x \). In particular, all \(Q \)-terms are typed with simple types.

Specializing the typing rules of eML (Figure 4.4) to the syntax of xML gives the typing rules of xML on Figure 4.5. By construction, terms of xML are a syntactic subset of terms...
4.6. DAMAS AND MILNER’S TYPE SYSTEM

\[\forall \alpha. \tau = \Gamma(x) \]
\[\Gamma \vdash x : \forall \alpha. \tau \Rightarrow \Lambda \alpha. x \alpha \]
\[\Gamma, \alpha \vdash M : \sigma \Rightarrow N \]
\[\Gamma \vdash M : \forall \alpha. \sigma \Rightarrow \Lambda \alpha. N \]
\[\Gamma \vdash M : \forall \alpha. \sigma \Rightarrow \Lambda \alpha. N \]

\[\forall \alpha. \tau = \Delta(\tau) \]
\[\Gamma \vdash c : \forall \alpha. \tau \Rightarrow \Lambda \alpha. c \alpha \]

\[\Gamma \vdash M_1 : \sigma_1 \Rightarrow N_1 \]
\[\Gamma, x : \sigma_1 \vdash M_2 : \forall \alpha. \tau \Rightarrow \Lambda \alpha. Q \]
\[\bar{\alpha} \neq N_1, \sigma_1 \]
\[\Gamma \vdash \text{let } x : \sigma_1 = M_1 \text{ in } M_2 : \forall \alpha. \tau \Rightarrow \Lambda \alpha. \text{let } x : \sigma_1 = N_1 \text{ in } Q \]

\[\Gamma \vdash M_1 : \tau_1 \Rightarrow Q_1 \]
\[\Gamma \vdash M_2 : \tau_2 \Rightarrow Q_2 \]
\[\Gamma \vdash M_1 M_2 : \tau_1 \Rightarrow Q_1 Q_2 \]

\[\Gamma \vdash \lambda x : \tau_0. M : \tau_0 \Rightarrow \tau \Rightarrow \lambda x : \tau_0. Q \]

Figure 4.6: Normalization of ML derivations

of eML. By construction, we also have if \(\Gamma \vdash \text{eML} \) then \(\Gamma \vdash \text{eML} \) holds.

Conversely, we wish to show that any term \(M \) typable in eML can be mapped to a term \(N \) typable in xML that has the same type erasure. For this purpose, we define on Figure 4.6 a normalization judgment \(\Gamma \vdash M : \sigma \Rightarrow N \) by inference rules, which can also be read as an algorithm that performs:

- Type \(\eta \)-expansion of every occurrence of a variable according to the arity of its type scheme (Rule \(\text{Var} \)). This ensures that every occurrence of a type variable will be fully specialized—hence assigned a monomorphic type.

- Strong \(\iota \)-reduction, \(i.e. \) type \(\beta \)-reduction (Rule \(\text{Tapp} \)): this cancels type applications of type abstractions. As a result, elaborated terms do not contain any \(\iota \)-redex.

The translation is well-defined for all eML terms, since it follows the structure of the typing derivation in eML. Formally, if \(\Gamma \vdash \text{eML} \) holds then \(\Gamma \vdash \text{eML} \) holds. The proof is by induction on \(M \) and all cases are obvious.

Moreover, if \(\Gamma \vdash M : \sigma \) holds, then \(\Gamma \vdash \text{xML} \) holds and \(M \) and \(N \) have the same erasure. The proof is also by induction on \(M \). The preservation of erasure is immediate. The only non obvious cases for well-typedness of \(N \) are \(\text{Norm-Tapp} \) which performs strong \(\iota \)-reduction and uses type substitution (Lemma \([\text{L}7]\)), and \(\text{Norm-Let} \) which extrudes type abstractions.

Another way to look at the normalization of terms is as a rewriting of the typing derivations so that all applications of \(\text{Inst} \) come immediately after \(\text{Var} \) and all applications of \(\text{Gen} \) come immediately above rule \(\text{Let} \) or at the bottom of the derivation—as imposed by the grammar of xML terms where \(Q \)-terms can only have monomorphic types.
In summary, any term of eML can be rearranged as a term of xML with the same type erasure. By dropping type information in terms of xML, we then obtain a syntax-directed presentation of implicitly-typed ML, called sML:

Then, the judgments $\Gamma \vdash ML a : \tau$ and $\Gamma \vdash sML a : \tau$ are equivalent.

However, for type inference, we rather use the equivalent presentation in Figure 4.7 called iML (or the inference type system) where type variables are not explicitly declared in the typing context—hence, the side condition for generalization on rule Let. In this final system, type substitution (Lemma 17), which we will use for type inference, can be restated as follows:

Lemma 29 (Type Substitution) Typings are stable by substitution. If $\Gamma \vdash a : \tau$ then $\varphi\Gamma \vdash a : \varphi\tau$. for any substitution φ.

4.6.3 Type soundness for ML

Since ML is a subset of $\lceil F \rceil$, which has been proved sound, we know that ML is sound, i.e. that ML programs cannot go wrong. This also implies that progress holds in ML. However, we do not know whether subject reduction holds for ML. Indeed, ML expressions could reduce to System F expressions that are not in the ML subset. Most proofs of subject reduction for implicitly-typed ML work directly with implicitly-typed terms. See for instance (Wright and Felleisen, 1994; Pottier and Rémy, 2005).

Subject-reduction in eML The proof of subject reduction follows the same schema as for System F (Theorem 9). The main part of the proof works almost unchanged. However, it uses
auxiliary lemmas (inversion, permutation, weakening, type substitution, term substitution, compositionality) that all need to be rechecked, since those lemmas conclude with typing judgments in F that may not necessarily hold in eML. Unsurprisingly, all proofs can be easily adjusted.

An indirect proof reusing subject-reduction in System F We also present an indirect proof that reuses subject reduction and progress in System F and the syntax-directed presentation of ML.

To establish subject-reduction in ML, let a_1 be an implicitly-typed ML term such that both $\bar{\alpha} \vdash_{ML} a_1 : \sigma$ and $a_1 \rightarrow a_2$ hold. There exists an explicitly-typed term M_1 such that $\bar{\alpha} \vdash_{eML} M_1 : \sigma$ and $[M_1] = a_1$. By normalization, we may elaborate M_1 into a term N_1 of xML such that $\bar{\alpha} \vdash_{xML} N_1 : \sigma$ and the $[N_1] = [M_1]$. Moreover, N_1 is by construction ι-normal. Since xML is a subset of System F, we have $\bar{\alpha} \vdash_F N_1 : \sigma$. By inverse simulation in System F (Lemma 22), there exists N_2 in F whose type erasure is a_2 and such that $N_1 \rightarrow_\beta N_2$ (since N_1 is ι-normal). We show below that there exists a strong ι-reduction M_2 of N_2 that is in xML and such that $\bar{\alpha} \vdash_{xML} N_2 : \sigma$. Therefore, we have $\bar{\alpha} \vdash_{xML} M_2 : \sigma$ and since the type erasure of M_2 is that of N_2, i.e. a_2, we have $\bar{\alpha} \vdash_{ML} a_2 : \sigma$, as expected.

It thus remains to check that given a term N_1 such that $\Gamma \vdash_{xML} N_1 : \sigma$ and $N_1 \rightarrow_\beta N_2$, there exists a term M_2 in xML that is a strong ι-reduction of N_2 and such that $\Gamma \vdash_{xML} N_2 : \sigma$. This can be decomposed into the existence of M_2 and type preservation by strong ι-reduction.

The β-reduction step may occur in any evaluation context and is one of two forms. If it is a normal β-reduction:

$$(\lambda x: \tau. Q) \ V \rightarrow [x \mapsto V]Q$$

it preserves syntactic membership in eML, because since x is bound to a type and its occurrences in M cannot be specialized. However, if it is a let-reduction

$$(\text{let } x : \forall \bar{\alpha} . \tau = V \text{ in } Q \rightarrow [x \mapsto V]Q)$$

then occurrences of x in Q, which are of the form $x \bar{\tau}$, become $V \bar{\tau}$ and may contain ι-redexes—which are not allowed in xML. Fortunately, V is necessarily of the form $\Lambda \bar{\alpha}.V'$ where the arity of $\bar{\alpha}$ is equal to that of $\bar{\tau}$. Hence, we may immediately perform a sequence of ι-reduction that brings the term back into xML and in ι-normal form. Notice however that this ι-redex is not in general in a call-by-value evaluation context. Indeed, x may appear under an abstraction in M. Hence, this is a strong reduction step.

For type reduction, we need to ensure that strong ι-reduction is also type-preserving. This is an easy auxiliary proof—but not a consequence of subject reduction, which we have only proved for reduction in call-by-value evaluation contexts.
4.7 Omitted proofs and answers to exercises

Solution of Exercise 24

As in the case where pairs are primitive, we introduce one constructor \((\cdot, \cdot)\) of arity 2 and and two destructors \(\text{proj}_1\) and \(\text{proj}_2\) of arity 1, with the following types in \(\Delta\)

\[
\begin{align*}
\text{Pair} & : \forall \alpha_1, \forall \alpha_2, \alpha_1 \to \alpha_2 \to \alpha_1 \times \alpha_2 \\
\text{proj}_i & : \forall \alpha_1, \forall \alpha_2, \alpha_1 \times \alpha_2 \to \alpha_i
\end{align*}
\]

and the two reduction rules:

\[
\text{proj}_i \tau_1 \tau_2 (\text{Pair} \tau'_1 \tau'_2 V_1 V_2) \rightarrow V_i \quad (\delta_i)
\]

We then only need to verify that \(\delta_i\) preserves types and ensure progress.

Case Type preservation: Assume that \(\Gamma \vdash \text{proj}_i \tau_1 \tau_2 (\text{Pair} \tau'_1 \tau'_2 V_1 V_2) : \tau\). By inversion, it must be the case that \(\tau\) is equal to \(\tau_i\) and \(\Gamma \vdash V_i : \tau_i\) holds, which ensures our goal \(\Gamma \vdash V_i : \tau_i\).

Case Progress: Assume that \(\Gamma \vdash M : \tau\) and \(M\) is of the form \(\text{proj}_i \tau_1 \tau_2 V\). By the inversion lemma, \(\tau\) must be a product type \(\tau_1 \times \tau_2\) such that \(\Gamma \vdash V : \tau_1 \times \tau_2\). By the classification lemma, \(V\) must be a pair, i.e. of a form \(\text{Pair} \tau_1 \tau_2 V_1 V_2\). Hence, \(M\) reduces to \(V_i\) by \(\delta_i\).

Solution of Exercise 25

We introduce a new type constructor \(\text{bool}\), two nullary constructors \(\text{true}\) and \(\text{false}\) of type \(\text{bool}\) and one ternary destructor \(\text{ifcase}\) of type \(\forall \alpha. \text{bool} \to \alpha \to \alpha \to \alpha\) with two reduction rules:

\[
\begin{align*}
\text{ifcase} \tau \text{true} V_1 V_2 & \rightarrow V_1 \\
\text{ifcase} \tau \text{false} V_1 V_2 & \rightarrow V_2
\end{align*}
\]

This extension is sound.

However, it defines a strict semantics for the conditional, while a lazy semantics is expected: indeed, since the destructor is ternary, \(\text{ifcase} \tau V_0 [] M\) and \(\text{ifcase} \tau V_0 V_1 []\) are evaluations contexts, which allows to reduce the two branches before selecting the right one.

An easy fix is to introduce \(\text{iflazy}\) as syntactic sugar for

\[
(\text{ifcase} \tau M_0 (\lambda() : \text{unit}. M_1) (\lambda() : \text{unit}. M_2)) ()
\]

and exposing it to the user, while hiding the primitive \(\text{ifcase}\) from the user.

Solution of Exercise 26

1) We introduce a new unary type constructor \(\text{list}\); two constructors \(\text{Nil} \cdot\) and \(\text{Cons}\) of types \(\forall \alpha. \text{list} \alpha\) and \(\forall \alpha. \alpha \to \text{list} \alpha \to \text{list} \alpha\); and one destructor \(\text{matchlist} \cdots\) of type:

\[
\forall \alpha \beta. \text{list} \alpha \to \beta \to (\alpha \to \text{list} \alpha \to \beta) \to \beta
\]
4.7. OMITTED PROOFS AND ANSWERS TO EXERCISES

with the two reduction rules:

\[
\text{matchlist } \tau \ (\text{Nil } \tau') V_n V_c \rightarrow V_n \\
\text{matchlist } \tau \ (\text{Cons } \tau' V_h V_t) V_n V_c \rightarrow V_c V_h V_t
\]

2) Omitted.

Solution of Exercise 27

In ML, we may define the datatype:

\[
\text{type any } = \text{Fold of (any } \rightarrow \text{ any)}
\]

This can be simulated by adding a new type \(\text{any}\), a constructor \(\text{Any}\) and a destructor \(\text{unany}\) of types \((\text{any } \rightarrow \text{ any}) \rightarrow \text{ any}\) and \(\text{any } \rightarrow (\text{any } \rightarrow \text{ any})\), respectively, with the following reduction rule:

\[
\text{unfold } (\text{Fold } V) \rightarrow V
\]

Let us check soundness of this extension:

\[\text{Case Type preservation:}\] Assume that \(\Gamma \vdash \text{unfold } (\text{Fold } V) : \tau\). By inversion, we known that \(\tau\) is \(\text{any } \rightarrow \text{ any}\) and that \(\Gamma \vdash V : \text{any } \rightarrow \text{ any}\), which shows our goal \(\Gamma \vdash V : \tau\).

\[\text{Case Progress:}\] Assume that \(\Gamma \vdash \text{unfold } V : \tau\). By inversion, \(\tau\) must be \(\text{any } \rightarrow \text{ any}\) and \(\Gamma \vdash V : \text{any}\) holds. By classification, \(V\) must be \(\text{Fold } V_0\). Hence, \(\text{unfold } V\) reduces.

The fixpoint can be defined in the \(\lambda\)-calculus (or in ML with recursive types) as:

\[
\text{let } z\text{fix } g = (\text{fun } x \rightarrow x x) (\text{fun } z \rightarrow g (\text{fun } v \rightarrow z z v))
\]

We may implement \(z\text{fix}\) in ML without recursive types as:

\[
\text{let } z\text{fix } g = \\
(\text{fun } x \rightarrow \text{unfold } (x (\text{Fold } x))) \\
(\text{fun } z \rightarrow \text{Fold } (g (\text{fun } v \rightarrow \text{unfold } ((\text{unfold } z) z) v)))
\]

Proof of Lemma 16

Assume \(\Gamma, x : \tau_0, \Gamma' \vdash M : \tau\) (1) and \(\Gamma \vdash M_0 : \tau_0\) (2). We show \(\Gamma, \Gamma' \vdash [x \mapsto M_0] M : \tau\) (3). by induction and cases on \(M\) and applying the inversion lemma to (1).

\[\text{Case } M \text{ is } x:\] By (1), it must be the case that \(\tau\) is equal to \(\tau_0\). Hence, the goal (3) is \(\Gamma, \Gamma' \vdash M_0 : \tau_0\), which follows from the hypothesis (2) by weakening.

\[\text{Case } M \text{ is } y \text{ when } y \not\in x :\] By (1), \(y : \tau\) is in \(\text{dom}(\Gamma, x : \tau_0, \Gamma')\), actually in \(\text{dom}(\Gamma, \Gamma')\), since \(y\) is not \(x\). Hence the goal (3) follows by Rule \text{Var}.

\[\text{Case } M \text{ is } c:\] By (1), \(c : \tau\) is in \(\Delta\). Hence, the goal (3) follows by Rule \text{Var}.

Case M is $\lambda y : \tau_1. M_1$: By (1), τ is of the form $\tau_2 \rightarrow \tau_1$ and $\Gamma, x : \tau_0, \Gamma', y : \tau_2 \vdash M_1 : \tau_1$ holds. By induction hypothesis, we have $\Gamma, \Gamma', y : \tau_2 \vdash [x \mapsto M_0]M_1 : \tau_1$. By rule ΛM we have $\Gamma, \Gamma' \vdash \lambda y : \tau_2. [x \mapsto M_0]M_1 : \tau_1$, which is the goal (3).

Case M is $\Lambda \alpha. M_1$: By (1), we have $\Gamma, x : \tau, \Gamma', \alpha \vdash M_1 : \tau_1$ and τ is equal to $\forall \alpha. \tau_1$. By induction hypothesis, we have $\Gamma, \Gamma', \alpha \vdash [x \mapsto M_0]M_1 : \tau_1$. By rule ΛM we have $\Gamma \vdash \Lambda \alpha. [x \mapsto M_0]M_1 : \forall \alpha. \tau_1$, which is the goal (3).

Case M is $M_1 M_2$ or M is $M_1 \tau_1$: Immediate.

Proof of Lemma 17

The proof is by induction on M using inversion of the typing derivation of $\Gamma, \alpha, \Gamma' \vdash M : \tau$ (1). We write θ for $[\alpha \mapsto \tau]$. We must show $\Gamma, \theta \Gamma' \vdash \theta M : \theta \tau$ (2).

Case M is x: By (1), we have $x : \tau$ must be in Γ, α, Γ'. If $x : \tau$ is in Γ, then by well-formedness of types, α does not appear free in τ. Hence $\theta \tau$ is τ and $x : \theta \tau$ is in Γ. Otherwise, $x : \tau$ is in Γ' and $x : \theta \tau$ is in $\theta \Gamma'$. In both cases, $x : \theta \tau$ is in $\Gamma, \theta \Gamma'$. Hence, the conclusion follows by Rule ΛM.

Case M is c: By (1), we have $c : \tau$ is in Δ and τ is closed. Hence $\theta \tau$ is equal to τ and $c : \theta \tau$ is still in Δ. Thus, the conclusion (2) follows by Rule Const.

Case M is $\lambda x : \tau_0. M_1$: By (1) and inversion, we have $\Gamma, \alpha, \Gamma', x : \tau_0 \vdash M_1 : \tau_1$ where τ is $\tau_0 \rightarrow \tau_1$. By induction hypothesis, $\Gamma, \theta (\Gamma', x : \tau_0) \vdash M_1 : \tau_1$, i.e. $\Gamma, \theta \Gamma', x : \theta \tau_0 \vdash \theta M_1 : \theta \tau_1$. By Rule ΛM we have $\Gamma, \theta \Gamma' \vdash \lambda x : \theta \tau_0. \theta M_1 : \theta \tau_0 \rightarrow \theta \tau_1$, i.e. (2).

Case M is $\Lambda \beta. M_1$: By (1) and inversion, we have $\Gamma, \alpha, \Gamma', \beta \vdash M_1 : \tau_1$ where τ is $\forall \beta. \tau_1$. By induction hypothesis, we have $\Gamma, \theta (\Gamma', \beta) \vdash \theta M_1 : \theta \tau_1$, which is equal to $\Gamma, \theta \Gamma', \beta \vdash \theta M_1 : \theta \tau_1$. By rule ΛM, we $\Gamma, \theta \Gamma' \vdash \Lambda \beta. \theta M_1 : \forall \beta. \theta \tau$, i.e. i.e. (2).

Case M is $M_1 M_2$ or M is $M_1 \tau_1$: Immediate.

Solution of Exercise 30

Take, for instance, $\lambda f. \lambda x. \lambda y. (f y, f x)$ for a_1 (notice the inverse order of fields in the pair) and $\lambda f. \lambda x. \lambda y. (f (f x), f (f y))$ for a_2.

Solution of Exercise 31

Choose, for instance,

$$\Lambda \alpha_1. \Lambda \alpha_2. \Lambda \varphi_1. \Lambda \varphi_2. (\forall \alpha. \varphi_1(\alpha) \rightarrow \varphi_2(\alpha)) \rightarrow \varphi_1(\alpha_1) \rightarrow \varphi_1(\alpha_2) \rightarrow \varphi_2(\alpha_1) \times \varphi_2(\alpha_1)$$

for τ_0. We recover τ_1 by choosing the constant functions $\lambda \alpha. \alpha_i$ for φ_i and τ_2 by choosing the identity $\lambda \alpha. \alpha$ for both φ_1 and φ_2.

\[\]
Solution of Exercise 32

1) Both directions follow from rule \text{Inst-Gen}, just applying the substitution $\alpha \mapsto \alpha$ for the direct implication and just generalizing over α for the reverse.

2) Rule \text{Distrib-Right} is a particular case of \text{Distributivity} indeed. Assuming $\alpha \notin \text{ftv}(\tau_1)$, and using the previous equivalence (1), we have

\[
\forall \alpha. (\tau_1 \to \tau_2) \leq (\forall \alpha. \tau_1) \to (\forall \alpha. \tau_2) \leq \tau_1 \to (\forall \alpha. \tau_2)
\]

Conversely, we have the following derivation:

\[
\frac{\text{CONGRUENCE}}{\forall \alpha. (\tau_1 \to \tau_2) \leq \tau_1 \to (\forall \alpha. \tau_2)}
\]

Solution of Exercise 33

We extend the \lambdacalculus with a binary constructor \textit{Pair} and two unary destructors proj_i for $i \in \{1, 2\}$ with the δ-rules:

\[
\text{proj}_i (\text{Pair} \ v_1 \ v_2) \rightarrow_\delta v_i
\]

The reduction $\text{proj}_1 (\text{Pair} \ v \ (\lambda x. \text{Pair} \ Pair)) \rightarrow_\delta v$ is correct, even though the right component of the pair is ill-typed, hence δ-reduction is larger than the type-erasure of δ-reduction on explicitly typed terms. Still, it contains it (direct simulation); and it does not contains more (inverse simulation) when we restrict to well-typed expressions. Both cases are really easy:

\[
\text{Proof}: \text{Let } M \text{ be of the form } \text{proj}_i \tau_1 \tau_2 V_0 \text{ such that } \Gamma \vdash M : \tau. \text{ By inversion of typing rules, } \Gamma \vdash V_0 : \tau_1 \times \tau_2. \text{ By the classification lemma, } V_0 \text{ is of the form } \text{Pair} \ \tau_1 \ \tau_2 \ V_1 \ \ V_2. \text{ Observe that } M \text{ reduces to } V_i \ (1); \text{ and } [M] \text{ is } \text{proj}_i (\text{pair} [V_1] [V_2]) \text{ which reduces to } [V_i] \ (2).
\]

\text{Case direct}: Assume $M \rightarrow_\delta M'$. Then, M' is V_i and by (2), $[M] \rightarrow_\delta [V_i]$.

\text{Case inverse}: Assume that $[M] \rightarrow_\delta a$. Since reduction is deterministic in the untyped calculus a must be $[V_i]$. Hence, we may take V_i for M'.
Proof of Lemma 21

Assume \(\Gamma \vdash M : \tau \) and \(M \rightarrow M' \). We reason by induction on the proof of reduction.

Case \((\Lambda \alpha) M_0 \) \(\tau \rightarrow \iota M_0[\tau/\alpha] \): Observe that both \(M \) and \(M' \) erases to \([M_0]\).

Case \((\lambda x. M_1) M_2 \rightarrow \beta M_1[M_2/x] \): Then \(M \) erases to \((\lambda x. [M_1]) [M_1] \) which reduces to \([M_1][[M_2]/x] \) which is the erasure of \(M' \)

Case \(\text{proj}_i \tau_1 \tau_2 (V_1, V_2) \rightarrow \delta V_i \): The conclusion follows by assumption on \(\delta \)-rules.

Case \(M \) is \(E[N] \) and \(M' \) is \(E[N'] \) and \(N \rightarrow \iota N' \): By induction hypothesis, we know that a certain relation (equality when \(z = \iota \) or \(\rightarrow \iota \) otherwise) holds between \([M]\) and \([N]\). By rule congruence for \(\iota \) and rule \text{cont} \(\delta \)-rules otherwise, the same relation holds between \([E[M]]\) and \([E[N]]\), i.e. between \([M]\) and \([N]\).

Proof of Lemma 25

Case \(v \) is \(\lambda x.a_1 \): By inversion of type erasure, \(M \) is of the form \(\mathcal{R}[\lambda x:\tau. M_1] \) where \([M_1]\) is \(a_1 \). Since \(\mathcal{R} \) is \(\iota \)-normal, it is of the form \(\Lambda \overline{\tau}.[] \overline{\tau} \). since \(\lambda x:\tau. M_1 \) is an arrow type, \(\overline{\tau} \) must be empty.

Case \(v \) is a partial application \(c v_1 \ldots v_n \): We show that then \(V \) is \(\mathcal{R}[c \overline{\tau} V_1 \ldots V_n] \) with \([V_i] = v_i \) by induction on \(n \). If \(n \) is zero, then by inversion of type erasure, \(M \) is of the form \(\mathcal{R}[c] \) as expected. Otherwise, by inversion of type erasure, \(M \) is an application \(\mathcal{R}_n[M_1 M_2] \) where \([M_1]\) is the partial application \(c v_1 \ldots v_{n-1} \) and \([M_2]\) is \(v_n \). By induction hypothesis \(M_1 \) is \(\mathcal{R}_1[c \overline{\tau} V_1 \ldots V_{n-1}] \) with \([V_i] = v_i \). Since \(\mathcal{R}_1 \) is in an evaluation context, it is \(\iota \)-normal, hence of the form \(\Lambda \overline{\alpha}_1.[] \overline{\alpha}_1 \). From the arity of \(c \), the type of \(M_1 \) is an arrow type. Thus \(\overline{\alpha}_1 \) must be empty. Since \(\mathcal{R} \) is applied to \(M_2 \) it cannot be a type abstraction either. Hence, \(\mathcal{R}_1 \) is empty. Moreover, by induction hypothesis \(M_2 \) is a value \(V_n \). Hence \(M \) is \(\mathcal{R}_n[c \overline{\tau} V_1 \ldots V_{n-1} V_n] \), as expected.

Proof of Corollary 26

By Lemma 23 \(M \) is of the form \(\mathcal{R}[M_0 M_2] \) where \([M_0]\) is a value \(v \), which is either \(\lambda x.a_1 \) or the partial application \(c v_1 \ldots v_{n-1} \) and \([M_2]\) is \(v \). Since \(\mathcal{R} \) is an evaluation context, \(M_0 M_2 \) is in \(\iota \)-normal form. Since \([[]] M_2 \) is an evaluation context, \(M_0 \) is in \(\iota \)-normal form.

By Lemma 25 \(M_0 \) a value \(V_0 \). Since \(V_0 [[]] \) is an evaluation context, \(M_2 \) is in \(\iota \)-normal form.

By 25 it must be a value \(V_0 \).

Moreover, by Lemma 25 \(V_0 \) is either

\(\Lambda \overline{\tau}.\lambda x:\tau. M_1 \). Since \(V_0 \) is in application position \(\overline{\tau} \) must actually be empty. Then \(M \) is of the form \(\mathcal{R}[(\lambda x:\tau. M_1) V] \), as expected.
• $\mathcal{R}_0[c\overline{\tau}V_1\ldots V_{n-1}]$. Since V_0 is in an evaluation \mathcal{R}_0 is ν-normal, thus of the form $\Lambda\overline{\alpha}.[]\overline{\tau}_0$. Since V_0 in application position $\overline{\alpha}$ must be empty. From the arity of d, the application is partial and has an arrow type, hence $\overline{\tau}_0$ must be empty. Then, taking V for V_n, the term M is of the form $\mathcal{R}[c\overline{\tau}V_1\ldots V_n]$, as expected.

Solution of Exercise 34

Take $(\lambda x: \tau_0. \Lambda\alpha.\lambda\alpha:y. y)M_0$ for M where $\Gamma \vdash M_0 : \tau_0$. We have $\Gamma \vdash F M : \forall\alpha.\alpha \rightarrow \alpha$ where M is syntactically in ML, but cannot be typed in ML because function bodies cannot have polymorphic types.
Chapter 5

Existential types

Compilation is type-preserving when each intermediate language is explicitly typed, and each compilation phase transforms a typed program into a typed program in the next intermediate language.

Type preserving compilation is interesting for several reasons: it can help debug the compiler; types can be used to drive optimizations; types can also be used to produce proof-carrying code; proving that types are preserved during compilation can be the first step towards proving that the semantics is preserved Chlipala (2007).

Besides, type-preserving compilation is quite challenging as it exhibits an encoding of programming constructs into programming language that usually requires richer type systems. Sometimes, an encoding later becomes a programming idiom that is used directly in the source language. There are several examples: closure conversion requires an extension of the language with existential types, which happens to very useful on their own. Closures are themselves a simple form of objects. Defunctionalization may be done manually on some particular programs, e.g. in web applications to monitor the computation.

A classic paper by Morrisett et al. 1999 shows how to go from System \mathcal{F} to “Typed Assembly Language”, while preserving types along the way. Its main passes are:

1. $\textit{CPS conversion}$ fixes the order of evaluation, names intermediate computations, and makes all function calls tail calls;

2. $\textit{closure conversion}$ makes environments and closures explicit, and produces a program where all functions are closed;

3. allocation and initialization of tuples is made explicit;

4. the calling convention is made explicit, and variables are replaced with (an unbounded number of) machine registers.
In general, a type-preserving compilation phase involves not only a translation of terms, mapping M to $[M]$, but also a translation of types, mapping τ to $[\tau]$, with the property:

$$\Gamma \vdash M : \tau \implies [\Gamma] \vdash [M] : [\tau]$$

The translation of types carries a lot of information: examining it is often enough to guess what the translation of terms will be.

5.1 Towards typed closure conversion

First-class functions may appear in the body of other functions. Hence, their own body may contain free variables that will be bound to values during the evaluation in the execution environment. Because they can be returned as values, and thus used outside of their definition environment, they must store their execution environment in their value. A closure is the packaging of the code of a first-class function with its runtime environment, so that it becomes closed, i.e. independent of the runtime environment and can be passed to another function and applied in another runtime environment. Closures can also be used to represent recursive functions and objects in the object-as-record-of-methods paradigm.

In the following, the source calculus has unary λ-abstractions, which can have free variables, while the target calculus has binary λ-abstractions, which must be closed. In the target language, we also use pattern matching over tuples. The translation will be naive, insofar as it will not handle functions of multiple arguments in a special way. One could argue that this is a feature, not a limitation, and that “uncurrying” (if desired) should be a separate type-preserving pass anyway. But closure conversion can also be easily extended to n-ary functions.

There are at least two variants of closure conversion: In the closure-passing variant, the closure and the environment are a single memory block; In the environment-passing variant, the environment is a separate block, to which the closure points. The impact of this choice on the term translations is minor. Closure-passing better supports simple recursive functions; but this is less obvious with mutually recursive ones. Closure-passing optimizes the case of closed functions: they are no need to create a closure—the code pointer can be passed directly to the target function. However, its impact on the type translations is more important: the closure-passing variant requires more type-theoretic machinery (recursive types and rows).

The closure-passing variant is as follows:

$$[\lambda x. a] = \text{let code} = \lambda (\text{clo}, x). \text{let } (\ldots, x_1, \ldots, x_n) = \text{clo} \text{ in } \text{proj}_0 \text{ (code, [a]) in } \text{code (clo, [a_1])}$$

$$[a_1 a_2] = \text{let clo} = [a_1] \text{ in } \text{let code} = \text{proj}_0 \text{ clo in code (clo, [a_2])}$$
where \(\{x_1, \ldots, x_n\}\) is \(\text{fv}(\lambda x. a)\) (the variables \(\text{code}\) and \(\text{clo}\) must be suitably fresh). Note that the layout of the environment must be known only at the closure allocation site, not at the call site. In particular, \(\text{proj}_0\) \(\text{clo}\) need not know the size of \(\text{clo}\).

The environment-passing variant is as follows:

\[
\begin{align*}
[\lambda x. a] &= \text{let } \text{code} = \lambda (\text{env}, x). \text{let } (x_1, \ldots, x_n) = \text{env} \text{ in } \llbracket a \rrbracket \text{ in } \\
&\quad (\text{code}, (x_1, \ldots, x_n)) \\
[a_1 a_2] &= \text{let } (\text{code}, \text{env}) = \llbracket a_1 \rrbracket \text{ in } \\
&\quad \text{code } (\text{env}, \llbracket a_2 \rrbracket)
\end{align*}
\]

where \(\{x_1, \ldots, x_n\}\) = \(\text{fv}(\lambda x. a)\).

To understand type-preserving closure conversion, let us first focus on the environment-passing variant. How can closure conversion be made \(\text{type-preserving}\)? The key issue is to find a sensible definition of the type translation. In particular, what is the translation of a function type, \(\llbracket \tau_1 \rightarrow \tau_2 \rrbracket\)? Let us examine the closure allocation code again. Suppose \(\Gamma \vdash \lambda x. a : \tau_1 \rightarrow \tau_2\). Suppose, without loss of generality (see Remark 5), that \(\text{dom}(\Gamma)\) is exactly \(\text{fv}(\lambda x. a)\), i.e. \(\{x_1, \ldots, x_n\}\). If \(\Gamma\) is \(x_1 : \tau_1; \ldots; x_n : \tau_n\), we write \(\llbracket \Gamma \rrbracket\) for \(x_1 : \llbracket \tau_1 \rrbracket; \ldots; x_n : \llbracket \tau_n \rrbracket\).

By abuse of notation, we also use \(\llbracket \Gamma \rrbracket\) in a type position to mean the tuple type \(\llbracket \tau_1 \rrbracket \times \cdots \times \llbracket \tau_n \rrbracket\).

By hypothesis, we have \(\llbracket \Gamma \rrbracket, x : \llbracket \tau_1 \rrbracket \vdash \llbracket a \rrbracket : \llbracket \tau_2 \rrbracket\), so \(\text{env}\) has type \(\llbracket \Gamma \rrbracket\), \(\text{code}\) has type \((\llbracket \Gamma \rrbracket \times \llbracket \tau_1 \rrbracket) \rightarrow \llbracket \tau_2 \rrbracket\), and the entire closure has type \(((\llbracket \Gamma \rrbracket \times \llbracket \tau_1 \rrbracket) \rightarrow \llbracket \tau_2 \rrbracket) \times \llbracket \Gamma \rrbracket\). So, can we adopt \(((\llbracket \Gamma \rrbracket \times \llbracket \tau_1 \rrbracket) \rightarrow \llbracket \tau_2 \rrbracket) \times \llbracket \Gamma \rrbracket\) as a definition of \(\llbracket \tau_1 \rightarrow \tau_2 \rrbracket\)?

Naturally not. This definition is mathematically ill-formed, as we cannot use \(\Gamma\) out of the blue! That is, we cannot have a translation of \(\llbracket \tau_1 \rightarrow \tau_2 \rrbracket\) that depends on the type of free variables of \(a\)! Indeed, we need a \emph{uniform translation of types}, not just because it is nice to have one, but because it describes a \emph{uniform calling convention}. If closures with distinct environment sizes or layouts receive distinct types, then we will be unable to translate well-typed code: if \(\ldots \text{ then } \lambda x. x + y \text{ else } \lambda x. x\) Furthermore, we want function invocations to be translated uniformly, without knowledge of the size and layout of the closure’s environment.

The only sensible solution is: \(\exists \alpha. ((\alpha \times \llbracket \tau_1 \rrbracket) \rightarrow \llbracket \tau_2 \rrbracket) \times \alpha\). An \emph{existential quantification} over the type of the environment abstracts away the differences in size and layout. Enough information is retained to ensure that the application of the code to the environment is valid: this is expressed by letting the variable \(\alpha\) occur twice on the right-hand side.

The existential quantification also provides a form of \emph{security}. The caller cannot do anything with the environment except pass it as an argument to the code. In particular, it cannot inspect or modify the environment. For instance, in the source language, the following coding style guarantees that \(x\) remains even, no matter how \(f\) is used:

\[
\text{let } f = \text{let } x = \text{ref } 0 \text{ in } \lambda(). x := (!x + 2); !x
\]

After closure conversion, the reference \(x\) is reachable via the closure of \(f\). A malicious, untyped client could write an odd value to \(x\). However, a \emph{well-typed} client is unable to do so. This encoding is not just type-preserving, but also \emph{fully abstract}: it preserves (a typed
version of) observational equivalence (Ahmed and Blume, 2008).

Remark 5 In order to support the hypothesis \(\text{dom}(\Gamma) = \text{fv}(\lambda x. a) \) at every \(\lambda \)-abstraction, it is possible to introduce an (admissible) weakening rule:

\[
\text{Weakening} \\
\frac{\Gamma_1; \Gamma_2 \vdash a : \tau \quad x \not\gamma a}{\Gamma_1; x : \tau'; \Gamma_2 \vdash a : \tau}
\]

If the weakening rule is applied eagerly at every \(\lambda \)-abstraction, then the hypothesis is met, and closures have *minimal environments*. (In some cases, one may not use minimal environments, *e.g.* to allow sharing of environments between several closures.)

5.2 Existential types

One can extend System \(\text{F} \) with *existential types*, in addition to universals:

\[
\tau ::= \ldots | \exists \alpha. \tau
\]

As in the case of universals, there are *type-passing* and *type-erasing* interpretations of the terms and typing rules and, in the latter interpretation, there are *explicit* and *implicit* versions. Let us first look at the type-erasing interpretation with an explicit notation for introducing and eliminating existential types.

5.2.1 Existential types in Church style (explicitly typed)

The existential quantifier are introduced and eliminated as follows:

\[
\begin{align*}
\text{Pack} & : \quad \Gamma \vdash M : [\alpha \mapsto \tau'] \tau \\
\Gamma \vdash \text{pack} \ \tau', M \ \text{as} \ \exists \alpha. \tau & : \exists \alpha. \tau \\
\text{Unpack} & : \quad \Gamma \vdash M_1 : \exists \alpha. \tau_1 \\
\Gamma, \alpha, x : \tau_1 \vdash M_2 : \tau_2 & : \quad \alpha \not\gamma \tau_2 \quad \Gamma \vdash \text{let} \ \alpha, x = \text{unpack} \ M_1 \ \text{in} \ M_2 : \tau_2 \\
\end{align*}
\]

The side condition \(\alpha \not\gamma \tau_2 \) is *mandatory* here to ensure well-formedness of the conclusion. If well-formedness conditions were explicit in judgments, this could be equivalently defined as \(\Gamma \vdash \tau_2 \), as it would imply \(\alpha \not\gamma \tau_2 \) since the last premise implies \(\alpha \not\gamma \Gamma \).

Notice the *imperfect* duality between existential and universals, reminded below:

\[
\begin{align*}
\text{TAB} & : \quad \Gamma, \alpha \vdash M : \tau \\
\Gamma \vdash \Lambda \alpha. \ M : \forall \alpha. \tau & \\
\text{TAPP} & : \quad \Gamma \vdash M \ : \forall \alpha. \tau \\
\Gamma \vdash M : [\alpha \mapsto \tau'] \tau & \\
\end{align*}
\]

This suggests a simpler elimination form, perhaps like this:

\[
\Gamma \vdash M : \exists \alpha. \tau \\
\Gamma, \alpha \vdash \text{unpack} \ M : \tau
\]

Broken!
Informally, this could mean that, if M has type τ for some unknown α, then it has type τ, where α is “fresh”. Unfortunately, this is a broken rule, as we could immediately universally quantify over α and conclude that $\Gamma \vdash M : \forall \alpha. \tau$. This is nonsense! Replacing the premise $\Gamma, \alpha \vdash M : \exists \alpha. \tau$ by the conjunction $\Gamma \vdash M : \exists \alpha. \tau$ and $\alpha \in \text{dom}(\Gamma)$ would make the rule even more permissive, so it wouldn’t help.

A correct elimination rule must force the existential package to be used in a way that does not rely on the value of α. Hence, the elimination rule must have control over the user or continuation of the package—that is, over the term M_2. The restriction $\alpha \neq \tau_2$ prevents writing “let $\alpha, x = \text{unpack } M_1$ in x”, which would be equivalent to the unsound “unpack M” discussed above. The fact that α is bound within M_2 forces it to be treated abstractly. In fact, M_2 must be polymorphic in α. The rule could be written:

$$
\Gamma \vdash M_1 : \exists \alpha. \tau_1 \quad \Gamma \vdash \Lambda \alpha. \lambda x. M_2 : \forall \alpha. \tau_1 \rightarrow \tau_2 \quad \alpha \neq \tau_2
$$

or, more economically:

$$
\Gamma \vdash M_1 : \exists \alpha. \tau_1 \quad \Gamma \vdash M_0 : \forall \alpha. \tau_1 \rightarrow \tau_2 \quad \alpha \neq \tau_2
$$

where M_0 would evaluate to a value of the form $\Lambda \alpha. \lambda x. M_2$.

One could even view “unpack” as a constant with all the types $(\exists \alpha. \tau_1) \rightarrow (\forall \alpha. (\tau_1 \rightarrow \tau_2)) \rightarrow \tau_2$. Or, letting β range over τ_2, all types $\forall \beta. (\exists \alpha. \tau) \rightarrow (\forall \alpha. (\tau \rightarrow \beta)) \rightarrow \beta$ or even better, $\exists \alpha. \tau \rightarrow \forall \beta. ((\forall \alpha. (\tau \rightarrow \beta)) \rightarrow \beta)$, since β should not occur free in τ. We thus introduce a family of constants “$\text{unpack}_{\exists \alpha. \tau}$” with type $\exists \alpha. \tau \rightarrow \forall \beta. ((\forall \alpha. (\tau \rightarrow \beta)) \rightarrow \beta)$. Notice that the variable β, which stands for τ_2, is bound prior to α, so it naturally cannot be instantiated to a type that refers to α. This reflects the side condition $\alpha \neq \tau_2$. If desired, “$\text{pack}_{\exists \alpha. \tau}$” could also be viewed as a constant of type $\forall \alpha. (\tau \rightarrow \exists \alpha. \tau)$. Similarly, we may introduce a constant pack with all the types $[\alpha \mapsto \tau'] \tau \rightarrow \exists \alpha. \tau$, which we may factor as the following types $\forall \alpha. (\tau \rightarrow \exists \alpha. \tau)$.

In summary, System F with existential types can also be presented by introducing two families of constants with the following types:

$$
\text{pack}_{\exists \alpha. \tau} : \forall \alpha. (\tau \rightarrow \exists \alpha. \tau) \quad \text{unpack}_{\exists \alpha. \tau} : \exists \alpha. \tau \rightarrow \forall \beta. ((\forall \alpha. (\tau \rightarrow \beta)) \rightarrow \beta)
$$

These can be read as follows: for any α, if you have a τ, then, for some α, you have a τ; conversely, if, for some α, you have a τ, then, for any β, if you wish to obtain a β out of $\exists \alpha. \tau$, you must present a function which, for any α, obtains a β out of a τ. This is somewhat reminiscent of ordinary first-order logic: $\exists x.F$ is equivalent to, and can be defined as, $\neg (\forall x. \neg F)$.

One can go one step further and entirely encode existential types into universal types. This encoding is actually a small example of type-preserving translation! The type transla-
CHAPTER 5. EXISTENTIAL TYPES

Double negation:

\[
\begin{align*}
\llbracket \exists \alpha. \tau \rrbracket &= \forall \beta. ((\forall \alpha. (\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \\
\text{if } \beta \neq \tau
\end{align*}
\]

There is actually little choice for the term translation, if the translation is to be type-preserving:

\[
\begin{align*}
\llbracket \text{pack}_{\exists \alpha. \tau} \rrbracket &:= \forall \alpha. (\llbracket \tau \rrbracket \rightarrow \llbracket \exists \alpha. \tau \rrbracket) = \Lambda \alpha. \Lambda x: \llbracket \tau \rrbracket. \Lambda \beta. \Lambda k: \forall \alpha. (\llbracket \tau \rrbracket \rightarrow \beta). k \alpha x \\
\llbracket \text{unpack}_{\exists \alpha. \tau} \rrbracket &:= \llbracket \exists \alpha. \tau \rrbracket \rightarrow \forall \beta. ((\forall \alpha. (\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) = \lambda x: \llbracket \exists \alpha. \tau \rrbracket. x
\end{align*}
\]

This encoding is a continuation-passing transform. This encoding is due to Reynolds 1983, although it has more ancient roots in logic.

When existential are presented as constrants, their semantics is defined by seeing \(\text{pack}_{\exists \alpha. \tau}\) as a unary constructor and \(\text{unpack}_{\exists \alpha. \tau}\) as a unary destructor with the following reduction rule:

\[
\begin{align*}
\text{unpack}_{\exists \alpha. \tau} \circ (\text{pack}_{\exists \alpha. \tau} \tau' V) &\rightarrow \Lambda \beta. \lambda y: \forall \alpha. \tau \rightarrow \beta. y \tau' V
\end{align*}
\]
(\(\delta_3\))

Exercise 35 Show that this \(\delta\)-rule satisfies the progress and subject reduction assumptions for constants with the types in \(\Delta_3\). (You may assume that the standard lemmas still hold.)

(Solution p. [144])

Exercise 36 The \(\delta_3\) reduction for existential is permissive it allows reducing of ill-typed terms. Give a more restrictive version of the rule. What will need to be changed in the proof of subject reduction and progress for the \(\delta\)-rule (Exercise 35)?

(Solution p. [144])

Notice that our \(\delta_3\)-reduction reduces an “unpack of a pack” to a polymorphic function that applies its argument to the packed value. This is still a form of continuation-passing-style encoding. It seems more natural to treat \(\text{unpack}_{\exists \alpha. \tau}\) as a binary destructor to avoid this intermediate step and have the more intuitive reduction rule:

\[
\begin{align*}
\text{unpack}_{\exists \alpha. \tau} \circ (\text{pack}_{\exists \alpha. \tau} \tau' V) \tau_1 (\Lambda \alpha. \lambda x: \tau. M) &\rightarrow [x \mapsto V][\alpha \mapsto \tau'] M
\end{align*}
\]
(\(\delta_3\))

However, this does not fit in our framework and notion of arity for constants where all type arguments must be passed first and not interleaved with value arguments. Our framework could be extended to the above \(\delta\)-rules for existentials, but the presentation would become cumbersome.

Alternatively, if existential are primitive, their semantics is defined by extending values and evaluation contexts as follows:

\[
\begin{align*}
V &::= \ldots \mid \text{pack } \tau', V \text{ as } \tau \\
E &::= \ldots \mid \text{pack } \tau', [] \text{ as } \tau \mid \text{let } \alpha, x = \text{unpack } [] \text{ in } M
\end{align*}
\]
and by adding the following reduction rule:

\[
\text{let } \alpha, x = \text{unpack } (\text{pack } \tau', V \text{ as } \tau) \text{ in } M \rightarrow [\alpha \mapsto \tau'][x \mapsto V]M
\]

Exercise 37 Check that the proofs of subject reduction and progress for System F extend to existential types. (Just check the new cases, assuming that the standard lemmas still hold.)

The reduction rule for existential destructs its arguments. Hence, \(\text{let } \alpha, x = \text{unpack } M_1 \text{ in } M_2\) cannot be reduced unless \(M_1\) is itself a packed expression, which is indeed the case when \(M_1\) is a value (or in head normal form). This contrasts with \(\text{let } x : \tau = M_1 \text{ in } M_2\) where \(M_1\) need not be evaluated and may be an application (e.g. in call-by-name or with strong reduction).

Exercise 38 The reduction of \(\text{let } \alpha, x = \text{unpack } M_1 \text{ in } M_2\) could be problematic when \(M_1\) is not a value. Illustrate this on an example (You may use the following hint if needed: lanoitidnocaesu.)

(Solution p. 144)

One may wonder whether the pack construct is not too verbose: isn’t the type witness type annotation \(\tau'\) in rule \(\text{Pack}\) superfluous? The type \(\tau_0\) of \(M\) is fully determined by \(M\) and the given type \(\exists \alpha. \tau\) of the packed value. Checking that \(\tau_0\) is of the form \([\alpha \mapsto \tau']\tau\) is the matching problem for second-order types, which is simple. However, the reduction rule need the witness type \(\tau'\). If it were not available, it would have to be computed during reduction. The reduction rule would then not be pure rewriting. The explicitly-typed language need the witness type for simplicity, while in the surface language, it could be omitted and reconstructed by second-order matching.

5.2.2 Implicitly-typed existential types

Intuitively, pack and unpack are just type information that can be dropped by type erasure. More precisely, the erasure of \(\text{pack } \tau', M\) as \(\exists \alpha. \tau \exists \alpha. \tau\) is \(M\) and the erasure of \(\text{let } \alpha, x = \text{unpack } M_1 \text{ in } M_2\) is a let-binding \(\text{let } x = M_1 \text{ in } M_2\). After type-erasure, the following typing rules for existential types in implicit-typed System F:

\[
\begin{align*}
\text{If-Unpack} & \quad \Gamma \vdash a_1 : \exists \alpha. \tau_1 \quad \Gamma, \alpha, x : \tau_1 \vdash a_2 : \tau_2 \quad \alpha \neq \tau_2 \\
\Gamma & \vdash \text{let } x = a_1 \text{ in } a_2 : \tau_2 \\
\text{If-Pack} & \quad \Gamma \vdash a : [\alpha \mapsto \tau']\tau \\
\Gamma & \vdash a : \exists \alpha. \tau
\end{align*}
\]

Notice, that the let-binding is not typechecked as syntactic sugar for an immediate application. Its semantics remains the same.

\[
E ::= \ldots \text{let } x = [] \text{ in } M \\
\text{let } x = V \text{ in } M \rightarrow [x \mapsto V]M
\]

Is the semantics still type-erasing? Yes, it is, but there is a subtlety! This is only true in call-by-value. In a call-by-name semantics, a let-bound expression is not reduced prior to
substitution of the argument, that is, the rule would be:

\[
\text{let } x = a_1 \text{ in } a_2 \rightarrow [x \mapsto a_1]a_2
\]

With existential types, this breaks subject reduction! This was first noticed by Sørensen and Urzyczyn (2006). See also Fujita and Schubert, 2009, §9).

To see this, let \(\tau_0 \) be \(\exists \alpha. (\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha) \) and let \(v_0 \) be a value of type \(\text{bool} \). Then, let \(v_1 \) and \(v_2 \) two values of type \(\tau_0 \) with incompatible witness types, taking for instance, \(\lambda f. \lambda x. 1+ (f \ (1 + x)) \) and \(\lambda f. \lambda x. \text{not} \ (f \ (\text{not} \ x)) \). Let \(v \) be the function \(\lambda b. \text{if } b \text{ then } v_1 \text{ else } v_2 \) of type \(\text{bool} \rightarrow \tau_0 \), which returns either one of \(V_1 \) or \(V_2 \) depending on its argument \(b \). We then have the reduction

\[
a_1 = \text{let } x = v \ v_0 \text{ in } x \ (x \ (\lambda y. \ y)) \rightarrow v \ v_0 \ (v \ v_0 \ (\lambda y. \ y)) = a_2
\]

The typing judgment \(\emptyset \vdash a_1 : \exists \alpha. \alpha \rightarrow \alpha \) holds, while \(\emptyset \vdash a_2 : \tau \) does not hold for any \(\tau \). Indeed, the term \(a_1 \) is well-typed since \(v \ v_0 \) has type \(\tau_0 \), hence \(x \) can be assumed of type \((\beta \rightarrow \beta) \rightarrow (\beta \rightarrow \beta) \) for some unknown type \(\beta \) and \(\lambda y. y \) is of type \(\beta \rightarrow \beta \). However, without the outer existential type \(v \ v_0 \) can only be typed with \((\forall \alpha. \alpha \rightarrow \alpha) \rightarrow \exists \alpha. (\alpha \rightarrow \alpha) \), because the value returned by the function need different witnesses for \(\alpha \). This is demanding too much on its argument and the outer application is ill-typed.

One may wonder whether the syntax should not allow the implicit introduction of unpacking instead. For instance, one could argue that if some expression is the expansion of a well-typed let-binding, then it should also be well-typed:

\[
\begin{array}{c}
\Gamma \vdash a_1 : \exists \alpha. \tau_1 \\
\Gamma, \alpha, x : \tau_1 \vdash a_2 : \tau_2 \\
\alpha \neq \tau_2
\end{array}
\rightarrow
\Gamma \vdash [x \mapsto a_1]a_2 : \tau_2
\]

However, this rule is not quite satisfactory as it does not have a logical flavor. Moreover, it fixes the previous example, but does not help with the general case: Pick \(a_1 \) that is not yet a value after one reduction step. Then, after let-expansion reduce one of the two occurrences of \(a_1 \). The result is no longer of the form \([x \mapsto a_1]a_2 \).

In summary, existential types are tricky: The subject reduction property breaks if reduction is not restricted to expressions in head-normal forms. Unrestricted reduction is still safe because well-typedness may eventually be recovered by further reduction steps—so that progress will never break.

Interestingly, the CPS encoding of existential types (1) enforces the evaluation of the packed value (2) before it can be unpacked (3) and substituted (4):

\[
\begin{align*}
\text{[unpack } a_1 (\lambda x. a_2)\text{]} & = [a_1] (\lambda x. [a_2]) & \quad (1) \\
& \rightarrow (\lambda k. [a_2] k) (\lambda x. [a_2]) & \quad (2) \\
& \rightarrow (\lambda x. [a_2]) [a] & \quad (3) \\
& \rightarrow [x \mapsto [a]][a_2] & \quad (4)
\end{align*}
\]

In the call-by-value setting, \(\lambda k. [a] k \) would come from the reduction of \(\text{[pack } a\text{]} \), i.e. is \((\lambda k. \lambda x. k \ x) [a] \), so that \(a \) is always a value \(v \). However, \(a \) need not be a value. What is
5.2. EXISTENTIAL TYPES

essential is again that \(a \) be reduced to some head normal form \(\lambda k. [a] k \).

5.2.3 Existential types in ML

What if one wished to extend ML with existential types? Full type inference for existential types is undecidable, just like type inference for universals. However, introducing existential types in ML is easy if one is willing to rely on user-supplied annotations that indicate where to pack and unpack.

This iso-existential approach was suggested by L"aufer and Odersky (1994). Iso-existential types are explicitly declared, much as datatypes:

\[
D \overset{\sim}{\approx} \exists \bar{\beta}. \tau \quad \text{if } \text{ftv}(\tau) \subseteq \bar{\alpha} \cup \bar{\beta} \quad \text{and} \quad \bar{\alpha} \not\# \bar{\beta}
\]

This introduces two constants, with the following type schemes:

\[
\text{pack}_D : \forall \bar{\alpha} \bar{\beta}. \tau \to D \bar{\alpha} \quad \text{unpack}_D : \forall \bar{\alpha} \bar{\gamma}. D \bar{\alpha} \to (\forall \bar{\beta}. (\tau \to \bar{\gamma})) \to \bar{\gamma}
\]

(Compare with basic iso-recursive types, where \(\bar{\beta} = \emptyset \).)

Unfortunately, the “type scheme” of \(\text{unpack}_D \) is not an ML type scheme. A solution is to make \(\text{unpack}_D \) a binary primitive construct, rather than a constant, with an ad hoc typing rule:

\[
\Gamma \vdash M_1 : D \bar{\tau} \quad \Gamma \vdash M_2 : \forall \bar{\beta}. ([\bar{\alpha} \mapsto \bar{\tau}] \tau \to \tau_2) \quad \bar{\beta} \not\# \bar{\tau}, \tau_2
\]

\[
\Gamma \vdash \text{unpack}_D M_1 M_2 : \tau_2
\]

where \(D \bar{\alpha} \approx \exists \bar{\beta}. \tau \)

We have seen a version of this rule in System F earlier; this in an ML version. The term \(M_2 \) must be polymorphic, which \texttt{case} can prove.

Iso-existential types are perfectly compatible with ML type inference. The constant \(\text{pack}_D \) admits an ML type scheme, so it is not problematic. The construct \(\text{unpack}_D \) leads to this constraint generation rule (cf. §5):

\[
\langle \text{unpack}_D M_1 M_2 : \tau_2 \rangle = \exists \bar{\alpha}. (\langle M_1 : D \bar{\alpha} \rangle \land \forall \bar{\beta}. \langle M_2 : \tau \to \tau_2 \rangle)
\]

where \(D \bar{\alpha} \approx \exists \bar{\beta}. \tau \) and, w.l.o.g., \(\bar{\alpha} \bar{\beta} \not\# M_1, M_2, \tau_2 \). Note that a universally quantified constraint appears where polymorphism is required.

In practice, L"aufer and Odersky suggest fusing iso-existential types with algebraic data types. The somewhat bizarre Haskell syntax for this is:

\[
data D \bar{\alpha} = \forall \bar{\beta}. \ell \tau
\]

where \(\ell \) is a data constructor. The elimination construct \(\langle \text{case } M_1 \text{ of } \ell x : M_2 : \tau_2 \rangle \) and is typed as follows:

\[
\langle \text{case } M_1 \text{ of } \ell x : M_2 : \tau_2 \rangle = \exists \bar{\alpha}. (\langle M_1 : D \bar{\alpha} \rangle \land \forall \bar{\beta}. \text{def } x : \tau \text{ in } \langle M_2 : \tau_2 \rangle)
\]

where, w.l.o.g., \(\bar{\alpha} \bar{\beta} \not\# M_1, M_2, \tau_2 \).
Examples Define $\text{Any} \approx \exists \beta. \beta$. The following code that attempts to extract the raw content of a package fails:

$$\langle \text{unpack}_{\text{Any}} M_1 (\lambda x. x) : \tau_2 \rangle = \langle M_1 : \text{Any} \rangle \land \forall \beta. \langle \lambda x. x : \beta \rightarrow \tau_2 \rangle \vdash \forall \beta. \beta = \tau_2 \equiv \text{false}$$

Now, define $D \alpha \approx \exists \beta. (\beta \rightarrow \alpha) \times \beta$. A client that regards β as abstract succeeds:

$$\langle \text{unpack} D M_1 (\lambda f. y. f y) : \tau \rangle = \exists \alpha. (\langle M_1 : D \alpha \rangle \land \forall \beta. \text{def } f : \beta \rightarrow \alpha; y : \beta \text{ in } \langle f y : \tau \rangle) \equiv \exists \alpha. (\langle M_1 : D \alpha \rangle \land \tau = \alpha) \equiv \langle M_1 : D \tau \rangle$$

Remark 6 We reuse the type $D \alpha \approx \exists \beta. (\beta \rightarrow \alpha) \times \beta$ of frozen computations, defined above. Assume given a list l of elements of type $D \tau_1$. Assume given a function g of type $\tau_1 \rightarrow \tau_2$. We may transform the list into a new list l' of frozen computations of type $D \tau_2$ (without actually running any computation).

$$\text{List.map} (\lambda (z) \text{ let } D(f, y) = z \text{ in } D((\lambda (z) g (f z)), y))$$

We may generalize the code into a functional that receives g and and l as arguments and returns l'. Unfortunately, the following code does not typecheck:

$$\text{let lift } g l = \text{List.map} (\lambda (z) \text{ let } D(f, y) = z \text{ in } D((\lambda (z) g (f z)), y))$$

The problem is that, in expression $\text{let } \alpha, x = \text{unpack } M_1$ in M_2, occurrences of x can only be passed to polymorphic functions so that the type α of x does not escape from its scope. That is first-class existential types calls for first-class universal types as well!

Mitchell and Plotkin (1988) note that existential types offer a means of explaining abstract types. For instance, the type:

$$\exists \text{stack.} \{ \text{empty} : \text{stack}; \text{push} : \text{int} \times \text{stack} \rightarrow \text{stack}; \text{pop} : \text{stack} \rightarrow \text{option} (\text{int} \times \text{stack}) \}$$

specifies an abstract implementation of integer stacks.

Unfortunately, it was soon noticed that the elimination rule is too awkward, and that existential types alone do not allow designing module systems Harper and Pierce (2005). Montagu and Rémy (2009) make existential types more flexible in several important ways, and argue that they might explain modules after all.

5.2.4 Existential types in OCaml

Amusingly, existential types were first available in OCaml via abstract types and first-class modules. There are now also available as a degenerate case of Generalized Algebraic DataTypes (GADT) which coincides with the approach described above.

For example, one may define the previous datatype of frozen computations:
Here is the equivalent, more verbose code with modules:

```ocaml
type 'a d = D : ('b -> 'a) * 'b -> 'a d
let freeze f x = D (f, x)
let run (D (f, x)) = f x
```

5.3 **Typed closure conversion**

Equipped with existential types, we may now revisit type closure conversion.

5.3.1 **Environment-passing closure conversion**

Remember that we came to the conclusion that the translation of arrow types $\tau_1 \to \tau_2$ must be $\exists \alpha.((\alpha \times [\tau_1]) \to [\tau_2]) \times \alpha$. Let us show that we may translate expressions so as to preserve well-typedness, i.e. so that $\Gamma \vdash M : \tau$ implies $[\Gamma] \vdash [M] : [\tau]$. Assume $\Gamma \vdash \lambda x. M : \tau_1 \to \tau_2$ and $\text{dom}(\Gamma) = \{x_1, \ldots, x_n\} = \nu(\lambda x : \tau_1. M)$. We may now hide the dependence on Γ using an existential type:

$\forall x_1, \ldots, x_n \exists \alpha.((\alpha \times [\tau_1]) \to [\tau_2]) \times \alpha = [\tau_1 \to \tau_2]$

In the case of application, assume $\Gamma \vdash M : \tau_1 \to \tau_2$ and $\Gamma \vdash M_1 : \tau_1$ and take:

$[\tau_1 M_1] = \exists \alpha.((\alpha \times [\tau_1]) \to [\tau_2]) \times \alpha = [\tau_1 \to \tau_2]$

For recursive functions we may use the “fix-code” variant (Morrisett and Harper, 1998):

$[\mu f. \lambda x.a] = \exists \alpha.((\alpha \times [\tau_1]) \to [\tau_2]) \times \alpha = [\tau_1 \to \tau_2]$

where $\{x_1, \ldots, x_n\} = \nu(\mu f. \lambda x.a)$. The translation of applications is unchanged as recursive and non-recursive functions have an identical calling convention. This translation builds recursive code, avoiding a recursive closure, hence the code is easy to type. Unfortunately, as a counterpart, a new closure is allocated at every call, which is the weak point of this variant.
Instead, the “fix-pack” variant (Morrisett and Harper, 1998) uses an extra field in the environment to store a back pointer to the closure:

\[
\mu f.\lambda x.a = \text{let } \text{code} = \lambda (env, x). \text{let } (f, x_1, \ldots, x_n) = env \text{ in } [a] \text{ in } \\
\text{let rec } \text{clo} = (\text{code}, (\text{clo}, x_1, \ldots, x_n)) \text{ in } \text{clo}
\]

where \(\{x_1, \ldots, x_n\} = \text{fv}(\mu f.\lambda x.a) \). Hence, we avoid rebuilding the closure at every call by creating a recursive closure. However, this requires, in general, recursively-defined \textit{values} and closures are now \textit{cyclic} data structures.

Here is how the “fix-pack” variant is type-checked. Assume \(\Gamma \vdash f : \tau_1 \rightarrow \tau_2.\lambda x. M : \tau_1 \rightarrow \tau_2 \) and \(\text{dom}(\Gamma) = \{x_1, \ldots, x_n\} = \text{fv}(\mu f.\lambda x.M) \).

\[
[\mu f : \tau_1 \rightarrow \tau_2.\lambda x.M] = \\
\text{let code} : (([f : \tau_1 \rightarrow \tau_2; \Gamma] \times [\tau_1]) \rightarrow [\tau_2]) = \\
\lambda (env : ([f : \tau_1 \rightarrow \tau_2, \Gamma], x : [\tau_1]). \text{let } (f, x_1, \ldots, x_n) : ([f : \tau_1 \rightarrow \tau_2, \Gamma] = env \text{ in } [M] \text{ in } \\
\text{let rec } \text{clo} : ([\tau_1 \rightarrow \tau_2] = \\
\text{pack } ([f : \tau_1 \rightarrow \tau_2, \Gamma], (\text{code}, (\text{clo}, x_1, \ldots, x_n)) \text{ as } \exists \alpha((\alpha \times [\tau_1]) \rightarrow [\tau_2]) \times \alpha) \text{ in } \text{clo}
\]

This implements monomorphic recursion, as by default in ML. To allow the recursive function to be polymorphic, we can generalize the encoding afterwards:

\[
[\Lambda \beta. \mu f : \tau_1 \rightarrow \tau_2.\lambda x.M] = \Lambda \beta. [\mu f : \tau_1 \rightarrow \tau_2.\lambda x.M]
\]

whenever the right-hand side is well-defined. This allows the \textit{indirect} compilation of polymorphic recursive functions as long as the recursion is monomorphic.

Fortunately, the encoding can be straightforwardly adapted to \textit{directly} compile polymorphically recursive functions into polymorphic closure.

\[
[\mu f : \forall \beta. \tau_1 \rightarrow \tau_2.\lambda x.M] = \\
\text{let code} : \forall \beta. ([f : \forall \beta. \tau_1 \rightarrow \tau_2; \Gamma] \times [\tau_1]) \rightarrow [\tau_2] = \\
\Lambda \beta. \lambda (env : ([f : \forall \beta. \tau_1 \rightarrow \tau_2, \Gamma], x : [\tau_1]). \\
\text{let } (f, x_1, \ldots, x_n) : ([f : \forall \beta. \tau_1 \rightarrow \tau_2, \Gamma] = env \text{ in } [M] \text{ in } \\
\text{let rec } \text{clo} : ([\forall \beta. \tau_1 \rightarrow \tau_2] = \\
\text{pack } ([f : \forall \beta. \tau_1 \rightarrow \tau_2, \Gamma], (\text{code } \beta, (\text{clo}, x_1, \ldots, x_n)) \text{ as } \exists \alpha((\alpha \times [\tau_1]) \rightarrow [\tau_2]) \times \alpha) \text{ in } \text{clo}
\]

In summary, the environment-passing closure conversion is simple, but it requires the introduction of recursive non-functional values \text{let \text{rec } x = V \text{ in } M}. While this is a useful construct, it really alters the operational semantics and requires updating the type soundness proof (as recursive non-functional values were not permitted so far).
5.3. TYPED CLOSURE CONVERSION

5.3.2 Closure-passing closure conversion

Recall the closure-passing variant:

\[
\begin{align*}
\llbracket \lambda x. a \rrbracket &= \text{let code } = \lambda (\text{clo}, x) . \text{let } (a_1, x_1, \ldots, x_n) = \text{clo } \text{in } [a] \text{ in } \\
[\llbracket a_1 \rrbracket a_2] &= \text{let clo } = \llbracket a_1 \rrbracket \text{ in } \text{let code } = \text{proj}_0 \text{ clo } \text{ in } \text{code } \text{clo, } [a_2]\end{align*}
\]

where \(\{x_1, \ldots, x_n\} = \text{fv}(\lambda x. a)\).

There are two difficulties to typecheck this: first, a closure is a tuple, whose first field—the code pointer—should be exposed, while the number and types of the remaining fields—the environment—should be abstract; second, the first field of the closure contains a function that expects the closure itself as its first argument.

To describe this, we use two type-theoretic mechanisms; first existential quantification over the tail of a tuple (a.k.a. a row) to allow the environment to remain abstract; and recursive types to allow the closure to point to itself.

Tuples, rows, row variables

Let us first introduce extensible tuples. The standard tuple types that we have used so far are:

\[
\begin{align*}
\tau &::= \ldots | \Pi R \quad \text{— types} \\
R &::= \epsilon | (\tau; R) \quad \text{— rows}
\end{align*}
\]

The notation \((\tau_1 \times \ldots \times \tau_n)\) was sugar for \(\Pi (\tau_1; \ldots; \tau_n; \epsilon)\). Let us introduce row variables and allow quantification over them:

\[
\begin{align*}
\tau &::= \ldots | \Pi R | \forall \rho. \tau | \exists \rho. \tau \quad \text{— types} \\
R &::= \rho | \epsilon | (\tau; R) \quad \text{— rows}
\end{align*}
\]

This allows reasoning about the first few fields of a tuple whose length is not known. The typing rules for tuple construction and deconstruction are:

\[
\begin{align*}
\text{TUPLE} &\quad \forall i. \ \epsilon [1, n] \quad \Gamma \vdash M_i : \tau_i \\
\Gamma \vdash (M_1, \ldots, M_n) : \Pi (\tau_1; \ldots; \tau_n; \epsilon) \\
\text{PROJ} &\quad \Gamma \vdash M : \Pi (\tau_1; \ldots; \tau_i; R) \\
\Gamma \vdash \text{proj}_i M : \tau_i
\end{align*}
\]

These rules make sense with or without row variables. Projection does not care about the fields beyond \(i\). Thanks to row variables, this can be expressed in terms of parametric polymorphism: \(\text{proj}_i : \forall \alpha_1 \ldots \alpha_i \rho. \Pi (\alpha_1; \ldots; \alpha_i; \rho) \rightarrow \alpha_i\).

Remark 7

Rows were invented by Wand (1988) and improved by Rémy (1994b) in order to ascribe precise types to operations on records. The case of tuples, presented here, is simpler. Rows are used to describe objects in OCaml (Rémy and Vouillon, 1998). Rows are explained in depth by Pottier and Rémy (2005).
Back to closure-passing closure conversion Rows and recursive types allow to define the translation of types in the closure-passing variant:

\[[\tau_1 \to \tau_2] = \exists \rho. \mu \alpha. \Pi (((\alpha \times [\tau_1]) \to [\tau_2]); \rho) \]

\(\rho \) describes the environment represented as a row of fields, which is abstract; \(\alpha \) is the concrete type of the closure that is to refer to recursively; \(\Pi (((\alpha \times [\tau_1]) \to [\tau_2]); \rho) \) is a tuple that begins with a code pointer of type \((\alpha \times [\tau_1]) \to [\tau_2] \) and continues with the environment \(\rho \). See the “fix-type” encoding proposed by Morrisett and Harper (1998).

Notice that the type is \(\exists \rho. \mu \alpha. \tau \) and not \(\mu \alpha. \exists \rho. \tau \): The type of the environment is fixed once for all and does not change at each recursive call. Notice that \(\rho \) appears only once, which may seem surprising. Usually, an existential type variable appears both at positive and negative occurrences. Here, the variable \(\alpha \) appear only at a negative occurrence, but in a recursive part of the type that can be unfolded.

To help checking well-typedness of the encoding, let \(\text{Clo}(R) \) abbreviate the concrete type of a closure of row \(R \) and \(\text{UClo}(R) \) its unfolded version:

\[
\begin{align*}
\text{Clo}(R) & \triangleq \mu \alpha. \Pi (((\alpha \times [\tau_1]) \to [\tau_2]); R) \\
\text{UClo}(R) & \triangleq \Pi (((\text{Clo}(R)) \times [\tau_1]) \to [\tau_2]); R)
\end{align*}
\]

The encoding of arrow types \([\tau_1 \to \tau_2] \) is \(\exists \rho. \text{Clo}(\rho) \). The encoding of abstractions and applications is:

\[
\begin{align*}
[\lambda x : \tau_1. M] & = \text{let } code : (\text{Clo}([\Gamma]) \times [\tau_1]) \to [\tau_2] = \\
& \lambda (clo : \text{Clo}([\Gamma]), x : [\tau_1]). \\
& \text{let } (_ x_1, \ldots, x_n) : \text{UClo}[\Gamma] = \text{unfold} clo \text{ in } [M] \text{ in} \\
& \text{pack } [\Gamma], (\text{fold } (code, x_1, \ldots, x_n)) \text{ as } \exists \rho. \text{Clo}(\rho)
\end{align*}
\]

\[
\begin{align*}
[M_1 M_2] & = \text{let } \rho, clo = \text{unpack } [M_1] \text{ in} \\
& \text{let } code : (\text{Clo}(\rho) \times [\tau_1]) \to [\tau_2] = \text{proj}_0 (\text{unfold} clo) \text{ in} \\
& code (clo, [M_2])
\end{align*}
\]

where \(\{x_1, \ldots, x_n\} = \text{fv}(\lambda x : \tau_1. M) \).

In the closure-passing variant, recursive functions can be translated as follows:

\[
[\mu f. \lambda x. a] = \text{let } code = \lambda (clo, x). \\
\text{let } f = clo \text{ in } let (_, x_1, \ldots, x_n) = clo \text{ in } [a] \text{ in} \\
(code, x_1, \ldots, x_n)
\]

where \(\{x_1, \ldots, x_n\} = \text{fv}(\mu f. \lambda x. a) \). No extra field or extra work is required to store or construct a representation of the free variable \(f \): the closure itself plays this role. However, this untyped code can only be typechecked when recursion is monomorphic.

Exercise 39 Carefully check well-typedness of the above translation with monomorphic recursion. \(\square \)
5.3. TYPED CLOSURE CONVERSION

To adapt this encoding to polymorphic recursion, the problem is that recursive occurrences of \(f \) are rebuilt from the current invocation of the closure, this with the same type since the closure is invoked after type specialization.

By contrast, in the environment passing encoding, the environment contained a polymorphic binding for the recursive calls that was filled with the closure before its invocation, \(i.e. \) with a polymorphic type.

Fortunately, we may slightly change the encoding, using a recursive closure as in the type-passing version, to allow typechecking in System \(F \).

Remark 8 One could think of changing the encoding of closure types \(\llbracket \tau_1 \to \tau_2 \rrbracket \) to make the encoding work. However, although this should be possible in some more expressive type systems, there seems to be no easy way to do so and certainly not within System \(F \).

Let \(\tau \) be \(\forall \vec{\alpha}. \tau_1 \to \tau_2 \) and \(\Gamma_f \) be \(f : \tau, \Gamma \) where \(\vec{\beta} \neq \Gamma \)

\[
\llbracket \mu f : \tau. \lambda x.M \rrbracket = \text{let code =} \\
\quad \Lambda \vec{\beta}. \lambda (\text{clo : Clo}[\Gamma_f], x : \llbracket \tau_1 \rrbracket). \\
\quad \text{let } (\text{_code, f, x}_1, \ldots, x_n) : \forall \vec{\beta}. \text{UClo}([\Gamma_f]) = \text{unfold clo in } [M] \text{ in} \\
\quad \text{let rec clo : } \forall \vec{\beta}. \exists \rho. \text{Clo}(\rho) = \\
\quad \text{___code, f, x}_1, \ldots, x_n) : \forall \vec{\beta}. \exists \rho. \text{Clo}(\rho) \\
\text{in } \text{clo}
\]

Remind that \(\text{Clo}(R) \) abbreviates \(\mu \alpha. \Pi ((\alpha \times \llbracket \tau_1 \rrbracket) \to \llbracket \tau_2 \rrbracket; R) \). Hence, \(\vec{\beta} \) are free variables of \(\text{Clo}(R) \). Here, a polymorphic recursive function is **directly** compiled into a polymorphic recursive closure. Notice that the type of closures is unchanged, so the encoding of applications is also unchanged.

Optimizing representations Closure-passing and environment-passing closure conversions cannot be mixed because the calling-convention \(i.e. \), the encoding of application) must be uniform. However, there is some flexibility in the representation of the closure. For instance, the following change is completely local:

\[
\llbracket \lambda x. a \rrbracket = \text{let code = } \lambda (\text{clo, x}) \text{. let } (\text{___code, f, x}_1, \ldots, x_n) = \text{clo in } [a] \text{ in} \\
\quad (\text{code, (x}_1, \ldots, x_n))
\]

This allows for sharing the closure (or part of it) may be shared when many definitions share the same closure,

5.3.3 Mutually recursive functions

Can we compile mutually recursive functions \(\mu(f_1, f_2) (\lambda x_1. a_1, \lambda x_2. a_2) \), say \(a \)?
The environment passing encoding is as follows:

\[
[a] = \text{let code}_i = \lambda (\text{env}, x). \text{let } (f_1, f_2, x_1, \ldots, x_n) = \text{env} \text{ in } [a_i] \text{ in }
\]

\[
\text{let rec } \text{env} = (\text{clo}_1, \text{clo}_2, x_1, \ldots, x_n)
\]
\[
\text{and } \text{clo}_1 = (\text{code}_1, \text{env})
\]
\[
\text{and } \text{clo}_2 = (\text{code}_2, \text{env}) \text{ in }
\]
\[
clo_1, clo_2
\]

Notice that we can share the environment inside the two closures. The closure passing encoding is:

\[
[a] = \text{let code}_i = \lambda (\text{clo}, x). \text{let } (_, f_1, f_2, x_1, \ldots, x_n) = \text{clo} \text{ in } [a_i] \text{ in }
\]

\[
\text{let rec } \text{clo}_1 = (\text{code}_1, \text{clo}_1, \text{clo}_2, x_1, \ldots, x_n)
\]
\[
\text{and } \text{clo}_2 = (\text{code}_2, \text{clo}_1, \text{clo}_2, x_1, \ldots, x_n) \text{ in }
\]
\[
clo_1, clo_2
\]

Question: Can we share the closures \(c_1 \) and \(c_2 \) in case \(n \) is large?

Here the environment cannot be shared between the two closures, since they belong to tuples of different size. Unless the runtime, in particular the garbage collector, supports such an operation as returning the tail of a tuple without allocating a new tuple. Then we could write:

\[
[a] = \text{let code}_1 = \lambda (\text{clo}, x). \text{let } (_, _, f_1, f_2, x_1, \ldots, x_n) = \text{clo} \text{ in } [a_1] \text{ in }
\]

\[
\text{let code}_2 = \lambda (\text{clo}, x). \text{let } (_, _, f_1, f_2, x_1, \ldots, x_n) = \text{clo} \text{ in } [a_2] \text{ in }
\]

\[
\text{let rec } \text{clo}_1 = (\text{code}_1, \text{code}_2, \text{clo}_1, \text{clo}_2, x_1, \ldots, x_n)
\]
\[
\text{and } \text{clo}_2 = \text{clo}_1.\text{tail} \text{ in }
\]
\[
clo_1, clo_2
\]

Here \(\text{clo}_1.\text{tail} \) returns a pointer to the tail \((\text{code}_2, \text{clo}_1, \text{clo}_2, x_1, \ldots, x_n) \) of \(\text{clo}_1 \) without allocating a new tuple.

Encoding of objects The closure-passing representation of mutually recursive functions is similar to the representation of objects in the object-as-record-of-functions paradigm:

A class definition is an object generator:

\[
\text{class } c \ (x_1, \ldots, x_q) \ \{ \text{meth } m_1 = a_i; \ldots \text{meth } m_q = a_i \}
\]

Given arguments for parameter \(x_1, \ldots, x_n \), it builds recursive methods \(m_1, \ldots m_n \). A class can be compiled into an object closure:

\[
\text{let } m =
\{ \begin{array} \text{m}_1 = \lambda (m, x_1, \ldots, x_q). [a_1]; \\
\vdots \\
\text{m}_p = \lambda (m, x_1, \ldots, x_q). [a_p] \end{array} \text{ in }
\]
\[
\lambda x_1, \ldots, x_q. (m, x_1, \ldots, x_q)
\]
Each m_i is bound to the code for the corresponding method. All codes are combined into a record of codes. Then, calling method m_i of an object p is $(\text{proj}_0 p).m_i p$.

Let us write the typed version of this encoding. Let τ_i be the type of M_i and row R describe the types of (x_1, \ldots, x_q). Let $\text{Clo}(R)$ be $\mu \alpha. \Pi(\{(m_i : \alpha \rightarrow \tau_i)_{i \in 1..n} \}; R)$ and $\text{UClo}(R)$ its unfolding.

Fields R are hidden in an existential type $\mu \alpha. \Pi(\{(m_i : \alpha \rightarrow \tau_i)_{i \in I} \}; \rho)$:

\[
\text{let } m = \{ \begin{array}{ll}
 m_1 = \lambda(m, x_1, \ldots x_q : \text{UClo}(R)). [M_1]; \\
 \vdots \\
 m_p = \lambda(m, x_1, \ldots x_q : \text{UClo}(R)). [M_p] \end{array} \} \text{ in } \\
\lambda x_1. \ldots \lambda x_q. \text{pack } R, \text{fold } (m, x_1, \ldots x_q) \text{ as } \exists \rho. (M, \rho)
\]

Calling a method of an object p of type M is

$$p#m_i \triangleq \text{let } \rho, z = \text{unpack } p \text{ in } (\text{proj}_0 \text{ unfold } z).m_i z$$

An object has a recursive type but it is not a recursive value.

Typed encoding of objects were first studied in the 90’s to understand what objects really are in a type setting. These encodings are in fact type-preserving compilation of (primitive) objects. There are several variations on these encodings. See Bruce et al. (1999) for a comparison. See Rémy (1994a) for an encoding of objects in (a small extension of) ML with iso-existentials and universals. See Abadi and Cardelli (1996, 1995) for more details on primitive objects.

Summary

Type-preserving compilation is rather fun. (Yes, really!) It forces compiler writers to make the structure of the compiled program fully explicit, in type-theoretic terms. In practice, building explicit type derivations, ensuring that they remain small and can be efficiently typechecked, can be a lot of work.

Because we have focused on type preservation, we have studied only naive closure conversion algorithms. More ambitious versions of closure conversion require program analysis: see, for instance, Steckler and Wand (1997). These versions can be made type-preserving.

Defunctionalization, an alternative to closure conversion, offers an interesting challenge, with a simple solution. See, for instance Pottier and Gauthier (2006). Designing an efficient, type-preserving compiler for an object-oriented language is quite challenging. See, for instance, Chen and Tarditi (2005).

One may think that references in System F could be translated away by making the store explicit. In fact, this can be done, but not in System F, nor even in System F^{ω}: the translation is quite tricky and in order for the translation to be well-typed the type system must be rich enough to express monotonicity of the store in a context where the store is itself recursively defined. See Pottier (2011) for details.
Exercise 40 (CPS conversion) Here is an untyped version of call-by-value CPS conversion:

\[
\begin{align*}
[V] &= \lambda k. \langle V \rangle \\
[M_1 \ M_2] &= \lambda k. [M_1] (\lambda x_1. [M_2] (\lambda x_2. x_1 \ x_2 \ k))
\end{align*}
\]

\(\langle x \rangle = x\)

\(\langle () \rangle = ()\)

\(\langle (V_1, V_2) \rangle = (\langle V_1 \rangle, \langle V_2 \rangle)\)

\(\langle \lambda x. M \rangle = \lambda x. [M]\)

Is this a type-preserving transformation?

(Solution p. 145)
Chapter 6

Fomega: higher-kinds and higher-order types

6.1 Introduction

Polymorphism in System F Compare with simple types, which lacks polymorphism, and thus forces many functions to be duplicated at different types. ML style polymorphism is a considerable improvement by avoiding most of code duplication. Local let-bound polymorphism is also permitted in ML, but is less used in practice. However, core ML still lacks first-class polymorphism, which means higher-rank polymorphism and the lack of primitive existential types.

In ML, the module system allows for type abstraction, which for made the lack of existential types more sustainable—when programming in the large. First class-existent types are encodable in ML with first-class modules. They are now directly available via GADTs.

System F solves enables first-class existential and universal-types in the core language. This increases expressiveness by enabling encoding of data structures and many more programming patterns. Still, System F polymorphism is limited...

Limits of System F: $\lambda fxy. (f x, f y)$ Although System F has higher-rank polymorphism, this is still sometimes limited. For example, the map function on pairs whose untyped code if $\lambda f. \lambda x. \lambda y. (f x, f y)$, says distrib_pair can be given the following incompatible types in System F:

$$\forall \alpha_1. \forall \alpha_2. (\alpha_1 \to \alpha_2) \to \alpha_1 \to \alpha_1 \to \alpha_2 \times \alpha_2$$

$$\forall \alpha_1. \forall \alpha_2. (\forall \alpha. \alpha \to \alpha) \to \alpha_1 \to \alpha_2 \to \alpha_1 \times \alpha_2$$

The first one requires x and y to admit a common type, while the second one requires f to be polymorphic.

However, System F is missing the ability to describe the types of functions that are polymorphic in one parameter but whose domain and codomain are otherwise arbitrary i.e.
of the form $\forall \alpha. \tau[\alpha] \to \sigma[\alpha]$ for arbitrary one-hole types τ and σ. Hence, it cannot give a type to `distributor` that subsumes both types above.

To solve this, we need to abstract over σ and τ, i.e. over type functions, of kind $\star \to \star$:

$$\forall \varphi . \forall \psi . \forall \alpha_1. \forall \alpha_2. (\forall \alpha. \varphi \alpha \to \psi \alpha) \to \varphi \alpha_1 \to \varphi \alpha_2 \to \psi \alpha_1 \times \psi \alpha_2$$

This is what System F^ω allows.

6.2 From System F to System F^ω

Kinds To emphasize the small difference between System F and System F^ω, we first introduce kinds in the presentation of System F—without changing expressiveness. That is, we write κ for the single kind of types.

Well-formedness of types $\Gamma \vdash \tau$ may then be written as a well-kinding judgment $\Gamma \vdash \tau : \star$, defined inductively as follows:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Context</th>
<th>Precondition</th>
<th>Postcondition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vdash \emptyset$</td>
<td>Γ</td>
<td>$\alpha \notin \text{dom}(\Gamma)$</td>
<td>$\vdash \Gamma, \alpha : \kappa$</td>
</tr>
<tr>
<td>$\vdash \Gamma, \alpha : \kappa$</td>
<td>$\Gamma \vdash \alpha : \kappa$</td>
<td>$\Gamma \vdash \tau : \star$</td>
<td>$\Gamma \vdash \forall \alpha : \kappa. \tau : \star$</td>
</tr>
<tr>
<td>$\vdash \Gamma \vdash \tau_1 : \star \quad \Gamma \vdash \tau_2 : \star$</td>
<td></td>
<td>$\Gamma \vdash \tau_1 \to \tau_2 : \star$</td>
<td>$\Gamma \vdash \tau : \star$</td>
</tr>
<tr>
<td>$\vdash \Gamma \vdash \tau_1 : \star \quad \Gamma \vdash \tau_2 : \star$</td>
<td></td>
<td>$\Gamma \vdash \forall \alpha : \kappa. \tau : \star$</td>
<td>$\Gamma \vdash \emptyset \vdash \tau : \star$</td>
</tr>
</tbody>
</table>

We accordingly add kind annotations on type abstractions and type applications:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Context</th>
<th>Precondition</th>
<th>Postcondition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABS</td>
<td>$\Gamma, \alpha : \kappa \vdash M : \tau$</td>
<td>$\Gamma \vdash \Lambda \alpha :: \kappa. M : \forall \alpha :: \kappa. \tau$</td>
<td></td>
</tr>
<tr>
<td>TAPP</td>
<td>$\Gamma \vdash M : \forall \alpha :: \kappa. \tau$</td>
<td>$\Gamma \vdash \tau' : \kappa$</td>
<td>$\Gamma \vdash M \ \tau' : [\alpha \mapsto \tau']\tau$</td>
</tr>
</tbody>
</table>

So far, this is an equivalent formalization of System F.

Type functions We now add type functions, moving form System F to System F^ω. For that purpose, we redefine kinds, so as to introduce kinds of type functions:

$$\kappa ::= * \mid \kappa \Rightarrow \kappa$$

We may now introduce type function and type application in type expressions:

$$\tau ::= \ldots \mid \lambda \alpha :: \kappa. \tau \mid \tau \ \tau$$

with the following kinding rules:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Context</th>
<th>Precondition</th>
<th>Postcondition</th>
</tr>
</thead>
<tbody>
<tr>
<td>WfTypeApp</td>
<td>$\Gamma \vdash \tau_1 : \kappa_2 \Rightarrow \kappa_1 \quad \Gamma \vdash \tau_2 : \kappa_2$</td>
<td></td>
<td>$\Gamma \vdash \tau_1 \ \tau_2 : \kappa_1$</td>
</tr>
<tr>
<td>WfTypeAbs</td>
<td>$\Gamma, \alpha : \kappa_1 \vdash \tau : \kappa_2$</td>
<td></td>
<td>$\Gamma \vdash \lambda \alpha :: \kappa_1. \tau : \kappa_1 \Rightarrow \kappa_2$</td>
</tr>
</tbody>
</table>
6.2. FROM SYSTEM F TO SYSTEM F^ω

Type reduction Types are now equipped with β-reduction:

$$(\lambda \alpha. \tau) \sigma \rightarrow [\alpha \mapsto \tau] \sigma$$

which is applicable in any type context.

Notice that type reduction is the same as (full reduction) in simply-typed λ-calculus when kinds and types now play the role of types and terms. It thus preserves well-kindness and kinds\footnote{We have only proved subject reduction for CBV, though in the previous lessons}. Hence, kinds are erasable. Kinds may only be checked when reading type expressions and ignored afterwards. As types, they do not contribute to the reduction.

Type reduction induces a notion of β-equivalence on types, which is decidable: for example, by normalization (which terminates) and comparison of normal forms—although an efficient implementation would reduce terms by need.

Typing of expressions is up to type equivalence, \textit{i.e.} β-conversion:

\[
\frac{TConv}{\Gamma \vdash M : \tau \quad \tau \equiv^\beta \tau'} \quad \Gamma \vdash M : \tau'
\]

Notice that well-typedness $\Gamma \vdash M : \tau$ ensures well-kindness $\Gamma \vdash \tau : *$. Notice that decidability of type checking in System F^ω relies on decidability of type equivalence.

However, we need not reduce types inside terms. Type reduction is needed for type conversion during typechecking but such reduction need not be performed on terms.

6.2.1 Properties

Main properties are preserved. Proofs are similar to those for System F^ω.

- \textit{Type soundness}. The proof is by subject reduction and progress.

- \textit{Termination of reduction}. This holds in the absence of other constructs that can be use to introduce recursion, such as recursive types, recursive definitions or side effects (references, exceptions, control, \textit{etc.}).

- \textit{Typechecking is decidable}. This requires reduction at the level of types to check type equality. Checking type equality can be performed by putting types in normal forms using full reduction (on types)—or just in head normal forms. Normal forms for types exists as the language of type is a simply-typed λ-calculus (where kinds plays the role of types).
CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

Syntax

\[\begin{align*}
\kappa & \ ::= \ * | \kappa \Rightarrow \kappa \\
\tau & \ ::= \ \alpha | \tau \rightarrow \tau \mid \forall \alpha :: \kappa. \tau \mid \lambda \alpha :: \kappa. \tau \\
M & \ ::= \ x | \lambda x : \tau. M \mid M \ M \mid \Lambda \alpha :: \kappa. M \mid M \ \tau
\end{align*}\]

Kinding rules

\[\begin{align*}
\vdash \emptyset \\
\Rightarrow \Gamma \ a \not \in \text{dom}(\Gamma) & \Rightarrow \Gamma, a : \kappa \\
\Rightarrow \Gamma \ : \ \tau & \Rightarrow \Gamma, \ x : \tau \\
\Rightarrow \Gamma, \alpha :: \kappa \Rightarrow \tau & \Rightarrow \Gamma, \alpha :: \kappa. \tau \\
\Rightarrow \Gamma, \alpha :: \kappa & \Rightarrow \alpha :: \kappa
\end{align*}\]

Typing rules

\[\begin{align*}
\text{Var} & \quad \quad \text{Abs} & \quad \quad \text{App} \\
\Gamma \vdash x : \tau & \quad \Gamma, x : \tau \vdash M \ : \tau_2 & \quad \Gamma, M_1 : \tau_1 \vdash \lambda x : \tau. M \ : \tau_1 \Rightarrow \tau_2 & \quad \Gamma \vdash M_1 \ M_2 : \tau_2 \\
\text{Taps} & \quad \quad \text{Tapp} \quad \quad \text{TEquiv} \\
\Gamma, \alpha :: \kappa \vdash M : \tau & \quad \Gamma \vdash \forall \alpha :: \kappa. \tau & \quad \Gamma \vdash \tau' : [\alpha \mapsto \tau'] \tau & \quad \Gamma \vdash M : \tau'
\end{align*}\]

Dynamic semantics (unchanged, up to kind annotations in terms)

\[\begin{align*}
V & ::= \lambda x : \tau. M | \Lambda \alpha :: \kappa. V \\
E & ::= [] M | V [M] \mid \tau | \Lambda \alpha :: \kappa.[] \\
(\lambda x : \tau. M) V & \rightarrow [x \mapsto V] M \\
(\Lambda \alpha :: \kappa. V) \tau & \rightarrow [\alpha \mapsto \tau] V
\end{align*}\]

Figure 6.1: System \(F^\omega\), altogether
6.3 Expressiveness

System F^ω increases expressiveness and allows to solve the limitations of System F discussed in the introduction.

Just adding more polymorphism on ad hoc examples such as distrib_pair, exploiting abstraction over type operators, such as examples with monads, or the encoding of existential types, or more advanced encodings such as non regular datatypes, and type equality.

6.3.1 Distrib pair in System F^ω

We may now type the example of distrib_pair, whose implicitly typed definition is $\lambda fx. (f x, f y)$ by abstracting over (one parameter) type functions, i.e. type functions of kind $\star \Rightarrow \star$. That is, the explicitly typed version of distrib_pair is:

$$
\Lambda \varphi \cdot \Lambda \psi \cdot \Lambda \pi \cdot \Lambda \alpha_1 \cdot \Lambda \alpha_2.
\lambda f : \forall (\alpha : \star). \varphi \alpha \Rightarrow \psi \alpha. \lambda x : \varphi \alpha_1. \lambda y : \varphi \alpha_2. (f \alpha_1 x, f \alpha_2 y)
$$

of type:

$$
\forall (\varphi : \star \Rightarrow \star). \forall (\psi : \star \Rightarrow \star). \forall (\alpha_1 : \star). \forall (\alpha_2 : \star).
(\forall (\alpha : \star). \varphi \alpha \Rightarrow \psi \alpha) \Rightarrow \varphi \alpha_1 \Rightarrow \varphi \alpha_2 \Rightarrow \psi \alpha_1 \times \psi \alpha_2
$$

We may recover, the two incomparable types it had in System F:

$$
\Lambda (\alpha_1 : \star). \Lambda (\alpha_2 : \star). \text{distrib_pair} (\lambda (\alpha : \star). \alpha_1) (\lambda (\alpha : \star). \alpha_2) \alpha_1 \alpha_2
$$

$$
: \forall (\alpha_1 : \star). \forall (\alpha_2 : \star). (\alpha_1 \Rightarrow \alpha_2) \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \alpha_1 \times \alpha_2
$$

and

$$
\text{distrib_pair} (\lambda(\alpha : \star). \alpha) (\lambda(\alpha : \star). \alpha)
$$

$$
: \forall (\alpha_1 : \star). \forall (\alpha_2 : \star). (\forall (\alpha : \star). \alpha \Rightarrow \alpha) \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \alpha_1 \times \alpha_2
$$

While the type of distrib_pair in System F^ω is much more general than in System F, it is still not principal. For example, φ and ψ could depend on two variables, i.e. be of kind $\star \Rightarrow \star \Rightarrow \star$, or many other kinds.

6.3.2 Abstracting over type operators

Given a type operator φ, a monad is given by a pair of two functions of the following type (satisfying certain laws).

$$
M \triangleq \lambda (\varphi : \star \Rightarrow \star).
\{ \text{ret} : \forall (\alpha : \star). \alpha \Rightarrow \varphi \alpha; \\
\text{bind} : \forall (\alpha : \star). \forall (\beta : \star). \varphi \alpha \Rightarrow (\alpha \Rightarrow \varphi \beta) \Rightarrow \varphi \beta \}
$$

$$
: (\star \Rightarrow \star) \Rightarrow \star
$$

(Notice that M is itself of higher kind.)
For example, a generic map function, can then be defined as follows:

\[
\text{fmap} \triangleq \Lambda (\varphi :: \star \Rightarrow \star). \lambda m : M \varphi . \\
\Lambda (\alpha :: \star). \Lambda (\beta :: \star). \lambda f : (\alpha \rightarrow \beta). \lambda x : \varphi \alpha . \\
m.\text{bind} \alpha \beta x (\lambda x : \alpha. m.\text{ret} (f x)) \\
: \forall (\varphi :: \Rightarrow \star). M \varphi \rightarrow \forall (\alpha :: \star). \forall (\beta :: \star). (\alpha \rightarrow \beta) \rightarrow \varphi \alpha \rightarrow \varphi \beta
\]

Abstraction over type operators is available in Haskell—but without \(\beta\)-reduction: type application \(\varphi \alpha\) is encoded as a first-order type \(\text{App} (\varphi, \alpha)\) where \(\text{App}\) is a binary (application) symbol of kind \((\kappa_1 \Rightarrow \kappa_2) \Rightarrow \kappa_1 \Rightarrow \kappa_2\).

Interestingly, this approach is compatible with type inference, which is based on first-order unification. However, there is no \(\beta\)-reduction at the level of types, that is:

\[
\varphi \alpha = \psi \beta \iff \varphi = \psi \land \alpha = \beta
\]

Therefore, this does not have the expressiveness of System \(F^\omega\) at all.

Abstraction over type operators is also encodable with OCaml modules. See ? (and also ?). As in Haskell, the encoding does not handle type \(\beta\)-reduction and as a consequence is compatible with type inference at higher kinds.

6.3.3 Encoding of existential types

We saw the encoding of existential types in System F:

\[
[\exists \alpha. \tau] = \forall \beta. (\forall \alpha. \tau \rightarrow \beta) \rightarrow \beta
\]

Hence, existential types could be provided as a family of primitives

\[
[\text{pack}_{3\alpha, \tau}] = \Lambda \alpha. \lambda x : [\tau]. \Lambda \beta. \lambda k : \forall \alpha. ([\tau] \rightarrow \beta). k \alpha x
\]

(and a similar encoding for \([\text{unpack}_{3\alpha, \tau}]\)).

Unfortunately, this requires a different code for each type \(\tau\). To have a unique code, we need to abstract over \(\tau\) which is not possible in System F, but quite natural in System \(F^\omega\).

We first extend existential types to abstraction over higher kinding variables, letting \([\exists (\alpha :: \kappa) . \tau]\) mean \(\forall (\beta :: \star). (\forall (\alpha :: \kappa) . \tau \rightarrow \beta) \rightarrow \beta\). In fact, we need not introduce a special construct \(\exists (\alpha :: \kappa) . \tau\) for that purpose, but just a new type constant \(\exists_\kappa\) of kind \(\kappa \Rightarrow \star\) and write \(\exists_\kappa (\lambda (\alpha :: \kappa) . \tau)\) for \(\exists (\alpha :: \kappa) . \tau\).
Then, we may abstract the encodings over some type variable \(\varphi \) of kind \(\kappa \Rightarrow * \), as follows:

\[
\exists_{\kappa} = \lambda (\varphi : \kappa \Rightarrow *). \forall (\alpha : \kappa). \varphi \alpha \rightarrow \beta \rightarrow \beta
\]

\[
\text{pack}_{\kappa} : \forall (\varphi : \kappa \Rightarrow *). \exists_{\kappa} \varphi \rightarrow \forall (\beta : \kappa). ((\forall (\alpha : \kappa). (\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta)
\]

\[
\text{unpack}_{\kappa} : \forall (\varphi : \kappa \Rightarrow *). \exists_{\kappa} \varphi \rightarrow \exists (\lambda \varphi : \kappa \Rightarrow *). x
\]

The interest is that the encoding need not be defined at the metalevel, but directly provided as two terms of System \(F^\omega \)—with may be defined once for all.

This idea of exploiting kinds

Once we have type functions, the language of types could be reduced to \(\lambda \)-calculus with constants (plus the arrow types kept as primitive):

\[
\tau = \alpha | \lambda \alpha : \kappa. \tau \mid \tau \tau \mid \tau \rightarrow \tau \mid G
\]

where type constants \(G \in G \) are given with their kind and syntactic sugar:

\[
\times : \ast \Rightarrow \ast \Rightarrow \ast \quad (\tau \times \tau) \triangleq (\times) \tau_1 \tau_2 \\
+ : \ast \Rightarrow \ast \Rightarrow \kappa \quad (\tau + \tau) \triangleq (+) \tau_1 \tau_2 \\
\forall_{\kappa} : (\kappa \Rightarrow *) \Rightarrow * \quad \forall \varphi : \kappa. \tau \triangleq \forall_{\kappa} (\lambda \varphi : \kappa \Rightarrow *). \tau \\
\exists_{\kappa} : (\kappa \Rightarrow *) \Rightarrow * \quad \exists \varphi : \kappa. \tau \triangleq \exists_{\kappa} (\lambda \varphi : \kappa \Rightarrow *). \tau
\]

This is even nicer if System \(F^\omega \) were extended with kind abstraction (see \(\S 6.4 \)), as we could then just write:

\[
\hat{\forall} : \forall_{\kappa}. (\kappa \Rightarrow *) \Rightarrow * \quad \forall \varphi : \kappa. \tau \triangleq \hat{\forall} \kappa (\lambda \varphi : \kappa \Rightarrow *). \tau \\
\hat{\exists} : \forall_{\kappa}. (\kappa \Rightarrow *) \Rightarrow * \quad \exists \varphi : \kappa. \tau \triangleq \hat{\exists} \kappa (\lambda \varphi : \kappa \Rightarrow *) \tau
\]

where the right hand sides are no more syntactic forms but the application of the type constants \(\hat{\forall} \) and \(\hat{\exists} \) to a kind a type.

6.3.4 Church encoding of non-regular ADT

Regular ADTs can be encoded in System \(F \). For instance, the type list datatype

\[
\begin{array}{l}
type \quad \text{List} \ \alpha = \\
\mid \text{Nil} \ : \forall \alpha. \text{List} \ \alpha \\
\mid \text{Cons} : \forall \alpha. \alpha \rightarrow \text{List} \ \alpha \rightarrow \text{List} \ \alpha
\end{array}
\]

has the following Church (CPS style) encoding:
CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

\[
\text{List} \triangleq \lambda \alpha. \forall \beta. \beta \to (\alpha \to \beta \to \beta) \to \beta
\]
\[
\text{Nil} \triangleq \Lambda \alpha. \Lambda \beta. \lambda n : \beta. \lambda c : (\alpha \to \beta \to \beta). n
\]
\[
\text{Cons} \triangleq \Lambda \alpha. \lambda x : \alpha. \lambda \ell : \text{List} \alpha.
\quad \lambda \beta. \lambda n : \beta. \lambda c : (\alpha \to \beta \to \beta). c x (\ell \beta n c)
\]
\[
\text{fold} \triangleq \Lambda \alpha. \Lambda \beta. \lambda n : \beta. \lambda c : (\alpha \to \beta \to \beta). \lambda \ell : \text{List} \alpha. \ell \beta n c
\]

In fact, we may give use following signature in System F_ω:

\[
\text{List} \triangleq \lambda \alpha. \forall \varphi. \varphi \to (\alpha \to \varphi \to \varphi \to \varphi) \to \varphi \to \varphi
\]
\[
\text{Nil} \triangleq \Lambda \alpha. \Lambda \varphi. \lambda n : \varphi \alpha. \lambda c : (\alpha \to \varphi \alpha \to \varphi \alpha). n
\]
\[
\text{Cons} \triangleq \Lambda \alpha. \lambda x : \alpha. \lambda \ell : \text{List} \alpha.
\quad \lambda \varphi. \lambda n : \varphi \alpha. \lambda c : (\alpha \to \varphi \alpha \to \varphi \alpha). c x (\ell \varphi n c)
\]
\[
\text{fold} \triangleq \Lambda \alpha. \Lambda \varphi. \lambda n : \varphi \alpha. \lambda c : (\alpha \to \varphi \alpha \to \varphi \alpha). \lambda \ell : \text{List} \alpha. \ell \varphi n c
\]

This seems more abstract since β is now $\varphi \alpha$ which may depend on α.

Actually not! Be aware of useless over-generalization! For regular ADTs, since all uses of φ are applied to the same α, this interface is actually no more general that the previous one. However, this additional degree of liberty will be the key to then encoding of non regular ADTs.

A simpler example of over generalization is the type of the identity. $\forall \alpha. \alpha \to \alpha$ could be generalized as $\forall \varphi. \forall \alpha. \varphi \to \varphi \alpha$: it is easy to check that there are retyping functions (typable in System F_ω that are $\beta\eta$ convertible to the identity). By contrast type abstraction at higher-rank was a key for the typing of distrib.pair.

Let us consider Okasaki’s Seq non-regular ADT:

```
type Seq \alpha =
  Nil : \forall \alpha. Seq \alpha
  Zero : \forall \alpha. Seq (\alpha \times \alpha) \to Seq \alpha
  One : \forall \alpha. \alpha \to Seq (\alpha \times \alpha) \to Seq \alpha
```
6.3. EXPRESSIVENESS

module Eq : EQ = struct
 type ('a, 'b) eq = Eq : ('a, 'a) eq

 let coerce (type a) (type b) (ab : (a,b) eq) (x : a) : b = let Eq = ab in x

 let refl : ('a, 'a) eq = Eq

(* all these are propagation are automatic with GADTs *)

 let symm (type a) (type b) : (b,a) eq = let Eq = ab in Eq

 let trans (type a) (type b) (type c) (ab : (a,b) eq) (bc : (b,c) eq) : (a,c) eq = let Eq = ab in bc

 let lift (type a) (type b) (ab : (a,b) eq) : (a list, b list) eq =

 let Eq = ab in Eq
end

Figure 6.2: Leibnitz equality with GADT in OCaml

This may be encoded in System F^ω as:

\[
\begin{align*}
\text{Seq} & \triangleq \lambda \alpha. \forall F. F\alpha \to (F(\alpha \times \alpha) \to F\alpha) \to (\alpha \to F(\alpha \times \alpha) \to F\alpha) \to F\alpha \\
\text{Nil} & \triangleq \lambda n. \lambda z. \lambda s. n \\
\text{Zero} & \triangleq \lambda \ell. \lambda \ell. \lambda n. \lambda z. \lambda s. \lambda z. (\ell n z s) \\
\text{One} & \triangleq \lambda x. \lambda \ell. \lambda n. \lambda z. \lambda s. \lambda x. (\ell n z s) \\
\text{fold} & \triangleq \lambda n. \lambda s. \lambda n. \lambda s. \lambda \ell n s z s \\
\end{align*}
\]

Indeed, higher-rank is mandatory as for each constructor φ is applied to both α and $\alpha \times \alpha$. This is why non-regular ADTs cannot be encoded in System F.

6.3.5 Encoding GADT—with explicit coercions

We have seen that GADT can be encoded with a single equality type, existential types and non regular datatypes. Figure 6.2 gives an implementation of Leibnitz equality with a GADT in OCaml. We may then use a value of type $(\tau, \sigma) \text{Eq}.$ as a proof of equality of the types τ and σ.

Leibnitz equality can also be defined in System F^ω (Figure 6.3). In the figure, we have overlined proof terms and their types (respectively on the left and right columns) so as to help check typechecking.

We only implemented parts of the coercions of System F^ω: we do not have decomposition of equalities (the inverse of Lift), as this requires injectivity of the type operator, which is not given.
CHAPTER 6. FOMEGA: HIGHER-KINDS AND HIGHER-ORDER TYPES

\[\text{Eq} \triangleq \lambda \alpha. \lambda \beta. \forall \varphi. \varphi \alpha \to \varphi \beta \]

hence, \(\text{Eq} \alpha \beta \equiv \forall \varphi. \varphi \alpha \to \varphi \beta \)

\[\text{coerce} \triangleq \lambda p. \lambda x. p x \]

\[\Lambda \alpha. \Lambda \beta. \lambda p : \text{Eq} \alpha \beta. \lambda x : \alpha. p (\lambda \gamma. \gamma) x \]

\[\text{refl} \triangleq \lambda x. x \]

\[x : \forall \alpha. \forall \varphi. \varphi \alpha \to \varphi \alpha \equiv \forall \alpha. \text{Eq} \alpha \alpha \]

\[\text{symm} \triangleq \lambda p. \text{p} \left(\text{refl} \right) \]

\[\text{trans} \triangleq \lambda p. \lambda q. p (\lambda \gamma. \text{Eq} \left(\varphi \alpha \right) (\varphi \gamma)) (\text{refl} (\varphi \alpha)) \]

\[\text{lift} \triangleq \lambda p. \text{p} \left(\text{refl} \right) \]

\[: \forall \alpha. \forall \beta. \forall \varphi. \text{Eq} \alpha \beta \to \text{Eq} (\varphi \alpha) (\varphi \beta) \]

\[: \text{Eq} \alpha \beta \to \text{Eq} \alpha \alpha \]

\[: \text{Eq} \alpha \beta \to \text{Eq} \alpha \gamma \]

\[: \text{Eq} (\varphi \alpha) (\varphi \alpha) \to \text{Eq} (\varphi \alpha) (\varphi \beta) \]

Figure 6.3: Leibnitz equality in System \(F^\omega \)

Equivalences and liftings must be written explicitly, while they are implicit with GADTs.

Some GATDs can be encoded, using equality plus existential types.

6.4 Beyond \(F^\omega \)

Let us define the rank of a kind as usual: the base kind \(*\) is of rank 1 and \(\text{rank} (\kappa_1 \Rightarrow \kappa_2) \) is recursively defined as \(\text{max} (1 + \text{rank} \kappa_1, \text{rank} \kappa_2) \). Hence, type functions of kind \(* \Rightarrow * \) taking type parameters of base kind have rank 1 and type functions taking such type functions as arguments have rank 2.

We may define a hierarchy \(F^1 \subseteq F^2 \subseteq F^3 \ldots \subseteq F^\omega \) of type systems of increasing expressiveness, where \(F^n \) only uses kinds of rank \(n \), whose whose limit is \(\text{System} \ F^\omega \)—and where System F is just \(F^0 \) (ranks are sometimes shifted by one, starting with \(F = F^2 \)).

Most examples in practice (and those we wrote) lies in \(F^2 \), just above \(F \).

Kind abstraction In section §??, we have used abstraction over kinds. Strictly speaking, this goes beyond System \(F^\omega \), but this all properties are preserved.

\[L \forall (\varphi : * \Rightarrow *). \forall (\psi : * \Rightarrow *). \forall (\alpha_1 : *). \forall (\alpha_2 : *). \]

\[(\forall (\alpha : *). \varphi \alpha \to \psi \alpha) \to \varphi \alpha_1 \to \varphi \alpha_2 \to \psi \alpha_1 \times \psi \alpha_2 \]

One applications is the use of constants instead of encodings as in section §??. Another application could be having even more general types. See for example, this discussion on distrib pair (§6.3.1).
Multiple base kinds We could have several base kinds, e.g. * and field with type constructors:

\[
\begin{align*}
\text{filled} & : * \Rightarrow \text{field} \\
\text{empty} & : \text{field} \Rightarrow *
\end{align*}
\]

Prevents ill-formed types such as box (α → filled α).

This allows to build values v of type box θ where θ of kind field statically tells whether v is filled with a value of type τ or empty. This is used in OCaml for rows of object types, although kinds are hidden from the user using superficial syntax:

\[
\text{let get } (x : \langle \text{get} : 'a; .. \rangle) : 'a = x#'text{get}
\]

The dots “..” here stands for a variable of another base kind (representing a row of types).

Equirecursive types Checking equality of equirecursive types in System F is already non obvious, since unfolding may require α-conversion to avoid variable capture. (See also \?). With higher-order types, it is even trickier, since unfolding at functional kinds could expose new type redexes.

Besides, the language of types would be the simply type λ-calculus with a fix-point operator: type reduction would not terminate. Therefore type equality would be undecidable, as well as type checking.

A solution is to restrict to recursion at the base kind *. This allows to define recursive types but not recursive type functions. Such an extension has been proven sound and and decidable, but only for the weak form or equirecursive types (with the unfolding but not the uniqueness rule)—see \?.

Equirecursive kinds Recursion could also occur just at the level of kinds, allowing kinds to be themselves recursive.

Then, the language of types is the simply type λ-calculus with recursive types, equivalent to the untyped λ-calculus—every term is typable. Without further restrictions reduction of types does not terminate and type equality is ill-defined.

A solution proposed by Pottier is to force recursive kinds to be productive, reusing an idea from Nakano (2000, 2001) for controlling recursion on terms, but pushing it one level up. Type equality become well-defined and semi-decidable. This extension has been used to show that references in System F can be translated away in System F\ω with guarded recursive kinds.

Encoding of functors In OCaml functions are by default generative: when a functor return abstract types, two applications of this functor to same structures will produce new incompatible abstract types. By contrast, applicative functors would return two structures with compatible abstract types.

While generative functors can be encoded in System F with existential types (as long as we ignore parametric types—or treat add as primitive). The idea to give functor F a type of the
form \(\forall \alpha. \tau[\alpha] \to \exists \beta. \sigma[\alpha, \beta] \). Then, if \(X, Y \) has type \(\tau[\rho] \), two successive applications \(F(X) \) and \(F(X) \) have types \(\exists \beta. [\rho, \beta] \) with different abstract types \(\beta \) and cannot interoperate (on components involving \(\beta \)).

Indeed, the program

\[
\text{let } Y = \text{unpack } F X \text{ in }
\text{let } Z = \text{unpack } F X \text{ in }
Y = Z
\]

is ill-typed.

To allow two identical applications of the functor \(F \) to be compatible, a solution is to give \(F \) a type of the form: \(\exists \phi. \forall \alpha. \tau[\alpha] \to \sigma[\alpha, \psi \alpha] \). Then, when \(F \) is applied it is first open and given type \(\forall \alpha. \tau[\alpha] \to \sigma[\alpha, \psi \alpha] \) for some unknown \(\psi \). Then the result of the application to an argument of type \(\sigma[\rho] \) will have type \(\sigma[\rho, \psi \rho] \) where the abstract type (application) \(\psi \rho \) describes the abstract types created by the application. Hence two applications to the same argument will have the same type, as the same abstract type \(\psi \) has just been open once and all occurrences of \(\psi \rho \) are equal hence compatible.

The code would look like

\[
\text{let } \psi, f = \text{unpack } F \text{ in }
\text{let } Y = F X \text{ in }
\text{let } Z = F X \text{ in }
Y = Z
\]

The encoding heavily relies on higher-rank types and may only be implemented in System \(F^\omega \). See \(? \) and \(? \) for details.

System \(F^\omega \) in OCaml. Second-order polymorphism is not primitive but encodable in OCaml, using polymorphic methods

\[
\text{let } id = \text{object method } f : 'a \to 'a = \text{fun } x \to x \text{ end }
\text{let } y (x : <f : 'a \to 'a>) = x@f x \text{ in } y id
\]

or first-class modules

\[
\text{module type } S = \text{sig val } f : 'a \to 'a end
\text{let } id = (\text{module struct let } f x = x \text{ end } : S)
\text{let } y (x : (\text{module } S)) = \text{let module } X = (\text{val } x) \text{ in } X.f x \text{ in } y id
\]

Both solutions are quite verbose, though. Besides, second-order types are not first-class.

In principle, one can also reach higher-rank types OCaml, using first-class modules. However, this is not currently possible, due to (unnecessary) restrictions in the module language.

Modular explicits, a prototype extension\(^2\), leaves some of these restrictions, easing abstraction over first-class modules and allow a light-weight encoding of System \(F^\omega \) —with still some boiler-plate glue code. The encoding of distrib pair with modular explicit is presented in Figure 6.4 with its two specialized instances.

\(^2\)Available at git@github.com:mrmr1993/ocaml.git
module type s = sig type t end
module type op = functor (A:s) -> s

let dp {F:op} {G:op} {A:s} {B:s} (f:{C:s} -> F(C).t -> G(C).t)
 (x : F(A).t) (y : F(B).t) : G(A).t * G(B).t = f {A} x, f {B} y

let dp1 (type a) (type b) (f : {C:s} -> C.t -> C.t) : a -> b -> a * b =
 let module F(C:s) = C in let module G = F in
 let module A = struct type t = a end in
 let module B = struct type t = b end in
 dp {F} {G} {A} {B} f

let dp2 (type a) (type b) (f: a -> b) : a -> a -> b * b =
 let module A = struct type t = a end in
 let module B = struct type t = b end in
 let module F(C:s) = A in let module G(C:s) = B in
 dp {F} {G} {A} {B} (fun {C:s} -> f)

Figure 6.4: distrib:pair with modular implicits

Higher-order polymorphism a la System F^ω is now also accessible in Scala-3. For instance, the
monad example (with some variation on the signature) can be defined as:

```scala
trait Monad[F[_]] {
  def pure[A](x: A): F[A]
  def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
}
```


Still, this feature of Scala-3 is not emphasized and was not directly accessible in previous versions
of Scala. Besides, Scala’s syntax and other complex features of Scala are obfuscating.

What’s next? The next step in expressiveness are Dependent types, as illustrated in the Barendregt’s λ-cube:

```
System $F^\omega = \lambda\omega$  
\[\lambda\] \[\lambda\Pi\omega\] \[\lambda\Pi2\] 
\[\lambda2\] \[\lambda\Pi\] 
\[\lambda\] \[\lambda\omega\] \[\lambda\Pi\omega\]
```

(1) Term abstraction on Types, as in System F;
(2) Type abstraction on Types, as in System F^ω;

(3) Type abstraction on Terms: dependent types $\lambda\Pi$, $\lambda\Pi2$, $\lambda\Pi\omega$.

A form of dependent types is available in Haskell, but not in OCaml.
Chapter 7

Logical Relations

7.1 Introduction

So far, most proofs involving terms have proceeded by induction on typing derivations, or equivalently, on the structure of terms.

Logical relations are relations between well-typed terms defined inductively on the structure of types. They allow proofs between terms by induction on the structure of types.

Logical relations may be n-ary. However, we mostly use unary and binary logical relations. Unary logical relations are typed-indexed predicates on terms or, equivalently, type-indexed sets of terms. They are typically used to give the semantics of types as sets of terms, and as a particular case, prove type soundness or termination of reduction. Binary logical relations are type-indexed relations, or type-indexed sets of pairs of terms. They are typically used to prove equivalence of programs and non-interference properties.

Logical relations are a common proof method for programming languages.

7.1.1 Parametricity

Parametricity is a consequence of polymorphism: polymorphic functions cannot examine the argument of polymorphic types, and therefore must treat them parametrically. This often implies that polymorphic functions have actually relatively few inhabitants—up to $\beta\eta$ convertibility. Thus, a polymorphic type can reveal a lot of information about the terms that inhabit it.

Finding inhabitants of polymorphic functions

For example, what can do a term of type $\forall \alpha. \alpha \to \text{int}$? The function cannot examine its argument. Therefore, it must always return the same integer, that is, it must be a constant function. For example, it could be $\lambda x. n$, $\lambda x. (\lambda y. y) \ n$, $\lambda x. (\lambda y. n) \ x$, etc. What do they all have in common? They are all $\beta\eta$-equivalent to a term of the form $\lambda x. n$

What can do a term of type $\forall \alpha. \alpha \to \alpha$? Well it receives an argument V of type α and must return a value of type α—but cannot examine α. Thus, it must eventually return v, i.e. it behaves
as $\lambda x.x$—again up to $\beta\eta$ equivalence.

A term type of type $\forall \alpha. \alpha \to \beta \to \alpha$ is not very different, it additionally receives a value of type w of type β, but there is no way v and w can interact. So that function must also return v, i.e. it behaves as $\lambda x. \lambda y. x$.

Now, a term of type $\forall \alpha. \alpha \to \alpha \to \alpha$ receives two arguments v and w of type α and must return a value of type α. Again, the arguments cannot interact, as we do not have any operation available of type α. Hence it must return either v or w. That is, it behaves either as $\lambda x. \lambda y. x$ or as $\lambda x. \lambda y. y$—up to $\beta\eta$ conversion.

Theorems for free

The type of a polymorphic function may also reveal a “free theorem” about its behavior!

For example, what properties may we learn from a function whoami of type $\forall \alpha. \text{List } \alpha \to \text{List } \alpha$?

- the length of the result depends only on the length of the argument;
- all elements of the results are elements of the argument.
- the choice (i, j) of pairs such that i-th element of the result is the j-th element of the argument does not depend on the element itself;
- the function is preserved by a transformation of its argument that preserves the shape of the argument:

$$\forall f, x, \ \text{whoami} (\text{map } f \ x) = \text{map } f (\text{whoami } x)$$

What property may we learn for the list sorting function? From it type:

$$\text{sort} : \forall \alpha. (\alpha \to \alpha \to \text{bool}) \to \text{List } \alpha \to \text{List } \alpha$$

we can actually deduce that if f is order-preserving, then sorting commutes with map. Formally:

$$\forall x, y, \ \text{cmp}_2 (f \ x) (f \ y) = \text{cmp}_1 \ x \ y \implies \forall \ell, \ \text{sort} \ \text{cmp}_2 (\text{map } \ell \ x) = \text{map } f (\text{sort} \ \text{cmp}_1 \ \ell)$$

Such properties can be used to significantly reduce testing: in particular, if sort is correct on lists of integers, then it is correct on any list. Note that there are many other inhabitants of the type of sort, (e.g., a function that sorts in reverse order, or a function that removes or adds duplicates), but they all satisfy this free theorem.

A few readings

Parametricity has been widely studied by Reynolds [1983]. It has been popularized by Wadler [1989; 2007], in the ML community, with his *Theorems for free* paper which contains the example of the list sorting function.

An account based on an operational semantics is offered by Pitts [2000].

The application to testing has been generalized by Bernardy et al. [2010] who show how testing any given polymorphic function can be restricted to testing it on (possibly infinitely many) particular values at some particular types.
7.2 Normalization of simply-typed λ-calculus

In general, types also ensure termination of programs—as long as no form of recursion in types or terms has been added. Even if one wishes to add recursion explicitly later on, it is an important property of the design that non-termination is originating from the constructs for recursion only and could not occur without them.

The simply-typed λ-calculus is also lifted at the level of types in richer type systems such as System F^ω where the language of types is itself a simply-typed lambda-calculus and the decidability of type-equality depends on the termination of the reduction at the type level.

Proving termination of reduction in fragments of the λ-calculus is often a difficult task because reduction may create new redexes or duplicate existing ones. However, the proof of termination for the simply-typed λ-calculus is simple enough and interesting to be presented here. Notice that our presentation of simply-typed λ-calculus is equipped with a call-by-value semantics, while proofs of termination are usually done with a strong evaluation strategy where reduction can occur in any context.

We follow the proof schema of Pierce (2002), which is a modern presentation in a call-by-value setting of an older proof by Hindley and Seldin (1986). The proof method, which is now a standard one, is due to Tait (1967).

The idea is to first build the set $E[\tau]$ of terminating closed terms of type τ, and then show that any term of type τ is actually in $E[\tau]$, by induction on terms. Unfortunately, stated as such, this hypothesis is too weak. The difficulty in such cases is usually to find a strong enough induction hypothesis. The solution in this case is to require that terms in $E[\tau_1 \rightarrow \tau_2]$ not only terminate but also terminate when applied to any term in $E[\tau_1]$.

We take the call-by-value simply-typed λ-calculus with primitive booleans and conditional. Write B the type of booleans and tt and ff for true and false.

Definition 2 We recursively define $V[\tau]$ and $E[\tau]$, subsets of closed values and closed expressions of (ground) type τ by induction on types as follows:

\[
V[\mathbf{B}] \triangleq \{tt, ff\} \\
V[\tau_1 \rightarrow \tau_2] \triangleq \{\lambda x : \tau_1. M \mid \forall V \in V[\tau_1], (\lambda x : \tau_1. M) V \in E[\tau_2]\} \\
E[\tau] \triangleq \{M \mid \exists V \in V[\tau], M \Downarrow V\}
\]

We write $M \Downarrow V$ as a shorthand for $M \rightarrow^* V$. The goal is to show that any closed expression of type τ is in $E[\tau]$.

Remark Although usual with logical relations, well-typedness is actually not required here and omitted: otherwise, we would have to carry unnecessary type-preservation proof obligations.

The set $E[\tau]$ can be seen as a predicate, i.e. a unary relation. It is called a (unary) logical relation because it is defined inductively on the structure of types.
Immediate properties

- \(\mathcal{V}[\tau] \subseteq \mathcal{E}[\tau] \) by definition.
- \(\mathcal{E}[\tau] \) is closed by inverse reduction—by definition, i.e. If \(M \rightarrow N \) and \(N \in \mathcal{E}[\tau] \) then \(M \in \mathcal{E}[\tau] \).
- \(\mathcal{E}[\tau] \) is closed by reduction. By confluence (since the reduction is deterministic), if \(M \downarrow N \) and \(M \rightarrow V \), then \(N \downarrow V \).
- For any term in \(\mathcal{E}[\tau] \), the reduction of \(M \) terminates—by definition of \(\mathcal{E}[\tau] \).

Normalization Therefore, it just remains to show that any term of type \(\tau \) is in \(\mathcal{E}[\tau] \):

Lemma 30 If \(\emptyset \vdash M : \tau \), then \(M \in \mathcal{E}[\tau] \).

The proof is by induction on (the typing derivation of) \(M \). However, the case for abstraction requires some similar statement, but for open terms. We need to strengthen the lemma, i.e. also give a semantics to open terms, which can be given by abstracting over the semantics of their free variables, interpreting free term variables of type \(\tau \) as closed values in \(\mathcal{V}[\tau] \).

We define a semantic judgment for open terms \(\Gamma \vdash M : \tau \) so that \(\Gamma \vdash M : \tau \) implies \(\Gamma \vdash M : \tau \) and \(\emptyset \vdash M : \tau \) means \(M \in \mathcal{E}[\tau] \).

We interpret environments \(\Gamma \) as closing substitutions \(\gamma \), i.e. mappings from term variables to closed values: We write \(\gamma \in \mathcal{G}[\Gamma] \) to mean \(\text{dom}(\gamma) = \text{dom}(\Gamma) \) and \(\gamma(x) \in \mathcal{V}[\tau] \) for all \(x : \tau \in \Gamma \). Then, we define

\[
\Gamma \vdash M : \tau \iff \forall \gamma \in \mathcal{G}[\Gamma], \ \gamma(M) \in \mathcal{E}[\tau]
\]

Theorem 15 (fundamental lemma) If \(\Gamma \vdash M : \tau \) then \(\Gamma \vdash M : \tau \).

Corollary 31 (termination of well-typed terms) If \(\emptyset \vdash M : \tau \) then \(M \in \mathcal{E}[\tau] \).

That is, closed well-typed terms of type \(\tau \) evaluates to values of type \(\tau \).

Proof: By induction on the typing derivation

Routine cases

- **Case** \(\Gamma \vdash \text{tt} : \text{B} \) or \(\Gamma \vdash \text{ff} : \text{B} \): by definition, \(\text{tt}, \text{ff} \in \mathcal{V}[\text{B}] \) and \(\mathcal{V}[\text{B}] \subseteq \mathcal{E}[\text{B}] \).

- **Case** \(\Gamma \vdash x : \tau \): \(\gamma \in \mathcal{G}[\Gamma] \), thus \(\gamma(x) \in \mathcal{V}[\tau] \subseteq \mathcal{E}[\tau] \)

- **Case** \(\Gamma \vdash M_1 M_2 : \tau \):

 By inversion, \(\Gamma \vdash M_1 : \tau_2 \rightarrow \tau \) and \(\Gamma \vdash M_2 : \tau_2 \).

 Let \(\gamma \in \mathcal{G}[\Gamma] \). We have \(\gamma(M_1 M_2) = \gamma(M_1) \gamma(M_2) \). By IH, we have \(\Gamma \vdash M_1 : \tau_2 \rightarrow \tau \) and \(\Gamma \vdash M_2 : \tau_2 \). Thus \(\gamma(M_1) \in \mathcal{E}[\tau_2 \rightarrow \tau] \) (1) and \(\gamma(M_2) \in \mathcal{E}[\tau_2] \) (2). By (2), there exists \(V \in \mathcal{V}[\tau_2] \) such that \(\gamma M_2 \downarrow V \). Thus \(\gamma(M_1) (\gamma M_2) \downarrow (\gamma M_1) V \in \mathcal{E}[\tau] \) by (1). Then, \((\gamma M_1) (\gamma M_2) \), i.e. \(\gamma(M_1 M_2) \) is in \(\mathcal{E}[\tau] \) by closure by inverse reduction.
Case $\Gamma \vdash M_1$ else $M_2 : \tau$: By cases on the evaluation of γM for γ in $G[\Gamma]$.

The interesting case

Case $\Gamma \vdash \lambda x : \tau_1. M : \tau_1 \rightarrow \tau$:

Assume $\gamma \in G[\Gamma]$. We must show that $\gamma(\lambda x : \tau_1. M) \in \mathcal{E}[\tau_1 \rightarrow \tau]$ (1) That is, $\lambda x : \tau_1. \gamma M \in \mathcal{V}[\tau_1 \rightarrow \tau]$ (we may assume $x \notin \text{dom}(\gamma)$ w.l.o.g.) Let $V \in \mathcal{V}[\tau_1]$, it suffices to show $(\lambda x : \tau_1. \gamma M) V \in \mathcal{E}[\tau]$ (2). We have $(\lambda x : \tau_1. \gamma M) V \downarrow (\gamma M)[x \mapsto V] = \gamma' M$ where γ' is $\gamma[x \mapsto V] \in G[\Gamma, x : \tau_1]$ (3). Since $\Gamma, x : \tau_1 \vdash M : \tau$ by IH. Therefore by (3), we have $\gamma' M \in \mathcal{E}[\tau]$. Since $\mathcal{E}[\tau]$ is closed by inverse reduction, this proves (2) which finishes the proof of (1).

Variations We have shown both termination and type soundness, simultaneously. If we had a fix point, termination would not hold, but type soundness would still hold. The proof could then be modified by choosing:

$$\mathcal{E}[\tau] = \{ M : \tau \mid \forall N, M \downarrow N \implies (N \in \mathcal{V}[\tau] \lor \exists N', N \rightarrow N') \}$$

Exercise 41 Show type soundness with this semantics.

7.3 Observational equivalence in simply-typed λ-calculus

The rest of these course notes are largely inspired by course notes Practical foundations for programming languages by Harper (2012) and the Introduction to Logical Relations by Skorstengaard (2019). You may also read earlier reference papers:

- Types, Abstraction and Parametric Polymorphism Reynolds (1983)
- Parametric Polymorphism and Operational Equivalence Pitts (2000).

We assume a call-by-value operational semantics (instead of call-by-name in Harper (2012)).

Program equivalence Observational equivalence is answering the question: when are two programs M and N equivalent?

We should at least include the case where one program reduces to the other, or even, more generally, when both programs reduce to the same value. But is this sufficient? Unfortunately not: what if M and N are functions—hence values: Aren’t $\lambda x. (x + x)$ and $\lambda x. 2 * x$ also equivalent? Yes, they are. Indeed, two functions are observationally equivalent if when applied to equivalent arguments, they lead to observationally equivalent results. Still, are we general enough? How can we tell?

We can only observe the behavior of full programs, i.e. closed terms of some computational type, such as Booleans B (the only one in our setting). We thus define:
Definition 3 (Behavioral equivalence) Two closed programs M and N of the same base type are behaviorally equivalent and we write $M \simeq N$ iff there exists V such that $M \Downarrow V$ and $N \Downarrow V$.

To compare programs at other types, we place them in arbitrary closing contexts. Since we often manipulate pairs of well-typed programs, we write $\Gamma \vdash M, N : \tau$ as an abbreviation for $\Gamma \vdash M : \tau \land \Gamma \vdash N : \tau$.

Definition 4 (observational equivalence) Assume $\Gamma \vdash M, N : \tau$. We say that M and N are observationally equivalent and we write $\Gamma \vdash M \equiv N : \tau$ if there are behaviorally equivalent when placed in any closing context at some base type. That is,

$$\Gamma \vdash M \equiv N : \tau \triangleq \forall C : (\Gamma \triangleright \tau) \rightsquigarrow (\emptyset \triangleright \mathbb{B}), \ C[M] \simeq C[N]$$

Definition 5 (Typing of context)

$$C : (\Gamma \triangleright \tau) \rightsquigarrow (\Delta \triangleright \sigma) \overset{\text{def}}{\iff} (\forall M, \ \Gamma \vdash M : \tau \implies \Delta \vdash C[M] : \sigma)$$

There is an equivalent definition given by a set of typing rules. This is needed to prove some properties by induction on the typing derivations.

We write $M \equiv_{\tau} N$ as an abbreviation for $\emptyset \vdash M \equiv N : \tau$

Lemma 32 Observational equivalence is the coarsest consistent congruence, where:

- a relation \equiv is consistent if $\emptyset \vdash M \equiv N : \mathbb{B}$ implies $M \simeq N$.
- a relation \equiv is a congruence if it is an equivalence and is closed by context, i.e.

$$\Gamma \vdash M \equiv N : \tau \land C : (\Gamma \triangleright \tau) \rightsquigarrow (\Delta \triangleright \sigma) \implies \Delta \vdash C[M] \equiv C[N] : \sigma$$

Proof:

Consistent: by definition, using the empty context.

Congruence: by compositionality of contexts.

Coarsest: Assume \equiv is a consistent congruence. Assume $\Gamma \vdash M \equiv N : \tau$ holds and show that $\Gamma \vdash M \equiv N : \tau$ holds (1).

Let $C : (\Gamma \triangleright \tau) \rightsquigarrow (\emptyset \triangleright \mathbb{B})$ (2). We must show that $C[M] \simeq C[N]$.

This follows by consistency applied to $\Gamma \vdash C[M] \equiv C[N] : \mathbb{B}$ which follows by congruence from (1) and (2).

Problem with Observational Equivalence Observational equivalence is too difficult to test: Because of quantification over all contexts (too many for testing), but many contexts will do the same experiment.

The solution is to take advantage of types to reduce the number of experiments by defining and testing the equivalence on base types and propagating the definition mechanically at other types.

Logical relations provide the infrastructure for conducting such proofs.
7.4 Logical relations in simply-typed λ-calculus

7.4.1 Logical equivalence for closed terms

Unary logical relations interpret types by predicates on $i.e.$ sets of) closed values of that type. Binary relations interpret types by binary relations on closed values of that type, $i.e.$ sets of pairs of related values of that type.

That is, $V[\tau]$ is a subset of $\text{Val}(\tau) \times \text{Val}(\tau)$ and $E[\tau]$, the closure of $V[\tau]$ by inverse reduction is a subset of $\text{Expressions}_{\tau} \times \text{Exp}(\tau)$.

Definition 6 (Logical equivalence for closed terms) We recursively define two relations $V[\tau]$ and $E[\tau]$ between values of type τ and expressions of type τ by

$$
V[\text{B}] \triangleq \{(tt, tt), (ff, ff)\}
$$

$$
V[\tau \to \sigma] \triangleq \{(V_1, V_2) \mid V_1, V_2 \vdash \tau \rightarrow \sigma \land \forall (W_1, W_2) \in V[\tau], (V_1 W_1, V_2 W_2) \in E[\sigma]\}
$$

$$
E[\tau] \triangleq \{(M_1, M_2) \mid M_1, M_2 : \tau \land \exists (V_1, V_2) \in V[\tau], M_1 \downarrow V_1 \\
\land \forall (V_2, M_2 \downarrow V_2) \Longrightarrow \exists V_1, M_1 \downarrow V_1 \land (V_1, V_2) \in V[\tau]\}\}
$$

Notice the (highlighted) mutual recursion between $V[\cdot]$ and $E[\cdot]$. In the following we will leave the typing constraint in gray implicit, $i.e.$ we will treat them as global conditions for sets $V[\cdot]$ and $E[\cdot]$. We also write $M_1 \sim_\tau M_2$ for $(M_1, M_2) \in E[\tau]$ and $V_1 \sim_\tau V_2$ for $(V_1, V_2) \in V[\tau]$.

Non-termination In a language with non-termination, we change the definition of $E[\tau]$ to

$$
E[\tau] \triangleq \{(M_1, M_2) \mid M_1, M_2 : \tau \land \\
\left(\forall V_1, M_1 \downarrow V_1 \Longrightarrow \exists V_2, M_2 \downarrow V_2 \land (V_1, V_2) \in V[\tau]\right) \land \\
\left(\forall V_2, M_2 \downarrow V_2 \Longrightarrow \exists V_1, M_1 \downarrow V_1 \land (V_1, V_2) \in V[\tau]\right)\}
$$

Remark In $V[\sigma \rightarrow \sigma]$, all values are functions. Hence, we could have *equivalently* defined:

$$
V[\tau \rightarrow \sigma] \triangleq \{((\lambda x : \tau. M_1), (\lambda x : \tau. M_2)) \mid (\lambda x : \tau. M_1), (\lambda x : \tau. M_2) \vdash \tau \rightarrow \sigma \land \forall (W_1, W_2) \in V[\tau], ((\lambda x : \tau. M_1) W_1, (\lambda x : \tau. M_2) W_2) \in E[\sigma]\}\}
$$

This formulation is more explicit, but less concise.

Properties of logical equivalence for closed terms

Closure by reduction By definition, since reduction is deterministic: Assume $M_1 \downarrow N_1$ and $M_2 \downarrow N_2$ and $(M_1, M_2) \in E[\tau]$, $i.e.$ there exists $(V_1, V_2) \in V[\tau]$ (1) such that $M_i \downarrow V_i$. Since reduction is deterministic, we must have $M_i \downarrow N_i \downarrow V_i$. This, together with (1), implies $(N_1, N_2) \in E[\tau]$.
Closure by inverse reduction Immediate, by construction of $E[\tau]$.

Corollaries

- If $(M_1, M_2) \in E[\tau \rightarrow \sigma]$ and $(N_1, N_2) \in E[\tau]$, then $(M_1 N_1, M_2 N_2) \in E[\sigma]$.
- To prove $(M_1, M_2) \in E[\tau \rightarrow \sigma]$, it suffices to show $(M_1 V_1, M_2 V_2) \in E[\sigma]$ for all $(V_1, V_2) \in \mathcal{V}[\tau]$.

Consistency $(\sim_{B}) \subseteq (\approx)$.
Immediate, by definition of $E[B]$ and $\mathcal{V}[B] \subseteq \approx$.

Lemma 33 (Symmetry and transitivity) Logical equivalence is symmetric and transitive (at any given type).

Notice that reflexivity is not at all obvious! This will be the fundamental lemma of logical relations.

Proof: We show it simultaneously for \sim_τ and \approx_τ by induction on type τ. For \sim_τ, the proof is immediate by transitivity and symmetry of \approx_τ. For \approx_τ, it goes as follows:

Case τ is B: the result is immediate by symmetry and transitivity of behavioral equivalence.

Case τ is $\tau \rightarrow \sigma$:
By IH, symmetry and transitivity hold at types τ and σ.
For symmetry, assume $V_1 \approx_{\tau \rightarrow \sigma} V_2$ (1), we must show $V_2 \approx_{\tau \rightarrow \sigma} V_1$. Assume $W_1 \approx_\tau W_2$. We must show $V_2 M_1 \sim_\sigma V_1 W_1$ (2). We have $W_2 \approx_\tau W_1$ by symmetry at type τ. By (1), we have $V_2 W_2 \sim_\sigma V_1 W_1$ and (2) follows by symmetry of \sim at type σ.
For transitivity, assume $V_1 \approx_\tau V_2$ (3) and $V_2 \approx_\tau V_3$ (4). To show $V_1 \approx_\tau V_3$, we assume $W_1 \sim_\tau W_3$ and show $V_1 W_1 \sim_\sigma V_3 W_3$ (5). By (3), we have $V_1 W_1 \sim_\tau V_2 W_3$ (6). By symmetry and transitivity of \approx_τ, we get $W_3 \approx_\tau W_3$ (7). By (4), we have $V_2 W_3 \sim_\sigma V_3 W_3$ (8). Then (2) follows by transitivity of \approx_σ applied to (6) and (8).

Remark: that (7) is not using reflexivity, which has not been proved yet: this equality follows from the fact that W_3 is already known to be in relation with W_1.

7.4.2 Logical equivalence for open terms

When $\Gamma \vdash M_1, M_2 : \tau$, we wish to define a judgment $\Gamma \vdash M_1 \sim M_2 : \tau$ to mean that the open terms M_1 and M_2 are equivalent at type τ.

The solution is to interpret program variables of $\text{dom}(\Gamma)$ by pairs of related values, and typing contexts Γ by sets of bisubstitutions γ mapping variable type assignments to pairs of related values at the given type:

\[
\begin{align*}
\mathcal{G}[\emptyset] & \triangleq \{ \emptyset \} \\
\mathcal{G}[\Gamma, x : \tau] & \triangleq \{ \gamma, x \mapsto (V_1, V_2) \mid \gamma \in \mathcal{G}[\Gamma] \land (V_1, V_2) \in \mathcal{V}[\tau] \}
\end{align*}
\]
Given a bisubstitution \(\gamma \), we write \(\gamma_i \) for the substitution that maps \(x \) to \(V_i \) whenever \(\gamma \) maps \(x \) to \((V_1, V_2) \).

Definition 7 *(Logical equivalence for open terms)*

\[
\Gamma \vdash M_1 \sim M_2 : \tau \quad \overset{\text{def}}{\iff} \quad \begin{cases}
\Gamma \vdash M_1, M_2 : \tau \\
\forall \gamma \in \mathcal{G}[\Gamma], \quad (\gamma_1 M_1, \gamma_2 M_2) \in \mathcal{E}[\tau]
\end{cases}
\]

We also write \(\vdash M_1 \sim M_2 : \tau \) or \(M_1 \sim M_2 \) for \(\varnothing \vdash M_1 \sim M_2 : \tau \).

Lemma 34 *Open logical equivalence is symmetric and transitive.***

Proof: The proof is immediate by the definition and the symmetry and transitivity of closed logical equivalence.

Theorem 16 (Reflexivity) *If \(\Gamma \vdash M : \tau \), then \(\Gamma \vdash M \sim M : \tau \).*

The is also called the fundamental lemma of logical relations. The proof is by induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

\[
\begin{array}{llll}
\text{C-TRUE} & \Gamma \vdash \text{tt} \sim \text{tt} : \text{bool} & \text{C-FALSE} & \Gamma \vdash \text{ff} \sim \text{ff} : \text{bool} \\
\text{C-IF} & \Gamma \vdash M_1 \sim M_2 : \text{B} & \Gamma \vdash N_1 \sim N_2 : \tau & \Gamma \vdash N_1' \sim N_2' : \tau \\
\text{C-APP} & \Gamma \vdash M_1 \sim M_2 : \tau \rightarrow \sigma & \Gamma \vdash N_1 \sim N_2 : \sigma & \Gamma \vdash N_1' \sim N_2' : \sigma \\
\end{array}
\]

Proof: Each case can be shown independently.

Rule C-ABS Assume \(\Gamma, x : \tau \vdash M_1 \sim M_2 : \sigma \) *(1)*. We show \(\Gamma \vdash \lambda x : \tau. M_1 \sim \lambda x : \tau. M_2 : \tau \rightarrow \sigma \).

Let \(\gamma \) be in \(\mathcal{G}[\Gamma] \). We show \((\gamma_1(\lambda x : \tau. M_1), \gamma_2(\lambda x : \tau. M_2)) \in \mathcal{V}[\tau \rightarrow \sigma] \). Let \((V_1, V_2)\) be in \(\mathcal{V}[\tau] \). It suffices to show that \((\gamma_1(\lambda x : \tau. M_1), V_1, \gamma_2(\lambda x : \tau. M_2), V_2) \in \mathcal{E}[\sigma] \) *(2)*. Let \(\gamma' \) be \(\gamma, x \mapsto (V_1, V_2) \). We have \(\gamma' \) in \(\mathcal{G}[\Gamma, x : \tau] \). Thus, from *(1)*, we have \((\gamma_1 M_1, \gamma_2 M_2) \) in \(\mathcal{E}[\sigma] \), which proves *(2)*, since \(\mathcal{E}[\sigma] \) is closed by inverse reduction and \(\gamma_1(\lambda x : \tau. M_1) \upharpoonright V_i = \gamma'_i M_i \).

Rule C-APP and **C-IF** By induction hypothesis and the fact that substitution distributes over application.

We must show \(\Gamma \vdash M_1 N_1 \sim M_2 N_2 : \sigma \) *(3)*. Let \(\gamma \) be in \(\mathcal{G}[\Gamma] \). From the premises \(\Gamma \vdash M_1 \sim M_2 : \tau \rightarrow \sigma \) and \(\Gamma \vdash N_1 \sim N_2 : \tau \), we have \((\gamma_1 M_1, \gamma_2 N_2) \) in \(\mathcal{E}[\tau \rightarrow \sigma] \) and \((\gamma_1 N_1, \gamma_2 M_2) \) in \(\mathcal{E}[\tau] \)
\[
\text{in } E[\tau]. \text{ Therefore } (\gamma_1 M_1 \gamma_2 M_2 \gamma_2 N_2), \text{ i.e. } (\gamma_1(M_1 N_1), \gamma_2(M_2 N_2)) \in E[\sigma] \text{ in } E[\sigma],
\]
which proves (3).

Rule C-If: Similar to the case of application.

We show \(\Gamma \vdash \text{if } M_1 \text{ then } N_1 \text{ else } N_1' \sim \text{if } M_2 \text{ then } N_2 \text{ else } N_2' : \tau \). Assume \(\gamma \in G[\gamma] \). We show
\((\gamma_1(M_1 N_1), \gamma_2(M_2 N_2)) \in E[\tau] \) (1).

From the premise \(\Gamma \vdash M_1 \sim M_2 : B \), we have \((\gamma_1 M_1, \gamma_2 M_2) \in E[B] \). Therefore \(M_1 \Downarrow V \) and \(M_2 \Downarrow V \) where \(V \) is either \(\text{tt} \) or \(\text{ff} \).

Case V is tt: Then,
\((\gamma_1 \text{if } M_1 \text{ then } N_1 \text{ else } N_1') \Downarrow \gamma_1 N_1, \text{ i.e. } (\gamma_1(M_1 N_1), \gamma_2(M_2 N_2)) \in E[\tau] \) and (1) follows by closure by inverse reduction.

Case V is ff: Similar.

Rule C-True, **C-False**, and **C-Var** are immediate.

Proof: (of reflexivity)

By induction on the proof of \(\Gamma \vdash M : \tau \). All cases are easy. We must show \(\Gamma \vdash M \sim M : \tau \):

Case M is tt or ff: Immediate by Rule C-True or Rule C-False

Case M is x: Immediate by Rule C-Var

Case M is M' N: By inversion of the typing rule App, induction hypothesis, and Rule C-App

Case M is \(\lambda x : \tau.N \): By inversion of the typing rule Abs, induction hypothesis, and Rule C-Abs

Properties of logical relations

Corollary 35 (equivalence) Open logical relation is an equivalence relation

Lemma 36 Logical equivalence is a congruence.

If \(\Gamma \vdash M \sim M' : \tau \) and \(C : (\Gamma \triangleright \tau) \sim (\Delta \triangleright \sigma) \), then \(\Delta \vdash C[M] \sim C[M'] : \sigma \).

Proof: By induction on the proof of \(C : (\Gamma \triangleright \tau) \sim (\Delta \triangleright \sigma) \).

The proof is similar to the proof of reflexivity—but we need a syntactic definition of context typing derivations (which we have omitted) to be able to reason by induction on the context typing derivations.

Theorem 17 (Soundness of logical equivalence) Logical equivalence implies observational equivalence. If \(\Gamma \vdash M \sim M' : \tau \) then \(\Gamma \vdash M \equiv M' : \tau \).
7.5. LOGICAL REL. IN F

Proof: Logical equivalence is a consistent congruence, hence included in observational equivalence which is the coarsest such relation.

Theorem 18 (Completeness of logical equivalence) Observational equivalence of closed terms implies logical equivalence. That is \((\equiv_\tau) \subseteq (\sim_\tau)\).

Proof: Proof by induction on \(\tau\).

Case \(B\): In the empty context, by consistency, \(\equiv_B\) is a subrelation of \(\equiv_B\) which coincides with \(\sim_B\).

Case \(\tau \to \sigma\): By congruence of observational equivalence.

By hypothesis, we have \(M_1 \equiv_{\tau \to \sigma} M_2\) (1). To show \(M_1 \sim_{\tau \to \sigma} M_2\), we assume \(V_1 \equiv_\tau V_2\) (2) and then, it suffices to show \(M_1 V_1 \equiv_\sigma M_2 V_2\) (3).

By soundness applied to (2), we have \(V_1 \equiv_\tau V_2\) from (4). By congruence with (1), we have \(M_1 V_1 \equiv_\sigma M_2 V_2\), which implies (3) by IH at type \(\sigma\).

Exercise 42 (Application) Let not be \(\lambda x : B.\text{if } x \text{ then } \text{ff} \text{ else } \text{tt}\) and \(M\) and \(M'\) be the expressions \(\lambda x : B.\lambda y : \tau.\lambda z : \tau.\text{if } x \text{ then } y \text{ else } z\) and \(\lambda x : B.\lambda y : \tau.\lambda z : \tau.\text{if } x \text{ then } z \text{ else } y\). Show that \(M \equiv B \to \tau \to \tau \to \tau M'\).

Solution: It suffices to show \(M V_0 V_1 V_2 \equiv \tau M' V'_0 V'_1 V'_2\) whenever \(V_0 \equiv_B V'_0\) (1) and \(V_1 \equiv_\tau V'_1\) (2) and \(V_2 \equiv_\tau V'_2\) (3). By inverse reduction, it suffices to show: if not \(V_0\) then \(V_1\) else \(V_2\) \(\sim_{\tau'}\) if \(V'_0\) then \(V'_1\) else \(V'_2\) (4). It follows from (1) that we have only two cases:

Case \(V_0 = V'_0 = \text{tt}\): Then not \(V_0\) \(\downarrow\) \(\text{ff}\) and thus \(M \downarrow V_2\) while \(M' \downarrow V_2\). Then (4) follows from (3) and closure by inverse reduction.

Case \(V_0 = V'_0 = \text{ff}\): is symmetric.

7.5 Logical relations in F

We now extend observational and logical equivalence to System F.

\[
\begin{align*}
\tau &::= \ldots | \alpha | \forall \alpha. \tau \\
M &::= \ldots | \Lambda \alpha. M | M \tau
\end{align*}
\]

We write typing contexts \(\Delta;\Gamma\) where \(\Delta\) binds type variables and \(\Gamma\) binds program variables. Typing of contexts becomes \(C : (\Delta;\Gamma \triangleright \tau) \rightsquigarrow (\Delta';\Gamma' \triangleright \tau')\).

Definition 8 (observational equivalence) We defined \(\Delta;\Gamma \vdash M \equiv N : \tau\) as

\[
\forall C : (\Delta;\Gamma \triangleright \tau) \rightsquigarrow (\emptyset;\emptyset \triangleright B), \quad C[M] \equiv C[N]
\]

We write \(M \equiv_\tau N\) for \(\emptyset;\emptyset \vdash M \equiv N : \tau\) (in particular, when \(\tau\), \(M\), and \(N\) are closed).
7.5.1 Logical equivalence for closed terms

For closed terms (no free program variables), we now need to give the semantics of polymorphic types $\forall \alpha. \tau$. Unfortunately, it cannot be defined in terms of the semantics of instances $\tau[\alpha \mapsto \sigma]$, since the semantics is defined by induction on types.

The work around is to define the semantics of terms with open types in some suitable environment that interprets type variables by relations (sets of pairs of related values) of closed types. This relation will also be used to give the the semantics of type variables. A key point however, it to interpret type variables by heterogeneous values, relating values of different types on both sides.

We write ρ for closed types. Let $R(\rho_1, \rho_2)$ be the set of relations on values of closed types ρ_1 and ρ_2, that is, $P(\text{Val}(\rho_1) \times \text{Val}(\rho_2))$. We optionally restrict all such relations to be admissible, and we write $R^+(\rho_1, \rho_2)$ the subset of admissible relations, which in our setting means closed by observational equivalence, i.e.

$$R \in R^+(\rho_1, \rho_2) \overset{\text{def}}{\iff} \forall (V_1, V_2) \in R, \forall W_1, W_2, W_1 \equiv_{\rho_1} V_1 \land W_2 \equiv_{\rho_2} V_2 \implies (W_1, W_2) \in R$$

Admissibility will be required for completeness of logical relations with respect to observational equivalence. However, it is not required for soundness of logical relations. Choosing relations that are not admissible is sometimes easier when one only soundness of logical relations is needed.

Example 1 Both $R_1 \triangleq \{(tt, 0), (ff, 1)\}$ and $R_2 \triangleq \{(tt, 0)\} \cup \{(ff, n) \mid n \in \mathbb{Z}^*\}$ are admissible relations in $R(B, \text{int})$. By contrast $R_3 \triangleq \{(tt, \lambda x : \tau \cdot 0), (ff, \lambda x : \tau \cdot 1)\}$ is in $R(B, \tau \to \text{int})$ but it is not admissible. Indeed, taking $M_0 \triangleq \lambda x : \tau. (\lambda z : \text{int}. z) 0$. we have $M_0 \equiv_{\tau \to \text{int}} \lambda x : \tau. 0$ but (tt, M_0) is not in R_3.

Interpretation of type environments We interpret type variables α by triples of the form (ρ_1, ρ_2, R) where $R \in R(\rho_1, \rho_2)$. We write η for mappings of type variables to such triples. Given a list of type variables Δ, we define the set $D[\Delta]$ of interpretations of Δ as:

$$D[\emptyset] \triangleq \{\emptyset\}$$
$$D[\Delta, \alpha] \triangleq \{\eta, \alpha \mapsto (\rho_1, \rho_2, R) \mid \eta \in D[\Delta] \land R \in R(\rho_1, \rho_2)\}$$
Definition 9 (Logical equivalence for closed terms)

\[
\begin{align*}
\mathcal{V}[\alpha]_\eta & \triangleq \eta R(\alpha) \\
\mathcal{V}[\forall \alpha. \tau]_\eta & \triangleq \{ (V_1, V_2) \mid V_1 \vdash \eta_1 (\forall \alpha. \tau) \land V_2 \vdash \eta_2 (\forall \alpha. \tau) \land \\
& \quad \forall \rho_1, \rho_2, R \in \mathcal{R}(\rho_1, \rho_2), (V_1, \rho_1, V_2, \rho_2) \in \mathcal{E}[\tau]_{\eta, \alpha \mapsto (\rho_1, \rho_2, R)} \}\end{align*}
\]

\[
\mathcal{V}[B]_\eta \triangleq \{ (tt, tt), (ff, ff) \}
\]

\[
\mathcal{V}[\tau \rightarrow \sigma]_\eta \triangleq \{ (V_1, V_2) \mid V_1 \vdash \eta_1 (\tau \rightarrow \sigma) \land V_2 \vdash \eta_2 (\tau \rightarrow \sigma) \land \\
& \quad \forall (W_1, W_2) \in \mathcal{V}[\tau]_\eta, (V_1, W_1, V_2, W_2) \in \mathcal{E}[\sigma]_\eta \}\end{align*}
\]

\[
\mathcal{E}[\tau]_\eta \triangleq \{ (M_1, M_2) \mid M_1 : \eta_1 \tau \land M_2 : \eta_2 \tau \land \\
& \quad \exists (V_1, V_2) \in \mathcal{V}[\tau]_\eta, M_1 \downarrow V_1 \land M_2 \downarrow V_2 \}\end{align*}
\]

\[
\mathcal{G}[\varnothing]_\eta \triangleq \{ \varnothing \}
\]

\[
\mathcal{G}[\Gamma, x : \tau]_\eta \triangleq \{ \gamma, x \mapsto (V_1, V_2) \mid \gamma \in \mathcal{G}[\Gamma]_\eta \land (V_1, V_2) \in \mathcal{V}[\tau]_\eta \}
\]

Notice that there are really just two new cases \(\mathcal{V}[\alpha]_\eta\) and \(\mathcal{V}[\forall \alpha. \tau]_\eta\), as the other cases are just adjusting the previous definition to carry around the environment \(\eta\) (which we have here typeset in highlighted to emphasize the minor difference).

Notice again that \(\forall \alpha. \tau\) is interpreted by choosing two different types \(\rho_1\) and \(\rho_2\) and therefore heterogeneous pairs of types in \(\mathcal{R}(\rho_1, \rho_2)\) to interpret \(\alpha\).

Definition 10 (Logical equivalence for open terms) We say \(\Delta; \Gamma \vdash M \sim M' : \tau\) as

\[
\left\{ \begin{array}{l}
\Delta; \Gamma \vdash M, M' : \tau \\
\forall \eta \in \mathcal{D}[\Delta], \forall \gamma \in \mathcal{G}[\Gamma]_\eta, (\eta_1(\gamma_1 M_1), \eta_2(\gamma_2 M_2)) \in \mathcal{E}[\tau]_\eta
\end{array} \right\}
\]

We also write \(M_1 \sim_\tau M_2\) for \(\vdash M_1 \sim M_2 : \tau\) (i.e. \(\varnothing ; \varnothing \vdash M_1 \sim M_2 : \tau\)). In this case, \(\tau\) is a closed type and \(M_1\) and \(M_2\) are closed terms of type \(\tau\); hence, this coincides with the previous definition \((M_1, M_2)\) in \(\mathcal{E}[\tau]_{\varnothing}\), which may still be used as a shorthand for \(\mathcal{E}[\tau]\).

Lemma 37 (Compositionality)

Assume \(\Delta \vdash \sigma\) and \(\Delta; \alpha \vdash \tau\) and \(\eta \in \mathcal{D}[\Delta]\). Then, \(\mathcal{V}[\tau[\alpha \mapsto \sigma]]_\eta = \mathcal{V}[\tau]_{\eta, \alpha \mapsto \eta_1 \sigma, \eta_2 \sigma, \mathcal{V}[\sigma]_\eta}\).

Proof: Let us write \(\theta\) for \([\alpha \mapsto \sigma]\) and \(\eta^\alpha\) for \(\eta_1 \sigma, \eta_2 \sigma, \mathcal{R}(\alpha)\). We show \(\mathcal{V}[\tau[\theta]]_\eta = \mathcal{V}[\tau]_{\eta^\alpha}\) by induction on \(\tau\).

Case \(\tau\) is \(\alpha\): The right-hand side \(\mathcal{V}[\alpha]_{\eta^\alpha}\) is by definition \(\eta R(\alpha)\), which is \(R(\alpha)\), i.e. \(\mathcal{V}[\sigma]_\eta\) by hypothesis.

Case \(\tau\) is \(\sigma \rightarrow \sigma'\): Since \((\sigma \rightarrow \sigma')\theta\) is \(\sigma\theta \rightarrow \sigma'\theta\), the left-hand side is \(\mathcal{V}[\sigma[\theta \mapsto \sigma']_\eta\), i.e. by definition:

\[
\{ (V_1, V_2) \mid \forall (W_1, W_2) \in \mathcal{V}[\sigma[\theta]]_\eta, (V_1, W_1, V_2, W_2) \in \mathcal{E}[\sigma']_\eta \}\]
By induction hypothesis, we may replaced $\mathcal{V}[\sigma \theta]_\eta$ by $\mathcal{V}[\sigma]_{\eta^\sigma}$ and $\mathcal{E}[\sigma' \theta]_\eta$ by $\mathcal{E}[\sigma']_{\eta^\sigma}$ which gives exactly the definition of the right-hand side $\mathcal{V}[\sigma \to \sigma']_{\eta^\sigma}$.

Case τ is B: Both sides are equal to $\mathcal{V}[B]$.

Case τ is $\forall \beta. \sigma$: Assume $\alpha \neq \beta$. Since $\theta(\forall \alpha. \sigma)$ is then $\forall \alpha. \theta \sigma$, the left-hand side is $\mathcal{V}[\forall \alpha. \sigma \theta]_\eta$ which is, by definition:

$$\{(V_1, V_2) \mid \forall \rho_1, \rho_2, \forall S \in \mathcal{R}(\rho_1, \rho_2), (V_1 \rho_1, V_2 \rho_2) \in \mathcal{E}[\sigma \theta]_{\eta, \beta \mapsto (\rho_1, \rho_2, S)}\}$$

Since R and S are relations between closed types the substitutions $\alpha \mapsto (\tau_1, \tau_2, R)$ and $\beta \mapsto (\rho_1, \rho_2, S)$ commute. Thus, by induction hypothesis, we may replace $\mathcal{E}[\sigma \theta, \beta]_\eta$ by $\mathcal{E}[\sigma]_{\eta^\beta, \beta \mapsto (\rho_1, \rho_2, S)}$, which gives the definition of the right-hand side.

Theorem 19 (Reflexivity, also called the fundamental lemma)

If $\Delta; \Gamma \vdash M : \tau$ then $\Delta; \Gamma \vdash M \sim M : \tau$.

Admissibility is not required for the fundamental lemma.

Proof: By induction on the typing derivation of $\Delta; \Gamma \vdash M : \tau$, using compatibility lemmas.

Lemma 38 (Compatibility lemmas) We redefined previous the lemmas to work in a typing context of the form Δ, Γ instead of Γ. In addition, we have:

$$
\begin{array}{c}
\text{C-TABS} \\
\Delta, \alpha; \Gamma \vdash M_1 \sim M_2 : \tau \\
\hline
\Delta; \Gamma \vdash \Lambda \alpha. M_1 \sim \Lambda \alpha. M_2 : \forall \alpha. \tau
\end{array}
\quad
\begin{array}{c}
\text{C-TAPP} \\
\Delta; \Gamma \vdash M_1 \sim M_2 : \forall \alpha. \tau \\
\hline
\Delta; \Gamma \vdash M_1 \sigma \sim M_2 \sigma : \tau[\alpha \mapsto \sigma]
\end{array}
$$

Proof: We show each rule independently. In each case, the typing conditions follow immediately from the mimicking of the typing rules.

Rule C-TABS Assume $\Delta, \alpha; \Gamma \vdash M_1 \sim M_2 : \tau$ (1). We show $\Delta; \Gamma \vdash \Lambda \alpha. N \sim \Lambda \alpha. N : \forall \alpha. \tau$.

Let $\eta \in \mathcal{D}[\Delta]$ and $\gamma \in \mathcal{G}[\Gamma]_\eta$. We show $(\eta_1(\gamma_1(\Lambda \alpha. M_1)), \eta_2(\gamma_2(\Lambda \alpha. M_2))) \in \mathcal{E}[\forall \alpha. \tau]_\eta$, i.e. $((\eta_1(\gamma_1(\Lambda \alpha. M_1))) \rho_1, (\eta_2(\gamma_2(\Lambda \alpha. M_2))) \rho_2) \in \mathcal{E}[\tau]_{\eta, \alpha \mapsto (\rho_1, \rho_2, R)}$ (2), for any ground types ρ_1 and ρ_2 and $R \in \mathcal{R}(\rho_1, \rho_2)$.

We may assume $\alpha \notin \text{dom}(\gamma)$ w.l.o.g.. Then $(\eta_1(\gamma_1(\Lambda \alpha. M_i))) \rho_i$ is equal to $\eta_1((\Lambda \alpha. \gamma_i(M_i)) \rho_i)$ which reduces to $\eta_1(\gamma_i(M_i[\alpha \mapsto \rho_i]))$, i.e. $\eta_1(\gamma_i(M_i))$ where γ_i' is $\gamma_i \mapsto \rho_i$.

Since $\gamma_i' \in \mathcal{D}[\Delta, \alpha]$, we have by $(\eta_1(\gamma_i'(M_i)), \eta_2(\gamma_i'(M_2))) \in \mathcal{E}[\tau]_{\eta, \alpha \mapsto (\rho_1, \rho_2, R)}$ by IH applied to (1), from which (2) follows by closure under inverse reduction.

Rule C-TAPP Assume $\Delta; \Gamma \vdash M_1 \sim M_2 : \forall \alpha. \tau$ (1) and $\Delta \vdash \sigma$. We show $\Delta; \Gamma \vdash M_1 \sigma \sim M_2 \sigma : \tau[\alpha \mapsto \sigma]$.

Let $\eta \in \mathcal{D}[\Delta]$ and $\gamma \in \mathcal{G}[\Gamma]_\eta$. We just need to show $(\eta_1 \gamma_1(M_1 \sigma), \eta_2 \gamma_2(M_2 \sigma))$ in $\mathcal{E}[\tau[\alpha \mapsto \sigma]]_\eta$ (2). From (1), we have $(\eta_1 \gamma_1 M_1, \eta_2 \gamma_2 M_2)$ in $\mathcal{E}[\forall \alpha. \tau]_\eta$. By definition, this
implies \(((\eta_1 \gamma_1 M_1) (\eta_1 \sigma), (\eta_2 \gamma_2 M_2) (\eta_2 \sigma))\), i.e., \((\eta_1 \gamma_1 (M_1 \sigma), \eta_2 \gamma_2 (M \sigma))\) is in \(E[\tau][\eta]\) where \(\eta' = \eta_1, \alpha \mapsto (\eta_2, \sigma, V[\sigma][\eta])\), which exactly proves (2) by compositionality. (Notice, that by corollary 40 this relation is admissible if we are working under the admissibility assumption.)

Other rules: their proof is quite similar to the same corresponding rule for closed types.

Theorem 20 (Soundness of logical equivalence) Logical equivalence implies implies observational equivalence. That is, if \(\Delta; \Gamma \vdash M_1 \sim M_2 : \tau\) then \(\Delta; \Gamma \vdash M_1 \equiv M_2 : \tau\).

Lemma 39 (Respect for observational equivalence) Under the admissibility condition, If \((M_1, M_2) \in E[\tau][\eta]\) and \(M_1 \equiv_{\eta_1} \eta_1 M_1\) and \(M_2 \equiv_{\eta_2} \eta_2 M_2\), then \((N_1, N_2) \in E[\tau][\eta']\).

Proof: By symmetry, we may just show it when \(N_2\) is \(M_2\), the case when \(N_1\) is \(M_1\) symmetric and the general case follows by two applications of of the lemma that falls in the two previous cases.

We assume \((M_1, M_2) \in E[\tau][\eta]\) (1) and \(M_1 \equiv_{\eta_1} \eta_1 M_1\) (2). We show \((N_1, M_2) \in E[\tau][\eta]\) (3) by induction on \(\tau\).

Case \(\tau\) is \(\forall \alpha.\sigma\): Assume \(R \in \mathcal{R}(\rho_1, \rho_2)\). Let \(\eta' = \eta_1, \alpha \mapsto (\rho_1, \rho_2, R)\). It suffices to show \((M_1, \rho_1, M_2, \rho_2) \in E[\sigma][\eta]\) (4). We have \((M_1 \rho_1, M_2 \rho_2) \in E[\sigma][\eta']\), from (1). By congruence applied to (2), we have \(N_1 \rho_1 \equiv_{\eta_2} \eta_2 M_1 \rho_1\). Then (4) follows by induction hypothesis at type \(\sigma\).

Case \(\tau\) is \(\alpha\): We know that \((M_1, M_2)\) reduces to a pair \((V_1, V_2)\) in \(V[\alpha][\eta]\), i.e. \(\eta_R(\alpha)\), which is by assumption is admissible, i.e. closed by observational equivalence (between values). Therefore, we just need to show that \(V \equiv_{\eta_1} V_1\) where \(V\) is such that \(N_1 \equiv V\). This follows from \(N_1 \equiv_{\eta_1} M_1\) since observational equivalence of closed terms is closed by reduction.

Case \(\tau\) is \(\mathbb{B}\): By definition \(E[\mathbb{B}][\eta]\) does not depend on \(\eta\) and is equal to \(\equiv_{\mathbb{B}}\), which is included in \(\equiv_{\mathbb{B}}\) and closed by transitivity.

Case \(\tau\) is \(\sigma' \rightarrow \sigma\): Assume \(V_1, V_2\) is in \(E[\sigma'][\eta]\) (5). It suffices to show that \((N_1 V_1, M_2 V_2)\) is in \(E[\sigma][\eta]\) (6). By (1), we have \((M_1 V_1, M_2 V_2) \in E[\sigma'][\eta]\). By congruence applied to (2), we have \(N_1 V_1 \equiv_{\eta_1} \eta_2 M_1 V_1\). Then (6) follows by IH, since then \(E[\sigma'][\eta]\) respects observational equivalence.

Corollary 40 Under the admissibility condition, the relation \(V[\tau][\eta]\) is an admissible relation in \(R(\eta_1 \tau, \eta_2 \tau)\).

This may be useful to build admissibility relations, when admissibility is required.

Lemma 41 (Closure by observational equivalence) Under the admissibility condition, if \(\Delta; \Gamma \vdash M_1 \sim_1 M_2 : \tau\) and \(\Delta; \Gamma \vdash M_1 \equiv N_1 : \tau\) and \(\Delta; \Gamma \vdash M_2 \equiv N_2 : \tau\), then \(\Delta; \Gamma \vdash N_1 \sim_1 N_2 : \tau\).

This lemma is use in the proof of correctness of logical equivalence.
Proof: By symmetry, we may just show it when N_2 is M_2, the case when N_1 is M_1 is symmetric and the general case follows by two applications of of the lemma that falls in the two previous cases.

The proof is by induction on τ.

Assume that $\Delta, \Gamma \vdash M_1 \sim \tau \vdash M_2$ (1) and $\Delta; \Gamma \vdash N_1 \sim_{\eta \tau} M_1$ (2). Assume η in $D[\Delta]$ and γ in $G[\Gamma]^\eta$. We are to show that $(\eta_1 \gamma_1 N_1, \eta_2 \gamma_2 M_2)$ is in $E[\eta \tau]$ (3).

Let C be the context $(\Lambda \Delta, \lambda \Gamma, [\text{]}) \eta_1 \gamma_1 (\Delta)$ and $\eta_1 \gamma_1 \eta_1 \gamma_1 (\Gamma)$ are sequences of ground types and of closed values of ground types taken in the appropriate (i.e. reverse) order. We have $C(\Delta; \Gamma \gg \tau) \vdash (\emptyset; \emptyset \gg \eta \tau)$. It then follows from (2) that $C[N_1] \sim_{\eta \tau} C[M_1]$, which implies $\eta_1 \gamma_1 N_1 \sim_{\tau} \eta_1 \gamma_1 M_1$, since observational equivalence of closed terms is closed by reduction. From (1), we have $(\eta_1 \gamma_1 M_1, \eta_2 \gamma_2 M_2)$ in $E[\eta \tau]$. Then, the conclusion (3) follows by respect for observational equivalence.

Theorem 21 (Completeness of logical equivalence) Under the admissibility condition, observational equivalence implies logical equivalence.

If $\Delta; \Gamma \vdash M_1 \equiv M_2 : \tau$ then $\Delta; \Gamma \vdash M_1 \sim_{\tau} M_2 : \tau$.

In particular, $(\equiv_{\tau}) \subseteq (\sim_{\tau}^{\downarrow})$ for closed types τ.

Proof: Assume $\Delta; \Gamma \vdash M_1 \equiv M_2 : \tau$. The conclusion $\Delta, \Gamma \vdash M_1 \sim M_2 : \tau$. follows from the fundamental lemma, $\Delta, \Gamma \vdash M_1 \sim M_1 : \tau$ and respect for observation equivalence.

Remark Admissibility is required for completeness, but not for soundness. (\sim_{τ}^{\downarrow} means \sim when admissibility is required—for all relations.)

As a particular case, for closed terms, we have $M_1 \sim_{\tau}^{\downarrow} M_2$ iff $M_1 \equiv_{\tau} M_2$.

Lemma 42 (Extensionality)

- $M_1 \equiv_{\tau \sigma} M_2 \iff \forall V \in \text{Val}(\tau), M_1 V \equiv_{\sigma} M_2 V \iff \forall N \in \text{Exp}(\tau), M_1 N \equiv_{\tau} M_2 N$

- $M_1 \equiv_{\forall \alpha \tau} M_2 \iff \forall \rho, M_1 \rho \equiv_{\tau \equiv \rho} M_2 \rho$.

Extensionality does not require admissibility—since it does not refer to logical equivalence, but we need admissibility to conduct the proof, which relies on respect for observational equivalence.

Proof: We reason under admissibility (left implicit in notations). The right most equivalence for value abstractions results from the closure of $E[\tau]$ by reduction and anti-reduction.

The forward direction follows in both cases from the congruence of \equiv. The backward is as follows:
7.6. **APPLICATIONS**

Value abstraction: It suffices to show $M_1 \sim_{\tau \rightarrow \sigma} M_2$. That is, assuming $V_1 \approx_{\tau} V_2$ (1), we show $M_1 V_1 \sim_{\tau} M_2 V_2$ (2). By assumption, we have $M_1 V_1 \approx_{\tau} M_2 V_1$ (3). By the fundamental lemma, we have $M_2 \sim_{\tau \rightarrow \sigma} M_2$. Hence, from (1), read as a logical equivalence, we deduce $M_2 V_2 \sim_{\tau \rightarrow \sigma} M_2 V_2$, We conclude (2) by respect for observational equivalence with (3).

Type abstraction: It suffices to show $M_1 \sim_{\forall \alpha \rightarrow \tau} M_2$. That is, given $R \in R(\rho_1, \rho_2)$, we show $(M_1 \rho_1, M_2 \rho_2) \in E[\tau]_{\alpha \rightarrow (\rho_1, \rho_2, R)}$ (4). By assumption, we have $M_1 \rho_1 \approx_{\tau(\alpha \rightarrow \rho_1)} M_2 \rho_1$ (5). By the fundamental lemma, we have $M_2 \sim_{\forall \alpha \rightarrow \tau} M_2$. Hence, we have $(M_2 \rho_1, M_2 \rho_2) \in E[\tau]_{\alpha \rightarrow (\rho_1, \rho_2, R)}$ We conclude (4) by respect for observational equivalence with (5).

Identity extension Let θ be a substitution of variables for ground types. Let R be the restriction of $z_{\alpha \theta}$ to $\text{Val}(\alpha \theta \times \text{Val}(\alpha \theta))$ and $\eta : \alpha \rightarrow (\alpha \theta, \alpha \theta, R)$. Then $E[\tau]^\eta$ is equal to $z_{\tau \theta}$—assuming admissibly.

The proof uses respects for observational equivalence.

Exercise 43 (Inhabitants of $\forall \alpha, \alpha \rightarrow \alpha$) If $M : \forall \alpha, \alpha \rightarrow \alpha$, then $M \approx_{\forall \alpha, \alpha \rightarrow \alpha} \text{id}$ where $\text{id} \triangleq \lambda \alpha. \lambda x : \alpha. x$.

Solution: By extensionality, it suffices to show that for any ρ and $V : \rho$ we have $M \rho V \approx_{\rho} \text{id} \rho V$. In fact, by closure by inverse reduction, it suffices to show $M \rho V \approx_{\rho} V \rho V$ (1).

By parametricity, we have $M \sim_{\forall \alpha, \alpha \rightarrow \alpha} M$ (2). Consider $R \in R(\rho, \rho)$ equal to $\{(V, V)\}$ and η be $[\alpha \mapsto (\rho, \rho, R)]$. Since $R(V, V)$, we have $(V, V) \in V[\alpha]^\eta$ by definition. Hence, from (2), we have $(M \rho V, M \rho V) \in E[\alpha]^\eta$, which means that the pair of expressions $(M \rho V, M \rho V)$ reduces to a pair of values in R and, in particular, $M \rho V$ reduces to V, which implies (1).

Exercise 44 (Inhabitants of $\forall \alpha, \alpha \rightarrow \alpha$) If $M : \forall \alpha, \alpha \rightarrow \alpha$, then either $M \approx_{\sigma} W_1 \triangleq \lambda \alpha. \lambda x_1 : \alpha. \lambda x_2 : \alpha. x_1$ or $M \approx_{\sigma} W_2 \triangleq \lambda \alpha. \lambda x_1 : \alpha. \lambda x_2 : \alpha. x_2$

Solution: By extensionality, it suffices to show that for either $i = 1$ or $i = 2$, for any closed type ρ and $V_1, V_2 : \rho$, we have $M \rho V_1 V_2 \approx_{\rho} W_i \rho V_1 V_2$, or just $M \rho V_1 V_2 \approx_{\sigma} V_1$ (1) by closure by inverse reduction, since $W_i \rho V_1 V_2$ reduces to V_i.

Let ρ and $V_1, V_2 : \rho$ be fixed. Consider R equal to $\{(tt, V_1), (ff, V_2)\}$ in $R(B, \rho)$ and η be $\alpha \mapsto (B, \rho, R)$. We have $(tt, V_1) \in V[\alpha]^\eta$ since $R(tt, V_1)$ and, similarly, $(ff, V_2) \in V[\alpha]^\eta$. By parametricity, we have $(M, M) \in E[\sigma]$. Hence, $(M \ B \ tt \ ff, M \rho V_1 V_2) \in E[\alpha]^\eta$, which means that $(M \ B \ tt \ ff, M \rho V_1 V_2)$ reduces to a pair of values in R, i.e. either (tt, V_1) or (ff, V_2), which implies:

- either $M \ B \ tt \ ff \approx_{B} tt \land M \rho V_1 V_2 \approx_{\rho} V_1$
- or $M \ B \ tt \ ff \approx_{B} ff \land M \rho V_1 V_2 \approx_{\rho} V_2$

In summary, we have shown

$$\forall \rho, V_1, V_2, \quad \begin{cases} M \ B \ tt \ ff \approx_{B} tt \land M \rho V_1 V_2 \approx_{\rho} V_1 \\ M \ B \ tt \ ff \approx_{B} ff \land M \rho V_1 V_2 \approx_{\rho} V_2 \end{cases}$$
However, since \(M \text{ B } \text{tt ff} \) is independent of \(\rho, V_1 \), and \(V_2 \) and the two branches are incompatible as \(\text{tt} \neq \text{ff} \), the choice is actually independent of \(\rho, V_1 \) and \(V_2 \). Therefore, we also have:

\[
\bigvee \begin{cases}
\forall \rho, V_1, V_2, \; M \text{ B tt ff } \cong \text{B } \land \; M \rho V_1 V_2 \cong \rho V_1 \\
\forall \rho, V_1, V_2, \; M \text{ B tt ff } \cong \text{B ff } \land \; M \rho V_1 V_2 \cong \rho V_2
\end{cases}
\]

that is (1).

Remark Notice that the proof could have been conducted by choosing 0 and 1 of type \(\text{nat} \), or even \(W_1 \) and \(W_2 \) of type \(\sigma \), instead of \(\text{tt} \) and \(\text{ff} \) of type \(\text{B} \).

**Exercise 45 (Inhabitants of \(\forall \alpha. (\alpha \to \alpha) \to \alpha \alpha \) \(\text{nat} \). Let \(\text{nat} \) be \(\forall \alpha. (\alpha \to \alpha) \to \alpha \to \alpha \).

If \(M : \text{nat} \), then \(M \cong_{\text{nat}} N_n \) for some integer \(n \), where \(N_n \cong \Lambda \alpha. \lambda f : \alpha \to \alpha. \lambda x : \text{f}^n x \).

(That is, the inhabitants of \(\text{nat} \) are the Church naturals.)

Solution: By extensionality, it suffices to show that there exists \(n \) such for any closed type \(\rho \) and closed values \(V_1 : \rho \to \rho \) and \(V_2 : \rho \), we have \(M \rho V_1 V_2 \cong \rho N_n \rho V_1 V_2 \), or, by closure by inverse reduction, \(M \rho V_1 V_2 \cong \rho V_1^n V_2 \) (1).

Let \(\rho \) and \(V_1 : \rho \to \rho \) and \(V_2 : \rho \) be fixed. Let \(Z \) and \(S \) be \(M_0 \text{ nat} \) and \(M_2 \text{ nat} \). Let \(R \) be \(\{ (W_1, W_2) \mid \exists k \in I, S^k Z \cong_{\text{nat}} W_1 \wedge V_1^k V_2 \cong_{\rho} W_2 \} \) in \(\text{R}(\text{nat}, \rho) \) and \(\eta \) be \(\alpha \to (\text{nat}, \rho, R) \).

We have \((Z, V_2) \in \mathcal{V}[\alpha]_{\eta} (2) \) since \(R(Z, V_2) \) (reduce both sides for \(k = 0 \)). We also have \((S, V_1) \in \mathcal{V}[\alpha \to \alpha]_{\eta} (3) \), (which is a key to the proof). Indeed, assume \((W_1, W_2) \) in \(\mathcal{V}[\alpha]_{\eta} \), i.e. \(R \). There exists \(k \) such that \(S^k Z \cong_{\text{nat}} W_1 \) and \(V_1^k V_2 \cong_{\rho} W_2 \). By congruence \(S W_1 \equiv_{\text{nat}} S^{k+1} Z \) and \(V_1 W_2 \equiv_{\rho} V_1^{k+1} V_2 \). Since \((S^{k+1} Z, V_1^{k+1} V_2) \) is in \(\mathcal{E}[\alpha]_{\eta} \), so is \((S W_1, V_1 W_2) \) by closure by observational equivalence.

By parametricity, we have \(M \cong_{\text{nat}} M \). Hence, \((M \text{ nat } S Z, M \rho V_1 V_2) \in \mathcal{E}[\alpha]_{\eta} \). Thus, the pair must reduce to a pair in \(R \), there exists \(n \) such that \(M \text{ nat } S Z \cong_{\text{nat}} S^n Z \) and \(M \rho V_1 V_2 \cong_{\rho} V_1^n V_2 \).

We have shown,

\[
\forall \rho, \; \forall V_1 \in \text{Val}(\rho \to \rho), \; \forall V_2 \in \text{Val}(\rho), \; \exists n \in I, \; M \text{ nat } S Z \cong_{\text{nat}} S^n Z \wedge M \rho V_1 V_2 \cong_{\rho} V_1^n V_2
\]

Since, \(M \text{ nat } S Z \) is independent of \(n \), and all \(S^n Z \) are in different observational equivalence classes (which is easy to prove by appplying, e.g., to the successor function and primitive integer 0), \(n \) is actually independent of \(V_1 \) and \(V_2 \). Hence, we have:

\[
\exists n \in I, \; \forall \rho, \; \forall V_1 \in \text{Val}(\rho \to \rho), \; \forall V_2 \in \text{Val}(\rho), \; M \text{ nat } S Z \cong_{\text{nat}} S^n Z \wedge M \rho V_1 V_2 \cong_{\rho} V_1^n V_2
\]

which implies (1).

Exercise 46 (sort)

Assume \(\text{sort} : \forall \alpha. (\alpha \to \alpha \to \text{B}) \to \text{List } \alpha \to \text{List } \alpha (1) \). Then for all \(g \) of ground type \(\rho_1 \to \rho_2 \), and all (comparison) functions \(\text{cmp}_1 \) of type \(\rho_1 \to \rho_1 \to \text{B} \) and \(\text{cmp}_2 \) of type \(\rho_2 \to \rho_2 \to \text{B} \) satisfying

\[
\forall V, W \in \text{Val}(\rho_1), \; \text{cmp}_1 (g V) (g W) \cong \text{cmp}_2 V W \quad (2)
\]

we have, for all \(U \) in \(\text{Val}(\text{List } \rho_1) \),

\[
\text{sort } \rho_2 \text{cmp}_2 \left(\text{map } \rho_1 \rho_2 \rho g U \right) \cong \text{map } \rho_1 \rho_2 \rho g \left(\text{sort } \rho_1 \text{cmp}_1 U \right) \quad (3)
\]
Solution: Let ρ_1 and ρ_2 be fixed and g be a function g satisfying (2). We show (3) as follows.

Let R in $\mathcal{R}(\rho_1, \rho_2)$ be the graph of the function g up to observational equivalence, i.e. composed of all pairs (W_1, W_2) such that $W_2 \cong f W_1$ and let η be $\alpha \mapsto (\rho_1, \rho_2, R)$.

We have $\text{sort} \sim_\sigma \text{sort}$ where σ is $\forall \alpha. (\alpha \to \alpha \to B) \to \text{List} \alpha \to \text{List} \alpha$.

The hypothesis (2) implies $(\text{cmp}_1, \text{cmp}_2)$ in $\mathcal{V}[\alpha \to \alpha \to B]_\eta$. Indeed, consider (V_1, V_2) and (W_1, W_2) in $\mathcal{V}[\alpha_2]_\eta$, i.e. in R. By definition of R, we have $V_2 \cong \eta_2 g V_1$ and $W_2 \cong \eta_2 g W_1$. By congruence and (2), we have $\text{cmp}_2 V_2 W_2 \cong B \text{cmp}_2 (g V_1) (g W_1) \cong B \text{cmp}_1 V_1 W_1$.

Hence, $\text{cmp}_2 V_2 W_2 \cong B \text{cmp}_1 V_1 W_1$ as expected.

Consider $\mathcal{V}[\text{List} \alpha]_\eta$. Informally, this is composed of all pairs (V_1, V_2) in $\text{Val}((\text{List} \rho_1) \times \text{Val}((\text{List} \rho_2)$ such that $V_2 \cong \text{map} \rho_1 \rho_2 g V_1$. Indeed, this pointwise relates elements of the two lists. (A formal definition would require definition of logical relations for lists.)

Let U be in $\text{Val}((\text{List} \rho_1)$. We have $(U, \text{map} \rho_1 \rho_2 g U)$ in $\mathcal{V}[\text{List} \alpha]_\eta$. Therefore, the pair

$$(\text{sort} \rho_1 \text{cmp}_1 U, \text{sort} \rho_2 \text{cmp}_2 (\text{map} \rho_1 \rho_2 g U))$$

is in $\mathcal{V}[\text{List} \alpha]_\eta$, which actually means (3).

\[\square\]

7.7 Extensions

7.7.1 Natural numbers

We have shown that all expressions of type nat behave as natural numbers. Hence, natural numbers are definable in System F.

Still, we can also provide a type nat of primitive natural numbers. Then we would define behavioral equivalence on nat as the relation in $\text{Val}(\text{nat}) \times \text{Val}(\text{nat})$ by

$$M_1 \equiv_{\text{nat}} M_2 \overset{\text{def}}{=} \exists n : \text{nat}, M_1 \Downarrow n \land M_2 \Downarrow n$$

As for the logical equivalence, we defined

$$\mathcal{V}[\text{nat}] = \{(n, n) \mid n \in \text{Val}(\text{nat})\}$$

Notice that nat is another observable type. All properties are preserved.

7.7.2 Products

Encodable Given closed types τ_1 and τ_2, we defined

$$\tau_1 \times \tau_2 \overset{\triangle}{=} \forall \alpha. (\tau_1 \to \tau_2 \to \alpha) \to \alpha$$

$$\text{(M}_1, \text{M}_2) \overset{\triangle}{=} \Lambda \alpha. \lambda x : \tau_1 \to \tau_2 \to \alpha . x M_1 M_2$$

$$\text{M.i} \overset{\triangle}{=} M (\lambda x_1 : \tau_1, \lambda x_2 : \tau_2, x_i)$$
Lemma 43
If $M : \tau_1 \times \tau_2$, then $M \simeq_{\tau_1 \times \tau_2} (M_1, M_2)$ for some $M_1 : \tau_1$ and $M_2 : \tau_2$.
If $M : \tau_1 \times \tau_2$ and $M.1 \simeq_{\tau_1} M_1$ and $M.2 \simeq_{\tau_2} M_2$, then $M \simeq_{\tau_1 \times \tau_2} (M_1, M_2)$

Primitive
With primitive pairs, we define:

$$\mathcal{V}[\tau \times \sigma]_\eta \triangleq \{(V_1, W_1), (V_2, W_2) \mid (V_1, V_2) \in \mathcal{V}[\tau]_\eta \land (W_1, W_2) \in \mathcal{V}[\sigma]_\eta\}$$

7.7.3 Sums

$$\mathcal{V}[\tau + \sigma]_\eta \triangleq \{\text{inj}_1 V_1, \text{inj}_1 V_2 \mid (V_1, V_2) \in \mathcal{V}[\tau]_\eta\} \cup \{\text{inj}_2 V_2, \text{inj}_2 V_2 \mid (V_1, V_2) \in \mathcal{V}[\sigma]_\eta\}$$

7.7.4 Lists

We could extend the language with lists and define:

$$\mathcal{V}[\text{List } \tau]_\eta \triangleq \{([V_1^1; \ldots; V_1^n], [V_2^1; \ldots; V_2^n]) \mid n \in \mathbb{N} \land \forall k \in [1, n], (V_1^k, V_2^k) \in \mathcal{V}[\tau]_\eta\}$$

Assume given a function g from ρ_1 to ρ_2. Let R in $\mathcal{R}(\rho_1, \rho_2)$ be the admissible relation composed of all pairs (W_1, W_2) such that $W_2 \simeq g W_1$ and η be $\alpha \mapsto (\rho_1, \rho_2, R)$. Then $\mathcal{V}[\text{List } \alpha]_\eta$ is composed of all pairs (W_1, W_2) such that $W_2 \simeq g \text{ map } \rho_1 \rho_2 W_1$ and $\mathcal{E}[\text{List } \alpha]_\eta$ is composed of all pairs (N_1, N_2) such that $N_2 \simeq \text{ map } \rho_1 \rho_2 g N_1$.

7.7.5 Existential types

We define:

$$\mathcal{V}[\exists \alpha. \tau]_\eta \triangleq \{\text{pack } V_1, \rho_1 \text{ as } \exists \alpha. \tau, \text{pack } V_2, \rho_2 \text{ as } \exists \alpha. \tau \mid V_1 \vdash \eta_1 (\exists \alpha. \tau) \land V_2 \vdash \eta_2 (\exists \alpha. \tau) \land \exists \rho_1, \rho_2, R \in \mathcal{R}(\rho_1, \rho_2), (V_1, V_2) \in \mathcal{E}[\tau]_{\eta, \alpha \mapsto (\rho_1, \rho_2, R)}\}$$

Example 2
Consider $V_1 \triangleq \text{not}(tt)$, and $V_2 \triangleq \text{succ}(0)$ and $\sigma \triangleq (\alpha \rightarrow \alpha) \times \alpha$. Let R in $\mathcal{R}(\text{B, nat})$ be $\{\text{tt, } 2n), (\text{ff, } 2n + 1) \mid n \in \mathbb{N}\}$ and η be $\alpha \mapsto (\text{B, nat, R})$.

We have (pack V_1, B as $\exists \alpha. \sigma$, pack V_2, nat as $\exists \alpha. \sigma$) $\in \mathcal{V}[\exists \alpha. \sigma]$. To see this it suffices to show $(V_1, V_2) \in \mathcal{V}[\sigma]_\eta$, that is $(\text{not, tt}, (\text{succ, 0})) \in \mathcal{V}[\alpha \rightarrow \alpha]_\eta$. In turn, it suffices to show both (not, succ) $\in \mathcal{V}[\alpha \rightarrow \alpha]_\eta$ and (tt, 0) $\in \mathcal{V}[\alpha]_\eta$. The latter holds by construction since (tt, 0) $\in R$. To show the former, we assume (W_1, W_2) in $\mathcal{V}[\alpha]_\eta$, i.e. in R. Hence, it must be either of the form

- (tt, 2n): and (not W_1, succ W_2) reduces to (ff, 2n + 1), or of the form
- (ff, 2n + 1) and (not W_1, succ W_2) reduces to (tt, 2n + 2).

In both cases, (not W_1, succ W_2) reduces to a pair in R, i.e. in $\mathcal{V}[\alpha]_\eta$, hence it is in $\mathcal{E}[\alpha]_\eta$.
7.7. EXTENSIONS

Representation independence A client of an existential type $\exists \alpha. \tau$ should not see the difference between two implementations N_1 and N_2 of $\exists \alpha. \tau$ with witness types ρ_1 and ρ_2.

Assume that ρ_1 and ρ_2 are two closed representation types and R is in $\mathcal{R}(\rho_1, \rho_2)$. Let η be $\alpha \mapsto (\rho_1, \rho_2, R)$. Suppose that $N_1 : \tau \mapsto (\alpha \mapsto \rho_1)$ and $N_2 : \tau \mapsto (\alpha \mapsto \rho_2)$ are two equivalent implementations of the operations, i.e. $(N_1, N_2) \in \mathcal{E}[\tau]_{\eta}$.

A client M has type $\forall \alpha. \tau \rightarrow \sigma$ with $\alpha \notin \text{fv}(\sigma)$; it must use the argument parametrically, and the result is independent of the witness type. Indeed the client satisfies $(M, M) \in \mathcal{E}[\forall \alpha. \tau \rightarrow \sigma]_{\eta}$ and therefore $(M \rho_1 N_1, M \rho_2 N_2)$ is in $\mathcal{E}[\sigma]$ (as α is not free in σ), which implies $M \rho_1 N_1 \cong M \rho_2 N_2$.

That is, the behavior with the implementation N_1 with representation type ρ_1 is indistinguishable from the behavior with implementation N_2 with representation type ρ_2.

7.7.6 Step-indexed logical relations

How do we deal with recursive types? Assume that we allow equi-recursive types.

$$\tau := \ldots \mid \mu \alpha. \tau$$

A naive definition would be

$$\forall[\mu \alpha. \tau]_{\eta} = \forall[[\alpha \mapsto \mu \alpha. \tau]_{\eta}}$$

But this is ill-founded, because $[[\alpha \mapsto \mu \alpha. \tau]_{\eta}$ is usually larger than τ.

The solution is to use indexed-logical relations.

We use a sequence of decreasing relations indexed by integers (fuel), which is consumed during unfolding of recursive types.

Step-indexing (a taste) We define a sequence $\forall_k[\tau]_{\eta}$ indexed by natural numbers $n \in \mathbb{N}$ that relates values of type τ up to n reduction steps.

$$\forall_k[B]_{\eta} = \{(tt, tt), (ff, ff)\}$$
$$\forall_k[\tau \rightarrow \sigma]_{\eta} = \{(V_1, V_2) \mid \forall j < k, \forall(W_1, W_2) \in \forall_j[\tau]_{\eta}, (V_1 W_1, V_2 W_2) \in \forall_j[\sigma]_{\eta}\}$$
$$\forall_k[\alpha]_{\eta} = (\eta_{R_k}) \cdot k$$
$$\forall_k[\forall \alpha. \tau]_{\eta} = \{(V_1, V_2) \mid \forall \rho_1, \rho_2, R \in \mathcal{R}^k(\rho_1, \rho_2), \forall j < k, (V_1 \rho_1, V_2 \rho_2) \in \forall_j[\tau]_{\eta, \alpha \mapsto (\rho_1, \rho_2, R)}\}$$
$$\forall_k[\mu \alpha. \tau]_{\eta} = \forall_{k-1}[[\alpha \mapsto \mu \alpha. \tau]_{\eta}]$$
$$\forall_k[\tau]_{\eta} = \{((M_1, M_2) \mid \forall j < k, M_1 \downarrow_j V_1 \implies \exists V_2, M_2 \downarrow V_2 \land (V_1, V_2) \in \forall_{k-j}[\tau]_{\eta}\}$$

By \downarrow_j, we mean reduces in j-steps. $\mathcal{R}^j(\rho_1, \rho_2)$ is a sequence of decreasing relations between closed values of closed types ρ_1 and ρ_2 of length (at least) j.

Notice that the relation is asymmetric.
We define

$$\Delta; \Gamma \vdash M_1 \preceq M_2 : \tau \quad \overset{\text{def}}{\iff} \quad \forall \eta \in R_k^*(\delta_1, \delta_2), \forall (\gamma_1, \gamma_2) \in G_k[\Gamma],$$

\[
(\gamma_1(\delta_1(M_1)), \gamma_2(\delta_2(M_2))) \in E_k[\tau]_\eta
\]

and

$$\Delta; \Gamma \vdash M_1 \sim M_2 : \tau \quad \overset{\Delta \exists = \Delta \exists = \sim \Delta \exists = \sim \sim \sim}{\iff} \quad \Delta; \Gamma \vdash M_1 \preceq M_2 : \tau \quad \land \quad \Delta; \Gamma \vdash M_2 \preceq M_1 : \tau$$

Notations and proofs get a bit involved.

7.8 Proofs and Solution to Exercises

Solution of Exercise 35

We first need to show that the δ_3 preserves typings. Assume that

$$\Gamma \vdash \text{unpack}_{3a.\tau} (\text{pack}_{3a.\tau} \tau' V) : \tau_0$$

By inversion of typing, τ_1 and τ_0 must be equal to τ and $\forall \beta. (\forall \alpha. \tau \rightarrow \beta) \rightarrow \beta$, respectively, and the judgment $\Gamma \vdash V : [\alpha \mapsto \tau']$ must hold. Let Γ' be $\Gamma, \beta, y : \forall \alpha. \tau \rightarrow \beta$. By weakening, we have $\Gamma' \vdash V : [\alpha \mapsto \tau']$. We then have $\Gamma' \vdash y \tau' V : \beta$ and finally, we have

$$\Gamma \vdash \Lambda \beta. \lambda y : \forall \alpha. \tau \rightarrow \beta. y \tau' V : \tau_0$$

as expected.

We then need to show that δ_3 satisfies progress, i.e., a full well typed application of $\text{unpack}_{3a.\tau}$ can always be reduced. Assume that $\Gamma \vdash \text{unpack}_{3a.\tau} V : \tau_0$. By inversion of typing, we must have $\Gamma \vdash V : \exists \alpha. \tau$. By the classification lemma (to be extended and rechecked), V must be an existential value, i.e., of the form $\text{pack}_{3a.\tau} \tau_0 V_0$. Hence, $\text{unpack}_{3a.\tau} V$ reduces by δ_3.

Solution of Exercise 36

We just force τ_1 to coincide with τ:

$$\text{unpack}_{3a.\tau} (\text{pack}_{3a.\tau} \tau' V) \rightarrow \Lambda \beta. \lambda y : \forall \alpha. \tau \rightarrow \beta. y \tau' V \quad (\delta_3)$$

The proof of subject reduction will know by construction that τ_0 is τ instead of learning it by inversion of typing. Conversely for progress, we will have to show that τ_1 and τ are equal by inversion so that δ_3 can be applied.

Solution of Exercise 38

Let M_1 be if M then V_1 else V_2 where V_i is of the form $\text{pack} \tau_i, V_i$ as $\exists \alpha \tau$ and the two witnesses τ_1 and τ_2 differ. There is no common type for the unpacking of the two possible results V_1 and V_2. The choice between those two possible results must be made, by evaluating M_1, before unpacking.
Solution of Exercise 40

The answer is in the 2007–2008 exam.
Chapter 8

Type reconstruction

8.1 Introduction

We have viewed a type system as a 3-place predicate over a type environment, a term, and a type. So far, we have been concerned with logical properties of the type system, namely subject reduction and progress. However, one should also study its algorithmic properties: is it decidable whether a term is well-typed?

We have seen three different type systems, simply-typed \(\lambda \)-calculus, ML, and System F, of increasing expressiveness. In each case, we have presented an explicitly-typed and an implicitly-typed version of the language and shown a close correspondence between the two views, thanks to a type-erasing semantics.

We argued that the explicitly-typed version is often more convenient for studying the meta-theoretical properties of the language. Which one should we used for checking well-typedness? That is, in which language should we write programs?

The typing judgment is inductively defined, so that, in order to prove that a particular instance holds, one exhibits a type derivation. A type derivation is essentially a version of the program where every node is annotated with a type. Checking that a type derivation is correct is usually easy: it basically amounts to checking equalities between types. However, type derivations are too verbose to be tractable by humans! Requiring every node to be type-annotated is not practical.

A more practical, common approach consists in requesting just enough annotations to allow types to be reconstructed in a bottom-up manner. In other words, one seeks an algorithmic reading of the typing rules, where, in a judgment \(\Gamma \vdash M : \tau \), the parameters \(\Gamma \) and \(M \) are inputs, while the parameter \(\tau \) is an output. Moreover, typing rules should be such that a type appearing as output in a conclusion should also appear as output in a premise or as input in the conclusion; and input in the premises should be input of the conclusion or an output of other premises.

This way, types need never be guessed, just looked up into the typing context, instantiated, or checked for equality. This is exactly the situation with explicitly-typed presentations of the typing rules. This is also the traditional approach of Pascal, C, C++, Java, etc.: formal procedure parameters, as well as local variables, are assigned explicit types. The types of expressions are synthesized bottom-up.
However, this implies a lot of redundancies: Parameters of all functions need to be annotated, even when their types are obvious from context; Primitive let-bindings, recursive definitions, injection into sum types need to be annotated. As the language grows, more and more constructs require type annotations, e.g. type applications and type abstractions. Type annotations may quickly obfuscate the code and large explicitly-typed terms are so verbose that they become intractable by humans! Hence, programming in the implicitly-typed version is more appealing.

For simply-typed \(\lambda \)-calculus and ML, it turns out that this is possible: *whether a term is well-typed is decidable*, even when no type annotations are provided! We first present type inference in the case of simply-typed \(\lambda \)-calculus taking advantage of the simplicity to introduce type constraints as a useful intermediate to mediate between the typing rules and the type-inference algorithms. We then extend type-constraint to perform type inference for ML.

For System F, type inference is undecidable. Since programming in explicitly-typed System F is not practically feasible, some amount of type reconstruction must still be done. Typically, the algorithm is incomplete, i.e. it rejects terms that are perhaps well-typed, but the user may always provide more annotations—and at least the fully annotated version is always accepted if well-typed. We will present very briefly several techniques for type reconstruction in System F.

8.2 Type inference for simply-typed \(\lambda \)-calculus

The type inference algorithm for simply-typed \(\lambda \)-calculus, is due to Hindley. The idea behind the algorithm is simple. Because simply-typed \(\lambda \)-calculus is a *syntax-directed* type system, an unannotated term determines an isomorphic *candidate type derivation*, where all types are unknown: they are distinct *type variables*. For a candidate type derivation to become an actual, valid type derivation, every type variable must be instantiated with a type, subject to certain *equality constraints* on types. For instance, at an application node, the type of the operator must match the domain type of the operator.

Thus, type inference for the simply-typed \(\lambda \)-calculus decomposes into *constraint generation* followed by *constraint solving*. Simple types are *first-order terms*. Thus, solving a collection of equations between simple types is *first-order unification*. First-order unification can be performed incrementally in quasi-linear time, and admits particularly simple *solved forms*.

8.2.1 Constraints

At the interface between the constraint generation and constraint solving phases is the *constraint language*. It is a *logic: a syntax*, equipped with an *interpretation* in a model.

There are two syntactic categories: *types* and *constraints*.

\[
\begin{align*}
\tau & ::= \alpha | F \tau \\
C & ::= \text{true} | \text{false} | \tau = \tau | C \land C | \exists \alpha.C
\end{align*}
\]

A type is either a *type variable* \(\alpha \) or an arity-consistent application of a *type constructor* \(F \). (The type constructors are \(\text{unit}, \times, +, \rightarrow \), etc.) An atomic constraint is truth, falsity, or an *equation*
8.2. TYPE INFERENCE FOR SIMPLY-TYPED λ-CALCULUS

$$\begin{align*}
\langle \Gamma \vdash x : \tau \rangle &= \Gamma(x) = \tau \\
\langle \Gamma \vdash \lambda x. a : \tau \rangle &= \exists \alpha_1 \alpha_2. (\langle \Gamma, x : \alpha_1 \vdash a : \alpha_2 \rangle \land \tau = \alpha_1 \rightarrow \alpha_2) \quad \text{if } \alpha_1, \alpha_2 \not\in \Gamma, \tau \\
\langle \Gamma \vdash a_1 a_2 : \tau \rangle &= \exists \alpha. (\langle \Gamma \vdash a_1 : \alpha \rightarrow \tau \rangle \land \langle \Gamma \vdash a_2 : \alpha \rangle) \quad \text{if } \alpha \not\in \Gamma, \tau
\end{align*}$$

Figure 8.1: constraint generation for simply-typed λ-calculus

between types. Compound constraints are built on top of atomic constraints via conjunction and existential quantification over type variables.

Constraints are interpreted in the Herbrand universe, that is, in the set of ground types:

$$t ::= F \tilde{t}$$

Ground types contain no variables. The base case in this definition is when F has arity zero. We assume that there should be at least one constructor of arity zero, so that the model is non-empty. A ground assignment ϕ is a total mapping of type variables to ground types. By homomorphism, a ground assignment determines a total mapping of types to ground types.

The interpretation of constraints takes the form of a judgment, $\phi \vdash C$, pronounced: ϕ satisfies C, or ϕ is a solution of C. This judgment is inductively defined:

- $\phi \vdash \text{true}$
- $\phi \vdash \tau_1 = \tau_2 \quad \phi \vdash C_1 \Rightarrow \phi \vdash C_1 \land C_2$
- $\phi \vdash \exists \alpha. C \Rightarrow \phi[\alpha \mapsto t] \vdash C$

A constraint C is satisfiable if and only if there exists a ground assignment ϕ that satisfies C. We write $C_1 \equiv C_2$ when C_1 and C_2 have the same solutions. The problem “given a constraint C, is C satisfiable?” is first-order unification.

Type inference is reduced to constraint solving by defining a mapping $\langle \Gamma \vdash a : \tau \rangle$ of candidate judgments to constraints, as given in Figure 8.1. Thanks to the use of existential quantification, the names that occur free in $\langle \Gamma \vdash a : \tau \rangle$ are a subset of those that occur free in Γ or τ. This allows the freshness side conditions to remain local—there is no need to informally require “globally fresh” type variables.

8.2.2 A detailed example

Let us perform type inference for the closed term $\lambda f.\text{xy.}(f\ x,\ f\ y)$. The problem is to construct and solve the constraint $\langle \emptyset \vdash \lambda fxy.(f\ x,\ f\ y) : \alpha_0 \rangle$, say C. It is possible (and, for a human, easier) to mix these tasks. A machine, however, could generate and solve in two successive phases. There are several advantages in doing this. This leads to simpler, easier to maintain code, as the generation of constraints deals with the complexity of the source language which solving may ignore; moreover, adding new construct to the language does not (in general) require new forms of constraints and can thus reuse the solving algorithm unchanged.

Solving the constraint means to find all possible ground assignments for α_0 that satisfy the constraint. Typically, this is done by transforming the constraint into successive equivalent constraints until some constraint that is obviously satisfiable and from which solutions may be directly read.
Performing constraint generation for the 3 λ-abstractions, we have:

\[C = \exists \alpha_1 \alpha_2. \left(\exists \alpha_3 \alpha_4. \left(\exists \alpha_5 \alpha_6. \left(\left\langle f : \alpha_1; x : \alpha_3; y : \alpha_5 \vdash (f x, f y) : \alpha_6 \right\rangle \frac{\alpha_2 = \alpha_3 \to \alpha_4}{\alpha_0 = \alpha_1 \to \alpha_2} \right) \right) \right) \]

In the following, let \(\Gamma \) stand for \((f : \alpha_1; x : \alpha_3; y : \alpha_5)\). We may hoist up existential quantifiers, using the rule:

\[(\exists \alpha.C_1) \land C_2 \equiv \exists \alpha.(C_1 \land C_2)\]

if \(\alpha \not\equiv C_2 \)

Hence, hoisting \(\alpha_3 \) and \(\alpha_4 \), and \(\alpha_5 \) and \(\alpha_6 \) twice, we get:

\[C \equiv \exists \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6. \left(\left\langle \Gamma \vdash (f x, f y) : \alpha_6 \right\rangle \frac{\alpha_4 = \alpha_5 \to \alpha_6 \land \alpha_2 = \alpha_3 \to \alpha_4 \land \alpha_0 = \alpha_1 \to \alpha_2}{\alpha_0 = \alpha_1 \to \alpha_3 \to \alpha_5 \to \alpha_6} \right) \]

We may eliminate a type variable that has a defining equation with the rule:

\[\exists \alpha.(C \land \alpha = \tau) \equiv [\alpha \mapsto \tau]C \]

if \(\alpha \not\equiv \tau \)

By successive elimination of \(\alpha_4 \) then \(\alpha_2 \), we get:

\[C \equiv \exists \alpha_1 \alpha_2 \alpha_3 \alpha_5 \alpha_6. \left(\left\langle \Gamma \vdash (f x, f y) : \alpha_6 \right\rangle \frac{\alpha_0 = \alpha_1 \to \alpha_3 \to \alpha_5 \to \alpha_6}{\alpha_0 = \alpha_1 \to \alpha_3 \to \alpha_5} \right) \]

Let us now perform constraint generation for the pair, hoisted the resulting existential quantifiers, and eliminated a type variable \((\alpha_6)\).

\[C' \equiv \exists \left\{ \alpha_1 \alpha_3 \alpha_5 \alpha_6 \alpha_7 \alpha_8 \right\}. \left(\left\langle \Gamma \vdash f x : \alpha_7 \right\rangle \frac{\alpha_7 \times \alpha_8 = \alpha_6}{\alpha_1 \to \alpha_3 \to \alpha_5 \to \alpha_6 = \alpha_0} \right) \]

Let us focus on the first application, perform constraint generation for the variables \(f \) and \(x \) (recall that \(\Gamma \) stands for \((f : \alpha_1; x : \alpha_3; y : \alpha_5)\)), and eliminate a type variable \((\alpha_9)\):

\[C_1 = \left\langle \Gamma \vdash f x : \alpha_7 \right\rangle = \exists \alpha_9. \left(\left\langle \Gamma \vdash f x : \alpha_9 \right\rangle \frac{\alpha_1 = \alpha_9 \to \alpha_7}{\alpha_3 = \alpha_9} \right) \equiv \alpha_1 = \alpha_3 \to \alpha_7 = C_2 \]

Applying this simplification under a context, with the rule:

\[C_1 \equiv C_2 \Rightarrow \mathcal{R}[C_1] \equiv \mathcal{R}[C_2] \]

we have:

\[C \equiv \exists \alpha_1 \alpha_3 \alpha_5 \alpha_7 \alpha_8. \left(\left\langle \Gamma \vdash f y : \alpha_8 \right\rangle \frac{\alpha_0 = \alpha_1 \to \alpha_3 \to \alpha_5 \to \alpha_7 \times \alpha_8}{\alpha_1 = \alpha_3 \to \alpha_7} \right) \]
8.2. TYPE INFERENCE FOR SIMPLY-TYPED λ-CALCULUS

We may simplify the right-hand application analogously.

$$C \equiv \exists \alpha_1 \alpha_3 \alpha_5 \alpha_7 \alpha_8. \left(\begin{array}{l}
\alpha_1 = \alpha_3 \rightarrow \alpha_7 \wedge \alpha_1 = \alpha_5 \rightarrow \alpha_8 \\
\alpha_0 = \alpha_1 \rightarrow \alpha_3 \rightarrow \alpha_5 \rightarrow \alpha_7 \times \alpha_8
\end{array} \right)$$

We may apply transitivity at α_1, structural decomposition, and eliminate three type variables (α_1, α_5, α_8):

$$C \equiv \exists \alpha_1 \alpha_3 \alpha_5 \alpha_7 \alpha_8. \left(\begin{array}{l}
\alpha_1 = \alpha_3 \rightarrow \alpha_7 \wedge \alpha_3 = \alpha_5 \wedge \alpha_7 = \alpha_8 \\
\alpha_0 = \alpha_1 \rightarrow \alpha_3 \rightarrow \alpha_5 \rightarrow \alpha_7 \times \alpha_8
\end{array} \right)$$

We have now reached a solved form. To sum up, we have checked the following equivalence holds:

$$\langle \emptyset \vdash \lambda f x y. (f x, f y) : \alpha_0 \rangle \equiv \exists \alpha_0. \left((\alpha_3 \rightarrow \alpha_7) \rightarrow \alpha_3 \rightarrow \alpha_3 \rightarrow \alpha_7 \times \alpha_7 = \alpha_0 \right)$$

Hence, the ground types of $\lambda f x y. (f x, f y)$ are all ground types of the form

$$(t_3 \rightarrow t_7) \rightarrow t_3 \rightarrow t_3 \rightarrow t_7 \times t_7$$

In other words, $(\alpha_3 \rightarrow \alpha_7) \rightarrow \alpha_3 \rightarrow \alpha_3 \rightarrow \alpha_7 \times \alpha_7$ is a principal type for $\lambda f x y. (f x, f y)$.

The language OCaml implements a form of this type inference algorithm:

```
# fun f x y -> (f x, f y);
- : ('a -> 'b) -> 'a -> 'a -> 'b * 'b = (fun)
```

This technique is used also by Standard ML and Haskell.

In the simply-typed λ-calculus, type inference works just as well for open terms. For instance, the term $\lambda xy. (f x, f y)$ has a free variable, namely f. The type inference problem is to construct and solve the constraint $\langle f : \alpha_1 \vdash \lambda xy. (f x, f y) : \alpha_2 \rangle$. We have already done so... with only a slight difference: α_1 and α_2 are now free, so they cannot be eliminated.

One can check the following equivalence:

$$\langle f : \alpha_1 \vdash \lambda xy. (f x, f y) : \alpha_2 \rangle \equiv \exists \alpha_0. \left((\alpha_1 = \alpha_3 \rightarrow \alpha_7 \wedge \alpha_2 = \alpha_3 \rightarrow \alpha_3 \rightarrow \alpha_7 \times \alpha_7 = \alpha_0 \right)$$

In other words, the ground typings of $\lambda xy. (f x, f y)$ are all ground typings of the form:

$$((f : t_3 \rightarrow t_7), \ t_3 \rightarrow t_3 \rightarrow t_7 \times t_7)$$

Remember that a typing is a pair of an environment and a type.

8.2.3 Soundness and completeness of type inference

Definition 11 (Typing) A pair (Γ, τ) is a typing of a if and only if $\text{dom}(\Gamma) = \text{fv}(a)$ and the judgment $\Gamma \vdash a : \tau$ is valid.
The type inference problem is to determine whether a term a admits a typing, and, if possible, to exhibit a description of the set of all of its typings.

Up to a change of universes, the problem reduces to finding the ground typings of a term. (For every type variable, introduce a nullary type constructor. Then, ground typings in the extended universe are in one-to-one correspondence with typings in the original universe.)

Theorem 22 (Soundness and completeness) $\phi \vdash \Gamma \vdash a : \tau$ if and only if $\phi \Gamma \vdash a : \phi \tau$.

In other words, assuming $\text{dom}(\Gamma) = \text{fv}(a)$, ϕ satisfies the constraint $\langle \Gamma \vdash a : \tau \rangle$ if and only if $(\phi \Gamma, \phi \tau)$ is a (ground) typing of a. The direct implication is soundness; the reverse implication is completeness. The proof is by structural induction over a. (Proof p. 178)

Exercise 47 (Recommended) Write the details of the proof.

Corollary 44 Let $\text{fv}(a) = \{x_1, \ldots, x_n\}$, where $n \geq 0$. Let $\alpha_0, \ldots, \alpha_n$ be pairwise distinct type variables. Then, the ground typings of a are described by $\langle (x_i : \alpha_i)_{i \in 1..n}, \phi \alpha_0 \rangle$ where ϕ ranges over all solutions of $\langle (x_i : \alpha_i)_{i \in 1..n} \vdash a : \alpha_0 \rangle$.

Corollary 45 Let $\text{fv}(a) = \emptyset$. Then, a is well-typed if and only if $\exists \alpha. \langle \emptyset \vdash a : \alpha \rangle \equiv \text{true}$.

8.2.4 Constraint solving

A constraint solving algorithm is typically presented as a (non-deterministic) system of constraint rewriting rules that must enjoy the following properties: reduction is meaning-preserving, i.e. $C_1 \rightarrow C_2$ implies $C_1 \equiv C_2$; reduction is terminating; and every normal form is either “false” (literally) or satisfiable. The normal forms are called solved forms.

Our constraints are equations on first-order terms. They can be solved by first-order unification. The algorithm can be described as constraint solving. However, in order to describe an efficient algorithm, we first extend the syntax of constraints and replace ordinary binary equations with multi-equations, following Pottier and Rémy (2005, §10.6):

$$U ::= \text{true} | \text{false} | \epsilon | U \land U | \exists \alpha. U$$

A multi-equation ϵ is a multi-set of types. Its interpretation is given by

$$\forall \tau \in \epsilon, \quad \phi \tau = t \\
\phi \vdash \epsilon$$

That is, ϕ satisfies ϵ if and only if ϕ maps all members of ϵ to a single ground type.

Simplification rules are given in Figure 8.2. (See Pottier and Rémy (2005, §10.6) for a detailed presentation.) The last three rules in gray are administrative.

The occurs check is defined as follows: we say that α dominates β (with respect to U) if U contains a multi-equation of the form $F \tau_1 \ldots \beta \ldots \tau_n = \alpha = \ldots$. A constraint U is cyclic if and only if its domination relation is cyclic. A cyclic constraint is unsatisfiable: indeed, if ϕ satisfies
8.2. TYPE INFERENCE FOR SIMPLY-TYPED λ-CALCULUS

$$(\exists \alpha. U_1) \land U_2 \quad \rightarrow \quad \exists \alpha. (U_1 \land U_2)$$ \hspace{1cm} \text{(extrusion)}

if $\alpha \neq U_2$

$$\alpha = \epsilon \land \alpha = \epsilon' \quad \rightarrow \quad \alpha = \epsilon = \epsilon'$$ \hspace{1cm} \text{(fusion)}

$$F \bar{\alpha} = F g = \epsilon \quad \rightarrow \quad \bar{\alpha} = g \land F \bar{\alpha} = \epsilon$$ \hspace{1cm} \text{(decomposition)}

$$F \tau_1 \ldots \tau_i \ldots \tau_n = \epsilon \quad \rightarrow \quad \exists \alpha. (\alpha = \tau_i \land F \tau_1 \ldots \alpha \ldots \tau_n = \epsilon)$$ \hspace{1cm} \text{(naming)}

if τ_i is not a variable $\land \alpha \neq \tau_1, \ldots, \tau_n, \epsilon$

$$F g = F' g' = \epsilon \quad \rightarrow \quad \text{false}$$ \hspace{1cm} \text{(clash)}

if $F \neq F'$

$U \quad \rightarrow \quad \text{false}$

if U is cyclic

$U[\text{false}] \quad \rightarrow \quad \text{false}$ \hspace{1cm} \text{(error propag.)}

$$\alpha = \alpha = \epsilon \quad \rightarrow \quad \alpha = \epsilon$$ \hspace{1cm} \text{(elim dupl.)}

$$F g \quad \rightarrow \quad \text{true}$$ \hspace{1cm} \text{(elim triv.)}

$$U \land \text{true} \quad \rightarrow \quad U$$ \hspace{1cm} \text{(elim true)}

Figure 8.2: Solving unification constraints

U and if α is a member of a cycle, then the ground type $\phi \alpha$ must be a strict subterm of itself, a contradiction. Thus, the occurs-check rewriting rule is meaning-preserving.

A solved form is either false or $\exists \alpha. U$, where U is a conjunction of multi-equations, every multi-equation contains at most one non-variable term, no two multi-equations share a variable, and the domination relation is acyclic. Every solved form that is not false is satisfiable. Indeed, a solution is easily constructed by well-founded recursion over the domination relation.

Remarks Viewing a unification algorithm as a system of rewriting rules makes it easy to explain and reason about.

In practice, following Huet (1976), first-order unification is implemented on top of an efficient union-find data structure (Tarjan, 1975). Its time complexity is quasi-linear (i.e. growing in the inverse of the Ackermann function).

Unification on first-order terms can also be implemented in linear time, but with a more complex algorithm and a higher constant that makes it behave worse than the quasi-linear time algorithm. Moreover, while the quasi-linear time algorithm works as well when types are regular trees—by just removing the occur check—the linear time algorithm only works with finite trees and thus cannot be used for type inference in the presence of equi-recursive types.

Closing remarks Thanks to type inference, conciseness and static safety are not incompatible. Furthermore, an inferred type is sometimes more general than a programmer-intended type. Type inference helps reveal unexpected generality.
\[J(\Gamma \vdash x) = \text{let } \forall \alpha_1 \ldots \alpha_n. \tau = \Gamma(x) \]
\[\text{do } \alpha'_1, \ldots, \alpha'_n = \text{fresh} \ldots, \text{fresh} \]
\[\text{return } [\alpha_i \mapsto \alpha'_i]_{i=1}^n(\tau) - \text{take a fresh instance} \]

\[J(\Gamma \vdash \lambda x. a_1) = \text{do } \alpha = \text{fresh} \]
\[\text{do } \tau_1 = J(\Gamma; x : \alpha \vdash a_1) \]
\[\text{return } \alpha \rightarrow \tau_1 - \text{form an arrow type} \]

\[J(\Gamma \vdash a_1 \ a_2) = \text{do } \tau_1 = J(\Gamma \vdash a_1) \]
\[\text{do } \tau_2 = J(\Gamma \vdash a_2) \]
\[\text{do } \alpha = \text{fresh} \]
\[\text{do } \theta \leftarrow \text{mgu}(\theta(\tau_1) = \theta(\tau_2 \rightarrow \alpha)) \circ \theta \]
\[\text{return } \alpha - \text{solve } \tau_1 = \tau_2 \rightarrow \alpha \]

\[J(\Gamma \vdash \text{let } x = a_1 \text{ in } a_2) = \text{do } \tau_1 = J(\Gamma \vdash a_1) \]
\[\text{let } \sigma = \forall \setminus \text{ftv}(\theta(\Gamma)). \theta(\tau_1) - \text{generalize} \]
\[\text{return } J(\Gamma; x : \sigma \vdash a_2) \]

(\forall \setminus \alpha. \tau \text{ quantifies over all type variables other than } \alpha.)

Figure 8.3: Type inference algorithm for ML

8.3 Type inference for ML

Two presentations of type inference for Damas and Milner’s type system are possible: One of Milner’s classic algorithms \cite{milner78}, \(W \) or \(J \); see Pottier’s old course notes for details \cite{pottier02, §3.3}; or a constraint-based presentation \cite{pottier05}. We favor the latter, but quickly review the former first.

8.3.1 Milner’s Algorithm \(J \)

Milner’s Algorithm \(J \) expects a pair \(\Gamma \vdash a \), produces a type \(\tau \), and uses two global variables, \(\mathcal{V} \) and \(\theta \). Variable \(\mathcal{V} \) is an infinite fresh supply of type variables; \(\theta \) is an idempotent substitution (of types for type variables), initially the identity. The \texttt{fresh} primitive is defined as:

\[
\texttt{fresh} = \text{do } \alpha \in \mathcal{V}; \text{ do } \mathcal{V} \leftarrow \mathcal{V} \setminus \{\alpha\}; \text{ return } \alpha
\]

The Algorithm \(J \) is given on Figure 8.3 in monadic style. The algorithm mixes generation and solving of equations. This lack of modularity leads to several weaknesses: proofs are more difficult; correctness and efficiency concerns are not clearly separated (if implemented literally, the algorithm is exponential in practice); adding new language constructs duplicates solving of equations; generalizations, such as the introduction of subtyping, are not easy. Furthermore, Algorithm \(J \) works with substitutions, instead of constraints. Substitutions are an approximation to solved forms for unification constraints. Working with substitutions means using most general unifiers, composition, and restriction. Working with constraints means using equations, conjunction, and existential quantification.
8.3. TYPE INFERENCE FOR ML

\[\langle x : \tau \rangle = x = \tau \]
\[\langle \lambda x. a : \tau \rangle = \exists \alpha_1 \alpha_2. (\text{def } x : \alpha_1 \text{ in } \langle a : \alpha_2 \rangle \land \alpha_1 \rightarrow \alpha_2 = \tau) \]
if \(\alpha_1, \alpha_2 \neq a, \tau \)
\[\langle a_1 \ a_2 : \tau \rangle = \exists \alpha. (\langle a_1 : \alpha \rightarrow \tau \rangle \land \langle a_2 : \alpha \rangle) \]
if \(\alpha \neq a_1, a_2, \tau \)

Figure 8.4: Constraints with program variables

8.3.2 Constraint-based type inference for ML

Type inference for Damas and Milner’s type system involves slightly more than first-order unification: there is also generalization and instantiation of type schemes. So, the constraint language must be enriched. We proceed in two steps: still within simply-typed \(\lambda \)-calculus, we present a variation of the constraint language; building on this variation, we introduce polymorphism.

How about letting the constraint solver, instead of the constraint generator, deal with environment access and construction? That is, the syntax of constraints is as follows:

\[C ::= \ldots | x = \tau | \text{def } x : \tau \text{ in } C \]

The idea is to interpret constraints in such a way as to validate the equivalence law:

\[\text{def } x : \tau \text{ in } C \equiv [x \mapsto \tau]C \]

The \text{def} form is an explicit substitution form. More precisely, here is the new interpretation of constraints. As before, a valuation \(\phi \) maps type variables \(\alpha \) to ground types. In addition, a valuation \(\psi \) maps term variables \(x \) to ground types. The satisfaction judgment now takes the form \(\phi, \psi \models C \). The new rules of interest are:

\[
\frac{\psi x = \phi \tau}{\phi, \psi \vdash x = \tau} \hspace{2cm} \frac{\phi, \psi \models [x \mapsto \phi \tau]}{\phi, \psi \models \text{def } x : \tau \text{ in } C}
\]

(All other rules are modified to just transport \(\psi \).) Constraint generation becomes a mapping of an expression \(a \) and a type \(\tau \) to a constraint \(\langle a : \tau \rangle \). There is no longer a need for the parameter \(\Gamma \). Constraint generation is defined in Figure 8.4.

Theorem 23 (Soundness and completeness) Assume \(\text{fv}(a) = \text{dom}(\Gamma) \). Then, \(\phi, \phi \Gamma \vdash \langle a : \tau \rangle \) if and only if \(\phi \Gamma \vdash a : \phi \tau \).

Corollary 46 Assume \(\text{fv}(a) = \emptyset \). Then, \(a \) is well-typed if and only if \(\exists \alpha. \langle a : \alpha \rangle \equiv \text{true} \).

This variation shows that there is freedom in the design of the constraint language, and that altering this design can shift work from the constraint generator to the constraint solver, or vice-versa.
Enriching constraints To permit polymorphism, we must extend the syntax of constraints so that a variable \(x \) denotes not just a ground type, but a set of ground types.

However, these sets cannot be represented as type schemes \(\forall \alpha. \tau \), because constructing these simplified forms requires constraint solving. To avoid mingling constraint generation and constraint solving, we use type schemes that incorporate constraints, called constrained type schemes. The syntax of constraints and of constrained type schemes is:

\[
\begin{align*}
C & := \tau = \tau \mid C \land C \mid \exists \alpha.C \mid x \leq \tau \mid \sigma \leq \tau \mid \text{def } x : \sigma \text{ in } C \\
\sigma & := \forall \alpha[C].\tau
\end{align*}
\]

Both \(x \leq \tau \) and \(\sigma \leq \tau \) are instantiation constraints. The latter form is introduced so as to make the syntax stable under substitutions of constrained type schemes for variables. As before, \(\text{def } x : \sigma \text{ in } C \) is an explicit substitution form.

The idea is to interpret constraints in such a way as to validate the equivalence laws:

\[
\text{def } x : \sigma \text{ in } C \equiv [x \mapsto \sigma]C \\
(\forall \alpha[C].\tau) \leq \tau' \equiv \exists \alpha.(C \land \tau = \tau') \text{ if } \alpha \neq \tau'
\]

Using these laws, a closed constraint can be rewritten to a unification constraint (with a possibly exponential increase in size). The new constructs do not add much expressive power. They add just enough to allow a stand-alone formulation of constraint generation.

The interpretation of constraints must be redefined since the environment \(\psi \) now maps program variables to sets of ground types. The environment \(\phi \) still maps type variables to ground types. Hence, a type variable \(\alpha \) still denotes a ground type. A variable \(x \) now denotes a set of ground types. Instantiation constraints are interpreted as set membership. The rules for the new form of constraints are:

\[
\begin{align*}
\frac{\phi \tau \in \psi x}{\phi, \psi \vdash x : \tau} & \quad \frac{\phi \tau \in (\phi_\psi)\sigma}{\phi, \psi \vdash \sigma \leq \tau} & \quad \frac{\phi, \psi[x \mapsto (\phi_\psi)\sigma] \vdash C}{\phi, \psi \vdash \text{def } x : \sigma \text{ in } C}
\end{align*}
\]

The interpretation of \(\forall \alpha[C].\tau \) under \(\phi \) and \(\psi \), written \((\phi_\psi)(\forall \alpha[C].\tau)\) is the set of all \(\phi'\tau \), where \(\phi \) and \(\phi' \) coincide outside \(\alpha \) and where \(\phi' \) and \(\psi \) satisfy \(C \):

\[
(\phi_\psi)(\forall \alpha[C].\tau) \overset{\Delta}{=} \{ \phi'\tau \mid (\phi' \setminus \alpha = \phi \setminus \alpha) \land (\phi', \psi \vdash C) \}
\]

If \(C \) is empty, then \((\phi_\psi)(\forall \alpha[C].\tau)\) is \(\{ (\phi[\alpha \mapsto \top])\tau \} \). If \(\alpha \) and \(C \) are empty, then \((\phi_\psi)\tau = \phi\tau \).

For instance, the interpretation of \(\forall \alpha[\exists \beta.\alpha = \beta \rightarrow \gamma].\alpha \rightarrow \alpha \) under \(\phi \) and \(\psi \) is the set of all ground types of the form \((t \rightarrow \phi\gamma) \rightarrow (t \rightarrow \phi\gamma) \), where \(t \) ranges over ground types. This is also the interpretation of an unconstrained typed scheme, namely \(\forall \beta.(\beta \rightarrow \gamma) \rightarrow (\beta \rightarrow \gamma) \). In fact, this is a general situation:

Lemma 47 Every constrained type scheme is equivalent to a standard type scheme.

This result holds because constraints can be reduced to unification constraints, which have either no solution or a principal solution. This is an important property as it implies that type inference problems have principal solutions and typable programs have principal types. The property would
8.3. TYPE INFERENCE FOR ML

\[\langle x : \tau \rangle = x \leq \tau \]
\[\langle \lambda x. a : \tau \rangle = \exists \alpha_1 \alpha_2. (\text{def } x : \alpha_1 \text{ in } \langle a : \alpha_2 \rangle \land \alpha_1 \rightarrow \alpha_2 = \tau) \]
\[\text{if } \alpha_1, \alpha_2 \neq a, \tau \]
\[\langle a_1 a_2 : \tau \rangle = \exists \alpha. (\langle a_1 : \alpha \rightarrow \tau \rangle \land \langle a_2 : \alpha \rangle) \]
\[\text{if } \alpha \neq a_1, a_2, \tau \]
\[\langle \text{let } x = a_1 \text{ in } a_2 : \tau \rangle = \text{let } x : (\langle a_1 \rangle) \text{ in } \langle a_2 : \tau \rangle \]
\[(\langle a \rangle) = \forall \alpha [\langle a : \alpha \rangle], \alpha \]

Figure 8.5: Constraint generation for ML

not hold with more general constraints, such as subtyping constraints. However, we may then generalize type schemes to constrained type schemes as a way to factor several possible types and recover principality of type inference. Then, type inference may have principal constrained type schemes.

Notice that if \(x \) does not appear free in \(C \), \(\text{def } x : \sigma \text{ in } C \) is equivalent to \(C \)—whether or not the constraints appearing in \(\sigma \) are solvable. To enforce the constraints in \(\sigma \) to be solvable, we use a variant of the \(\text{def} \) construct:

\[\text{let } x : \sigma \text{ in } C \overset{\Delta}{=} \text{def } x : \sigma \text{ in } ((\exists \alpha x \leq \alpha) \land C) \]

Expanding the constraint type scheme \(\sigma \) of the form \(\forall \alpha [C]. \tau \) and simplifying, an equivalent definition is:

\[\text{let } x : \forall \alpha [C], \tau \text{ in } C' \overset{\Delta}{=} \exists \alpha C \land \text{def } x : \forall \alpha [C], \tau \text{ in } C' \]

This is equivalent to providing a direct interpretation of let-bindings as:

\[\frac{\phi, \psi \vdash ((\phi)\sigma) \neq \emptyset \quad \phi, \psi[x \mapsto (\phi)\sigma] \vdash C}{\phi, \psi \vdash \text{let } x : \sigma \text{ in } C} \]

Constraint generation for ML is defined in Figure 8.5. The abbreviation \(\langle a \rangle \) is a principal constrained type scheme for \(a \): its intended interpretation is the set of all ground types that \(a \) admits.

Lemma 48 (Constraint equivalences) The following equivalences hold:

\[(1) \quad \exists \alpha. (\langle a : \alpha \rangle \land \alpha = \tau) \equiv \langle a : \tau \rangle \quad \text{if } \alpha \neq \tau \]
\[(2) \quad \langle a \rangle \leq \tau \equiv \langle a : \tau \rangle \]
\[(3) \quad [x \mapsto (\langle a_1 \rangle)]\langle a_2 : \tau \rangle \equiv \langle [x \mapsto a_1]a_2 : \tau \rangle \]

Proof: (1) is by induction on the definition of \(\langle a : \tau \rangle \); (2) is by definition of \(\langle a \rangle \), expansion of the instantiation constraint and (1); (3) is by induction on \(\langle a : \tau \rangle \) and (2).
Another key property is that the constraint associated with a let construct is equivalent to the constraint associated with its let-normal form.

Lemma 49 (let expansion) \(\langle \text{let } x = a_1 \text{ in } a_2 : \tau \rangle \equiv \langle a_1; [x \mapsto a_1] a_2 : \tau \rangle \).

Expansion of let-binding terminates, since it can be seen as reducing the family of redexes marked as let-bindings. The resulting expression has no let-binding and its constraint has no def-constraint. Hence, its interpretation is the same as constraints for the simply-typed \(\lambda \)-calculus. This gives another specification of ML: a closed program is well-typed in ML if and only if its let-expansion is typable with simple types.

Constraint generation for ML can still be implemented in linear time and space.

Lemma 50 The size of \(\langle a : \tau \rangle \) is linear in the sum of the sizes of \(a \) and \(\tau \).

The statement of soundness and completeness keeps its previous form, but \(\Gamma \) now contains Damas-Milner type schemes. Since \(\Gamma \) binds variables to type schemes, we define \(\phi(\Gamma) \) as the point-wise mapping of \((\phi) \) to \(\Gamma \).

Theorem 24 (Soundness and completeness) Assume \(\text{fv}(a) = \text{dom}(\Gamma) \). Then, \(\phi, \phi \Gamma \vdash \langle a : \tau \rangle \) if and only if \(\phi \Gamma \vdash a : \phi \tau \).

Key points Notice that constraint generation has linear complexity; constraint generation and constraint solving are separate. This makes constraints suitable for use in an efficient and modular implementation. In particular, the constraint language remains small as the programming language grows.

8.3.3 Constraint solving by example

For our running example, assume that the initial environment \(\Gamma_0 \) stands for \(\text{assoc} : \forall \alpha \beta. \alpha \rightarrow \text{List} (\alpha \times \beta) \rightarrow \beta \). That is, the constraints considered next are implicitly wrapped within the context \(\text{def } \Gamma_0 \) in \([] \). Let \(a \) stand for the term:

\[
\lambda x. \lambda l_1. \lambda l_2. \text{let } \text{assoc} = \text{assoc } x \text{ in } (\text{assoc } l_1, \text{assoc } l_2)
\]

One may anticipate that \(\text{assoc} \) receives a polymorphic type scheme, which is instantiated twice at different types. Let \(\Gamma \) stand for \(x : \alpha_0; l_1 : \alpha_1; l_2 : \alpha_2 \). Then, the constraint \(\langle a : \alpha \rangle \) is, after a few minor simplifications:

\[
\exists \alpha_0 \alpha_1 \alpha_2 \beta. \left(\begin{array}{c}
\alpha = \alpha_0 \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \beta \\
\text{def } \Gamma \text{ in }
\end{array} \right)
\]

\[
\left(\begin{array}{c}
\text{let } \text{assoc} = \forall \gamma_1 \left(\exists \gamma_2. \left(\langle \text{assoc } x \leq \gamma_2 \rightarrow \gamma_1 \rangle \right) \right) \cdot \gamma_1 \text{ in }
\end{array} \right)
\]

\[
\left(\begin{array}{c}
\exists \beta_1 \beta_2. \left(\beta = \beta_1 \times \beta_2 \\
\forall i \in \{1, 2\}, \exists \gamma_2. (\text{assoc } x \leq \gamma_2 \rightarrow \beta_i \land l_i \leq \gamma_2)
\end{array} \right)
\]
Constraint solving can be viewed as a *rewriting process* that exploits *equivalence laws*. Because equivalence is, by construction, a *congruence*, rewriting is permitted within an arbitrary context. For instance, environment access is allowed by the law

\[
\text{let } x : \sigma \text{ in } \mathcal{R}[x \leq \tau] \equiv \text{let } x : \sigma \text{ in } \mathcal{R}[\sigma \leq \tau]
\]

where \(\mathcal{R} \) is a context that does not bind \(x \). Thus, within the context \(\text{def } \Gamma_0; \Gamma \in [] \), we have the following equivalence:

\[
\text{assoc} \leq \gamma_2 \rightarrow \gamma_1 \land x \leq \gamma_2 \equiv \exists \alpha \beta. (\alpha \rightarrow \text{List} (\alpha \times \beta) \rightarrow \beta = \gamma_2 \rightarrow \gamma_1) \land \alpha_0 = \gamma_2
\]

By first-order unification, we have the following sequence of simplifications:

\[
\exists \gamma_2. (\exists \alpha \beta. (\alpha \rightarrow \text{List} (\alpha \times \beta) \rightarrow \beta = \gamma_2 \rightarrow \gamma_1) \land \alpha_0 = \gamma_2)
\]

\[
\equiv \exists \gamma_2. (\exists \alpha \beta. (\alpha = \gamma_2 \land \text{List} (\alpha \times \beta) \rightarrow \beta = \gamma_1) \land \alpha_0 = \gamma_2)
\]

\[
\equiv \exists \gamma_2. (\exists \beta. (\text{List} (\gamma_2 \times \beta) \rightarrow \beta = \gamma_1) \land \alpha_0 = \gamma_2)
\]

\[
\equiv \exists \beta. (\text{List} (\alpha_0 \times \beta) \rightarrow \beta = \gamma_1)
\]

Hence,

\[
\forall \gamma_1 [\exists \gamma_2. (\text{assoc} \leq \gamma_2 \rightarrow \gamma_1 \land x \leq \gamma_2)]. \gamma_1 \equiv \forall \gamma_1 [\exists \beta. (\text{List} (\alpha_0 \times \beta) \rightarrow \beta = \gamma_1)]. \gamma_1
\]

\[
\equiv \forall \beta. \text{List} (\alpha_0 \times \beta) \rightarrow \beta
\]

We have used the rule:

\[
\forall \alpha [\exists \beta. C], \tau \equiv \forall \alpha \beta [C]. \tau \quad \text{if } \beta \neq \tau
\]

The initial constraint has now been simplified down to:

\[
\exists \alpha_0 \alpha_1 \alpha_2 \beta. \left(\begin{array}{c}
\text{def } \Gamma \in \\
\text{let } \text{assocx} : \forall \beta. \text{List} (\alpha_0 \times \beta) \rightarrow \beta \text{ in } \\
\exists \beta_1 \beta_2. \left(\begin{array}{c}
\beta = \beta_1 \times \beta_2 \\
\forall i \in \{1, 2\}, \exists \gamma_2. (\text{assoc} \leq \gamma_2 \rightarrow \beta_i \land l_i \leq \gamma_2)
\end{array} \right) \end{array} \right)
\]

The simplification work spent on \(\text{assocx} \)'s type scheme was well worth the trouble, because we are now going to *duplicate* the simplified type scheme.

The subconstraint \(\exists \gamma_2. (\text{assoc} \leq \gamma_2 \rightarrow \beta_i \land l_i \leq \gamma_2) \) where \(i \in \{1, 2\} \), is rewritten:

\[
\exists \gamma_2. (\exists \beta. (\text{List} (\alpha_0 \times \beta) \rightarrow \beta = \gamma_2 \rightarrow \beta_i) \land \alpha_i = \gamma_2)
\]

\[
\equiv \exists \beta. (\text{List} (\alpha_0 \times \beta) \rightarrow \beta = \alpha_i \rightarrow \beta_i)
\]

\[
\equiv \exists \beta. (\text{List} (\alpha_0 \times \beta) \rightarrow \alpha_i \land \beta = \beta_i)
\]

\[
\equiv \text{List} (\alpha_0 \times \beta_i) = \alpha_i
\]

The initial constraint has now been simplified down to:

\[
\exists \alpha_0 \alpha_1 \alpha_2 \beta. \left(\begin{array}{c}
\text{def } \Gamma \text{ in let } \text{assocx} : \forall \beta. \text{List} (\alpha_0 \times \beta) \rightarrow \beta \text{ in } \\
\exists \beta_1 \beta_2. \left(\begin{array}{c}
\beta = \beta_1 \times \beta_2 \\
\forall i \in \{1, 2\}, \text{List} (\alpha_0 \times \beta_i) = \alpha_i
\end{array} \right) \end{array} \right)
\]
Now, the context `def Γ in let assocx:... in []` can be dropped, because the constraint that it applies to contains no occurrences of `x, l₁, l₂,` or `assocx`. The constraint becomes:

```
def Γ in let assocx ∶ [ [ ] ] can be dropped, because the constraint that it applies
```

that is, by extrusion:

```
exists α₀ α₁ α₂ β₀ β₁ β₂. (α = α₀ → α₁ → α₂ → β₀
```

Finally, by eliminating a few auxiliary variables:

```
exists α₀ β₁ β₂. (α = α₀ → List (α₀ × β₁) → List (α₀ × β₂) → β₁ × β₂)
```

We have shown the following equivalence between constraints:

```
def Γ₀ in (a ∶ α) ≡ exists α₀ β₁ β₂. (α = α₀ → List (α₀ × β₁) → List (α₀ × β₂) → β₁ × β₂)
```

That is, the *principal type scheme* of `a` relative to `Γ₀` is

```
(a) = ∀α (a ∶ α). α ≡ ∀α₀ β₁ β₂. α₀ → List (α₀ × β₁) → List (α₀ × β₂) → β₁ × β₂
```

Again, constraint solving can be explained in terms of a *small-step rewrite system*. Again, one checks that every step is meaning-preserving, that the system is normalizing, and that every normal form is either literally “false” or satisfiable.

Rewriting strategies Different constraint solving *strategies* lead to different behaviors in terms of complexity, error explanation, etc. See Pottier and Rémy (2005) for details on constraint solving. See Jones (1999b) for a different presentation of type inference, in the context of Haskell.

In all reasonable strategies, the left-hand side of a let constraint is simplified *before* the let form is expanded away. This corresponds, in Algorithm *J*, to computing a principal type scheme before examining the right-hand side of a let construct.

Complexity Type inference for ML is DEXPTIME-complete (Kfoury et al., 1990; Mairson, 1990), so any constraint solver has exponential complexity. This is assuming that types are printed as trees. If one allows to return types are dags graphs instead of types, the complexity is EXPTIME-complete.

This is, of course, worse case complexity, which does not contradict the observation that ML type inference *works well in practice*.

If fact, this good behavior can be explain by the results of McAllester (2003): under the hypotheses that *types have bounded size* and let forms have bounded left-nesting depth, constraints can be solved in linear time, or in quasi-linear time if recursive types are allowed.

When the size of types in unbounded, one may reach worst case complexity but right-nesting let-bindings as in Mairson original example:
8.3. TYPE INFERENCE FOR ML

\[
\begin{align*}
\langle x \rangle &= \forall \alpha [x \leq \alpha]. \alpha \\
\langle \lambda x. a \rangle &= \forall \alpha_1 \alpha_2 [\langle x : \alpha_2 \rangle \leq \alpha_1]. \alpha_2 \rightarrow \alpha_1 \\
&\text{if } \alpha_1, \alpha_2 \neq a \\
\langle a_1 a_2 \rangle &= \forall \alpha_1 \alpha_2 [\langle a_1 \rangle \leq \alpha_2 \land \langle a_2 \rangle \leq \alpha_2]. \alpha_1 \\
&\text{if } \alpha_1, \alpha_2 \neq a_1, a_2 \\
\langle \text{let } x = a_1 \text{ in } a_2 \rangle &= \forall \alpha [\langle x : \alpha_1 \rangle \in \langle a_2 \rangle \leq \alpha]. \alpha
\end{align*}
\]

Figure 8.6: Constraint generation with principal constraint type schemes

```
let mairson =
  let f = fun x -> (x, x) in
  (* ... n times ... *)
  let f = fun x -> f(f x) in
  f (fun z -> z)
```

This term can be placed in the context \texttt{let } x = ... \texttt{in } () to ignore the time spent outputting the result type.

However, this right-nesting of let-bindings is not a problem if types remain bounded, because each let-bound expression can be simplified to a type of bounded size before being duplicated.

On the opposite, in a left-nesting of let-binding local variables may have to be extruded step by step from the inner bindings to its enclosing binding, sometimes all the way up to the root, leading to a quadratic complexity when the nesting is proportional to the size of the program.

Principal constraint type schemes In constraint generation, we introduced principal constraint type scheme \(\langle a \rangle \) as an abbreviation for \(\forall \alpha [\langle a : \alpha \rangle]. \alpha \). However, using the equivalence between \(\langle a : \tau \rangle \) and \(\langle a \rangle \leq \tau \), we may conversely use principal constraint type schemes in place of program constraints. This leads to an alternative presentation of constraint generation described in Figure 8.6 (Compare it with the previous definition in Figure 8.5).

8.3.4 Type reconstruction

Type inference should not just return a principal type for an expression; it should also perform type reconstruction, \textit{i.e.} elaborate the implicitly-typed input term into an explicitly-typed one.

The elaborated term is not unique, since redundant type abstractions and type applications may always be used. Moreover, some non principal type schemes may also be used for local let-bindings—even if the final type is principal.

For example the implicitly-typed term \texttt{let } x = \lambda y. y \texttt{ in } 1 \texttt{ may be explicitly typed as either one of}

\[
\begin{align*}
\texttt{let } x : \text{int} \rightarrow \text{int} = \lambda y : \text{int}. y \texttt{ in } 1 \\
\texttt{let } x : \forall \alpha. \alpha \rightarrow \alpha = \Lambda x. \lambda x : \text{int}. x \texttt{ in } x \text{ int } 1
\end{align*}
\]

Which one is better? Monomorphic terms can be compiled more efficiently, so removing useless polymorphism may be useful.
However, one usually infers more general explicitly-typed terms. Given explicitly-typed terms M and M' with the same type erasure, we say that M is more general than M' if all let-bindings are assigned more general type schemes in M than in M', i.e.:

for all decompositions of M into $C[\text{let } x : \sigma = M_1 \text{ in } M_2]$, then there is a corresponding decomposition of M' (i.e. one where C and C' have the same erasure) as $C'[\text{let } x : \sigma' = M'_1 \text{ in } M'_2]$ where σ is more general than σ'.

A type reconstruction is principal if it is more general than any other type reconstruction of the same term. Core ML admits principal type reconstructions. A principal typing derivation can be sought for in canonical form, as defined in § 8.2.

A term in canonical form is uniquely determined up to reordering of type abstractions and type applications by the type schemes of bound program variables and of how they are instanced. We may keep track of such information during constraint resolution by keeping the binding constraints $\text{def } x : C$ in C and its derived form $\text{let } x : C$ in C, and the instantiation constraints $x \leq \tau$ of the original constraint—instead of removing them once solved. We call them persistent constraints. We thus forbid the removal, as well as the extrusion of persistent constraints by restricting the equivalence of constraints accordingly.

Rewriting rules used for constraint resolution can easily be adapted to retain the persistent constraints—and thus preserve the restricted notion of equivalence. Then, the binding structure of the constraint remains unchanged during simplification and is isomorphic to the binding structure of the expression it came from. (Persistent nodes could actually be labeled by their corresponding nodes in the original expression.)

In practice, we mark nodes of the persistent constraints as resolved when they could have been dropped in the normal resolution process—so that they need not be considered anymore during the resolution. For example, we use the rule

$$\text{def } x : \sigma \text{ in } R[x \leq \tau] \equiv \text{def } x : \sigma \text{ in } R[x \leq \tau \land \sigma \leq \tau]$$

for environment access, where the original constraint $x \leq \tau$ is kept and marked as resolved but is not removed. Similarly, a constraint $\text{def } x : \sigma$ in C can be marked as resolved, which we write $\text{def } x : \sigma$ in C, whenever x may only appears free in removable constraints of C. A resolved form of a constraint is an equivalent persistent constraint, such that dropping all persistent nodes is an equivalent constraint in solved forms.

For example, reusing the running example and notations of the previous section, let us find a term M whose erasure a is defined as:

$$\lambda x. \lambda l_1. \lambda l_2. \text{let assoc} = \text{assoc } x \text{ in } (\text{assoc } l_1, \text{assoc } l_2)$$

The principal type scheme $\{a\}$ is, by definition:

$$\forall \alpha. \exists \alpha_0 \alpha_1 \alpha_2 \beta. \left[
\begin{array}{l}
\text{def } \Gamma \text{ in } \\
\text{let } \text{assoc} : \forall \gamma_1. \exists \gamma_2. \left[
\begin{array}{l}
\alpha = \alpha_0 \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \beta \\
\text{let } \text{assoc} : \forall \gamma_1. \exists \gamma_2. \left[
\begin{array}{l}
\alpha \rightarrow \gamma_1 \rightarrow \gamma_2 \\
\forall i \in \{1, 2\}, \exists \gamma_2. (\text{ass soc} \leq \gamma_2 \rightarrow \beta_i \land l_i \leq \gamma_2)
\end{array}
\right]. \gamma_1 \text{ in } \\
\beta = \beta_1 \times \beta_2
\end{array}
\right]. \gamma_2 \left[
\begin{array}{l}
\beta_1 \gamma_2 \\
\forall \beta_1 \gamma_2, \beta_2.
\end{array}
\right]. \alpha
\end{array}
\right]. \alpha
\right]$$
8.3. TYPE INFERENCE FOR ML

Since \(x : \alpha_0 \) is in \(\Gamma \), the inner constraint can be resolved as follows:

\[
\exists \gamma_2. (\text{assoc} \leq \gamma_2 \rightarrow \gamma_1 \land x \leq \gamma_2)
\equiv \exists \gamma_2. (\text{assoc} \leq \gamma_2 \rightarrow \gamma_1 \land x \leq \gamma_2 \land l_0 \leq \gamma_2) \equiv \text{assoc} \leq \alpha_0 \rightarrow \gamma_1 \land x \leq \alpha_0
\]

The other instantiation may be solved similarly, leading to the equivalent constraints:

\[
\text{assoc} \leq \alpha_0 \rightarrow \gamma_1 \land \forall \alpha \beta. \alpha \rightarrow \text{List} (\alpha \times \beta) \rightarrow \beta \leq \alpha_0 \rightarrow \gamma_1 \land x \leq \alpha_0
\equiv \text{assoc} \leq \alpha_0 \rightarrow \gamma_1 \land \exists \alpha \beta. (\alpha = \alpha_0 \land \text{List} (\alpha \times \beta) \rightarrow \beta = \gamma_1) \land x \leq \alpha_0
\equiv \exists \beta. (\text{assoc} \leq \alpha_0 \rightarrow \text{List} (\alpha_0 \times \beta) \rightarrow \beta \land \text{List} (\alpha_0 \times \beta) \rightarrow \beta = \gamma_1 \land x \leq \alpha_0)
\]

Hence, the type scheme of \(\text{assoc} \) is equivalent to

\[
\forall \beta [\text{assoc} \leq \alpha_0 \rightarrow \text{List} (\alpha_0 \times \beta) \rightarrow \beta \land x \leq \alpha_0]. \text{List} (\alpha_0 \times \beta) \rightarrow \beta
\]

and \(\parallel a_1 \parallel \) is equivalent to:

\[
\forall \alpha \exists \alpha_0 \alpha_1 \alpha_2 \beta. \left(\text{def } \Gamma \text{ in } \begin{array}{l}
\text{let } \text{assocx} : \forall \beta [\text{assoc} \leq \alpha_0 \rightarrow \text{List} (\alpha_0 \times \beta) \rightarrow \beta \land x \leq \alpha_0]. \text{List} (\alpha_0 \times \beta) \rightarrow \beta \text{ in } \alpha \\
\exists \beta_1 \beta_2. \left(\beta = \beta_1 \times \beta_2 \\
\forall i \in \{1, 2\}, \exists \gamma_2. (\text{assoc} \leq \gamma_2 \rightarrow \beta_i \land l_i \leq \gamma_2) \right) \right\} \right)
\]

Simplifying the remaining instantiation constraints in a similar way, we end up with the following resolved type scheme for \(\parallel a \parallel \):

\[
\forall \alpha_0 \beta_1 \beta_2. \left(\text{def } \Gamma \text{ in } \begin{array}{l}
\text{let } \text{assocx} : \forall \gamma [\text{assoc} \leq \alpha_0 \rightarrow \text{List} (\alpha_0 \times \gamma) \rightarrow \gamma]. \text{List} (\alpha_0 \times \gamma) \rightarrow \gamma \text{ in } \gamma \\
\forall i \in \{1, 2\}, \text{assoc} \leq \text{List} (\alpha_0 \times \beta_i) \rightarrow \beta_i \land l_i \leq \text{List} (\alpha_0 \times \beta_i) \\
\alpha_0 \rightarrow \text{List} (\alpha_0 \times \beta_1) \rightarrow \text{List} (\alpha_0 \times \beta_2) \rightarrow \beta_1 \times \beta_2 \right) \right)
\]

This is a resolved form, from which we may build the elaboration of \(a_1 \):

\[
\Lambda \alpha_0 \beta_1 \beta_2. \lambda x : \alpha_0, \lambda l_1 : \text{List} (\alpha_0 \times \beta_1). \lambda l_2 : \text{List} (\alpha_0 \times \beta_2). \text{let } \text{assocx} = \Lambda \gamma. \text{assoc } \alpha_0 \gamma. x \text{ in } (\text{assocx } \beta_1 l_1, \text{assocx } \beta_2 l_2)
\]

Type abstractions are determined by their corresponding type scheme in the resolved constraint; for instance, the type abstraction for the let-bound variable \(\text{assocx} \) is \(\gamma \) while the toplevel type abstraction is \(\alpha_0 \alpha_1 \beta_2 \). Type annotations on abstractions are determined by \(\Gamma \), which here contains \(x : \alpha_0; l_1 : \text{List} (\alpha_0 \times \alpha_1); l_2 : \text{List} (\alpha_0 \times \alpha_2) \). Type applications are inferred locally by looking at their corresponding type instantiations in the resolved constraints. For instance, we read from the constraint that \(\text{assocx} \) is let-bound with the type scheme \(\forall \gamma. \text{List} (\alpha_0 \times \gamma) \rightarrow \gamma \) (we dropped the constraint which is solved and equivalent to true) and that its \(i \)-th occurrence is used at type \(\text{List} (\alpha_0 \times \beta_i) \rightarrow \beta_i \). Matching the former against the latter gives the substitution \(\gamma \mapsto \beta_i \). Therefore, the type application for the \(i \)'s occurrence is be \(\beta_i \).
Modular type reconstruction One criticism of our approach is that the mechanism for type reconstruction is based on program typing constraints and not on type constraint alone. Hence, we do not have a clear separation of separation of concerns. Modularity can be achieved by defining for each construct of the language taken independently the constraint generation together with the elaboration of this construct once the constraint will have been solved. See [Pottier (2014)] for details.

Principal type reconstruction Notice that while the constraint framework enforces the inference of principal types, since it transforms the original constraint into an equivalent constraint, it does not enforce type reconstruction to be principal. Indeed, in a constraint $\exists \alpha. C$, the existentially bound type variable α may be instantiated to any type that satisfies the constraint C and not necessarily the most general one.

Interestingly, however, the default strategy for constraint resolution always returns principal type reconstructions. That is, variables are never arbitrarily instantiated, although this would be allowed by the specification.

Exercise 48 (Minimal derivations) On the opposite, one may seek for less general typing derivations where all let-expressions are as instantiated as possible. Do such derivations exist? In fact no: there are examples where there are two minimal incomparable type reconstructions and others with smaller and smaller type reconstructions but no smallest one. Find examples of both kinds. (Solution p. 179)

Exercise 49 (Closed types) Explain why ML modules in combination with the value-restriction break the principal type property: that is, there are programs that are typable but that do not have a principal type. Hint: ML signatures of ML modules must be closed. (Solution p. 179)

8.4 Type annotations

Damas and Milner’s type system has principal types: at least in the core language, no type information is required. This is very lightweight, but a bit extreme: sometimes, it is useful to write types down, and use them as machine-checked documentation. Let us, then, allow programmers to annotate a term with a type:

$$a ::= \ldots | (a : \tau)$$

Typing and constraint generation are obvious:

$$\Gamma \vdash a : \tau$$

$$\Gamma \vdash (a : \tau) : \tau$$

$$\langle (a : \tau) : \tau', \rangle = \langle a : \tau \rangle \wedge \tau = \tau'$$

Type annotations are erased prior to runtime, so the operational semantics is not affected. In particular, it is still type-erasing.

Notice that annotations here do not help type more terms, as erasure of type annotations preserves well-typedness: Indeed, the constraint $\langle (a : \tau) : \tau' \rangle$ implies the constraint $\langle a : \tau' \rangle$.
That is, in terms of type inference, *type annotations are restrictive*: they lead to a principal type that is less general, and possibly even to ill-typedness. For instance, \(\lambda x . x \) has principal type scheme \(\forall (\alpha :: *) . \alpha \to \alpha \), whereas \(\lambda x . x : \text{int} \to \text{int} \) has principal type scheme \(\text{int} \to \text{int} \), and \(\lambda x . x : \text{int} \to \text{bool} \) is ill-typed.

8.4.1 Explicit binding of type variables

We must be careful with type variables within type annotations, as in, say:

\[
(\lambda x . x : \alpha \to \alpha) \quad (\lambda x . x + 1 : \alpha \to \alpha) \quad \text{let } f = (\lambda x . x : \alpha \to \alpha) \text{ in } (f 0, f \text{ true})
\]

Does it make sense, and is so, what does it mean? A short answer is that it does not mean anything, because \(\alpha \) is unbound. “There is no such thing as a free variable” (Alan Perlis). A longer answer is that it is necessary to specify how and where variables are bound.

How is \(\alpha \) **bound?** If \(\alpha \) is existentially bound, or flexible, then both \(\lambda x . x : \alpha \to \alpha \) and \(\lambda x . x + 1 : \alpha \to \alpha \) should be well-typed. If it is universally bound, or rigid, only the former should be well-typed.

Where is \(\alpha \) **bound?** If \(\alpha \) is bound within the left-hand side of this “let” construct, then \(\text{let } f = (\lambda x . x : \alpha \to \alpha) \text{ in } (f 0, f \text{ true}) \) should be well-typed. On the other hand, if \(\alpha \) is bound outside this “let” form, then this code should be ill-typed, since no single ground value of \(\alpha \) is suitable.

Programmers should *explicitly bind* type variables. We extend the syntax of expressions as follows:

\[a ::= \ldots | \exists \alpha . a | \forall \alpha . a \]

It now makes sense for a type annotation \((a : \tau) \) to contain free type variables—as long as these type variables have been introduced in some enclosing term.

Since terms can now contain free type variables, some side conditions have to be updated (e.g., \(\alpha \# \Gamma, a \) in ☐). The new (and updated) typing rules are as follows:

<table>
<thead>
<tr>
<th>Exists</th>
<th>Forall</th>
<th>Gen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma \vdash [\alpha \mapsto g]a : \tau)</td>
<td>(\Gamma \vdash a : \tau \quad \alpha # \Gamma)</td>
<td>(\Gamma \vdash a : \tau \quad \alpha # \Gamma, a)</td>
</tr>
<tr>
<td>(\Gamma \vdash \exists \alpha . a : \tau)</td>
<td>(\Gamma \vdash \forall \alpha . a : \forall \alpha . \tau)</td>
<td>(\Gamma \vdash a : \forall \alpha . \tau)</td>
</tr>
</tbody>
</table>

As type annotations, the introduction of type variables are erased prior to runtime.

Exercise 50 Define the erasure of implicitly-typed terms and show that the erasure of a well-typed term is well-typed. Use this to justify the soundness of the extension of ML with type annotations with explicit introduction of type variables.

Constraint generation for the existential form is straightforward:

\[\llangle (\exists \alpha . a) : \tau \rrangle = \exists \alpha . \llangle a : \tau \rrangle \quad \text{if } \alpha \# \tau \]

The type annotations inside \(a \) contain free occurrences of \(\alpha \). Thus, the constraint \(\llangle a : \tau \rrangle \) contains such occurrences as well, which are bound by the existential quantifier.
For example, the expression $\lambda x_1.\lambda x_2.\exists \alpha.((x_1 : \alpha),(x_2 : \alpha))$ has principal type scheme $\forall \alpha.\alpha \rightarrow \alpha \rightarrow \alpha \times \alpha$. Indeed, the generated constraint is of the form $\exists \alpha.((x_1 : \alpha) \land (x_2 : \alpha) \land \ldots)$, which requires x_1 and x_2 to share a common (unspecified) type.

Perhaps surprisingly, constraint generation for the universal case is more difficult. A term a has type scheme, say, $\forall \alpha.\alpha \rightarrow \alpha$ if and only if a has type $\alpha \rightarrow \alpha$ for every instance of α, or, equivalently, for an abstract α. To express this in terms of constraints, we introduce universal quantification in the constraint language:

$$C ::= \ldots \mid \forall \alpha.C$$

Its interpretation is as expected:

$$\forall t, \phi[\alpha \mapsto t], \psi \vdash C \quad \phi, \psi \vdash \forall \alpha.C$$

(To solve these constraints, we will use an extension of the unification algorithm called unification under a mixed prefix—see §8.4.3.)

The need for universal quantification in constraints arises when polymorphism is required by the programmer, as opposed to inferred by the system. Constraint generation for the universal form is somewhat subtle. A naive definition fails:

$$\langle \forall \alpha.a : \tau \rangle = \forall \alpha.\langle a : \tau \rangle$$

Wrong!

This requires τ to be simultaneously equal to all of the types that a assumes when α varies. For instance, with this incorrect definition, one would have:

$$\langle \forall \alpha.(\lambda x.x : \alpha \rightarrow \alpha) : \text{int} \rightarrow \text{int} \rangle = \forall \alpha.\langle (\lambda x.x : \alpha \rightarrow \alpha) : \text{int} \rightarrow \text{int} \rangle$$

≡ $\forall \alpha.(\langle \lambda x.x : \alpha \rightarrow \alpha \rangle \land \alpha = \text{int})$ ≡ $\forall \alpha.\langle \text{true} \land \alpha = \text{int} \rangle$ ≡ false

A correct definition is:

$$\langle \forall \alpha.a : \tau \rangle = \forall \alpha.\exists \gamma.\langle a : \gamma \rangle \land \exists \alpha.\langle a : \tau \rangle$$

This requires a to be well-typed for all instances of α and requires τ to be a valid type for a under some instance of α.

However, a problem with this definition is that the term a is duplicated, which can lead to exponential complexity. Fortunately, this can be avoided modulo a slight extension of the constraint language (Pottier and Rémy, 2003, p. 112). The solution defines:

$$\langle \forall \alpha.a : \tau \rangle = \text{let } x : \forall \alpha,\beta[\langle a : \beta \rangle].\beta \text{ in } x \leq \tau$$

where the new constrain form satisfies the equivalence:

$$\text{let } x : \forall \alpha,\beta[\langle C_1 \rangle].\tau \text{ in } C2 \equiv \forall \alpha,\beta.\beta[\langle C_1 \rangle].\tau \text{ in } C2$$

Annotating a term with a type scheme, rather than just a type, is now just syntactic sugar:

$$(a : \forall \alpha.\tau) \triangleq \forall \alpha.(a : \tau)$$

if $\alpha \neq a$
In that particular case, constraint generation is in fact simpler:

\[\{ (a : \forall \alpha. \tau) : \tau' \} \equiv \forall \alpha. \{ a : \tau \} \land (\forall \alpha. \tau) \leq \tau' \]

Exercise 51 Check this equivalence.

Examples Consider the following two examples:

\[
\begin{align*}
\llbracket (\exists \alpha. (\lambda x. x + 1 : \alpha \to \alpha)) : \text{int} \to \text{int} \rrbracket & \equiv \exists \alpha. \llbracket (\lambda x. x + 1 : \alpha \to \alpha) : \text{int} \to \text{int} \rrbracket \\
\llbracket (\forall \alpha. (\lambda x. x + 1 : \alpha \to \alpha)) : \text{int} \to \text{int} \rrbracket & \equiv \forall \alpha. \exists \gamma. \llbracket (\lambda x. x + 1 : \alpha \to \alpha) : \gamma \rrbracket
\end{align*}
\]

The left-hand side example is well-typed: The system infers that \(\alpha \) must be \text{int}. Because \(\alpha \) is a local type variable, it does not appear in the final constraint. The right-hand side example is ill-typed: The system checks that \(\alpha \) is used in an abstract way, which is not the case here, since the code implicitly assumes that \(\alpha \) is \text{int}. By contrast, the following example is well-typed:

\[
\begin{align*}
\llbracket (\forall \alpha. (\lambda x. x : \alpha \to \alpha)) : \text{int} \to \text{int} \rrbracket & \equiv \forall \alpha. \exists \gamma. \llbracket (\lambda x. x : \alpha \to \alpha) : \gamma \rrbracket \land \exists \alpha. \llbracket (\lambda x. x : \alpha \to \alpha) : \text{int} \to \text{int} \rrbracket \\
& \equiv \forall \alpha. \exists \gamma. \alpha \to \alpha = \gamma \land \exists \alpha. \alpha = \text{int} \\
& \equiv \text{true}
\end{align*}
\]

The system checks that \(\alpha \) is used in an abstract way, which is indeed the case here. It also checks that, if \(\alpha \) is appropriately instantiated, the code admits the expected type \(\text{int} \to \text{int} \).

The two next examples are similar and show the importance of the scope of existential variables. In the first one, the variable \(\alpha \) is bound outside the let construct:

\[
\begin{align*}
\llbracket (\exists \alpha. (\text{let } f = (\lambda x. x : \alpha \to \alpha) \text{ in } (f 0, f \text{ true})) : \gamma \rrbracket & \equiv \exists \alpha. (\text{let } f : \alpha \to \alpha \text{ in } \exists \gamma_1 \gamma_2. (f \leq \text{int} \land f \leq \text{bool} \to \gamma_2 \land \gamma_1 \times \gamma_2 = \gamma)) \\
& \equiv \exists \alpha \gamma_1 \gamma_2. (\alpha \to \alpha = \text{int} \land \alpha \to \alpha = \text{bool} \to \gamma_2 \land \gamma_1 \times \gamma_2 = \gamma) \\
& \equiv \exists \alpha. (\alpha = \text{int} \land \alpha = \text{bool}) \\
& \equiv \text{false}
\end{align*}
\]

Then \(f \) receives the monotype \(\alpha \to \alpha \) and the example is ill-typed. In the other example, \(\alpha \) is bound within the let construct:

\[
\begin{align*}
\llbracket (\text{let } f = \exists \alpha. (\lambda x. x : \alpha \to \alpha) \text{ in } (f 0, f \text{ true}) : \gamma \rrbracket & \equiv \text{let } f : \forall \beta [\exists \alpha. (\alpha \to \alpha = \beta) \land \beta \text{ in } \exists \gamma_1 \gamma_2. (f \leq \text{int} \land f \leq \text{bool} \to \gamma_2 \land \gamma_1 \times \gamma_2 = \gamma)] \\
& \equiv \text{let } f : \forall \alpha : \beta. \alpha \to \alpha \text{ in } \exists \gamma_1 \gamma_2. (\ldots) \\
& \equiv \exists \gamma_1 \gamma_2. (\text{int} = \gamma_1 \land \text{bool} = \gamma_2 \land \gamma_1 \times \gamma_2 = \gamma) \\
& \equiv \text{int} \land \text{bool} = \gamma
\end{align*}
\]

Here, the term \(\exists \alpha. (\lambda x. x : \alpha \to \alpha) \) has the same principal type scheme as \(\lambda x. x \), namely \(\forall (\alpha : \cdot) \cdot \alpha \to \alpha \), which is the type scheme that \(f \) receives.
Type annotations in the real world For historical reasons, type variables are not explicitly bound in OCaml. (Retrospectively, that’s bad!) They are implicitly existentially bound at the nearest enclosing toplevel let construct. In Standard ML, type variables are implicitly universally bound at the nearest enclosing toplevel let construct. In Glasgow Haskell, type variables are implicitly existentially bound within patterns: ‘A pattern type signature brings into scope any type variables free in the signature that are not already in scope’ [Peyton Jones and Shields (2004)].

Constraints help understand these varied design choices uniformly.

8.4.2 Polymorphic recursion

Recall below the typing rule FixAbs for recursive functions, which leads to the derived typing LetRec for recursive definitions:

<table>
<thead>
<tr>
<th>FixAbs</th>
<th>LetRec</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma, f : \tau \vdash \lambda x. a : \tau$</td>
<td>$\Gamma, f \vdash \lambda x. a_1 : \tau_1$ $\alpha \neq \Gamma, a_1$ $\Gamma, f : \forall \alpha. \tau_1 \vdash a_2 : \tau_2$</td>
</tr>
<tr>
<td>$\Gamma \vdash \mu f. \lambda x. a : \tau$</td>
<td>$\Gamma \vdash \text{let rec } f x = a_1 \text{ in } a_2 : \tau_2$</td>
</tr>
</tbody>
</table>

These rules require occurrences of f to have monomorphic type within the recursive definition (that is, within $\lambda x. a_1$). This is visible also in terms of type inference, as the two following constraints are equivalent:

$$\llbracket \text{let rec } f x = a_1 \text{ in } a_2 : \tau \rrbracket \equiv \text{let } \forall \alpha \beta [\text{let } f : \alpha \rightarrow \beta; x : \alpha \in \llbracket a_1 : \beta \rrbracket], \alpha \rightarrow \beta \text{ in } \llbracket a_2 : \tau \rrbracket$$

On the right-hand side, all occurrences of f within a_1 have the same type $\alpha \rightarrow \beta$. This is problematic in some situations, most particularly when defining functions over nested algebraic data types [Bird and Meertens, 1998; Okasaki, 1999].

This problem is solved by introducing polymorphic recursion, that is, by allowing μ-bound variables to receive a polymorphic type scheme, using the following typing rules:

<table>
<thead>
<tr>
<th>FixAbsPoly</th>
<th>LetRecPoly</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma, f : \sigma \vdash \lambda x. a : \sigma$</td>
<td>$\Gamma, f : \sigma \vdash \lambda x. a_1 : \sigma$ $\Gamma, f : \sigma \vdash a_2 : \tau$</td>
</tr>
<tr>
<td>$\Gamma \vdash \mu f. \lambda x. a : \sigma$</td>
<td>$\Gamma \vdash \text{let rec } (f : \sigma) = \lambda x. a_1 \text{ in } a_2 : \tau$</td>
</tr>
</tbody>
</table>

This extension of ML is due to Mycroft (1984).

In System F, there is no problem to begin with; no extension is necessary. Polymorphic recursion alters, to some extent, Damas and Milner’s type system. Now, not only let-bound, but also μ-bound variables receive type schemes. The type system is no longer equivalent, up to reduction to let-normal form, to simply-typed λ-calculus. This has two noticeable consequences: monomorphization, a technique employed in some ML compilers [Tolmach and Oliva (1998); Cejitin et al. (2007)], is no longer possible; besides, type inference becomes problematic!

Type inference for ML with polymorphic recursion is undecidable [Henglein (1993)]. It is equivalent to the undecidable problem of semi-unification. Yet, type inference in the presence of polymorphic recursion can be made simple by relying on a mandatory type annotation. The syntax and typing rules for recursive definitions become:

<table>
<thead>
<tr>
<th>FixAbsPoly</th>
<th>LetRecPoly</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma, f : \sigma \vdash \lambda x. a : \sigma$</td>
<td>$\Gamma, f : \sigma \vdash \lambda x. a_1 : \sigma$ $\Gamma, f : \sigma \vdash a_2 : \tau$</td>
</tr>
<tr>
<td>$\Gamma \vdash \mu (f : \sigma). \lambda x. a : \sigma$</td>
<td>$\Gamma \vdash \text{let rec } (f : \sigma) = \lambda x. a_1 \text{ in } a_2 : \tau$</td>
</tr>
</tbody>
</table>
The type scheme σ no longer has to be guessed. With this feature, contrary to what was said earlier (p. 165), type annotations are not just restrictive: they are sometimes required for type inference to succeed. The constraint generation rule becomes:

$$\langle \text{let rec } (f : \sigma) = \lambda x. a_1 \text{ in } a_2 : \tau \rangle = \text{ let } f : \sigma \text{ in } (\langle \lambda x. a_1 : \sigma \rangle \wedge \langle a_2 : \tau \rangle)$$

It is clear that f receives type scheme σ both inside and outside of the recursive definition.

8.4.3 Unification under a mixed prefix

Unification under a mixed prefix means unification in the presence of both existential and universal quantifiers. We extend the basic unification algorithm with support for universal quantification. The solved forms are unchanged: universal quantifiers are always eliminated.

In short, in order to reduce $\forall \alpha. C$ to a solved form, where C is itself a solved form—see (Pottier and Rémy, 2003, p. 109) for details:

- If a rigid variable is equated with a constructed type, fail.
 For example, $\forall \alpha. \exists \beta. (\alpha = \beta \rightarrow \gamma)$ is false.

- If two rigid variables are equated, fail.
 For example, $\forall \alpha. \beta. (\alpha = \beta)$ is false.

- If a free variable dominates a rigid variable, fail.
 For example, $\forall \alpha. \exists \beta. (\gamma = \alpha \rightarrow \beta)$ is false.

- Otherwise, one can decompose C as $\exists \beta. (C_1 \wedge C_2)$, where $\alpha \beta \neq C_1$ and $\exists \beta. C_2 \equiv \text{true}$; in that case, $\forall \alpha. C$ reduces to just C_1.
 For example, $\forall \alpha. \exists \beta_1 \beta_2. (\beta = \alpha \rightarrow \gamma_1 \wedge \gamma_1 = \beta_2)$ reduces to just $\exists \gamma_1 \gamma_2. (\gamma = \gamma_1 \rightarrow \gamma_2)$. The constraint $\forall \alpha. \exists \beta. (\beta = \alpha \rightarrow \gamma)$ is equivalent to true.

OCaml implements a form of unification under a mixed prefix. This is illustrated by the following interactive OCaml session:

```ocaml
let module M : sig val id : 'a -> 'a end = struct let id x = x + 1 end in M.id

Values do not match: val id : int -> int
is not included in val id : 'a -> 'a
```

This gives rise to a constraint of the form $\forall \alpha. \alpha = \text{int}$, while the following example gives rise to a constraint of the form $\exists \beta. \forall \alpha. \alpha = \beta$:

```ocaml
let r = ref (fun x -> x) in
let module M : sig val id : 'a -> 'a end = struct let id = !r end in M.id;

Values do not match: val id : '_a -> '_a
is not included in val id : 'a -> 'a
```
8.5 Equi- and iso-recursive types

Product and sum types alone do not allow describing data structures of unbounded size, such as lists and trees. Indeed, if the grammar of types is $\tau ::= \text{unit} \mid \tau \times \tau \mid \tau + \tau$, then it is clear that every type describes a finite set of values. For every k, the type of lists of length at most k is expressible using this grammar. However, the type of lists of unbounded length is not: “A list is either empty or a pair of an element and a list.” We need something like this:

$$\text{List } \alpha \cdot \diamond \cdot \text{unit } + \alpha \times \text{List } \alpha$$

But what does \cdot stand for? Is it equality, or some kind of isomorphism?

There are two standard approaches to recursive types, dubbed the equi-recursive and iso-recursive approaches. In the equi-recursive approach, a recursive type is equal to its unfolding. In the iso-recursive approach, a recursive type and its unfolding are related via explicit coercions.

8.5.1 Equi-recursive types

In the equi-recursive approach, the usual syntax of types:

$$\tau ::= \alpha \mid F \, g$$

is no longer interpreted inductively. Instead, types are the regular trees built on top of this signature. If desired, it is possible to use finite syntax for recursive types:

$$\tau ::= \alpha \mid \mu \alpha. (F \, g)$$

We do not allow the seemingly more general $\mu \alpha. \tau$, because $\mu \alpha. \alpha$ is meaningless, and $\mu \alpha. \beta$ or $\mu \alpha. \mu \beta. \tau$ are useless. If we write $\mu \alpha. \tau$, it should be understood that τ is contractive, that is, τ is a type constructor application. For instance, the type of lists of elements of type α is:

$$\mu \beta. (\text{unit } + \alpha \times \beta)$$

Each type in this syntax denotes a unique regular tree, sometimes known as its infinite unfolding. Conversely, every regular tree can be expressed in this notation (possibly in more than one way).

If one builds a type-checker on top of this finite syntax, then one must be able to decide whether two types are equal, that is, have identical infinite unfoldings.

This can be done efficiently, either via the algorithm for comparing two DFAs, or by unification. (The latter approach is simpler, faster, and extends to the type inference problem.)

One can also prove [Brandt and Henglein (1998)] that equality is the least congruence generated by the following two rules:

\[
\begin{align*}
\text{Fold/Unfold} & \quad \mu \alpha. \tau = [\alpha \mapsto \mu \alpha. \tau] \tau \\
\text{Uniqueness} & \quad \tau_1 = \alpha \mapsto \tau_1 \tau \quad \tau_2 = \alpha \mapsto \tau_2 \tau \\
& \quad \tau_1 = \tau_2
\end{align*}
\]

In both rules, τ must be contractive. This axiomatization does not directly lead to an efficient algorithm for deciding equality, though. In the presence of equi-recursive types, structural induction
on types is no longer permitted—but *we never used it* anyway. It remains true that \(F_1 g_1 = F_2 g_2 \) implies \(g_1 = g_2 \)—this was used in our Subject Reduction proofs. It remains true that \(F_1 g_1 = F_2 g_2 \) implies \(F_1 = F_2 \)—this was used in our Progress proofs. So, the reasoning that leads to *type soundness* is unaffected.

Exercise 52 Prove type soundness for the simply-typed \(\lambda \)-calculus in Coq. Then, change the syntax of types from *Inductive* to *CoInductive*.

How is type inference adapted for equi-recursive types? The *syntax* of constraints is unchanged: they remain systems of equations between finite first-order types, without \(\mu \)'s. Their *interpretation* changes: they are now interpreted in a universe of regular trees. As a result, constraint generation is *unchanged*; constraint solving is adapted by *removing the occurs check*.

Exercise 53 Describe solved forms and show that every solved form is either *false* or *satisfiable*.

Here is a function that measures the length of a list:

\[
\mu(length).\lambda x.\text{case } x \text{ of } \lambda(). 0 \circ \lambda(y, z). 1 + length z
\]

Type inference gives rise to the *cyclic equation* \(\beta = \text{unit} + \alpha \times \beta \), where \(\text{length} \) has type \(\beta \to \text{int} \). That is, \(\text{length} \) has *principal type scheme*: \(\forall \alpha. (\mu \beta. \text{unit} + \alpha \times \beta) \to \text{int} \) or, equivalently, principal constrained type scheme: \(\forall \alpha[\beta = \text{unit} + \alpha \times \beta], \beta \to \text{int} \). The cyclic equation that characterizes lists was never provided by the programmer, but was inferred.

OCaml implements equi-recursive types upon explicit request, launching the interactive session with the command “ocaml -rectypes”:

```ocaml
type ('a, 'b) sum = Left of 'a | Right of 'b
type ('a, 'b) sum = Left of 'a | Right of 'b

let rec length x = function Left () -> 0 | Right (y, z) -> 1 + length z
val length : ((unit, 'b \ast 'a) sum as 'a) \to int = \langle fun \rangle
```

Notice that *-rectypes* is only an option which is not on by default. Equi-recursive types are simple and powerful, but in practice, they are perhaps *too expressive*. Continuing with in the *-rectype* option:

```ocaml
let rec map f = function [] \to [] \mid y :: z \to map f y :: map f z
val map : 'a \to ('b list as 'b) \to ('c list as 'c) = \langle fun \rangle
```

This expression has type int but is used with type 'a list as 'a

```ocaml
map (@fun x \to x + 1) [1; 2]
```

map () [[]; []]]

`: 'a list as 'a = [[]; [[]]]*
Equi-recursive types allow this nonsensical version of map to be accepted, thus delaying the detection of a programmer error. Hence, by default, OCaml typechecker reject type cycles that do not involve an object type or a variant type. In a normal OCaml session (no -rectypes), the following is still accepted, though:

```plaintext
let f x = x#hello x;;
val f : (hello : 'a → 'b; .. > 'a) → 'b = (fun)
```

OCaml implements a partial occurs check that stops at object and variant types: equi-recursive types are allowed provided every infinite path crosses an object or a variant type.

8.5.2 Iso-recursive types

In the iso-recursive approach, the user is allowed to introduce new type constructors D via (possibly mutually recursive) declarations:

$$D \tilde{\alpha} \approx \tau \quad \text{(where ftv}(\tau) \subseteq \alpha)$$

Each such declaration adds a unary constructor $\text{fold}D$ and a unary destructor $\text{unfold} D$ with the following types and the new reduction rule:

$$\text{fold}D : \forall \alpha. \tau \rightarrow D \tilde{\alpha} \quad \text{unfold} D : \forall \alpha. D \tilde{\alpha} \rightarrow \tau \quad \text{unfold} D (\text{fold}D v) \rightarrow v$$

Ideally, iso-recursive types should not have any runtime cost. One solution is to compile constructors and destructors away into a target language with equi-recursive types. Another solution is to see iso-recursive types as a restriction of equi-recursive types where the source language does not have equi-recursive types but instead two unary destructors $\text{fold}D$ and $\text{unfold} D$ with the semantics of the identity function. Subject reduction does not hold in the source language, but only in the full language with iso-recursive types. Applications of destructors can also be reduced at compile time.

Note that iso-recursive types are less expressive than equi-recursive types, as there is no counterpart to the Uniqueness typing rule.

For example iso-recursive lists can be defined as follows. A parametrized, iso-recursive type of lists is: $\text{List} \alpha \approx \text{unit} + \alpha \times \text{List} \alpha$. The empty list is: $\text{foldlist} (\text{inj}1 ()) : \forall \alpha. \text{List} \alpha$. A function that measures the length of a list is:

$$\mu(\text{length}).\lambda xs.\text{case (unfold list xs) of }() \cdot 0 \circ \lambda (x, xs).1 + \text{length xs} : \forall \alpha. \text{List} \alpha \rightarrow \text{int}$$

One folds upon construction and unfolds upon deconstruction.

In the iso-recursive approach, types remain finite. The type $\text{List} \alpha$ is just an application of a type constructor to a type variable. As a result, type inference is unaffected. The occurs check remains.

8.5.3 Algebraic data types

Algebraic data types result of the fusion of iso-recursive types with structural, labeled products and sums. This suppresses the verbosity of explicit folds and unfolds as well as the fragility and
inconvenience of numeric indices—instead, named record fields and data constructors are used. For instance,

\[
\text{foldlist (inj}_1()) \quad \text{is replaced with } \quad \text{Nil()}
\]

An algebraic data type constructor \(D \) is introduced via a record type or variant type definition:

\[
D \bar{\alpha} \approx \prod_{\ell \in L} \ell : \tau_\ell \quad \text{or} \quad D \bar{\alpha} \approx \sum_{\ell \in L} \ell : \tau_\ell
\]

The set \(L \) denotes a finite set of record labels or data constructors \(\{\ell_1 \ldots \ell_n\} \), which is fixed for a given definition. Algebraic data type definitions can be mutually recursive.

The record type definition \(D \bar{\alpha} \approx \prod_{\ell \in L} \ell : \tau_\ell \) introduces a record \(n \)-ary constructor and \(n \) record unary destructors with the following types:

\[
C : \tau_1 \rightarrow D \bar{\alpha} \quad \text{and} \quad \ell : \forall \bar{\alpha}. \tau_\ell \rightarrow D \bar{\alpha}
\]

The variant type definition \(D \bar{\alpha} \approx \sum_{\ell \in L} \ell : \tau_\ell \) introduces unary variant constructors and variant destructor of arity \(n + 1 \) with the following types:

\[
C := \ldots | (\ell \cdot) \quad \text{d := } \ldots | \text{case } \cdot \text{ of } [\ell_1 : \cdot \ldots \ell_n : \cdot] \quad \ell : \forall \bar{\alpha}. \tau_\ell \rightarrow D \bar{\alpha}
\]

For example, an algebraic data type of lists is \(\text{List } \alpha \approx \text{Nil} + \text{Cons} : \alpha \times \text{List } \alpha \) gives rise to:

\[
\text{case } \cdot \text{ of } [\text{Nil} : \cdot \ldots \text{Cons} : \cdot] : \forall \alpha \beta. \text{List } \alpha \rightarrow (\text{unit } \rightarrow \beta) \rightarrow ((\alpha \times \text{List } \alpha) \rightarrow \beta) \rightarrow \beta
\]

A function that measures the length of a list is:

\[
\mu(\text{length}).\lambda x. \text{case } x \text{ of } \text{Nil} : \lambda(). 0 \circ \text{Cons} : \lambda(y, z). 1 + \text{length } z : \forall \alpha. \text{List } \alpha \rightarrow \text{int}
\]

Mutable record fields In OCaml, a record field can be marked mutable. This introduces an extra binary destructor for writing this field: \((\cdot \ell \leftarrow \cdot)\) of type \(\forall \bar{\alpha}. D g \rightarrow \tau_\ell \rightarrow \text{unit}\). However, this also makes record construction a destructor since, when fully applied it is not a value but it allocates a piece of store and returns its location. Thus, due to the value restriction, the type of such expressions cannot be generalized.

8.6 HM(X)

Soundness and completeness of type inference are in fact easier to prove if one adopts a constraint-based specification of the type system, as in the language HM(X) introduced by [Odersky et al](1999).

In HM(X), judgments take the form \(C, \Gamma \vdash a : \tau \), called a constrained typing judgments. Read under the assumption \(C \) and typing environment \(\Gamma \), the program \(a \) has type \(\tau \). Here \(C \) constrains
free type variables of the judgment while \(\Gamma \) provides the type of free program variables of \(a \). The constraint \(C \) ranges over first-order typing constraints—except that we require type constraints to have no free program variables. In a constrained typing judgment, \(\forall \) preserves the type of free program variables while \(\Gamma \) provides the type of free program variables of \(\exists \).

The parameter \(X \) in \(\text{HM}(X) \) stands for the logic of the constraint language. We have so far only considered constraints with an equality predicate. However, the equality replaced may be by an asymmetric subtyping predicate \(\leq \), which makes the language of constraints richer.

The typing rules also use an entailment predicate \(C \models C' \) between constraints that is more general than constraint equivalence. Entailment is defined as expected: \(C \models C' \) if and only if any ground assignment that satisfies \(C \) also satisfies \(C' \).

Typing rules for \(\text{HM}(X) \) are presented in Figure 8.7. Moreover, judgment are taken up to constraint equivalence. The constraint \(\exists \sigma \) in the premise of Rule (\text{HM-VAR}) is an abbreviation for \(\forall \alpha[C_0]. \tau \). A valid judgment is one that has a derivation with those typing rules. In a valid judgment, \(C \) may not be satisfiable. A program is well-typed in environment \(\Gamma \) if it has a valid judgment \(C, \Gamma \vdash a : \tau \) for some \(\tau \) and satisfiable constraint \(C \).

When considering equality only constraints, \(\text{HM}(=) \) is in fact equivalent to \(\text{ML} \): if \(\Gamma \) and \(\tau \) contain only Damas-Milner’s type schemes, then \(\Gamma \vdash a : \tau \) in \(\text{ML} \) if and only if \(\text{true}, \Gamma \vdash a : \tau \) in \(\text{HM}(=) \). Moreover, if \(C, \Gamma \vdash a : \tau \) in \(\text{HM}(X) \) and \(\theta \) is an idempotent solution of \(C \), we have \(\text{true}, \Gamma_\theta \vdash a : \tau_\theta \) in \(\text{HM}(X) \) where \((\cdot)_\theta \) translates \(\text{HM}(X) \) type schemes into \(\text{ML} \) type schemes—applying the substitution \(\theta \) on the fly.

As for \(\text{ML} \), there is an equivalent syntax-directed presentation of the typing rules. However, we may take advantage of program variables in constraints to go one step further and mix the constraint \(C \) (without free program variables) and the typing environment \(\Gamma \) into a single constraint \(C \) now with possibly free program variables. Judgments take the form \(C \vdash a : \tau \) where \(C \) constrains type variables and assign constrained type schemes to program variables. The type system, called \(\text{PCB}(X) \), is described on Figure 8.8. It is equivalent to \(\text{HM}(X) \)—see (Pottier and Rémy, 2005) for the precise comparison.
For example of a derivation in PCB(X), let \(a \) be let \(y = \lambda x. x \) in \(y \):

\[
\begin{align*}
\text{VAR} & : \quad x \leq \alpha \vdash x : \alpha \\
\text{FUN} & : \quad \text{let } x : \alpha_0 \text{ in } x \leq \alpha \vdash \lambda x. x : \alpha_0 \rightarrow \alpha \\
\text{APP} & : \quad \text{let } \lambda x. x : \alpha_0 \rightarrow \alpha \vdash y \leq \beta_2 \rightarrow \beta_1 \vdash y : \beta_2 \\
\end{align*}
\]

where \(C \) is

\[
\text{let } y : \forall \alpha_0 \alpha_0 [\text{let } x : \alpha_0 \text{ in } x \leq \alpha] \alpha_0 \rightarrow \alpha \rightarrow y \leq \beta_2 \rightarrow \beta_1 \wedge y \leq \beta_2
\]

The constraint \(C \) can be simplified as follows:

\[
\exists \beta_2. C = \exists \beta_2. \text{let } y : \forall \alpha \alpha_0 [\alpha_0 = \alpha] \alpha_0 \rightarrow \alpha \rightarrow y \leq \beta_2 \rightarrow \beta_1 \wedge y \leq \beta_2
\]

Hence, we also have \(\exists \alpha. \beta_1 = \alpha \rightarrow \alpha \vdash a : \beta_1 \). This is a valid judgment, but not a satisfiable one. However, by rule \(\text{PCB-SUB} \) and \(\text{PCB-EXISTS} \) we have \(\exists \beta_1. (\exists \alpha. \beta_1 \alpha \rightarrow \alpha) \wedge \beta_1 = \beta \rightarrow \beta \) \(\vdash a : \beta \rightarrow \beta \), which is equivalent to \(\text{true} \vdash a : \beta \rightarrow \beta \) and is both valid and satisfiable.

The type inference algorithm for ML is sound and complete for PCB(X):

- \textit{Soundness}: \(\langle a : \tau \rangle \vdash a : \tau \). The constraint inferred for a typing validates the typing.
- \textit{Completeness}: If \(C \vdash a : \tau \) then \(C \vdash \langle a : \tau \rangle \). The constraint inferred for a typing is more general than any constraint that validates the typing.

\textbf{Note} Our presentation of \(\text{HM}(X) \) is incomplete. See also \cite{skalka2002} for a more recent presentation of \(\text{HM}(X) \) and \cite{pottier2005} for a detailed presentation of several variants of \(\text{HM}(X) \).

Our proof of type soundness for ML only applies for \(\text{HM}(=) \). One may prove type soundness for \(\text{HM}(X) \) in the general case for some logic \(X \), under the axiom that the arrow type constructor is contra-variant for subtyping. See \cite{pottier2005}.

\[
\begin{array}{c|c|c}
\text{PCB-VAR} & \text{PCB-ABS} & \text{PCB-APP} \\
\hline
C \vdash x \leq \tau & C \vdash a : \tau & C_1 \vdash a_1 : \tau_2 \rightarrow \tau_1 \quad C_2 \vdash a_2 : \tau_2 \\
C \vdash x : \tau & \text{let } x : \tau_0 \text{ in } C \vdash a : \tau_0 \rightarrow \tau & C_1 \wedge C_2 \vdash a_1 a_2 : \tau_1 \\
\text{PCB-LET} & \text{PCB-SUB} & \text{PCB-EXISTS} \\
C_1 \vdash a_1 : \tau_1 & C_2 \vdash a_2 : \tau_2 & C \vdash a : \tau \quad \alpha \neq \tau \\
\hline
\text{let } x : \forall \alpha \exists \tau [C], \tau_1 \text{ in } C_2 \vdash \text{let } x = a_1 \text{ in } a_2 : \tau_2 & C \wedge \tau_1 \leq \tau_2 \vdash a : \tau_2 & \exists \alpha. C \vdash a : \tau
\end{array}
\]
8.7 Type reconstruction in System F

Type checking in explicitly-typed System F is easy. Still, an implementation must carefully deal with variable bindings and renaming when applying type substitutions. However, as we have seen, programming with fully-explicit types is unpractical.

Full type inference in System F has long been an open problem, until Wells (1999) proved it undecidable by showing that it is equivalent to the semi-unification problem which was earlier proved undecidable. (Notice that the full type-inference problem is not directly related to second-order unification but rather to semi-unification.)

Hence, we must perform partial type inference in System F. Either type inference is incomplete, or some amount of type annotations must be provided. Several solutions are used in practice. They alleviate the need for a lot of redundant type annotations.

8.7.1 Type inference based on Second-order unification

Full type inference is equivalent to semi-unification. However, type inference becomes equivalent to second-order unification if all the positions of type abstractions and type applications are explicit, while types are themselves left implicit. That is, if terms are

\[M ::= x \mid \lambda x : ? . M \mid M M \mid \Lambda? . M \mid ? \]

where the question marks stand for type variables and types to be inferred. Although, the problem of second-order unification is undecidable, there are semi-algorithms that often work well in common cases. This method was proposed by Pfenning (1988).

In fact, partial type inference based on second-order unification can be mixed with type checking. Explicit polymorphism may be reintroduced as in explicitly-typed System F while explicitly-controlled implicit instantiation can be performed as above by second-order unification. The source language is:

\[M ::= x \mid \lambda x : \tau . M \mid M M \mid \Lambda \alpha . M \mid \tau \mid \lambda x : ? . M \mid M ? \mid \text{let } f = \Lambda^2 \alpha_1 \ldots \Lambda^2 \alpha_n . M \text{ in } M \]

The new let-binding form is used to declare type arguments that will be made implicit. Then, every occurrence of such a variable automatically adds type-application holes at the corresponding positions and type parameters will be inferred using second-order unification. This amounts to understanding the new let-binding form as follows:

\[\text{let } f = \Lambda^2 \alpha_1 \ldots \Lambda^2 \alpha_n . M_1 \text{ in } M_2 \triangleq \text{let } f = \Lambda \alpha_1 \ldots \Lambda \alpha_n . M_1 \text{ in } [f \mapsto f' ? \ldots ?] M_2 \]

Type inference in this language still reduces to second-order unification.

8.7.2 Bidirectional type inference

Type-checking in explicit simply-typed \(\lambda\)-calculus is easy because typing rules have an algorithmic reading. This implies that they are syntax directed, but also that judgments can be read as functions where some arguments are inputs and others are output. In the implicit calculus, the rules are still
8.7. TYPE RECONSTRUCTION IN SYSTEM F

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR-I</td>
<td>(\tau = \Gamma(x))</td>
</tr>
<tr>
<td>Abs-C</td>
<td>(\Gamma, x : \tau_0 \vdash a \downarrow \tau)</td>
</tr>
<tr>
<td>APP-I</td>
<td>(\Gamma \vdash a_1 \uparrow \tau_2 \rightarrow \tau_1)</td>
</tr>
<tr>
<td>APP-I</td>
<td>(\Gamma \vdash a_2 \downarrow \tau_2)</td>
</tr>
<tr>
<td>L-C</td>
<td>(\Gamma \vdash a \uparrow \tau)</td>
</tr>
</tbody>
</table>

Figure 8.9: Bidirectional type checking for the simply-typed \(\lambda \)-calculus.

\[
\begin{align*}
\text{VAR-I} & : \quad \tau = \Gamma(x) \\
\text{Abs-C} & : \quad \Gamma, x : \tau_0 \vdash a \downarrow \tau \\
\text{APP-I} & : \quad \Gamma \vdash a_1 \uparrow \tau_2 \rightarrow \tau_1 \\
\text{APP-I} & : \quad \Gamma \vdash a_2 \downarrow \tau_2 \\
\text{L-C} & : \quad \Gamma \vdash a \uparrow \tau
\end{align*}
\]

\[
\begin{align*}
\text{VAR-I} & : \quad \Gamma, x : \tau_1 \vdash x \uparrow \tau_1 \\
\text{C-I} & : \quad \Gamma, x : \tau_1 \vdash x \downarrow \tau_1 \\
\text{APP-I} & : \quad \Gamma \vdash \lambda x. x \downarrow \tau_1
ightarrow \tau_1 \\
\text{I-C} & : \quad \Gamma \vdash (\lambda x. x) \uparrow \tau_2 \\
\text{ABS-C} & : \quad \Gamma \vdash (\lambda x. x) \downarrow \tau_2 \\
\emptyset & \vdash \lambda f : \tau. f (\lambda x. x) \downarrow \tau \rightarrow \tau_2
\end{align*}
\]

Figure 8.10: Example of bidirectional derivation

syntax-directed, but some of them do not have an obvious algorithmic reading. Typically, \(\Gamma \) and \(a \) would be inputs and \(\tau \) is an output in the judgment \(\Gamma \vdash a : \tau \), which we may represent as \(\Gamma \vdash a : \tau \). However, in the rule for abstraction:

\[
\begin{align*}
\text{Abs} & : \quad \Gamma, x : \tau_0 \vdash a : \tau \\
\Gamma \vdash \lambda x. a : \tau_0 \rightarrow \tau
\end{align*}
\]

the type \(\tau_0 \) is used both as input (in the premise) and as an output in the conclusion. Hence, type-checking the implicit simply-typed \(\lambda \)-calculus is not straightforward. In some cases, the type of the function may be known, \(e.g. \) when the function is an argument to an expression of a known type. Then, it suffices to check the proposed type is indeed correct.

Formally, we need algorithmic reading of the typing judgment, depending on whether the return type is known or unknown. We may split the typing judgment \(\Gamma \vdash a : \tau \) into two judgments \(\Gamma \vdash a \downarrow \tau \) to check that \(a \) may be assigned the type \(\tau \) and \(\Gamma \vdash a \uparrow \tau \) to infer the type \(\tau \) of \(a \) (or with information flows \(\Gamma \vdash a \downarrow \tau \) and \(\Gamma \vdash a \uparrow \tau \)). Both judgments are recursively defined by the rules of Figure ??: the checking mode can call the inference mode when needed; conversely, annotations may be used to turn inference mode into checking mode. (As a particular case, annotations on type abstractions enable the inference mode.)

An example of bidirectional derivation is given on Figure 8.10. The type \(\tau \) stands for \((\tau_1 \rightarrow \tau_1) \rightarrow \tau_2\) and the environment \(\Gamma \) is \(f : \tau \).

The bidirectional method can be extended to deal with polymorphic types, but it is more complicated. The idea, due to Cardelli (1993), was popularized by Pierce and Turner (2000), and Odersky et al. (2001) and is still being improved Dunfield (2009).
Predicative polymorphism
Predicative polymorphism is an interesting subcase of bidirectional type inference in the presence of predicative polymorphism. Predicative polymorphism is a restriction of impredicative polymorphism as can be found in System F. With predicative polymorphism, types are stratified so that polymorphic types can only be instantiated with simple types.

Interestingly, partial type inference can then still reduced to typing constraints under a mixed prefix (Rémy, 2005; Jones et al., 2006). Unfortunately, predicative polymorphism is too restrictive for use in programming languages: as polymorphic values often need to be put in data-structures whose constructors are polymorphic but impredicative polymorphism does not allow implicit instantiation of polymorphic constructors by polymorphic types.

One may also use a hierarchy of types where polymorphic types of rank n can be instantiated with polymorphic types of a strictly lower rank. This increases expressiveness but $	ext{F}$ is still more expressive than the union of all $	ext{F}^n$.

Type inference with first-order constraints does not work for higher ranks.

Local type inference
A simpler approach than *global* bidirectional type inference proposed by Pierce and Turner and improved by Odersky et al. is to perform bidirectional type inference *locally*, i.e. by considering for each node only a small context surrounding it.

Subtyping
Interestingly, bidirectional type inference can easily be extended to work in the presence of subtyping, which is not the case for methods based on second order unification.

8.7.3 Partial type inference in MLF

The language MLF (Le Botlan and Rémy, 2009; Rémy and Yakobowski, 2008) is an extension of System F especially designed for partial type inference—in fact for type inference a la ML within System F. That is, the inference algorithm performs first-order unification and aggressive ML-style let-generalization, but in the presence of second-order types. Interestingly, only parameters of functions that are used polymorphically need to be annotated in MLF; type abstractions and type annotation are always left implicit. However, for the purpose of type inference, MLF introduces richer types that enable to write “more principal types”, but that are also harder to read. The type inference method for MLF can be seen as a generalization of the constraint-based type inference for ML that handles polymorphic types.

8.8 Proofs and Solution to Exercises

Proof of Theorem 22

We prove $\phi \vdash \langle \Gamma \vdash a : \tau \rangle$ if and only if $\phi \Gamma \vdash a : \phi \tau$ by induction on a. We prove both implications independently because reasoning with equivalence is error-prone, since the arguments are similar but often not quite the same in both directions. The proof is thus a bit lengthy, but all cases are easy.
8.8. PROOFS AND SOLUTION TO EXERCISES

Case a is x: Assume $\phi \Gamma \vdash a : \phi \tau$. By inversion of typing, this judgment must be derived by rule VAR. Hence, $\phi \tau = \phi \Gamma (x)$. By definition of satisfiability this implies $\phi \vdash \tau = \Gamma (x)$. By definition of typing constraint, this is $\phi \vdash \langle \Gamma \vdash a : \tau \rangle$.

Conversely, assume $\phi \vdash \langle \Gamma \vdash a : \tau \rangle$. By definition of typing constraint, this is $\phi \vdash \tau = \Gamma (x)$. By inversion of satisfiability we must have $\phi \tau = \phi \Gamma (x)$. Hence, by rule VAR we have $\phi \Gamma \vdash a : \phi \tau$.

Case a is $a_1 a_2$: Assume $\phi \Gamma \vdash a : \phi \tau$. By rule $\text{AP} \text{P}$ there exists τ_2 such that $\phi \Gamma \vdash a_1 : \tau_2 \rightarrow \phi \tau$ and $\phi \Gamma \vdash a_2 : \tau_2$. Let $\beta \# \Gamma$ and ϕ' be $\phi, \beta \rightarrow \tau_2$. We have $\phi' \Gamma \vdash a_1 : \phi' \beta \rightarrow \tau$ and $\phi' \Gamma \vdash a_2 : \beta$. Hence, by induction hypothesis, $\phi' \vdash \langle \Gamma \vdash a_1 : \beta \rightarrow \tau \rangle$ and $\phi' \vdash \langle \Gamma \vdash a_2 : \beta \rangle$. Thus, $\phi \vdash \exists \beta. \langle \Gamma \vdash a_1 : \beta \rightarrow \tau \rangle \land \langle \Gamma \vdash a_2 : \beta \rangle$, i.e. $\phi \vdash \langle \Gamma \vdash a : \tau \rangle$.

Conversely, assume $\phi \vdash \langle \Gamma \vdash a : \tau \rangle$. We have $\phi \vdash \exists \beta. \langle \Gamma \vdash a_2 : \beta \rangle \land \langle \Gamma \vdash a_1 : \beta \rightarrow \tau \rangle$. We may assume $w.l.o.g.$ that $\beta \# \phi$. There must exist ϕ' of the form $\phi, \beta \rightarrow \tau_2$ such that $\phi' \vdash \langle \Gamma \vdash a_2 : \beta \rangle \land \langle \Gamma \vdash a_1 : \beta \rightarrow \tau \rangle$. By induction hypothesis, this implies $\phi' \Gamma \vdash a_2 : \phi' \beta$ and $\phi' \Gamma \vdash a_1 : \phi' \beta \rightarrow \tau$, i.e. $\phi \vdash a_2 : \tau_2$ and $\phi \vdash a_1 : \phi \tau_2 \rightarrow \tau$. By rule $\text{AP} \text{P}$ we have $\phi \Gamma \vdash a_1 a_2 : \phi \tau$.

Case a is $\lambda x. a_1$: Assume $\phi \Gamma \vdash a : \phi \tau$. We may assume $w.l.o.g.$ that $x \# \Gamma$. By rule FUn there must exist τ_1 and τ_2 such that $\phi \Gamma, x : \tau_2 \vdash a_1 : \tau_1$ and $\phi \tau = \tau_2 \rightarrow \tau_1$. Let β_1 and β_2 be disjoint from Γ and ϕ' be $\phi, \beta_2 \rightarrow \tau_2, \beta_1 \rightarrow \tau_1$. Then, both $\phi' \vdash \langle \Gamma, x : \beta_2 \vdash a_1 : \beta_1 \rangle$ and $\phi' \tau = \phi' (\beta_2 \rightarrow \beta_1)$ hold. By induction hypothesis, $\phi' \vdash \langle \Gamma, x : \beta_2 \vdash a_1 : \tau_1 \rangle$ and $\phi' \vdash \tau = \beta_2 \rightarrow \beta_1$. Therefore, $\phi \vdash \exists \beta_1 \beta_2. \langle \Gamma, x : \beta_2 \vdash a_1 : \beta_1 \rangle \land \tau = \beta_2 \rightarrow \beta_1$. That is, $\phi \vdash \langle \Gamma \vdash a : \tau \rangle$.

Conversely, assume $\phi \vdash \langle \Gamma \vdash a : \tau \rangle$. By definition of constraints, we have $\phi \vdash \exists \beta_1 \beta_2. \langle \Gamma, x : \beta_2 \vdash a_1 : \beta_1 \rangle \land \tau = \beta_2 \rightarrow \beta_1$ for some x disjoint from Γ. We may assume $w.l.o.g.$ that $\beta_1, \beta_2 \# \phi$. There must exist ϕ' of the form $\phi, \beta_2 \rightarrow \tau_2, \beta_1 \rightarrow \tau_1$ such that $\phi' \vdash \langle \Gamma, x : \beta_2 \vdash a_1 : \tau_1 \rangle$ and $\phi' \vdash \tau = \beta_2 \rightarrow \beta_1$. By induction hypothesis, $\phi' \vdash \langle \Gamma, x : \beta_2 \vdash a_1 : \beta_1 \rangle$ and $\phi' \tau = \phi' (\beta_2 \rightarrow \beta_1)$. That is, $\phi \Gamma, x : \tau_2 \vdash a_1 : \tau_1$ and $\phi \tau = \tau_2 \rightarrow \tau_1$. Hence, by rule $\text{AP} \text{P}$ we have $\phi \Gamma \vdash a : \phi \tau$.

Solution of Exercise 48

See Bjørner (1994).

Solution of Exercise 49

Consider the module $\text{struct } f = \text{let } f = \lambda x. x \text{ in } f \ f \text{ end}$. In core ML, the expression has principal type $\alpha \rightarrow \alpha$—but α cannot be generalized. Hence, $\text{sig } f : \forall \alpha. \alpha \rightarrow \alpha \text{ end}$ is not a signature for this module; nor is $\text{sig } f : \alpha \rightarrow \alpha \text{ end}$ since it is not a well-formed one. Correct signatures are $\text{sig } f : \tau \rightarrow \tau \text{ end}$ for any τ, but they do not have a best element.
Chapter 9

Overloading

9.1 An overview

Overloading occurs when several definitions of an identifier may be visible simultaneously at the same occurrence in a program. An interpretation of the program (and a fortiori a run of the program) must choose the definition that applies at this occurrence. This is called overloading resolution. Overloading resolution may use quite different strategies and techniques. All sorts of identifiers may be subject to overloading: variables, labels, constructors, types, etc.

Overloading must be distinguished from shadowing of identifiers by normal scoping rules, where in this case, a definition is just temporarily inaccessible by another one, but only the last definition is visible.

9.1.1 Why use overloading?

There are several reasons to use overloading.

Overloading may just be a naming convenience that allows reusing the same identifier for similar but different operations. This avoids name mangling such as suffixing similar names by type information: printing functions, e.g. print_int, print_string, etc.; numerical operations, e.g. (+), .+ etc.; or numerical constants e.g. 0, 0., etc. In this respect, it may help with modularity. In the absence of overloading, the naming discipline (including name mangling conventions) must be known globally to avoid name clashes, which breaks compositionality. Isolated identifiers with no particular naming convention may still interfere between different developments and cannot be used together unless fully qualified. This problem does not disappear with overloading but it may be minimized—as long as overloading is not ambiguous. Hence, in some sense, overloading allows to think more abstractly, in terms of operations rather than of particular implementations. For instance, calling to_string conversion lets the system check whether one definition is available according to the type of the argument.

Overloaded definitions may also be used to provided type dependent functions. That is, a function may be defined for all types $\tau[\alpha]$ but with an implementation depending on the type of α by provided several overloaded definitions for different types $\tau[\tau_i]$. For instance, a marshaling
function of type \(\forall \alpha. \alpha \rightarrow \text{string} \) may execute different code for each base type \(\alpha \).

Overloaded definitions may be ad hoc, i.e. completely unrelated for each type—or just share a same type schema. For example 0 could mean either the integer zero or the empty list; and “×” could mean either the integer product or string concatenation.

Conversely, overloaded definitions may depend solely on the type structure (i.e. on whether the argument is a sum, a product, etc.) so that definitions can be derived mechanically for all types from their definitions on base types. Such overloaded functions are called polytypic functions. Typical examples are marshaling functions, or the generation of random values for arbitrary types as used in the Quickcheck tool for Haskell. etc. Still, polytypic definition often need to be specialize at some particular types. For example, one may use a polytypical definition of printing, so that printing is available at all types, but define specialized versions of printing at some particular types.

9.1.2 Different forms of overloading

There are many variants of overloading. They can be classified by how overloading is introduced and resolved.

The first elements of classification are the restrictions on overloading definitions. Can arbitrary definitions be overloaded? For instance, can numerical values be overloaded? Are all overloaded definitions of the same symbol instances of a common type scheme? Are these type schemes arbitrary? Are overloaded definitions primitive (pre-existing), automatic (generated mechanically from other definitions), or user-defined? Can overloaded definitions overlap? Can overloaded definitions have a local scope?

However, the main element of classification remains the resolution strategy—which may indirectly constraint the way overloading is introduced. We distinguish between static and dynamic resolutions strategies.

Static resolution of overloading has a very simple semantics since the meaning of the program can be determined statically by deciding for each overloaded symbol which actual definition of the symbol should be used. Hence, it replaces each occurrence of an overloaded symbol by an actual implementation at the appropriate type. Therefore static overloading does not increase expressiveness per say, since the user could have chosen the appropriate implementation in the first place. Still, static overloading may significantly reduce verbosity—and increase modularity and abstraction, as explained above.

Conversely, dynamic resolution increases expressiveness, as the choice of the implementation may now depend on the dynamic of the program execution. However, it is also much more involved, since the semantics of the language usually need extra machinery to support the dynamic resolution. For example, the resolution of some occurrence of a polymorphic function may depend on the type of its arguments, so that different calls of the function at different types can make different choices. The resolution is driven by information made available at runtime: it could at worse require full type information. In some restrictions, partial type information may be sufficient, and sometimes some type-related information can be used instead of types themselves, such as tags, dictionaries, etc. These can be attached to values (as tags in object oriented languages), or passed as extra arguments at runtime (as dictionaries in Haskell).
9.1.3 Static overloading

The language SML has a very limited form of overloading where overloaded definitions are primitive: they include an exhaustive list of overloaded definitions for numerical operators, plus automatically generated overloaded definitions for all record accessors. The resolution is static and commits to a default type if overloading cannot be unambiguously resolved at outermost let-definitions. For example, \texttt{fun twice x = _x + _x} is specialized to type \texttt{int \rightarrow int \rightarrow int} at the SML toplevel.

In the language Java, overloading is not primitive but automatically generated by subtyping: when a class extends another one and a method is redefined, the older definition is still visible, but at another type, hence the method is overloaded. This overloading is then statically resolved by choosing the most specific definition. There is always a best choice—according to static knowledge. This static resolution of overloading in Java comes in complement to the dynamic dispatch of method calls. This is often a source of confusion for programmers who often expect a dynamic resolution of overloading and as a result misunderstand the semantics of their programs. For instance, an argument may have a runtime type that is a subtype of the best known compile-time type, and perhaps a more specific definition could have been used if overloading were resolved dynamically.

However convenient, static resolution of overloading is quite limited. Moreover, it does not fit very well with first-class functions and polymorphism. Indeed, with static overloading, \(\lambda x. x + x\) is rejected when + is overloaded, as it cannot be resolved. The function must be manually specialized at some type for which + is defined. This argues in favor of some form of dynamic overloading that allows to delay resolution of overloaded symbols at least until polymorphic functions have been sufficiently specialized.

9.1.4 Dynamic resolution with a type passing semantics

The most ambitious approach to dynamic overloading is to pass types at runtime and dispatch on the runtime type, using a general typecase construct.

Runtime type dispatch is the most general approach as it does not impose much restriction on the introduction of overloaded definitions. It uses an explicitly-typed calculus (e.g., System F)—with a type passing semantics—extended with a typecase construct. However, the runtime cost of typecase may be high, unless type patterns are significantly restricted. Moreover, one pays even when overloading is not used, since types are always passed around, even when overloading is not used, unless the compiler uses aggressive program analyzes to detect these situations and optimize type computations away. Monomorphization may also be used to allow more static resolution in such cases. Ensuring exhaustiveness of type matching is often a difficult task in this context.

The ML\&\& calculus by Castagna (1997) offers a general overloading mechanism based on type dispatch. It is an extension of System F with intersection types, subtyping, and type matching. An expressive type system keeps track of exhaustiveness; type matching functions are first-class and can be extended or overridden. The language allows overlapping definitions with a best match resolution strategy.

9.1.5 Dynamic overloading with a type erasing semantics

To avoid the expensive cost of typecase, one may restrict the overloaded definitions, so that full type information is not needed and only an approximation of types, such as tags, may be used for overloading resolution. This is one possible approach to object-orientation in the method as overloading functions paradigm where object classes are used to dynamically select the appropriate method. This is also an approach used in some scheme dialects known as generics.

In fact, one may get more freedom by detaching tags from values and passing tags—or almost equivalently passing the actually implementations grouped into dictionaries—as extra runtime arguments. A side advantage of this approach is that the semantics can be described without changing the runtime environment, i.e. the representation of values, as an elaboration process that introduces abstractions and applications for implementations of overloaded symbols. Schematically, one transforms unresolved overloaded symbols into extra abstractions and passes actual implementations (or abstractions of implementations) around as extra arguments. Hopefully, overloaded symbols can be resolved when their types are sufficiently specialized and before they are actually needed.

For example, a program context

\[
\text{let } f = \lambda x. x + x \text{ in } \[
\]
\]

can be elaborated into

\[
\text{let } f = \lambda (+). \lambda x. x + x \text{ in } \[
\]
\]

If \(f \) 1.0 is placed in the hole of this original program context, it can then be elaborated to \(f (+) 1.0 \), which can be placed in the hole of the elaborated program context. Elaboration can be performed after typechecking by translating the typing derivation. After elaboration, types are no longer needed and can be erased. Monomorphization or other simplifications may reduce the number of abstractions and applications introduced by overloading resolution.

This technique has been widely explored—under different facets—in the context of ML: Type classes, introduced very early by Wadler and Blott (1989) are still the most popular and widely used framework. Other contemporary solutions have been proposed by Rouaix (1990) and Kaes (1992). Simplifications of type classes have also been proposed by Odersky et al. (1995) but did not take over, because of their restrictions. Recent works on type classes is still going on Morris and Jones (2010).

In the rest of this chapter we introduce a tiny language called Mini Haskell that models the essence of Haskell type classes; at the end we also discuss implicit arguments as a less structured but simpler way of introducing dynamic overloading in a programming language.

9.2 Mini Haskell

Mini Haskell—or MH for short—is a simplification of Haskell to avoid most of the difficulties of type classes but keeping their essence: it is restricted to single parameter type classes and no overlapping instance definitions; it is close in expressiveness and simplicity to A second look at overloading by Odersky et al., but closer to Haskell in style—it can be easily generalized by lifting restrictions without changing the framework.

The language MH is explicitly typed. In this section, we first present some examples in MH, and then describe the language and its elaboration into System F. We introduce an implicitly-typed version of MH and its elaboration in the next section.
9.2.1 Examples in MH

An equality class and several instances many be defined in Mini Haskell as follows:

```haskell
class Eq (X) { equal : X → X → Bool }
inst Eq (Int) { equal = primEqInt }
inst Eq (Char) { equal = primEqChar }
inst Λ(X) Eq (X) ⇒ Eq (List (X))
{ equal = λ(l₁ : List X) λ(l₂ : List X) match l₁, l₂ with
  | [], [] → true | [], _ | _, [] → false
  | h₁::l₁, h₂::l₂ → equal X h₁ h₂ && equal (List X) l₁ l₂ }
```

This code declares a class (dictionary) of type Eq(X) that contains definitions for `equal : X → X → Bool` and creates two concrete instances (dictionaries) of type `Eq(Int)` and `Eq(Char)`, and a function that, given a dictionary for `Eq(X)`, builds a dictionary for type `List(X)`. This code can be elaborated by explicitly building dictionaries as records of functions:

```haskell
type Eq (X) = { equal : X → X → Bool }
let equal X (EqX : Eq X) : X → X → Bool = EqX.equal
let EqInt : Eq Int = { equal = ( primEqInt : Int → Int → Bool ) }
let EqChar : Eq Char = { equal = primEqChar }
let EqList X (EqX : Eq X) : Eq (List X) =
{ equal = λ(l₁ : List X) λ(l₂ : List X) match l₁, l₂ with
  | [], [] → true | [], _ | _, [] → false
  | h₁::l₁, h₂::l₂ → equal X EqX h₁ h₂ && equal (List X) (EqList X EqX) l₁ l₂ }
```

Classes may themselves depend on other classes (called superclasses), which realizes a form of class inheritance.

```haskell
class Eq (X) ⇒ Ord (X) { lt : X → X → Bool }
inst Ord (Int) { lt = ( < ) }
```

The class definition declares a new class (dictionary) `Ord (X)` that contains a method `Ord(X)` that depends on a dictionary `Eq(X)` and contains a method `lt : X → X → Bool`. The instance definition builds a dictionary `Ord(Int)` from the existing dictionary `Eq Int` and the primitive `(<)` for `lt`. The two declarations are elaborated into:

```haskell
type Ord (X) = { Eq : Eq (X); lt : X → X → Bool }
let EqOrd X (OrdX : Ord X) : Eq X = OrdX.Eq
let lt X (OrdX : Ord X) : X → X → Bool = OrdX.lt
let OrdInt : Ord Int = { Eq = EqInt; lt = ( < ) }
```

So far, we have just defined type classes and some instances. We may write a function that uses these overloaded definitions. When overloading cannot be resolved statically, the function will be abstracted other one or several additional arguments, called dictionaries, that will carry the appropriate definitions for the unresolved overloaded symbols. For example, consider the following definition in Mini Haskell:

```haskell
```
This code is elaborated into:

\[
\begin{align*}
\text{let rec } \text{search} \; X \; (\text{OrdX} : \text{Ord} \; X) \; (x : X) \; (l : \text{List} \; X) : \text{Bool} = \\
\Lambda(X) \; \lambda(x : X) \; \lambda(l : \text{List} \; X)
\text{match } l \text{ with } [] & \rightarrow \text{false} & | \; h :: t & \rightarrow \text{equal } X \; x \; h \; || \; \text{lt } x \; \&\& \; \text{search} \; X \; x \; t
\end{align*}
\]

Using the overloading function, as in \text{search Int} \; 1 \; [1; 2; 3] will then elaborate into the code \text{search IntOrdInt} \; 1 \; [1; 2; 3] where a dictionary \text{OrdInt} of the appropriate type has been built and passed as an additional argument. Here, the target language is the explicitly-typed System F, which has a type erasing semantics, hence the type argument \text{Int} may be dropped while the dictionary argument \text{OrdInt} is retained: the code that is actually executed is thus \text{search OrdInt} \; 1 \; [1; 2; 3] (where type information has been stripped off \text{OrdInt} itself).

9.2.2 The definition of Mini Haskell

Class declarations and instance definitions are restricted to the toplevel. Their scope is the whole program. In practice, a program \(p \) is a sequence of class declarations and instance and function definitions given in any order and ending with an expression. For simplification, we assume that instance definitions do not depend on function definitions, which may then come last as part of the expression in a recursive let-binding.

Instance definitions are interpreted recursively and their definition order does not matter. We may assume, \emph{w.l.o.g.}, that instance definitions come after all class declarations. The order of class declaration matters, since they may only refer to other class constructors that have been previously defined.

For sake of simplification, we restrict to single parameter classes. The syntax of MH programs is defined in Figure 9.1. Letter \(p \) ranges over source programs. A program \(p \) is a sequence \(H_1 \ldots H_p \; h_1 \ldots h_q \; M \), of class declaration \(H_1 \ldots H_p \), followed by a sequence of instance definitions \(h_1 \ldots h_q \), and ending with an expression \(M \).
A class declaration H is of the form class $\vec{P} \Rightarrow K \alpha \{\rho\}$. It defines a new class (constructor) K, parametrized by α. Every class (constructor) K must be defined by one and only one class declaration. So we may say that H is the declaration of K and write $H_{\downarrow K}$.

Letter u ranges over overloaded symbols, also called methods. The row ρ of the form $u_1 : \tau_1, \ldots, u_n : \tau_n$ declares overloaded symbols u_i of class K. An overloaded symbol cannot be declared twice in a program; it cannot be repeated twice in the same class (hence the map $i \mapsto u_i$ is injective) and cannot be declared in two different classes. The row ρ (and thus each of its field type τ_i) must not contain any other free variable than α.

The class depends on a sequence of subclasses \vec{P} of the form $K_1 \alpha, \ldots, K_n \alpha$, which is called a typing context. Each clause $K_i \alpha$ can be read as an assumption “given an instance of class K_i at type α” and \vec{P} as the conjunction of these assumptions. We say that classes K_i’s are superclasses of K which we write $K_i < K$. They must have been previously defined. This ensures that the relation $<$ is acyclic. We require that all K_i’s are independent, i.e. there does not exists i and j such that $K_j < K_i$.

An instance definition h is of the form inst $\forall \vec{\beta}. \vec{P} \Rightarrow K (G \vec{\beta}) \{r\}$. It defines an instance of a class K at type $G \vec{\beta}$ where G is a datatype constructor, i.e. not a class constructor. A class constructor K may appear in T but not in τ. An instance definition defines the methods of a class at the required type: r is a record of methods $u_1 = M_1, \ldots, u_n = M_n$.

An instance definition is also parametrized by a typing context \vec{P} of the form $K_1 \alpha_1, \ldots, K_k \alpha_k$ where variables α_i’s are included in $\vec{\beta}$. This typing context is not related to the typing context of its class declaration $H_{\downarrow K_i}$ but to the set of classes that the implementations of the methods depend on.

Restrictions The restriction to types of the form $K' \alpha'$ in typing contexts and class declarations, and to types of the form $K' (G' \vec{\alpha'})$ in instances are for simplicity. Generalization are possible and discussed later (§9.4).

9.2.3 Semantics of Mini Haskell

The semantics of Mini Haskell is given by elaborating source programs into System F extended with record types and recursive definitions. Record types are provided as data types. They are used to represent dictionaries. Record labels are used to encode overloaded identifiers u. We may use overloaded symbols as variables as well: this amounts to reserving a subset of variables x_u indexed by overloaded symbols and writing u as a shortcut for x_u. We use letter N instead of M for elaborated terms, to distinguish them from source terms. For convenience, we write \Rightarrow in System F as an alias for \rightarrow, which we use when the argument is a (record representing a) dictionary. Type schemes in the target language take the form σ described on Figure 9.1. Notice that types T are stratified: they are either dictionary types $K \tau$ or a regular type τ that does not contain dictionary types.

Class declaration The elaboration of a class declaration $H_{\downarrow K}$ of the form class $K_1 \alpha, \ldots, K_n \alpha \Rightarrow K \alpha \{\rho\}$ consists of several parts. It first declares a record type that will be used as a dictionary
to carry both the methods and the dictionaries of its immediate superclasses. A class need not contain subdictionaries recursively, since if \(K_j < K_i \), then a dictionary for \(K_i \) already contains a sub-dictionary for \(K_j \), to which \(K \) has access via \(K_i \) so it does need not have one itself. The row \(\rho \) of the class definition only lists the class methods. Hence, we extend it with fields for sub-dictionaries and define the record type:

\[
K \alpha \approx \{ \rho^K \}
\]

where \(\rho^K \) is \(u^K_{K_1} : K_1 \alpha, \ldots u^K_{K_n} : K_n \alpha, \rho \).

This record type declaration is collected to appear in the program *prelude*.

Then, for each \(u : T_u \) in \(\rho^K \), we define the program context:

\[
\mathcal{R}_u \triangleq \text{let } u : \sigma_u = N_u \text{ in } \emptyset
\]

where \(\sigma_u \triangleq \forall \alpha. K \alpha \Rightarrow T_u \) and \(N_u \triangleq \Lambda \alpha. \lambda z : K \alpha. (z.u) \)

Let the composition \(\mathcal{R}_1 \circ \mathcal{R}_2 \) of two contexts be the context \(\mathcal{R}_1[\mathcal{R}_2] \) obtained by placing \(\mathcal{R}_2 \) in the hole of \(\mathcal{R}_1 \). The elaboration \([H_K] \) of a single class declaration \(H_K \) is the composition:

\[
[H_K] \triangleq \mathcal{R}_{u_1} \circ \cdots \mathcal{R}_{u_n}
\]

where \(K \alpha \approx \{ u_1 : T_1, \ldots, u_n : T_n \} \)

that defines accessors for each field of the class dictionary. We also define the typing environment \(\Gamma_{H_K} \) as an abbreviation for \(u_1 : \sigma_{u_1}, \ldots, u_n : \sigma_{u_n} \).

The elaboration \([H_1 \ldots H_p] \) of all class definitions is the composition \([H_1] \circ \cdots [H_p] \) of the elaboration of each. We also define \(\Gamma_{H_1 \ldots H_n} \) as the concatenation \(\Gamma_{H_1} \cdots \Gamma_{H_n} \) of individual typing environments.

Instance definition In an instance declaration \(h \) of the form \(\text{inst } \forall \beta. \bar{P} \Rightarrow K \ (G \ \bar{\beta}) \ \{ r \} \),

The typing context \(\bar{P} \) describes the dictionaries that must be available on type parameters \(\bar{\beta} \) for constructing the dictionary \(K \ (G \ \bar{\beta}) \), but that cannot yet be built because they depend on some unknown type \(\beta \) in \(\bar{\beta} \).

As mentioned above \(\bar{P} \) is not related to the typing context of the class declaration \(H_K \). To see this, assume that class \(K' \) is an immediate superclass of \(K \), so that the creation of the dictionary \(K \alpha \) requires the existence of a dictionary \(K' \alpha \); then, an instance declaration \(K \ G \) (where \(G \) is nullary) need not be parametrized over a dictionary of type \(K' \ G \), as either such a dictionary can already be built, hence the instance definition does not require it, or it will never be possible to build one, as instance definitions are recursively defined so all of them are already visible—and the program must be rejected.

We restrict typing context \(K_1 \alpha_1, \ldots K_k \alpha_k \) to canonical ones defined as satisfying the two following conditions: (1) \(\alpha_i \) is some \(\beta_j \) in \(\bar{\beta} \); and (2) if \(K_i \) and \(K_j \) are related, i.e. \(K_i < K_j \) or \(K_j < K_i \) or \(K_j = K_i \), then \(\alpha_i \) and \(\alpha_j \) are different. The latter condition avoids having two dictionaries \(K_i \beta \) and \(K_j \beta \) when, e.g., \(K_i < K_j \) since the former is contained in the latter.

The elaboration of an instance declaration \(h \) is a triple \((z_h, N^h, \sigma_h) \) where \(z_h \) is an identifier to refer to the elaborated body \(N^h \) of type

\[
\sigma_h \triangleq \forall \beta_1 \ldots \beta_p. K_1 \alpha_1 \Rightarrow \ldots K_k \alpha_k \Rightarrow K \ (G \ \bar{\beta})
\]
9.2. MINI HASKELL

(Variables \(\alpha_1, \ldots, \alpha_k\) are among \(\beta_1, \ldots, \beta_p\) and may contain repetitions, as explained above.) The expression \(N^h\) builds a dictionary of type \(K(G\tilde{\beta})\), given \(k\) dictionaries (where \(k\) may be zero) of respective types \(K_1\beta_1, \ldots, K_k\beta_k\) and is defined as:

\[
N^h \triangleq \Lambda \beta_1, \ldots, \Lambda \beta_p, \lambda (z_1 : K_1 \alpha_1) \ldots \lambda (z_k : K_k \alpha_k), \{ u^K_{K_1} = q_1, \ldots, u^K_{K_k} = q_n, u_1 = N^h_1, \ldots, u_m = N^h_m \}
\]

The types of fields are as prescribed by the class definition \(K\), but specialized at type \(G\tilde{\beta}\). That is, \(q_i\) is a dictionary expression of type \(K_i' (G\tilde{\beta})\) whose exact definition is postponed until the elaboration of dictionaries in \(\S 9.2.6\). The term \(N^h_i\) is the elaboration of \(M_i\) where \(u_1 = M_1, \ldots, u_m = M_m\) is \(r\); it is described in the next section (\(\S 9.2.4\)). For clarity, we write \(z\) instead of \(x\) when a variable binds a dictionary or a function building a dictionary. Notice that the expressions \(q_i\) and \(N^h_i\) sees the type variables \(\beta_1, \ldots, \beta_p\) and the dictionary parameters \(z_1 : K_1 \alpha_1, \ldots, z_k : K_k \alpha_k\).

The elaboration of all instance definitions is the program context:

\[
\tilde{h} \triangleq \text{let rec} (\tilde{\sigma}_h) = \tilde{N}^h \text{ in } []
\]

that recursively binds all instance definitions in the hole.

Program Finally, the elaboration of a complete program \(\tilde{H} \tilde{h} M\) is

\[
[\tilde{H} \tilde{h} M] \triangleq ([\tilde{H}] \circ [\tilde{h}])[M] = \text{let } \tilde{u} : \tilde{\sigma}_u = \tilde{N}_u \text{ in } \text{let rec} (\tilde{z}_h : \tilde{\sigma}_h) = \tilde{N}^h \text{ in } N
\]

Hence, the expression \(N\), which is the elaboration of \(M\), and all expressions \(N_h\) are typed (and elaborated) in the environment \(\Gamma_{\tilde{H}\tilde{h}}\) equal to \(\Gamma_{\tilde{H}}\). \(\Gamma_{\tilde{h}}\): the environment \(\Gamma_{\tilde{H}}\) declares functions to access components of dictionaries (both sub-dictionaries and definitions of overloaded symbols) while the environment \(\Gamma_{\tilde{h}}\) declares functions to build dictionaries.

9.2.4 Elaboration of expressions

The elaboration of expressions is defined by a judgment \(\Gamma \vdash M \leadsto N : \sigma\) where \(\Gamma\) is a System F typing context, \(M\) is the source expression, \(N\) is the elaborated expression and \(\sigma\) its type in \(\Gamma\). In particular, \(\Gamma \vdash M \leadsto N : \sigma\) implies \(\Gamma \vdash N : \sigma\) in System F.

We write \(q\) for dictionary terms, which are the following subset of System-F terms:

\[
q ::= u \mid z \mid q \tau \mid q q
\]

Variables \(u\) and \(z\) are just particular cases of variables \(x\). Variable \(u\) is used for methods (and access to subdictionaries), while variable \(z\) is used for dictionary parameters and for class instances, i.e. dictionaries or functions building dictionaries.

The rules for elaboration of expressions are described in Figure 9.2. Most of them just wrap the elaboration of their sub-expressions. In rule \(\text{Let}_\tau\), we require \(\sigma\) to be canonical, i.e. of the form \(\forall \alpha.\tilde{P} \Rightarrow T\) where \(\tilde{P}\) is itself empty or canonical (see page 188). Rules \(\text{Arr}_\tau\) and \(\text{Add}\) do not apply to overloaded expressions of type \(\sigma\) but only to simple expressions of type \(\tau\).
The interesting rules are the elaboration of overloaded expressions, and in particular of missing abstractions (Rule `OAbs`) and applications (Rule `OApp`) of dictionaries. Rule `OAbs` pushes dictionary abstractions in the context \(\Gamma \) as prescribed by the expected type. On the opposite, Rule `OApp` searches for an appropriate dictionary-building function and applies it to the required sub-directionary.

The premise \(\Gamma \vdash q : Q \) of rule `OApp` also triggers the elaboration of dictionaries. This judgment is just the typability in System \(F \)—but restricted to dictionary expressions. That is, it searches for a well-typed dictionary expression. The restriction to dictionary expressions ensures that under reasonable conditions the search is decidable—and coherent. The elaboration of dictionaries reads the typing rules of System \(F \) restricted to dictionaries as an algorithm, where \(\Gamma \) and \(Q \) are given and \(q \) is inferred. This is described in detail in \(\textit{9.2.6} \).

By construction, elaboration produces well-typed expressions: that is, \(\Gamma^{H_h} \vdash M \leadsto N : \tau \) implies that \(\Gamma^{H_h} \vdash N : \tau \).

9.2.5 Summary of the elaboration

An instance declaration \(h \) of the form:

\[
\text{inst } \forall \vec{\beta}. \, K_1 \alpha_1, \ldots, K_k \alpha_k \Rightarrow K \{ u_1 = M_1, \ldots, u_m = M_m \}
\]

is translated into

\[
\lambda (z_1 : K_1 \alpha_1) \ldots (z_p : K_k \alpha_k). \{ u_{K_i}^{K_i} = q_1, \ldots, u_{K_h}^{K_h} = q_n, \ u_1 = N_1, \ldots, u_m = N_m \}
\]

where \(u_{K_i}^{K_i} : \tau_i \) are the superclasses fields, \(\Gamma^h \) is \(\vec{\beta}, K_1 \alpha_1, \ldots, K_k \alpha_k \), and the following elaboration judgments \(\Gamma^{H_h}, \Gamma^h \vdash q_i : \tau_i \) and \(\Gamma^{H_h}, \Gamma^h \vdash M_i \leadsto N_i : \tau_i \) hold. Finally, given the program \(p \) equal to \(\vec{H}^h M \), we elaborate \(M \) as \(N \) such that \(\Gamma^{H_h} \vdash M \leadsto N : \forall \alpha . \tau \).
Notice that \(\forall \alpha. \tau \) is an unconstrained type scheme. Otherwise, \(N \) could elaborate into an abstraction over dictionaries, which could turn a computation into a function that is not reduced: this would not preserve the intended semantics.

More generally, we must be careful to preserve the intended semantics of source programs. For this reason, in a call-by-value setting, we must not elaborate applications into abstractions, since this could delay and perhaps duplicate the order of evaluations. We just pick the obvious solution, that is to restrict rule so that either \(\sigma \) is of the form \(\forall \alpha. \tau \) or \(M_1 \) is a value or a variable.

In a language with a call-by-name semantics, an application is not evaluated until it is needed. Hence adding an abstraction in front of an application should not change the evaluation order \(M_1 \ M_2 \). We must in fact compare:

\[
\begin{align*}
&\text{let } x_1 = \lambda y. \text{let } x_2 = V_1 \ V_2 \ \text{in} \ \ M_2 \ \text{in} \ [x_1 \mapsto x_1 \ q]M_1 \\
&\text{let } x_1 = \text{let } x_2 = \lambda y. V_1 \ V_2 \ \text{in} \ [x_2 \mapsto x_2 \ q]M_2 \ \text{in} \ M_1
\end{align*}
\]

The order of evaluation of \(V_1 \ V_2 \) is preserved. However, the Haskell language is call-by-need and not call-by-name! Hence, applications are delayed as in call-by-name but shared and only reduced once. The application \(V_1 \ V_2 \) will be reduced once in (1), but as many times as there are occurrences of \(x_2 \) in \(M_2 \) in (2).

The final result will still be the same in both cases if the language has no side effects, but the intended semantics may be changed regarding the complexity.

Coherence
The elaboration may fail for several reasons: The input expression may not obey one of the restrictions we have requested; a typing error may occur during elaboration of an expression; or some dictionary cannot be build. If elaboration fails, the program \(p \) is rejected, of course.

When the elaboration of \(p \) succeeds, it should return a term \(\llbracket p \rrbracket \) that is well-typed in \(F \) and that defines the semantics of \(p \). However, although terms are explicitly-typed, their elaboration may not be unique! Indeed, they might be several ways to build dictionaries of some given type, as we shall see below (§9.2.6).

We may distinguish two situations: in the worst case, a source program may elaborate to several completely unrelated programs; in the better case, all possible elaborations may in fact be equivalent programs: we say that the elaboration is coherent and the programs has a deterministic semantics given by any of its elaboration.

Opening a parenthesis, what does it mean for programs be equivalent? There are several notions of program equivalence:

- If programs have a denotational semantics, the equivalence of programs should be the equality of their denotations.

- As a subcase, two programs having a common reduct should definitely be equivalent. However, this will in general not be complete: values may contain functions that are not identical, but perhaps reduce to the same value whenever applied to equivalent arguments.

- This leads to the notion of observational equivalence. Two expressions are observationally equivalent (at some observable type, such as integers) if their are indistinguishable whenever they are put in arbitrary (well-typed) contexts of the observable type.
End of parenthesis.

For instance, two different elaboration algorithms that consistently change the representation of dictionaries (e.g. by ordering records in reverse order), may be equivalent if we cannot observe the representation of dictionaries.

Returning to the coherence problem, the only source of non-determinism in Mini Haskell is the elaboration of dictionaries. Hence, to ensure coherence, it suffices that two dictionary values of the same type are always equal. This does not mean that there is a unique way of building dictionaries, but that all ways are equivalent as they eventually return the same dictionary.

9.2.6 Elaboration of dictionaries

The elaboration of dictionaries is based on typing rules of System F—but restricted to a subset of the language. The relevant typing rules are given in Figure 9.3. However, elaboration significantly differs from type inference since the judgment $\Gamma \vdash q : Q$ is used for inferring q rather than τ. The judgment can be read as: in type environment Γ, a dictionary of type Q can be constructed by the dictionary expression q. As for type inference, elaboration of dictionaries is simplified by finding an appropriate syntax-directed presentation of the typing rules—but directed by the structure of the type of the expected dictionary instead of expressions.

Elaboration is also driven by the bindings available in the typing environment. These may be dictionary constructors z^h, given by instance definitions; dictionary accessors u^K, given by class declarations; dictionary arguments z, given by the local typing context. This suggests the presentation of the typing rules in Figure 9.4.

Dictionary values Let us first consider the elaboration of dictionary values. They are typed in the environment $\Gamma_{\vec{H}h}$, which does not contain free type variables. Hence, rule D-Var does not
apply. Moreover, dictionaries stored in other dictionaries had to be built in the first place, hence rule \(\text{D-Proj} \) should never be needed. That is, dictionary values can be built with only instances of \(\text{D-Ovar-Inst} \) of the form:

\[
\frac{\text{D-Ovar-Inst}}{\Gamma_h \vdash z : \forall \vec{\beta}. \mathcal{P}_1 \Rightarrow \ldots P_n \Rightarrow K (G \vec{\beta}) \in \Gamma_h \quad \Gamma_h \vdash q_i : [\vec{\beta} \mapsto g] \mathcal{P}_i}{}
\]

where the premises \(\Gamma \vdash q_i : [\vec{\beta} \mapsto g] \mathcal{P}_i \) are themselves recursively built in the same way. This rule can be read as a recursive definition, where \(\Gamma \) is constant, \(Q \) is the input type of the dictionary, and \(q \) is the output dictionary. This reading is deterministic if there is no choice in finding \(z : \forall \vec{\beta}. \mathcal{P}_1 \Rightarrow \ldots P_n \Rightarrow K (G \vec{\beta}) \) in \(\Gamma \). The binding \(z \) can only be a binding \(z_h \) introduced as the elaboration of some class instance \(h \) at type \(\Gamma \vec{\beta} \). Hence, it suffices that instance definitions never overlap for \(z^h \) to be uniquely determined; if recursively each \(q_i \) is unique, then \(z g \bar{q} \) also is. Under this hypothesis, the elaboration is always unique and therefore coherent.

Definition 12 (Overlapping instances) Two instances \(\text{inst} \forall \vec{\beta}_1. \mathcal{P} \Rightarrow K (G_1 \vec{\beta}_1) \{r_1\} \) and \(\text{inst} \forall \vec{\beta}_2. \mathcal{P} \Rightarrow K (G_2 \vec{\beta}_2) \{r_2\} \) of a class \(K \) overlap if the type schemes \(\forall \vec{\beta}_1. K (G_1 r_1) \) and \(\forall \vec{\beta}_2. K (G_2 r_2) \) have a common instance, i.e. in the current setting, if \(G_1 \) and \(G_2 \) are equal.

Overlapping instances are an inherent source of incoherence, as it means that for some type \(Q \) (in the common instance), a dictionary of type \(Q \) may (possibly) be built using two different implementations.

Dictionary expressions Dictionary expressions may compute on dictionaries: they may extract sub-dictionaries or build new dictionaries from other dictionaries received as argument. Indeed, in overloaded code, the exact type is not fully known at compile time, hence dictionaries must be passed as arguments, from which superclass dictionaries may be extracted (actually must be extracted, as we forbade to pass a class and one of its superclass dictionaries simultaneously).

Dictionaries are typically typed in the typing environment \(\Gamma_{\bar{h}} \Gamma^h \) where \(\Gamma^h \) binds the local typing context, i.e. assumptions \(z : K' \beta \) about dictionaries received as arguments. Hence, rules \(\text{D-Proj} \) and \(\text{D-Var} \) may now apply, i.e. the elaboration of expressions uses the three rules of 9.4. This can still be read as a backtracking proof search algorithm. The proof search always terminates, since premises always have strictly smaller \(Q \) than the conclusion when using the lexicographic ordering of the height of \(\tau \) and then the reverse order of class inheritance: when no rule applies, the search fails; when rule \(\text{D-Var} \) applies, the search ends with a successful derivation; when rule \(\text{D-Proj} \) applies, the premise is called with a smaller problem since the height is unchanged and \(K' g \) with \(K' \prec K \); when \(\text{D-Ovar-Inst} \) applies, the premises are called at type \(K_i \tau_j \) where \(\tau_j \) is subtype of \(g \), hence of a strictly smaller height.

Non determinism However, non-overlapping of class instances is no more sufficient to prevent non determinism. For instance, the introductory example of §9.2.1 defines two instances \(\text{EqInt} \) and \(\text{OrdInt} \) where the later contains an instance of the former. Hence, a dictionary of type \(\text{EqInt} \) may be obtained, either directly as \(\text{EqInt} \), or indirectly as \(\text{Eq OrdInt} \), by projecting the \(\text{Eq} \) sub-dictionary.
CHAPTER 9. OVERLOADING

of class \textit{Ord Int}. In fact, the latter choice could then be reduced at compile time and be equivalent to the first one.

One could force more determinism by fixing a strategy for elaboration. Restrict the use of rule \textsc{D-Proj} to cases where \textit{Q} is \textit{P}—when \textsc{D-OVar-Inst} does not apply. However, since the two elaborations paths are equivalent, the extra flexibility is harmless and may perhaps be useful freedom for the compiler.

Example of elaboration In our introductory example, the typing environment \(\Gamma_{\text{HH}}\) is (we remind both the informal and formal names of variables):

\[
\begin{align*}
\text{equal} \triangleq u_{\text{equal}} & : \forall \alpha. \text{Eq} \alpha \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \text{bool}, \\
\text{EqInt} \triangleq z_{\text{Eq}}^{\text{int}} & : \text{Eq int} \\
\text{EqList} \triangleq z_{\text{Eq}}^{\text{List}} & : \forall \alpha. \text{Eq} \alpha \Rightarrow \text{Eq} (\text{List} \alpha) \\
\text{EqOrd} \triangleq u_{\text{Eq}}^{\text{Ord}} & : \forall \alpha. \text{Ord} \alpha \Rightarrow \text{Eq} \alpha \\
\text{lt} \triangleq u_{\text{lt}} & : \forall \alpha. \text{Ord} \alpha \Rightarrow \alpha \Rightarrow \alpha \Rightarrow \text{bool}
\end{align*}
\]

When elaborating the body of the \textit{search} function, we have to infer a dictionary for \textit{EqOrd} \(X\) \textit{OrdX} in the local context \(X\), \textit{OrdX} : \textit{Ord} \(X\). Using formal notations, dictionaries are typed in the environment \(\Gamma\) equal to \(\Gamma_{0}, \alpha, z : \text{Ord} \alpha\) and \textit{EqOrd} is \(u_{\text{Eq}}^{\text{Ord}}\). We have the following derivation:

\[
\begin{array}{c}
\text{D-OVar-Inst} \\
\text{D-Proj} \\
\text{D-VAR}
\end{array}
\quad \quad \\
\begin{array}{c}
\nu \mapsto z : u_{\text{Eq}}^{\text{Ord}} : \text{Ord} \alpha \Rightarrow \text{Eq} \alpha \\
\nu \mapsto z : \text{Ord} \alpha
\end{array}
\quad \quad \\
\begin{array}{c}
\nu \mapsto u_{\text{Eq}}^{\text{Ord}} \alpha z : \text{Eq} \alpha
\end{array}
\]

9.3 Implicitly-typed terms

Our presentation of Mini Haskell is explicitly typed. Since we remain within an ML-like type system where type schemes are not first-class, we may leave some type information implicit. But how much? Class declarations define both the structure of dictionaries—a record type definition and its accessors—and the type scheme of overloaded symbols. Since, we inferring type schemes is out of the scope of ML-like type inference, class declarations must remain explicit. Instance definitions are turned into recursive polymorphic definitions, which in ML require type scheme annotations. So they instance definitions also remain explicit. Fortunately, all remaining core language expressions, \textit{i.e.} the body of instance definitions and the final program expression can be left implicit.

For instance, the example program in the introduction can be rewritten more concisely.

\[
\begin{array}{l}
\text{class Eq} (X) \{ \text{equal} : X \times X \Rightarrow \text{Bool} \} \\
\text{inst Eq} (\text{Int}) \{ \text{equal} = \text{primEqInt} \} \\
\text{inst Eq} (\text{Char}) \{ \text{equal} = \text{primEqChar} \} \\
\text{inst \(\Lambda(X)\) Eq (X) \Rightarrow Eq (List (X))} \\
\{ \text{Eq} = \lambda(l_1) \lambda(l_2) \text{match} \ l_1, \ l_2 \text{ with} \\
\text{ | [],[], } \rightarrow \text{true} \text{ | [],_ } \rightarrow \text{false} \\
\end{array}
\]

9.3. IMPLICITLY-TYPED TERMS

\[
| h_1 :: t_1, h_2 :: t_2 \rightarrow Eq \ h_1 \ h_2 \ \&\& \ Eq \ t_1 \ t_2 |
\]

class \(Eq \ (X) \Rightarrow Ord \ (X) \) \{ lt : X \rightarrow X \rightarrow Bool \}

inst Ord \ (Int) \{ lt = (<) \}

let rec search x l =
 match l with
 [] → false |
 h :: t → equal x h || search x t

let b = search Int 1 [1; 2; 3];;

The missing type information can be rebuilt by type inference.

Type inference To perform type inference in Mini Haskell, the idea is to see dictionary types \(\text{K} \ \tau \), which can only appear in type schemes and not in types, as a type constraint to mean “there exists a dictionary of type \(\text{K} \ \alpha \)”. That is, we may read the type scheme \(\forall \alpha. \ P \Rightarrow \tau \) as the constraint type scheme \(\forall \alpha [P]. \tau \) where \(P \) is seen as a type predicate, say a dictionary predicate. Therefore, we extend constraints with dictionary predicates:

\[
C ::= \ldots \mid \text{K} \ \tau
\]

On ground types, a constraint \(\text{K} \ \tau \) is satisfied if one can build a dictionary of type \(\text{K} \ \tau \) in the initial environment \(\Gamma \ _{H} _h \) (that contains all class and instance declarations)—formally, if there exists a dictionary expression \(q \) such that \(\Gamma \ _{H} _h \vdash q : \text{K} \ \tau \). Then satisfiability of class-membership constraints is (with its unfolded version on the right):

\[
\begin{array}{c}
\text{INSTANCE} \\
\text{K} \ \phi \ \tau \\
\hline
\phi \vdash \text{K} \ \tau \\
\end{array}
\]

\[
\begin{array}{c}
\text{INSTANCE} \\
\Gamma \ _{H} _h \vdash \rho : \text{K} \ \phi \ \tau \\
\hline
\phi \vdash \text{K} \ \tau \\
\end{array}
\]

We use entailment to reason with class-membership constraints. For every class declaration \(\text{class} \ \text{K}_1 \ \alpha , \ldots \ \text{K}_n \ \alpha \Rightarrow \text{K} \ \alpha \ {\rho} \), we have:

\[
\text{K} \ \alpha \vdash \text{K}_1 \ \alpha \wedge \ldots \ \text{K}_n \ \alpha \tag{K1}
\]

This rule allows to decompose any set of simple constraints into a canonical one.

Proof: Assume \(\phi \vdash \text{K} \ \alpha \), i.e. by Rule [INSTANCE] \(\Gamma \ _{H} _h \vdash q : \text{K} \ (\phi \alpha) \) for some dictionary \(q \). From the class declaration in \(\Gamma \ _{H} _h \), we know that \(\text{K} \ \alpha \) is a record type definition that contains fields \(a_{\text{K}_i}^\alpha \) of type \(\text{K}_i \ \alpha_i \). Hence, the dictionary value \(q \) contains field values of types \(\text{K}_i \ (\phi \alpha) \). Therefore, we have \(\phi \vdash \text{K}_i \ \alpha \) for all \(i \) in \(1..n \), which implies \(\phi \vdash \text{K}_1 \ \alpha \wedge \ldots \ \text{K}_n \ \alpha \).

For every instance definition \(\text{inst} \ \forall \beta. \ \text{K}_1 \ \beta_1, \ldots \ \text{K}_p \ \beta_p \Rightarrow \text{K} \ (G \ \beta) \ {\rho} \), we have

\[
\text{K} \ (G \ \beta) \equiv \text{K}_1 \ \beta_1 \wedge \ldots \ \text{K}_p \ \beta_p \tag{K2}
\]

This rule allows to decompose any class constraint into a conjunction of simple constraints (i.e. of the form \(\text{K} \ \alpha \)).
CHAPTER 9. OVERLOADING

Proof: Let \(h \) be the above instance definition. We prove both directions separately:

Case \(\vdash \): Assume \(\phi \vdash K_i \beta_i \) for \(i \) in \(\{1, \ldots, p\} \). By Rule \textsc{Instance} for each \(i \), there exists a dictionary \(q_i \) such that \(\Gamma \vdash h q_i : K_i (\phi \beta_i) \). Hence, \(\Gamma \vdash h \beta q_1 \ldots q_p : K (G (\phi \beta)) \), i.e. by Rule \textsc{Instance} \(\phi \vdash K (G \beta) \).

Case \(\vDash \): Assume, \(\phi \vdash K (G \beta) \). i.e. there exists a dictionary \(q \) such that \(\Gamma \vdash h q : K (G (\phi \beta)) \). By inversion of typing (and non-overlapping of instance declarations), the only way to build such a dictionary is by an application of \(z_h \). Hence, \(q \) must be of the form \(x_h \beta q_1 \ldots q_p \) with \(\Gamma \vdash h q_i : K_i (\phi \beta_i) \). By Rule \textsc{Instance} this means \(\phi \vdash K_i \beta_i \) for every \(i \), which implies \(\phi \vdash K_1 \beta_1 \land \ldots \land K_p \beta_p \).

Notice that the equivalence \((K2) \) still holds in an open-world assumption where new instance clauses may be added later, because another future instance definition cannot overlap with existing ones.

If class instances may overlap, the \(\vDash \) direction does not hold anymore; the rewriting rule:

\[
K (G \beta) \rightarrow K_1 \beta_1 \land \ldots \land K_p \beta_p
\]

remains sound (the inverse entailment holds, and thus type inference still infer sound typings), but it is incomplete (type inference could miss some typings).

We also use the following equivalence: for every class \(K \) and type constructor \(G \) for which there is no instance of \(K \):\n
\[
K (G \beta) \equiv \text{false}
\]

(\(K3\))

This rule allows to report failure as soon as a constraint of the form \(K (G g) \) for which there is not instance of \(K \) for \(G \) appears.

Proof: The \(\vdash \) direction is a tautology, so it suffices to prove the \(\vDash \) direction. By contradiction. Assume \(\phi \vdash K (G \beta) \). This implies the existence of a dictionary \(q \) such that \(\Gamma \vdash h q : K (G (\phi \beta)) \). Then, there must be some \(x_h \) in \(\Gamma \) whose type scheme is of the form \(\forall \beta : P \Rightarrow K (G \beta) \), i.e. there must be an instance of class \(K \) for \(G \).

Notice that the equivalence is only an inverse entailment in an open world assumption: when there is not instance of \(K \) at type \(G \), the rewriting rule \(K (G \beta) \rightarrow \text{false} \) remains sound, but it is incomplete.

We are now fully equipped for type inference. Constraint generation is unchanged: see Figure 8.30. A constraint type scheme can then always be decomposed into one of the form \(\forall \alpha [P_1 \land P_2] , \tau \) where \(\text{ftv}(P_1) \in \alpha \) and \(\text{ftv}(P_2) \notin \alpha \). The constraints \(P_2 \) can then be extruded to the enclosing context if any, so that we are just left with \(P_1 \), and thus a well-formed type scheme \(\forall \alpha . \bar{P} \Rightarrow \tau \) with a typing context \(\bar{P} \).

To check well-typedness of a program \(\bar{H} \bar{h} \bar{a} \), we must check that: each expression \(a^h \) and the expression \(a \) are well-typed, in the environment used to elaborate them. This amounts to checking:
• $\Gamma_{\vec{H}h},\Gamma^h \vdash a^h : \tau^h$ where τ^h is given. That is, that $\text{def } \Gamma_{\vec{H}h},\Gamma^h \text{ in } \langle a^h \rangle \leq \tau^h \equiv \text{true}$ holds;

• $\Gamma_{\vec{H}h} \vdash a : \tau$ for some τ. That is, that $\text{def } \Gamma_{\vec{H}h} \text{ in } \exists \alpha. \langle a \rangle \leq \alpha \equiv \text{true}$ holds.

However, typechecking is not sufficient: type reconstruction should also return an explicitly-typed term M than can in turn be elaborated into some term N of System F, i.e. such that $\Gamma \vdash a \twoheadrightarrow M : \tau$.

Type reconstruction Type reconstruction can be performed as described in §8.3.4 by keeping persistent constraints during resolution. As in ML, there may be several ways to reconstruct programs, which we may solve by requesting explicitly-typed terms to be canonical and principal.

Coherence When the source language is implicitly-typed, the elaboration from the source language into System F code is the composition of type reconstruction with elaboration of explicitly typed terms.

Hence, even though the elaboration is coherent for explicitly-typed terms, this may not be true for implicitly-typed terms. There are two potential problems:

• The language has principal constrained type schemes, but the elaboration requests unconstrained type schemes.

• Ambiguities could be hidden (and missed) by non principal type reconstructions.

Toplevel unresolved constraints The restrictions we put on class declarations and instance definitions ensure that the type system has principal constrained schemes (and principal typing reconstructions).

However, this does not imply that there are principal *unconstrained* type schemes. For example, assume that the principal constrained type scheme is $\forall \alpha[K\alpha].\alpha \to \alpha$ and the typing environment contains two instances of $K\ G_1$ and $K\ G_2$ of class K. Constraint-free instances of this type scheme are $G_1 \to G_1$ and $G_2 \to G_2$ but $\forall \alpha.\alpha \to \alpha$ is certainly not one. Not only neither choice is principal, but worse, the two choices would elaborate in expressions with different (and non-equivalent) semantics. Elaboration should fail in such cases.

This problem may appear while typechecking the final expression a in $\Gamma_{\vec{H}h}$ that request an unconstrained type scheme $\forall \alpha.\tau$ It may also occur when typechecking the body of an instance definition h, which requests an explicit type scheme $\forall \beta[\vec{Q}].\tau$ in $\Gamma_{\vec{H}h}$ or, equivalently, a type τ in $\Gamma_{\vec{H}h},\vec{\beta},\vec{Q}$. Consider, for example:

```plaintext
class Num (X) { 0 : X, (+) : X \to X \to X }
inst Num Int { 0 = Int.(0), (+) = Int.(+) }
inst Num Float { 0 = Float.(0), (+) = Float.(+) }
let zero = 0 + 0;
```

The type of zero or zero + zero is $\forall \alpha[\text{Num } \alpha].\alpha$ while several class instances are possible for Num X. The semantics of the program is thus undetermined. Another example is:
The type of v is $\forall \alpha [Readable \alpha].unit \to \alpha$—and several classes are possible for $Readable \alpha$. This program is also rejected.

Inaccessible constraint variables

In the previous examples, the incoherence arise from the obligation to infer unconstrained toplevel type schemes. A similar problem may occur with isolated constraints in a type scheme. For instance, assume that $let x = a_1 \text{ in } a_2$ elaborates to $let x : \forall \alpha[K \alpha].\text{int} \to \text{int} = N_1 \text{ in } N_2$. All applications of x in N_2 will lead to an unresolved constraint $K \alpha$ for some fresh α since neither the argument nor the context of this application can determine the value of the type parameter α. Still, a dictionary of type $K \tau$ must be given before N_1 can be executed.

Although x may not be used in N_2, in which case, all elaborations of the expression may be coherent, we may still raise an error, since an unusable local definition is certainly useless, hence probably a programmer’s mistake. The error may then be raised immediately, at the definition site, instead of at every use of x.

The open-world view

When there is a single instance $K \Gamma$ for a class K that appears in an unresolved or isolated constraint $K \alpha$, the problem formally disappears, as all possible type reconstructions are coherent.

However, we may still not accept this situation, for modularity reasons, as an extension of the program with another non-overlapping correct instance declaration would make the program become ambiguous.

Formally, this amounts to saying that the program must be coherent in its current form, but also in all possible extensions with well-typed class definitions. This is taking an open-world view.

On the importance of principal type reconstruction

A source of incoherence is when some class constraint remains undetermined. Some (usually arbitrary) less general elaboration could cover the problem—but the source program would remain incoherent. Hence, in order to detect programs with ambiguous semantics, it is essential that type reconstruction is principal. A program can still be specialized but only after it has been proved coherent. This freedom may actually be very useful for optimizations. Consider for example, the program

$$\text{let } \text{twice} = \lambda(x) \ x + x \ \text{in } \text{twice} \ (\text{twice} \ 1)$$

whose principal type reconstruction is:

$$\text{let } \text{twice} : \forall (X) \ [\text{Num} \ X] \ X \to X = \Lambda (X) \ [\text{Num} \ X] \ \lambda(x) \ x + x \ \text{in } \text{twice} \ \text{Int} \ (\text{twice} \ \text{Int}) \ 1$$

This program is coherent. It’s natural elaboration is

$$\text{let } \text{twice} \ X \ \text{Num}X = \lambda(x : X) \ x \ (\text{plus} \ \text{Num}X) \ x \ \text{in } \text{twice} \ \text{Int} \ \text{Num} \text{Int} \ (\text{twice} \ \text{Int} \ \text{Num} \text{Int}) \ 1$$
However, it can also be elaborated to

\[
\text{let } \text{twice} = \lambda(x : \text{Int}) \ x \ (\text{plus} \ \text{NumInt}) \ x \ \text{in} \ \text{twice} \ (\text{twice} \ 1)
\]

avoiding the generalization of twice; moreover, the overloaded application \(\text{plus} \ \text{NumInt}\) can now be

\[
\text{let } \text{twice} = \lambda(x : \text{Int}) \ x \ \text{Int.}(+) \ x \ \text{in} \ \text{twice} \ (\text{twice} \ 1)
\]

avoiding the generalization of twice; moreover, the overloaded application \(\text{plus} \ \text{NumInt}\) can now be

Overloading by return types All previous ambiguous examples are overloaded by their

return types: For instance, in \(0 : X\), the value 0 has an overloaded type that is not constraint by

the argument; in \(\text{read} : \text{descr} \to X\), the return type is under specified, independently of the type of

the argument.

To avoid such cases, Odersky et al. has suggested to prevent overloading by return types by

requesting that overloaded symbols of a class \(K \ a\) have types of the form \(\alpha \to \tau\). The above examples

would then be rejected by this definition.

In fact, disallowing overloading by return types—in addition to our previous restrictions—

suffices to ensure that all well-typed programs are coherent. Moreover, untyped programs can then

be given a direct semantics (which of course coincides with the semantics obtained by elaboration).

Many interesting examples of overloading actually fits in this restricted subset. However, overload-

ing by returns types is also found useful in several cases and Haskell allows it, using default rules

to resolve ambiguities. This is still an arguable design choice in the Haskell community.

9.4 Variations

Changing the representation of dictionaries An overloaded method call \(u\) of a class \(K\)

is elaborated into an application \(u \ q\) of \(u\) to a dictionary expression \(q\) of class \(K\). The function \(u\)

and the representation of the dictionary are both defined in the elaboration of the class \(K\) and need

not be known at the call site. This leaves some flexibility in the representation of dictionaries. For

example, we have used records to represent dictionaries, but tuples would have been sufficient.

Going one step further, dictionaries need not contain the methods themselves but enough informa-

tion from which the methods may be recovered. For example, dictionaries may be replaced by

derivation trees that proves the existence of the dictionary. This derivation tree may be concisely

represented and passed around instead of the dictionary itself and be used and interpreted at at

the call site to dispatch to the appropriate implementation of the method. Such an approach has

been followed by Furuse (2003b).

This change of representation can also elegantly be explained as a type preserving compilation

of dictionaries called concretization and described in Pottier and Gauthier (2006). It is somehow

similar to defunctionalization and also requires that the target language is equipped with GADT

(Guarded Abstract Data Types).

Multi-parameter type classes To allow multi-parameter type classes, we may extend the

syntax of class definitions as follows:

\[
class \ P \Rightarrow K \ a \ \{ \rho \}
\]
where free variables of \vec{P} must be bound in $\vec{\alpha}$. The current framework can easily be extended to handle multi-parameter type classes. For example, Collections may be represented by a type C whose elements are of type E and defined as follows:

```haskell
class Collection C E { find : C \to E \to Option(E), add : C \to E \to C }
inst Collection (List X) X { find = List.find, add = \lambda(c)\lambda(e) e::c }
inst Collection (Set X) X { ... }
```

However, the class `Collection` does not provide the intended intuition that collections are homogeneous. Indeed, we may define:

```haskell
let add2 c x y = add (add c x) y
add2 : \forall(C, E, E') Collection C E, Collection C E' \Rightarrow C \to E \to E' \to C
```

This is accepted assuming that collections are heterogeneous. Although, this is unlikely the case, no contradiction can be assumed. However, if collections are indeed homogeneous, no instance of heterogeneous collections will ever be provided and the above code is overly general. As a result, uses of collections have unresolved often parameters, which would be resolved, if we had a way to tell the system that collections are homogeneous.

The solution is to add a clause to say that the parameter C determines the parameter E:

```haskell
class Collection C E | C \to E { ... }
```

Then, because C determines E, the two instances E and E' must be equal in C. Type dependencies also reduce overlapping between class declarations, since fewer instances of a class make sense. Hence they also allow example that would have to be rejected if type dependencies could not be expressed.

Associated types Associated types are an alternative to functional dependencies. They allow a class to declare its own type functions. Correspondingly, instance definitions must provide a definition for all associated types—in addition to values for overloaded symbols.

For example, the `Collection` class becomes a single parameter class with an associated type definition:

```haskell
class Collection E {  
  type C : *  
  find : C \to E \to Option E  
  add : C \to E \to C 
}
inst Collection Eq X \Rightarrow Collection X {type C = List E, ... }
inst Collection Eq X \Rightarrow Collection X {type C = Set E, ... }
```

Associated types increase the expressiveness of type classes.

Overlapping instances In practice, overlapping instances may be desired! This seems in contradiction with the fact that overlapping instances are a source of incoherence. For example, one could provide a generic implementation of sets provided an ordering relation on elements, but
also provide a more efficient version for bit sets. When overlapping instances are allowed, further
rules are needed to disambiguate the overloading resolution and preserve coherence. For instance,
priority rules may be used. An interesting resolution strategy is to give priority to the most specific
match.

However, the semantics depend on some particular resolution strategy and becomes more fragile.
See Jones et al (1997) for a discussion. See also Morris and Jones (2010) for a recent new proposal.
For example, the definitions:

\[
\begin{align*}
\text{inst } \text{Eq}(X) & \{ \text{equal } = (=) \} \\
\text{inst } \text{Eq}(\text{Int}) & \{ \text{equal } = \text{primEqInt} \}
\end{align*}
\]

could elaborate into the creation of both a generic dictionary and a specialized one.

\[
\begin{align*}
\text{let } \text{Eq } X : \text{Eq } X &= \{ \text{equal } = (=) \} \\
\text{let } \text{EqInt } : \text{Eq } \text{Int } &= \{ \text{equal } = \text{primEqInt} \}
\end{align*}
\]

Then, \text{EqInt} or \text{Eq Int} are two dictionaries of type \text{Eq Int} but with different implementations.

Restriction that are harder to lift We have made several restrictions to the definition of type classes. Some can be lifted at the price of some tolerable complication. Relaxing other restrictions, even if it could make sense in theory, would raise serious difficulties in practice.

For example, allowing constrained type schemes of the form $K \tau$ instead of the restricted form
$K \alpha$ would affect many aspects of the language and it would becomes much more difficult to control
the termination of constrained resolution and of the elaboration of dictionaries.

Allowing class instances of the form $\text{inst } \forall \beta. \bar{P} \Rightarrow K \tau \{ \rho \}$ where τ is G_{β} and not just G_{β}, it
would become difficult to check non-overlapping of class instances.

Alternative to type classes

Implicit values

Implicit values are a mecanism that allows to build values from types. The implies a way to
populate an environement of definitions that can be used to build implicit values and a mecanism
introduce placeholders where values should be build from their types.

Implicit values have been used in the language Scala for implicit conversions Scala (but they can
do more). An extension of OCaml with implicit values is being prototyped. Implicit values have
also been proposed as an alternative to Haskell type classes Oliveira et al. (2012) and more recently
formalized in COCHIS, a calculus of implicits Schrijvers et al. (2017).

Module-based type classes

Modular type classes Drever et al. (2007) mimic type classes at the level of modules, but with explicit module abstractions and module applications.
Modular implicits extends this idea by allowing implicit module arguments. Module arguments are thus inferred, but module abstractions remain explicits, which interestingly, allows for local scoping of overloading. They also extend the module language to increase expressiveness.

Conclusions

Methods as overloading functions One approach to object-orientation is to see methods as overloaded functions. Then, objects carry class tags that can be used at runtime to find the best matching definition. This approach has been studied in detail by Millstein and Chambers (1999). See also Bonniot (2002, 2005).

Summary Static overloading is not a solution for polymorphic languages. Dynamics overloading must be used instead. The implementation of type classes in the Haskell language has proved quite effective: it is a practical, general, and powerful solution to dynamic overloading. Moreover, it works relatively well in combination with ML-like type inference.

However, besides the simplest case of overloading on which everyone agrees, some useful extensions often come with serious drawbacks, and they is not yet an agreement on the best design compromises. In Haskell, the design decisions have often been in favor of expressiveness, but then loosing some of the properties and the canonicity of the minimalistic initial design.

Dynamic overloading is a typical and very elegant use of elaboration. The programmer could in principle write the elaborated program manually, explicitly building and passing dictionaries around, but this would be cumbersome, tricky, error prone, and it would significantly obfuscate the code. Instead, the elaboration mechanism does this automatically, without arbitrary choices (in the minimal design) and with only local transformations that preserve the structure of the source program.

Further reading For an all-in-one explanation of Haskell-like overloading, see The essence of Haskell by Odersky et al. See also the Jones’s monograph Qualified types: theory and practice. For a calculus of overloading see the ML& calculus proposed by Castagna (1997).

Recently, type classes have also been added to Coq Sozeau and Oury (2008). Interestingly, the elaboration of proof terms need not be coherent which makes it a simpler situation for overloading.
Bibliography

▷ A tour of scala: Implicit parameters. Part of scala documentation.

