MPRI 2.4, Functional programming and type systems Metatheory of System F

Didier Rémy

Fall, 2021

Plan of the course

Metatheory of System F

ADTs, Recursive types, Existential types, GATDs

Going higher order with F^{ω} !

Logical relations

Metatheory of System F

Proofs

Since 2017-2018, this course is shorter: you can see extra material in courses notes (and in slides of year 2016).

Detailed proofs of main results are not shown in class anymore, but are still part of the course:

You are supposed to read, understand them. and be able to reproduce them.

Formalization of System F is a basic. You must master it.
Some of the metatheory is done in Coq, for your help or curiosity, —but not (yet) mandatory.

What are types?

- Types are:
"a concise, formal description of the behavior of a program fragment."
- Types must be sound:
programs must behave as prescribed by their types.
- Hence, types must be checked and ill-typed programs must be rejected.

What are they useful for?

- Types serve as machine-checked documentation.
- Data types help structure programs.
- Types provide a safety guarantee.
- Types can be used to drive compiler optimizations.
- Types encourage separate compilation, modularity, and abstraction.

Type-preserving compilation

Types make sense in low-level programming languages as well-even assembly languages can be statically typed! [Morrisett et al., 1999]

In a type-preserving compiler, every intermediate language is typed, and every compilation phase maps typed programs to typed programs.

Preserving types provides insight into a transformation, helps debug it, and paves the way to a semantics preservation proof [Chlipala, 2007].

Interestingly enough, lower-level programming languages often require richer type systems than their high-level counterparts.

Typed or untyped?

Reynolds [1985] nicely sums up a long and rather acrimonious debate:
"One side claims that untyped languages preclude compile-time error checking and are succinct to the point of unintelligibility, while the other side claims that typed languages preclude a variety of powerful programming techniques and are verbose to the point of unintelligibility."

The issues are safety, expressiveness, and type inference.

Typed, Sir! with better types.

In fact, Reynolds settles the debate:

> "From the theorist's point of view, both sides are right, and their arguments are the motivation for seeking type systems that are more flexible and succinct than those of existing typed languages."

Today, the question is more whether

- to stay with rather simple polymorphic types (e.g. ML or System F),
- use more sophisticated types (dependent types, afine types, capabililties and ownership, effects, logical assertions, etc.), or
- even towards full program proofs!

The community is still split between programming with dependent types to capture fine invariants, or programming with simpler types and developing program proofs on the side that these invariants hold -with often a preference for the latter.

Contents

- Simply-typed λ-calculus
- Type soundness for simply-typed λ-calculus
- Simple extensions: Pairs, sums, recursive functions
- Polymorphism
- Polymorphic λ-calculus
- Type soundness
- Type erasing semantics

Why λ-calculus?

In this course, the underlying programming language is the λ-calculus.
The λ-calculus supports natural encodings of many programming languages [Landin, 1965], and as such provides a suitable setting for studying type systems.

Following Church's thesis, any Turing-complete language can be used to encode any programming language. However, these encodings might not be natural or simple enough to help us in understanding their typing discipline.

Using λ-calculus, most of our results can also be applied to other languages (Java, assembly language, etc.).

Simply typed λ-calculus

Why?

- used to introduce the main ideas, in a simple setting
- we will then move to System F
- still used in some theoretical studies
- is the language of kinds for F^{ω}

Types are:

$$
\tau::=\alpha|\tau \rightarrow \tau| \ldots
$$

Terms are:

$$
M::=x|\lambda x: \tau . M| M M \mid \ldots
$$

The dots are place holders for future extensions of the language.

Binders, α-conversion, and substitutions

$\lambda x: \tau . M$ binds variable x in M.
We write $\mathrm{fv}(M)$ for the set of free (term) variables of M :

$$
\begin{aligned}
\mathrm{fv}(x) & \triangleq\{x\} \\
\mathrm{fv}(\lambda x: \tau . M) & \triangleq \mathrm{fv}(M) \backslash\{x\} \\
\mathrm{fv}\left(M_{1} M_{2}\right) & \triangleq \mathrm{fv}\left(M_{1}\right) \cup \mathrm{fv}\left(M_{2}\right)
\end{aligned}
$$

We write $x \# M$ for $x \notin \mathrm{fv}(M)$.
Terms are considered equal up to renaming of bound variables:

- $\lambda x_{1}: \tau_{1}, \lambda x_{2}: \tau_{2} \cdot x_{1} x_{2}$ and $\lambda y: \tau_{1} \cdot \lambda x: \tau_{2} . y x$ are really the same term!
- $\lambda x: \tau . \lambda x: \tau . M$ is equal to $\lambda y: \tau . \lambda x: \tau . M$ when $y \notin \operatorname{fv}(M)$.

Substitution:
$[x \mapsto N] M$ is the capture avoiding substitution of N for x in M.

Dynamic semantics

We use a small-step operational semantics.
We choose a call-by-value variant. When adding references, exceptions, or other forms of side effects, this choice matters.

Otherwise, most of the type-theoretic machinery applies to call-by-name or call-by-need just as well.

Weak v.s. full reduction (parenthesis)

Calculi are often presented with a full reduction semantics, i.e. where reduction may occur in any context. The reduction is then non-deterministic (there are many possible reduction paths) but the calculus remains deterministic, since reduction is confluent.

Programming languages use weak reduction strategies, i.e. reduction is never performed under λ-abstractions, for efficiency of reduction, to have a deterministic semantics in the presence of side effects-and a well-defined cost model.

Still, type systems are usually also sound for full reduction strategies (with some care in the presence of side effects or empty types).

Type soundness for full reduction is a stronger result.
It implies that potential errors may not be hidden under λ-abstractions (this is usually true-it is true for λ-calculus and System F-but not implied by type soundness for a weak reduction strategy.)

Dynamic semantics

In the pure, explicitly-typed call-by-value λ-calculus, the values are the functions:

$$
V::=\lambda x: \tau . M \mid \ldots
$$

The reduction relation $M_{1} \longrightarrow M_{2}$ is inductively defined:

$$
\begin{array}{ll}
\beta_{v} \\
(\lambda x: \tau . M) V \longrightarrow[x \mapsto V] M & \begin{array}{l}
\text { Context } \\
E[M] \longrightarrow M^{\prime} \\
\hline E\left[M^{\prime}\right]
\end{array}
\end{array}
$$

Evaluation contexts are defined as follows:

$$
E::=[] M|V[]| \ldots
$$

We only need evaluation contexts of depth one, using repeated applications of Rule Context.

An evaluation context of arbitrary depth can be defined as:

$$
\bar{E}::=[] \mid E[\bar{E}]
$$

Static semantics

Technically, the type system is a 3-place predicate, whose instances are called typing judgments, written:

$$
\Gamma \vdash M: \tau
$$

where Γ is a typing context.

Typing context

A typing context (also called a type environment) Γ binds program variables to types.

We write \varnothing for the empty context and $\Gamma, x: \tau$ for the extension of Γ with $x \mapsto \tau$.

To avoid confusion, we require $x \notin \operatorname{dom}(\Gamma)$ when we write $\Gamma, x: \tau$.
Bound variables in source programs can always be suitably renamed to avoid name clashes.

A typing context can then be thought of as a finite function from program variables to their types.

We write $\operatorname{dom}(\Gamma)$ for the set of variables bound by Γ and $x: \tau \in \Gamma$ to mean $x \in \operatorname{dom}(\Gamma)$ and $\Gamma(x)=\tau$.

Static semantics

Typing judgments are defined inductively by the following set of inferences rules:

$$
\begin{aligned}
& \mathrm{VAR} \\
& \Gamma \vdash x: \Gamma(x)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{ABS} \\
& \frac{\Gamma, x: \tau_{1} \vdash M: \tau_{2}}{\Gamma \vdash \lambda x: \tau_{1} \cdot M: \tau_{1} \rightarrow \tau_{2}}
\end{aligned}
$$

$$
\frac{\stackrel{\text { APP }}{\Gamma \vdash M_{1}: \tau_{1} \rightarrow \tau_{2}} \quad \Gamma \vdash M_{2}: \tau_{1}}{\Gamma \vdash M_{1} M_{2}: \tau_{2}}
$$

Notice that the specification is extremely simple.
In the simply-typed λ-calculus, the definition is syntax-directed. This is not true of all type systems.

Example

The following is a valid typing derivation:

$$
\begin{aligned}
& \operatorname{APP} \frac{\operatorname{VAR} \overline{\Gamma \vdash f: \tau \rightarrow \tau^{\prime}} \operatorname{VAR} \overline{\Gamma \vdash x_{1}: \tau}}{\frac{\Gamma \vdash f x_{1}: \tau^{\prime}}{f: \tau \rightarrow \tau^{\prime}, x_{1}: \tau, x_{2}: \tau \vdash\left(f x_{1}, f x_{2}\right): \tau^{\prime} \times \tau^{\prime}}} \operatorname{PAR} \operatorname{VAR} \overline{\Gamma \vdash x_{2}: \tau} \operatorname{VAR} \mathrm{APP} \\
& \bar{\varnothing} \vdash \lambda f: \tau \rightarrow \tau^{\prime} \cdot \lambda x_{1}: \tau . \lambda x_{2}: \tau .\left(f x_{1}, f x_{2}\right):\left(\tau \rightarrow \tau^{\prime}\right) \rightarrow \tau \rightarrow \tau \rightarrow\left(\tau^{\prime} \times \tau^{\prime}\right)
\end{aligned}
$$

Γ stands for $\left(f: \tau \rightarrow \tau^{\prime}, x_{1}: \tau, x_{2}: \tau\right)$. Rule Pair is introduced later on.
Observe that:

- this is in fact, the only typing derivation (in the empty environment).
- this derivation is valid for any choice of τ and τ^{\prime} (which in our setting are part of the source term)

Conversely, every derivation for this term must have this shape, actually be exactly this one, up to the name of variables.

Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning. It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)
Assume $\Gamma \vdash M: \tau$.

- If M is a variable x, then $x \in \operatorname{dom}(\Gamma)$ and $\Gamma(x)=\tau$.
- If M is $M_{1} M_{2}$ then $\Gamma \vdash M_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma \vdash M_{2}: \tau_{2}$ for some type τ_{2}.
- If M is $\lambda x: \tau_{2} . M_{1}$, then τ is of the form $\tau_{2} \rightarrow \tau_{1}$ and $\Gamma, x: \tau_{2} \vdash M_{1}: \tau_{1}$.

Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning. It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)
Assume $\Gamma \vdash M: \tau$.

- If M is a variable x, then $x \in \operatorname{dom}(\Gamma)$ and $\Gamma(x)=\tau$.
- If M is $M_{1} M_{2}$ then $\Gamma \vdash M_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma \vdash M_{2}: \tau_{2}$ for some type τ_{2}.
- If M is $\lambda x: \tau_{2} . M_{1}$, then τ is of the form $\tau_{2} \rightarrow \tau_{1}$ and $\Gamma, x: \tau_{2} \vdash M_{1}: \tau_{1}$.

The inversion lemma is a basic property that is used in many places when reasoning by induction on terms. Although trivial in our simple setting, stating it explicitly avoids informal reasoning in proofs.

In more general settings, this may be a difficult lemma that requires reorganizing typing derivations.

Uniqueness of typing derivations

Since typing rules are syntax-directed, the shape of the derivation tree is fully determined by the shape of the term.

In our simple setting, each term has actually a unique type. Hence, typing derivations are unique, up to the typing context. The proof, by induction on the structure of terms, is straightforward.

Explicitly-typed terms can thus be used to describe and manipulate typing derivations (up to the typing context) in a precise and concise way.

This enables reasoning by induction on terms instead of on typing derivations, which is often lighter.

Lacking this convenience, typing derivations must otherwise be described in the meta-language of mathematics.

Explicitly v.s. implicitly typed?

Our presentation of simply-typed λ-calculus is explicitly typed (we also say in church-style), as parameters of abstractions are annotated with their types.

Simply-typed λ-calculus can also be implicitly typed (we also say in curry-style) when parameters of abstractions are left unannotated, as in the pure λ-calculus.

Of course, the existence of syntax-directed typing rules depends on the amount of type information present in source terms and can be easily lost if some type information is left implicit.

In particular, typing rules for terms in curry-style are not syntax-directed.

Type erasure

We may translate explicitly-typed expressions into implicitly-typed ones by dropping type annotations. This is called type erasure.

We write $\lceil M\rceil$ for the type erasure of M, which is defined by structural induction on M :

$$
\begin{aligned}
\lceil x\rceil & \triangleq x \\
\lceil\lambda x: \tau . M\rceil & \triangleq \lambda x \cdot\lceil M\rceil \\
\left\lceil M_{1} M_{2}\right\rceil & \triangleq\left\lceil M_{1}\right\rceil\left\lceil M_{2}\right\rceil
\end{aligned}
$$

Type reconstruction

Conversely, can we convert implicitly-typed expressions back into explicitly-typed ones, that is, can we reconstruct the missing type information?

This is equivalent to finding a typing derivation for implicitly-typed terms. It is called type reconstruction (or type inference). (See the course on type reconstruction.)

Type reconstruction

Annotating programs with types can lead to redundancy.
Types can even become extremely cumbersome when they have to be explicitly and repeatedly provided. In some pathological cases, type information may grow in square of the size of the underlying untyped expression.

This creates a need for a certain degree of type reconstruction (also called type inference), even when the language is meant to be explicitly typed, where the source program may contain some but not all type information.

Full type reconstruction is undecidable for expressive type systems.
Some type annotations are required or type reconstruction is incomplete.

Untyped semantics

Observe that although the reduction carries types at runtime, types do not actually contribute to the reduction.

Intuitively, the semantics of terms is the same as that of their type erasures. We say that the semantics is untyped or type-erasing.

But how can we say that the semantics of typed and untyped terms coincide when these terms do not live in the same world?

Untyped semantics

Observe that although the reduction carries types at runtime, types do not actually contribute to the reduction.

Intuitively, the semantics of terms is the same as that of their type erasures. We say that the semantics is untyped or type-erasing.

But how can we say that the semantics of typed and untyped terms coincide when these terms do not live in the same world?

By showing that the reductions in the two languages can be put into close correspondence.

Untyped semantics

On the one hand, type erasure preserves reduction.
Lemma (Direct simulation)

$$
M_{1} \xrightarrow{\beta} M_{2}
$$

If $M_{1} \longrightarrow M_{2}$ then $\left\lceil M_{1}\right\rceil \longrightarrow\left\lceil M_{2}\right\rceil$.

Untyped semantics

On the one hand, type erasure preserves reduction.
Lemma (Direct simulation)
If $M_{1} \longrightarrow M_{2}$ then $\left\lceil M_{1}\right\rceil \longrightarrow\left\lceil M_{2}\right\rceil$.

Untyped semantics

On the one hand, type erasure preserves reduction.
Lemma (Direct simulation)
If $M_{1} \longrightarrow M_{2}$ then $\left\lceil M_{1}\right\rceil \longrightarrow\left\lceil M_{2}\right\rceil$.
Conversely, a reduction step after type erasure could
 also have been performed on the term before type erasure.

Lemma (Inverse simulation)
If $\lceil M\rceil \longrightarrow a$ then there exists M^{\prime} such that $M \longrightarrow M^{\prime}$ and $\left\lceil M^{\prime}\right\rceil=a$.

Untyped semantics

On the one hand, type erasure preserves reduction.
Lemma (Direct simulation)
If $M_{1} \longrightarrow M_{2}$ then $\left\lceil M_{1}\right\rceil \longrightarrow\left\lceil M_{2}\right\rceil$.
Conversely, a reduction step after type erasure could
 also have been performed on the term before type erasure.

Lemma (Inverse simulation)
If $\lceil M\rceil \longrightarrow a$ then there exists M^{\prime} such that $M \longrightarrow M^{\prime}$ and $\left\lceil M^{\prime}\right\rceil=a$.

Untyped semantics

On the one hand, type erasure preserves reduction. Lemma (Direct simulation) If $M_{1} \longrightarrow M_{2}$ then $\left\lceil M_{1}\right\rceil \longrightarrow\left\lceil M_{2}\right\rceil$.

Conversely, a reduction step after type erasure could
 also have been performed on the term before type erasure.
Lemma (Inverse simulation)
If $\lceil M\rceil \longrightarrow a$ then there exists M^{\prime} such that $M \longrightarrow M^{\prime}$ and $\left\lceil M^{\prime}\right\rceil=a$.

What we have established is a bisimulation between explicitly-typed terms and implicitly-typed ones.

In general, there may be reduction steps on source terms that involved only types and have no counter-part (and disappear) on compiled terms.

Untyped semantics

It is an important property for a language to have an untyped semantics.
It then has an implicitly-typed presentation.
The metatheoretical study is often easier with explicitly-typed terms, in particular when proving syntactic properties.

Properties of the implicitly-typed presentation can often be indirectly proved via an explicitly-typed presentation of the language.

This is the path we choose in this course.
(Once we have shown that implicit and explicit presentations coincide, we can choose whichever view is more convenient.)

Contents

- Simply-typed λ-calculus
- Type soundness for simply-typed λ-calculus
- Simple extensions: Pairs, sums, recursive functions
- Polymorphism
- Polymorphic λ-calculus
- Type soundness
- Type erasing semantics

Stating type soundness

What is a formal statement of the slogan
"Well-typed expressions do not go wrong"
By definition, a closed term M is well-typed if it admits some type τ in the empty environment.

By definition, a closed, irreducible term is either a value or stuck. Thus, a closed term can only...

Stating type soundness

What is a formal statement of the slogan
"Well-typed expressions do not go wrong"
By definition, a closed term M is well-typed if it admits some type τ in the empty environment.

By definition, a closed, irreducible term is either a value or stuck. Thus, a closed term can only:

- diverge,
- converge to a value, or
- go wrong by reducing to a stuck term.

Type soundness: the last case is not possible for well-typed terms.

Stating type soundness

The slogan now has a formal meaning:
Theorem (Type soundness)
Well-typed expressions do not go wrong.
Proof.
By Subject Reduction and Progress.

Note We only give the proof schema here, as the same proof will carried again, in with more details in the (more complex) case of System F. -See the course notes for detailed proofs.

Establishing type soundness

We use the syntactic proof method of Wright and Felleisen [1994].
Type soundness follows from two properties:
Theorem (Subject reduction)
Reduction preserves types: if $M_{1} \longrightarrow M_{2}$ then for any type τ such that $\varnothing \vdash M_{1}: \tau$, we also have $\varnothing \vdash M_{2}: \tau$.

Theorem (Progress)
A (closed) well-typed term is either a value or reducible:
if $\varnothing \vdash M: \tau$ then there exists M^{\prime} such that $M \longrightarrow M^{\prime}$, or M is a value.
Equivalently, we may say: closed, well-typed, irreducible terms are values.

Contents

- Simply-typed λ-calculus
- Type soundness for simply-typed λ-calculus
- Simple extensions: Pairs, sums, recursive functions
- Polymorphism
- Polymorphic λ-calculus
- Type soundness
- Type erasing semantics

Adding a unit

The simply-typed λ-calculus is modified as follows. Values and expressions are extended with a nullary constructor () (read "unit"):

$$
M::=\ldots|() \quad V::=\ldots|()
$$

No new reduction rule is introduced.
Types are extended with a new constant unit and a new typing rule:

$$
\tau::=\ldots \mid \text { unit } \quad \Gamma \vdash(): \text { unit }
$$

Pairs

The simply-typed λ-calculus is modified as follows.
Values, expressions, evaluation contexts are extended:

$$
\begin{aligned}
M & ::= \\
E & ::=\ldots|(M, M)| \operatorname{proj}_{i} M \\
V & ::=\ldots \mid(V, V) \\
i & \in\{1,2\}
\end{aligned}
$$

A new reduction rule is introduced:
???

Pairs

The simply-typed λ-calculus is modified as follows.
Values, expressions, evaluation contexts are extended:

$$
\begin{aligned}
M & ::=\ldots|(M, M)| \operatorname{proj}_{i} M \\
E & ::=\ldots|([], M)|(V,[]) \mid \operatorname{proj}_{i}[] \\
V & ::=\ldots \mid(V, V) \\
i & \in\{1,2\}
\end{aligned}
$$

A new reduction rule is introduced:
???

Pairs

The simply-typed λ-calculus is modified as follows.
Values, expressions, evaluation contexts are extended:

$$
\begin{aligned}
M & ::= \\
E & ::=\ldots|(M, M)| \operatorname{proj}_{i} M \\
V & ::=\ldots|(V, M)|(V,[]) \mid \operatorname{proj}_{i}[] \\
i & \in\{1,2\}
\end{aligned}
$$

A new reduction rule is introduced:

$$
\operatorname{proj}_{i}\left(V_{1}, V_{2}\right) \longrightarrow V_{i}
$$

Pairs

Types are extended:

$$
\tau::=\ldots \mid \tau \times \tau
$$

Two new typing rules are introduced:

$$
\begin{array}{lll}
\begin{array}{l}
\text { Pair } \\
\Gamma \vdash M_{1}: \tau_{1} \\
\Gamma \vdash\left(M_{1}, M_{2}\right): \tau_{1} \times \tau_{2}
\end{array} & \begin{array}{l}
\text { ProJ } \\
\Gamma \vdash M: \tau_{1} \times \tau_{2} \\
\Gamma \vdash \operatorname{proj}_{i} M: \tau_{i}
\end{array} & \frac{\Gamma}{\Gamma}
\end{array}
$$

Sums

Values, expressions, evaluation contexts are extended:

$$
\begin{aligned}
M & ::= \\
E & \left.::=\left|\operatorname{inj}_{i} M\right| \text { case } M \text { of } V\right] V \\
V & ::=\ldots \mid{ }^{\prime}\left[j_{j} V\right.
\end{aligned}
$$

A new reduction rule is introduced:
???

Sums

Values, expressions, evaluation contexts are extended:

$$
\begin{aligned}
M & ::= \\
E & \left.::=\left|\operatorname{inj}_{i} M\right| \text { case } M \text { of } V\right] V \\
V & ::=\ldots\left|\operatorname{inj}_{i}[]\right| \text { case }[] \text { of } V[V
\end{aligned}
$$

A new reduction rule is introduced:
???

Sums

Values, expressions, evaluation contexts are extended:

$$
\begin{aligned}
M & ::= \\
E & \left.::=\left|\operatorname{inj}_{i} M\right| \text { case } M \text { of } V\right] V \\
V & ::=\ldots\left|\operatorname{inj}_{i}[]\right| \text { case }[] \text { of } V[V
\end{aligned}
$$

A new reduction rule is introduced:

$$
\text { case inj } j_{i} V \text { of } V_{1} \llbracket V_{2} \longrightarrow V_{i} V
$$

Sums

Types are extended:

$$
\tau::=\ldots \mid \tau+\tau
$$

Two new typing rules are introduced:

Case

$$
\frac{\Gamma \vdash M: \tau_{i}}{\Gamma \vdash i n j_{i} M: \tau_{1}+\tau_{2}}
$$

Sums

with unique types

Notice that a property of simply-typed λ-calculus is lost: expressions do not have unique types anymore, i.e. the type of an expression is no longer determined by the expression.

Uniqueness of types can be recovered
?

Sums

with unique types

Notice that a property of simply-typed λ-calculus is lost: expressions do not have unique types anymore, i.e. the type of an expression is no longer determined by the expression.

Uniqueness of types can be recovered by using a type annotation in injections:

?

Sums

with unique types

Notice that a property of simply-typed λ-calculus is lost: expressions do not have unique types anymore, i.e. the type of an expression is no longer determined by the expression.

Uniqueness of types can be recovered by using a type annotation in injections:

$$
V::=\ldots \mid i n j_{i} V \text { as } \tau
$$

and modifying the typing rules and reduction rules accordingly.

Exercise

Describe an extension with the option type.

Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

- a new type constructor, to classify values of a new shape;
- new expressions, to construct and destruct values of a new shape.
- new typing rules for new forms of expressions;
- new reduction rules, to specify how values of the new shape can be destructed;
- new evaluation contexts—but just to propagate reduction under the new constructors.

Subject reduction is preserved ...

Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

- a new type constructor, to classify values of a new shape;
- new expressions, to construct and destruct values of a new shape.
- new typing rules for new forms of expressions;
- new reduction rules, to specify how values of the new shape can be destructed;
- new evaluation contexts-but just to propagate reduction under the new constructors.

Subject reduction is preserved because types are preserved by the new reduction rules.

Progress is preserved ...

Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

- a new type constructor, to classify values of a new shape;
- new expressions, to construct and destruct values of a new shape.
- new typing rules for new forms of expressions;
- new reduction rules, to specify how values of the new shape can be destructed;
- new evaluation contexts-but just to propagate reduction under the new constructors.

Subject reduction is preserved because types are preserved by the new reduction rules.

Progress is preserved because the type system ensures that the new destructors can only be applied to values such that at least one of the new reduction rules applies.

Modularity of extensions

These extensions are independent: they can be added to the λ-calculus alone or mixed altogether.

Indeed, no assumption about other extensions (the "...") is ever made, except for the classification lemma which requires, informally, that values of other shapes have types of other shapes.

This is indeed the case in the extensions we have presented: the unit has the Unit type, pairs have product types, sums have sum types.

In fact, these extensions could have been presented as several instances of a more general extension of the λ-calculus with constants, for which type soundness can be established uniformly under reasonable assumptions relating the given typing rules and reduction rules for constants.

See the treatment of data types in System F in the following section.

Recursive functions

The simply-typed λ-calculus is modified as follows.
Values and expressions are extended:

$$
\begin{aligned}
M & ::=\quad \ldots \mid \mu f: \tau . \lambda x . M \\
V & ::=\ldots \mid \mu f: \tau \cdot \lambda x \cdot M
\end{aligned}
$$

A new reduction rule is introduced:

$$
(\mu f: \tau . \lambda x . M) V \longrightarrow[f \mapsto \mu f: \tau . \lambda x . M][x \mapsto V] M
$$

Recursive functions

Types are not extended. We already have function types.
What does this imply as a corollary?

Recursive functions

Types are not extended. We already have function types.
What does this imply as a corollary?

- Types will not distinguish functions from recursive functions.

Recursive functions

Types are not extended. We already have function types.
What does this imply as a corollary?

- Types will not distinguish functions from recursive functions.

A new typing rule is introduced:

$$
\begin{aligned}
& \text { FIXABS } \\
& \Gamma, f: \tau_{1} \rightarrow \tau_{2} \vdash \lambda x: \tau_{1} \cdot M: \tau_{1} \rightarrow \tau_{2} \\
& \Gamma \vdash \mu f: \tau_{1} \rightarrow \tau_{2} \cdot \lambda x \cdot M: \tau_{1} \rightarrow \tau_{2}
\end{aligned}
$$

Recursive functions

Types are not extended. We already have function types.
What does this imply as a corollary?

- Types will not distinguish functions from recursive functions.

A new typing rule is introduced:

$$
\begin{aligned}
& \text { FIXABS } \\
& \frac{\Gamma, f: \tau_{1} \rightarrow \tau_{2} \vdash \lambda x: \tau_{1} \cdot M: \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash \mu f: \tau_{1} \rightarrow \tau_{2} \cdot \lambda x \cdot M: \tau_{1} \rightarrow \tau_{2}}
\end{aligned}
$$

In the premise, the type $\tau_{1} \rightarrow \tau_{2}$ serves both as an assumption and a goal. This is a typical feature of recursive definitions.

A derived construct: let

The construct "let x: $\tau=M_{1}$ in M_{2} " can be viewed as syntactic sugar for the β-redex " $\left(\lambda x: \tau . M_{2}\right) M_{1}$ ".

A derived construct: let

The construct "let x: $\tau=M_{1}$ in M_{2} " can be viewed as syntactic sugar for the β-redex " $\left(\lambda x: \tau . M_{2}\right) M_{1}$ ".

The latter can be type-checked only by a derivation of the form:

$$
\begin{aligned}
& \text { ABS } \frac{\Gamma, x: \tau_{1} \vdash M_{2}: \tau_{2}}{\Gamma \vdash \lambda x: \tau_{1} \cdot M_{2}: \tau_{1} \rightarrow \tau_{2}} \quad \Gamma \vdash M_{1}: \tau_{1} \\
& \Gamma \vdash\left(\lambda x: \tau_{1} \cdot M_{2}\right) M_{1}: \tau_{2}
\end{aligned}
$$

This means that the following derived rule is sound and complete:

$$
\frac{\stackrel{\Gamma \vdash M_{1}}{\text { LetMono }} \tau_{1} \quad \Gamma, x: \tau_{1} \vdash M_{2}: \tau_{2}}{\Gamma \vdash \text { let } x: \tau_{1}=M_{1} \text { in } M_{2}: \tau_{2}}
$$

The construct " $M_{1} ; M_{2}$ " can in turn be viewed as syntactic sugar for ...

A derived construct: let

The construct "let x: $\tau=M_{1}$ in M_{2} " can be viewed as syntactic sugar for the β-redex " $\left(\lambda x: \tau . M_{2}\right) M_{1}$ ".

The latter can be type-checked only by a derivation of the form:

$$
\begin{aligned}
& \operatorname{ABS} \\
& \operatorname{APP} \frac{\Gamma \vdash x: \tau_{1} \vdash M_{2}: \tau_{2}}{\Gamma \vdash \lambda x: \tau_{1} \cdot M_{2}: \tau_{1} \rightarrow \tau_{2}} \quad \Gamma \vdash M_{1}: \tau_{1} \\
& \Gamma \vdash\left(\lambda x: \tau_{1} \cdot M_{2}\right) M_{1}: \tau_{2}
\end{aligned}
$$

This means that the following derived rule is sound and complete:

$$
\frac{\stackrel{\Gamma \vdash M_{1}}{\text { LetMono }}: \tau_{1} \quad \Gamma, x: \tau_{1} \vdash M_{2}: \tau_{2}}{\Gamma \vdash \text { let } x: \tau_{1}=M_{1} \text { in } M_{2}: \tau_{2}}
$$

The construct " $M_{1} ; M_{2}$ " can in turn be viewed as syntactic sugar for let x : unit $=M_{1}$ in M_{2} where $x \notin \operatorname{ftv}\left(M_{2}\right)$.

A derived construct: let

or a primitive one?

In the derived form let $x: \tau_{1}=M_{1}$ in M_{2} the type of M_{1} must be explicitly given, although by uniqueness of types, it is entirely determined by the expression M_{1} itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form let $x=M_{1}$ in M_{2} with the following primitive typing rule.

LetMono
$\frac{\Gamma \vdash M_{1}: \tau_{1} \quad \Gamma, x: \tau_{1} \vdash M_{2}: \tau_{2}}{\Gamma \vdash \text { let } x=M_{1} \text { in } M_{2}: \tau_{2}}$
This seems better...
$?$

A derived construct: let

or a primitive one?

In the derived form let $x: \tau_{1}=M_{1}$ in M_{2} the type of M_{1} must be explicitly given, although by uniqueness of types, it is entirely determined by the expression M_{1} itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form let $x=M_{1}$ in M_{2} with the following primitive typing rule.

$$
\frac{\begin{array}{l}
\text { LetMono } \\
\Gamma \vdash M_{1}: \tau_{1}
\end{array} \quad \Gamma, x: \tau_{1} \vdash M_{2}: \tau_{2}}{\Gamma \vdash \text { let } x=M_{1} \text { in } M_{2}: \tau_{2}}
$$

This seems better-not necessarily, because removing redundant type annotations is the task of type reconstruction and we should not bother (too much) about it in the explicitly-typed version of the language.

A derived construct: let

or a primitive one?

In the derived form let $x: \tau_{1}=M_{1}$ in M_{2} the type of M_{1} must be explicitly given, although by uniqueness of types, it is entirely determined by the expression M_{1} itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form let $x=M_{1}$ in M_{2} with the following primitive typing rule.

$$
\begin{aligned}
& \begin{array}{l}
\text { LetMono } \\
\Gamma \vdash M_{1}: \tau_{1} \\
\Gamma \vdash \text { let } x=M_{1} \text { in } M_{2}: \tau_{2}
\end{array}
\end{aligned}
$$

This seems better-not necessarily, because removing redundant type annotations is the task of type reconstruction and we should not bother (too much) about it in the explicitly-typed version of the language.

Minimizing the number of language constructs is at least as important as avoiding extra type annotations in an explicitly-typed language.

A derived construct: let rec

The construct "let rec $(f: \tau) x=M_{1}$ in M_{2} " can be viewed as syntactic sugar for "let $f=\mu f: \tau . \lambda x \cdot M_{1}$ in M_{2} ".

Contents

- Simply-typed λ-calculus
- Type soundness for simply-typed λ-calculus
- Simple extensions: Pairs, sums, recursive functions
- Polymorphism
- Polymorphic λ-calculus
- Type soundness
- Type erasing semantics

What is polymorphism?

Polymorphism is the ability for a term to simultaneously admit several distinct types.

Why polymorphism?

Polymorphism is indispensable [Reynolds, 1974]: if a function that sorts a list is independent of the type of the list elements, then it should be directly applicable to lists of integers, lists of booleans, etc.

In short, it should have polymorphic type:

$$
\forall \alpha \cdot(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

which instantiates to the monomorphic types:

$$
\begin{aligned}
(\text { int } \rightarrow \text { int } \rightarrow \text { bool }) & \rightarrow \text { list int } \rightarrow \text { list int } \\
(\text { bool } \rightarrow \text { bool } \rightarrow \text { bool }) & \rightarrow \text { list bool } \rightarrow \text { list bool }
\end{aligned}
$$

Why polymorphism?

In the absence of polymorphism, the only ways of achieving this effect would be:

- to manually duplicate the list sorting function at every type (no-no!);
- to use subtyping and claim that the function sorts lists of values of any type:

$$
(\top \rightarrow \top \rightarrow \text { bool }) \rightarrow \text { list } \top \rightarrow \text { list } \top
$$

(The type T is the type of all values, and the supertype of all types.)
Why isn't this so good?

Why polymorphism?

In the absence of polymorphism, the only ways of achieving this effect would be:

- to manually duplicate the list sorting function at every type (no-no!);
- to use subtyping and claim that the function sorts lists of values of any type:

$$
(\top \rightarrow \top \rightarrow \text { bool }) \rightarrow \text { list } \top \rightarrow \text { list } \top
$$

(The type T is the type of all values, and the supertype of all types.)
This leads to loss of information and subsequently requires introducing an unsafe downcast operation. This was the approach followed in Java before generics were introduced in 1.5.

Polymorphism seems almost free

Polymorphism is already implicitly present in simply-typed λ-calculus. Indeed, we have checked that the type:

$$
\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{1} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \times \alpha_{2}
$$

is a principal type for the term $\lambda f x y .(f x, f y)$.
By saying that this term admits the polymorphic type:

$$
\forall \alpha_{1} \alpha_{2} \cdot\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{1} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \times \alpha_{2}
$$

we make polymorphism internal to the type system.

Towards type abstraction

Polymorphism is a step on the road towards type abstraction. Intuitively, if a function that sorts a list has polymorphic type:

$$
\forall \alpha \cdot(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

then it knows nothing about α-it is parametric in α-so it must manipulate the list elements abstractly: it can copy them around, pass them as arguments to the comparison function, but it cannot directly inspect their structure.

In short, within the code of the list sorting function, the variable α is an abstract type.

Parametricity

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

For instance, the polymorphic type $\forall \alpha . \alpha \rightarrow \alpha$ has only a few inhabitants, which ones?

Parametricity

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

For instance, the polymorphic type $\forall \alpha . \alpha \rightarrow \alpha$ has only one inhabitant, up to $\beta \eta$-equivalence, namely the identity.

Parametricity

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

Similarly, the type of the list sorting function

$$
\forall \alpha \cdot(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

reveals a "free theorem" about its behavior!

Parametricity

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

Similarly, the type of the list sorting function

$$
\forall \alpha \cdot(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

reveals a "free theorem" about its behavior!
Basically, sorting commutes with (map f), provided f is order-preserving.

$$
\begin{aligned}
(\forall x, y, \operatorname{cmp}(f x)(f y)=\operatorname{cmp} x y) & \Longrightarrow \\
\forall \ell, \operatorname{sort}(\operatorname{map} f \ell) & =\operatorname{map} f(\text { sort } \ell)
\end{aligned}
$$

Note that there are many inhabitants of this type, but they all satisfy this free theorem

Can you give a few?

Parametricity

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

Similarly, the type of the list sorting function

$$
\forall \alpha \cdot(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

reveals a "free theorem" about its behavior!
Basically, sorting commutes with (map f), provided fis order-preserving.

$$
\begin{aligned}
(\forall x, y, \operatorname{cmp}(f x)(f y)=\operatorname{cmp} x y) & \Longrightarrow \\
\forall \ell, \operatorname{sort}(\operatorname{map} f \ell) & =\operatorname{map} f(\text { sort } \ell)
\end{aligned}
$$

Note that there are many inhabitants of this type, but they all satisfy this free theorem (including, e.g., a function that sorts in reverse order, or a function that removes duplicates)

Parametricity

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

This phenomenon was studied by Reynolds [1983] and by Wadler [1989; 2007], among others. An account based on an operational semantics is offered by Pitts [2000].

Unfortunately, parametricity theorems are invalidated or degenerate in the presence of side effects (non-termination, exceptions, or references).

While most programs use side effects and side effects cannot be ignored when reasoning globally, many parts of programs do not use them and reasoning locally as if they where no side effects is still often helpful.

Parametricity plays an important role in the study of functional programming languages and remains a guideline when programming. See the course on logical relations.

Ad hoc versus parametric

The term "polymorphism" dates back to a 1967 paper by Strachey [2000], where ad hoc polymorphism and parametric polymorphism were distinguished.

There are two different (and sometimes incompatible) ways of defining this distinction...

Ad hoc v.s. parametric polymorphism: first definition

With parametric polymorphism, a term can admit several types, all of which are instances of a single polymorphic type:

$$
\begin{aligned}
& \text { int } \rightarrow \text { int }, \\
& \text { bool } \rightarrow \text { bool, } \\
& \ldots \\
& \forall \alpha . \alpha \rightarrow \alpha
\end{aligned}
$$

With ad hoc polymorphism, a term can admit a collection of unrelated types:

$$
\begin{gathered}
\text { int } \rightarrow \text { int } \rightarrow \text { int }, \\
\text { float } \rightarrow \text { float } \rightarrow \text { float }, \\
\ldots \\
\text { but not } \\
\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha
\end{gathered}
$$

Ad hoc v.s. parametric polymorphism: second definition

With parametric polymorphism, untyped programs have a well-defined semantics. (Think of the identity function.) Types are used only to rule out unsafe programs.

With ad hoc polymorphism, untyped programs do not have a semantics: the meaning of a term can depend upon its type (e.g. $2+2$), or, even worse, upon its type derivation (e.g. λx.show $(\operatorname{read} x)$).

Ad hoc v.s. parametric polymorphism: type classes

By the first definition, Haskell's type classes [Hudak et al., 2007] are a form of (bounded) parametric polymorphism: terms have principal (qualified) type schemes, such as:

$$
\forall \alpha . \text { Num } \alpha \Rightarrow \alpha \rightarrow \alpha \rightarrow \alpha
$$

Yet, by the second definition, type classes are a form of ad hoc polymorphism: untyped programs do not have a semantics.

In the case of Haskell type classes, the two views can be reconciled. (See the course on overloading.)

In this course, we are mostly interested in the simplest form of parametric polymorphism.

Contents

- Simply-typed λ-calculus
- Type soundness for simply-typed λ-calculus
- Simple extensions: Pairs, sums, recursive functions
- Polymorphism
- Polymorphic λ-calculus
- Type soundness
- Type erasing semantics

System F

The System F, (also known as: the polymorphic λ-calculus, the second-order λ-calculus; F^{2}) was independently defined by Girard (1972) and Reynolds [1974].

Compared to the simply-typed λ-calculus, types are extended with universal quantification:

$$
\tau::=\ldots \mid \forall \alpha . \tau
$$

How are the syntax and semantics of terms extended?
There are several variants, depending on whether one adopts an

- implicitly-typed or explicitly-typed (syntactic) presentation of terms
- and a type-passing or a type-erasing semantics.

Explicitly-typed System F

In the explicitly-typed variant [Reynolds, 1974], there are term-level constructs for introducing and eliminating the universal quantifier:
$\frac{\stackrel{\text { Tabs }}{\Gamma, \alpha \vdash M: \tau}}{\Gamma \vdash \Lambda \alpha . M: \forall \alpha . \tau}$

$$
\frac{\Gamma \vdash M: \forall \alpha . \tau}{\Gamma \vdash M \tau^{\prime}:\left[\alpha \mapsto \tau^{\prime}\right] \tau}
$$

Terms are extended accordingly:

$$
M::=\ldots|\Lambda \alpha . M| M \tau
$$

Type variables are explicitly bound and appear in type environments.

$$
\Gamma::=\ldots \mid \Gamma, \alpha
$$

Well-formedness of environment

Mandatory: We extend our previous convention to form environments: Γ, α requires $\alpha \# \Gamma$, i.e. α is neither in the domain nor in the image of Γ.

Optional: We also require that environments be closed with respect to type variables, that is, we require $\operatorname{ftv}(\tau) \subseteq \operatorname{dom}(\Gamma)$ to form $\Gamma, x: \tau$.

However, a looser style would also be possible.

- Our stricter definition allows fewer judgments, since judgments with open contexts are not allowed.
- However, these judgments can always be closed by adding a prefix composed of a sequence of its free type variables to be well-formed.

The stricter presentation is easier to manipulate in proofs; it is also easier to mechanize.

Well-formedness of environments and types

Well-formedness of environments, written $\vdash \Gamma$ and well-formedness of types, written $\Gamma \vdash \tau$, may also be defined recursively by inference rules:

$$
\begin{aligned}
& \text { WFEnvTVar } \\
& \qquad \begin{array}{l}
\vdash \Gamma \quad \alpha \notin \operatorname{dom}(\Gamma) \\
\vdash \Gamma, \alpha
\end{array}
\end{aligned}
$$

$$
\frac{{ }^{\text {WFENvVAR }}}{\Gamma \vdash \tau \quad x \notin \operatorname{dom}(\Gamma)}
$$

$$
\begin{aligned}
& \text { WFTYPEVAR } \\
& \frac{\vdash \Gamma \quad \alpha \in \Gamma}{\Gamma \vdash \alpha}
\end{aligned}
$$

$$
\begin{aligned}
& \text { WFTyPEARROW } \\
& \frac{\Gamma \vdash \tau_{1} \quad \Gamma \vdash \tau_{2}}{\Gamma \vdash \tau_{1} \rightarrow \tau_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { WFTyPEFORALL } \\
& \frac{\Gamma, \alpha \vdash \tau}{\Gamma \vdash \forall \alpha \cdot \tau}
\end{aligned}
$$

Well-formedness of environments and types

Well-formedness of environments, written $\vdash \Gamma$ and well-formedness of types, written $\Gamma \vdash \tau$, may also be defined recursively by inference rules:

$$
\begin{aligned}
& \text { WFEnvTvar } \\
& \qquad \frac{\vdash \Gamma \quad \alpha \notin \operatorname{dom}(\Gamma)}{\vdash \Gamma, \alpha}
\end{aligned}
$$

$$
\frac{\begin{array}{l}
\text { WFENvVAR } \\
\Gamma \vdash \tau
\end{array} \quad x \notin \operatorname{dom}(\Gamma)}{\vdash \Gamma, x: \tau}
$$

WfTyPEVAR
$\stackrel{\vdash \Gamma \quad \alpha \in \Gamma}{\Gamma \vdash \alpha}$

$$
\begin{aligned}
& \text { WFTypeARROW } \\
& \frac{\Gamma \vdash \tau_{1} \quad \Gamma \vdash \tau_{2}}{\Gamma \vdash \tau_{1} \rightarrow \tau_{2}}
\end{aligned}
$$

WfTypeForall

$$
\frac{\Gamma, \alpha \vdash \tau}{\Gamma \vdash \forall \alpha \cdot \tau}
$$

Note

Rule WfenvVar need not the premise $\vdash \Gamma$, which follows from $\Gamma \vdash \tau$

Well-formedness of environments and types

There is a choice whether well-formedness of environments should be made explicit or left implicit in typing rules.

Explicit well-formedness amounts to adding well-formedness premises to every rule where the environment or some type that appears in the conclusion does not appear in any premise.

Explicit well-formedness is more precise and better suited for mechanized proofs. Explicit well-formedness is recommended.

However, we choose to leave well-formedness conditions implicit in this course, as it is a bit verbose and sometimes distracting. (Still, we will remind implicit well-formedness premises in the definition of typing rules.)

Type-passing semantics

We need the following reduction for type-level expressions:

$$
(\Lambda \alpha . M) \tau \longrightarrow[\alpha \mapsto \tau] M
$$

Then, there is a choice.
?

Type-passing semantics

We need the following reduction for type-level expressions:

$$
(\Lambda \alpha . M) \tau \longrightarrow[\alpha \mapsto \tau] M
$$

Then, there is a choice.
Historically, in most presentations of System F, type abstraction stops the evaluation. It is described by:

$$
V::=\ldots \quad E::=\ldots
$$

Type-passing semantics

We need the following reduction for type-level expressions:

$$
(\Lambda \alpha . M) \tau \longrightarrow[\alpha \mapsto \tau] M
$$

Then, there is a choice.
Historically, in most presentations of System F, type abstraction stops the evaluation. It is described by:

$$
V::=\ldots|\Lambda \alpha . M \quad E::=\ldots|[] \tau
$$

However, this defines a type-passing semantics!

Indeed,

$?$

Type-passing semantics

We need the following reduction for type-level expressions:

$$
(\Lambda \alpha . M) \tau \longrightarrow[\alpha \mapsto \tau] M
$$

Then, there is a choice.
Historically, in most presentations of System F, type abstraction stops the evaluation. It is described by:

$$
V::=\ldots|\Lambda \alpha \cdot M \quad E::=\ldots|[] \tau
$$

However, this defines a type-passing semantics!

Indeed, $\Lambda \alpha .((\lambda y: \alpha . y) V)$ is then a value while its type erasure $(\lambda y . y)\lceil V\rceil$ is not-and can be further reduced.

Type-erasing semantics

We recover a type-erasing semantics if we allow evaluation under type abstraction:

Type-erasing semantics

We recover a type-erasing semantics if we allow evaluation under type abstraction:

$$
V::=\ldots|\Lambda \alpha . V \quad E::=\ldots|[] \tau \mid \Lambda \alpha .[]
$$

Then, we only need a weaker version of ι-reduction:

Type-erasing semantics

We recover a type-erasing semantics if we allow evaluation under type abstraction:

$$
V::=\ldots|\Lambda \alpha . V \quad E::=\ldots|[] \tau \mid \Lambda \alpha .[]
$$

Then, we only need a weaker version of ι-reduction:

$$
(\Lambda \alpha . V) \tau \longrightarrow[\alpha \mapsto \tau] V
$$

We now have:

$$
\Lambda \alpha .((\lambda y: \alpha . y) V) \longrightarrow \Lambda \alpha . V
$$

We verify below that this defines a type-erasing semantics, indeed.

Type-passing versus type-erasing: pros and cons

The type-passing interpretation has a number of disadvantages.

- because it alters the semantics, it does not fit our view that the untyped semantics should pre-exist and that a type system is only a predicate that selects a subset of the well-behaved terms.
- it blocks reduction of polymorphic expressions:
> if f is list flattening of type $\forall \alpha$. list (list α) \rightarrow list α, the monomorphic function $(f$ int $) \circ(f($ list int $))$ reduces to $\Lambda x . f(f x)$, while its more general polymorphic version $\Lambda \alpha .(f \alpha) \circ(f($ list $\alpha))$ is irreducible.
- because it requires both values and types to exist at runtime, it can lead to a duplication of machinery. Compare type-preserving closure conversion in type-passing [Minamide et al., 1996] and in type-erasing [Morrisett et al., 1999] styles.

Type-passing versus type-erasing: pros and cons

An apparent advantage of the type-passing interpretation is to allow typecase; however, typecase can be simulated in a type-erasing system by viewing runtime type descriptions as values [Crary et al., 2002].

The type-erasing semantics

- does not alter the semantics of untyped terms.
- for this very reason, it also coincides with the semantics of ML—and, more generally, with the semantics of most programming languages.
- It also exhibits difficulties when adding side effects while the type-passing semantics does not.

In the following, we choose a type-erasing semantics.
Notice that we allow evaluation under a type abstraction as a consequence of choosing a type-erasing semantics-and not the converse.

Reconciling type-passing and type-erasing views

If we restrict type abstraction to value-forms (which include values and variables), that is, we only allow $\Lambda \alpha . M$ when M is a value-form, then the type-passing and type-erasing semantics coincide.

Indeed, under this restriction, closed type abstractions will always be type abstractions of values, and evaluation under type abstraction will never be used, even if allowed.

This restriction is chosen when adding side-effects as a way to preserve type-soundness.

Explicitly-typed System F

We study the explicitly-typed presentation of System F first because it is simpler.

Once, we have verified that the semantics is indeed type-preserving, many properties can be transferred back to the implicitly-typed version, and in particular, to its ML subset.

Then, both presentations can be used, interchangeably.

System F, full definition (on one slide) To remember!

Syntax

$$
\begin{array}{rll}
\tau & ::= & \alpha|\tau \rightarrow \tau| \forall \alpha . \tau \\
M & ::= & x|\lambda x: \tau . M| M M|\Lambda \alpha . M| M \tau
\end{array}
$$

Typing rules

$$
\begin{array}{ll}
\mathrm{VAR} \\
\Gamma \vdash x: \Gamma(x) & \frac{\mathrm{ABS}}{} \quad \frac{\Gamma: \tau_{1} \vdash M: \tau_{2}}{\Gamma \vdash \lambda x: \tau_{1} \cdot M: \tau_{1} \rightarrow \tau_{2}}
\end{array}
$$

App
$\frac{\Gamma \vdash M_{1}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash M_{2}: \tau_{1}}{\Gamma \vdash M_{1} M_{2}: \tau_{2}}$

TABS

$$
\frac{\Gamma, \alpha \vdash M: \tau}{\Gamma \vdash \Lambda \alpha . M: \forall \alpha . \tau}
$$

$$
\frac{\Gamma \vdash M: \forall \alpha . \tau}{\Gamma \vdash M \tau^{\prime}:\left[\alpha \mapsto \tau^{\prime}\right] \tau}
$$

Semantics

$$
\begin{aligned}
& V \quad::=\quad \lambda x: \tau . M \mid \Lambda \alpha . V \\
& E \quad:=\quad[] M|V[]|[] \tau \mid \Lambda \alpha .[] \\
& (\lambda x: \tau . M) V \longrightarrow[x \mapsto V] M \\
& (\Lambda \alpha . V) \tau \longrightarrow[\alpha \mapsto \tau] V
\end{aligned}
$$

Encoding data-structures

System F is quite expressive: it enables the encoding of data structures.
For instance, the church encoding of pairs is well-typed:

$$
\begin{gathered}
\text { pair } \triangleq \Lambda \alpha_{1} \cdot \Lambda \alpha_{2} \cdot \lambda x_{1}: \alpha_{1} \cdot \lambda x_{2}: \alpha_{2} \cdot \Lambda \beta \cdot \lambda y: \alpha_{1} \rightarrow \alpha_{2} \rightarrow \beta \cdot y x_{1} x_{2} \\
\operatorname{proj}_{i} \triangleq \Lambda \alpha_{1} \cdot \Lambda \alpha_{2} \cdot \lambda y: \forall \beta \cdot\left(\alpha_{1} \rightarrow \alpha_{2} \rightarrow \beta\right) \rightarrow \beta \cdot y \alpha_{i}\left(\lambda x_{1}: \alpha_{1} \cdot \lambda x_{2}: \alpha_{2} \cdot x_{i}\right) \\
\lceil\text { pair }\rceil \triangleq \lambda x_{1} \cdot \lambda x_{2} \cdot \lambda y \cdot y x_{1} x_{2} \\
\left\lceil\text { proj }_{i}\right\rceil \triangleq \lambda y \cdot y\left(\lambda x_{1} \cdot \lambda x_{2} \cdot x_{i}\right)
\end{gathered}
$$

Sum and inductive types such as Natural numbers, List, etc. can also be encoded.

Primitive data-structures as constructors and destructors

Unit, Pairs, Sums, etc. can also be added to System F as primitives.
We can then proceed as for simply-typed λ-calculus.
However, we may take advantage of the expressiveness of System F to deal with such extensions is a more elegant way: thanks to polymorphism, we need not add new typing rules for each extension.

We may instead add one typing rule for constants that is parametrized by an initial typing environment.

This allows sharing the meta-theoretical developments between the different extensions.

Let us first illustrate an extension of System F with primitive pairs. (We will then generalize it to arbitrary constructors and destructors.)

Constructors and destructors

Types are extended with a type constructor \times of arity 2 :

$$
\tau::=\ldots \mid \tau \times \tau
$$

Expressions are extended with a constructor (\cdot, \cdot) and two destructors proj $_{1}$ and $p r o j_{2}$ with the respective signatures:

$$
\begin{array}{ll}
\text { Pair: } & \forall \alpha_{1} \cdot \forall \alpha_{2} \cdot \alpha_{1} \rightarrow \alpha_{2} \rightarrow \alpha_{1} \times \alpha_{2} \\
\operatorname{proj}_{i}: & \forall \alpha_{1} \cdot \forall \alpha_{2} \cdot \alpha_{1} \times \alpha_{2} \rightarrow \alpha_{i}
\end{array}
$$

which represent an initial environment Δ. We need not add any new typing rule, but instead type programs in the initial environment Δ.

This allows for the formation of partial applications of constructors and destructors (all cases but one). Hence, values are extended as follows:

$$
\begin{aligned}
V::=\ldots & |\operatorname{Pair}| \operatorname{Pair} \tau|\operatorname{Pair} \tau \tau| \operatorname{Pair} \tau \tau V \mid \operatorname{Pair} \tau \tau V V \\
& \left|\operatorname{proj}_{i}\right| \operatorname{proj}_{i} \tau \mid \operatorname{proj}_{i} \tau \tau
\end{aligned}
$$

Constructors and destructors

We add the two following reduction rules:

$$
\operatorname{proj}_{i} \tau_{1} \tau_{2}\left(\text { pair } \tau_{1}^{\prime} \tau_{2}^{\prime} V_{1} V_{2}\right) \longrightarrow V_{i}
$$

Comments?

Constructors and destructors

We add the two following reduction rules:

$$
\operatorname{proj}_{i} \tau_{1} \tau_{2}\left(\text { pair } \tau_{1}^{\prime} \tau_{2}^{\prime} V_{1} V_{2}\right) \longrightarrow V_{i}
$$

Comments?

- For well-typed programs, τ_{i} and τ_{i}^{\prime} will always be equal, but the reduction will not check this at runtime.

Instead, one could have defined the rule:

$$
\operatorname{proj}_{i} \tau_{1} \tau_{2}\left(\text { pair } \tau_{1} \tau_{2} V_{1} V_{2}\right) \longrightarrow V_{i} \quad\left(\delta_{\text {pair }}^{\prime}\right)
$$

The two semantics are equivalent on well-typed terms, but differ on ill-typed terms where $\delta_{\text {pair }}^{\prime}$ may block when rule $\delta_{\text {pair }}$ would progress, ignoring type errors.

Interestingly, with $\delta_{\text {pair }}^{\prime}$, the proof obligation is simpler for subject reduction but replaced by a stronger proof obligation for progress.

Constructors and destructors

We add the two following reduction rules:

$$
\operatorname{proj}_{i} \tau_{1} \tau_{2}\left(\text { pair } \tau_{1}^{\prime} \tau_{2}^{\prime} V_{1} V_{2}\right) \longrightarrow V_{i}
$$

Comments?

- This presentation forces the programmer to specify the types of the components of the pair.

However, since this is an explicitly type presentation, these types are already known from the arguments of the pair (when present)

This should not be considered as a problem: explicitly-typed presentations are always verbose. Removing redundant type annotations is the task of type reconstruction.

Constructors and destructors

General case

Assume given a collection of type constructors $G \in \mathcal{G}$, with their arity arity (G). We assume that types respect the arities of type constructors.

Given G, a type of the form $G(\vec{\tau})$ is called a G-type.
A type τ is called a datatype if it is a G-type for some type constructor G.
For instance \mathcal{G} is $\left\{\right.$ unit, int, bool, $\left({ }_{-} \times{ }_{-}\right)$, list $\left.{ }_{_}, \ldots\right\}$
Let Δ be an initial environment binding constants c of arity n (split into constructors C and destructors d) to closed types of the form:

We require that

$$
c: \forall \alpha_{1} \ldots \forall \alpha_{k} \cdot \underbrace{\tau_{1} \rightarrow \ldots \tau_{n}}_{\operatorname{arity}(c)} \rightarrow \tau
$$

- τ be is a datatype whenever c is a constructor (key for progress);
- the arity of destructors be strictly positive (nullary destructors introduce pathological cases for little benefit).

Constructors and destructors

General case

Expressions are extended with constants: Constants are typed as variables, but their types are looked up in the initial environment Δ :

Cst

$$
\begin{array}{rll}
M::=\ldots \mid c & \frac{c: \tau \in \Delta}{\Gamma \vdash c: \tau} \\
c & :=C \mid d &
\end{array}
$$

Values are extended with partial or full applications of constructors and partial applications of destructors:

$$
\begin{array}{rllllll}
V & ::= & \ldots & & & \\
& \mid & C & \tau_{1} & \ldots & \tau_{p} & V_{1}
\end{array} \ldots V_{q} \quad q \leq \operatorname{arity}(C)
$$

For each destructor d of arity n, we assume given a set of δ-rules of the form

$$
\begin{equation*}
d \tau_{1} \ldots \tau_{k} V_{1} \ldots V_{n} \longrightarrow M \tag{d}
\end{equation*}
$$

Constructors and destructors

Soundness requirements

Of course, we need assumptions to relate typing and reduction of constants:

Subject-reduction for constants:

- δ-rules preserve typings for well-typed terms

$$
\text { If } \vec{\alpha} \vdash M_{1}: \tau \text { and } M_{1} \longrightarrow{ }_{\delta} M_{2} \text { then } \vec{\alpha} \vdash M_{2}: \tau \text {. }
$$

Progress for constants:

- Well-typed full applications of destructors can be reduced If $\vec{\alpha} \vdash M_{1}: \tau$ and M_{1} is of the form $d \tau_{1} \ldots \tau_{k} V_{1} \ldots V_{\operatorname{arity}(d)}$ then there exists M_{2} such that $M_{1} \longrightarrow M_{2}$.

Intuitively, progress for constants means that the domain of destructors is at least as large as specified by their type in Δ.

Example

Adding units:

- Introduce a type constant unit
- Introduce a constructor () of arity 0 of type unit.
- No primitive and no reduction rule is added.

The assumptions obviously hold in the absence of destructors.

The previous example of pairs also perfectly fits in this framework.

Example

Fixpoint

We introduce a destructor

$$
\text { fix: } \forall \alpha . \forall \beta .((\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta
$$

of arity 2 , together with the δ-rule

$$
\begin{equation*}
\text { fix } \tau_{1} \tau_{2} V_{1} V_{2} \longrightarrow V_{1}\left(\text { fix } \tau_{1} \tau_{2} V_{1}\right) V_{2} \tag{fix}
\end{equation*}
$$

It is straightforward to check the assumptions:
?

Example

Fixpoint

We introduce a destructor

$$
\text { fix: } \forall \alpha . \forall \beta .((\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta
$$

of arity 2 , together with the δ-rule

$$
\text { fix } \tau_{1} \tau_{2} V_{1} V_{2} \longrightarrow V_{1}\left(\text { fix } \tau_{1} \tau_{2} V_{1}\right) V_{2}
$$

It is straightforward to check the assumptions:

- Progress is obvious,

$$
?
$$

Example

Fixpoint

We introduce a destructor

$$
\text { fix: } \forall \alpha . \forall \beta .((\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta
$$

of arity 2 , together with the δ-rule

$$
\begin{equation*}
\text { fix } \tau_{1} \tau_{2} V_{1} V_{2} \longrightarrow V_{1}\left(\text { fix } \tau_{1} \tau_{2} V_{1}\right) V_{2} \tag{fix}
\end{equation*}
$$

It is straightforward to check the assumptions:

- Progress is obvious, since $\delta_{f i x}$ works for any values V_{1} and V_{2}.

Example

Fixpoint

We introduce a destructor

$$
\text { fix: } \forall \alpha . \forall \beta .((\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta
$$

of arity 2 , together with the δ-rule

$$
\text { fix } \tau_{1} \tau_{2} V_{1} V_{2} \longrightarrow V_{1}\left(\text { fix } \tau_{1} \tau_{2} V_{1}\right) V_{2}
$$

It is straightforward to check the assumptions:

- Progress is obvious, since $\delta_{f i x}$ works for any values V_{1} and V_{2}.
- Subject reduction is also straightforward
(by inspection of the typing derivation)

Exercise

1) Formulate the extension of System F with lists as constants.
2) Check that this extension is sound.

Contents

- Simply-typed λ-calculus
- Type soundness for simply-typed λ-calculus
- Simple extensions: Pairs, sums, recursive functions
- Polymorphism
- Polymorphic λ-calculus
- Type soundness
- Type erasing semantics

Type soundness

The structure of the proof is similar to the case of simply-typed λ-calculus and follows from subject reduction and progress.

Subject reduction uses the following lemmas:

- inversion of typing judgments
- permutation and weakening
- expression substitution
- type substitution (new)
- compositionality

Inversion of typing judgements

Lemma (Inversion of typing rules)
Assume $\Gamma \vdash M: \tau$.

- If M is a variable x, then $x \in \operatorname{dom}(\Gamma)$ and $\Gamma(x)=\tau$.
- If M is $\lambda x: \tau_{0} . M_{1}$, then τ is of the form $\tau_{0} \rightarrow \tau_{1}$ and $\Gamma, x: \tau_{0} \vdash M_{1}: \tau_{1}$.
- If M is $M_{1} M_{2}$, then $\Gamma \vdash M_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma \vdash M_{2}: \tau_{2}$ for some type τ_{2}.
- If M is a constant c, then $c \in \operatorname{dom}(\Delta)$ and $\Delta(x)=\tau$.
- If M is $M_{1} \tau_{2}$ then τ is of the form $\left[\alpha \mapsto \tau_{2}\right] \tau_{1}$ and $\Gamma \vdash M_{1}: \forall \alpha . \tau_{1}$.
- If M is $\Lambda \alpha . M_{1}$, then τ is of the form $\forall \alpha . \tau_{1}$ and $\Gamma, \alpha \vdash M_{1}: \tau_{1}$.

The inversion lemma is a basic property that is used in many places when reasoning by induction on terms. It may not always be as trivial as in our simple setting: stating it explicitly avoids informal reasoning in proofs.

Type soundness

Weakening

Lemma (Weakening)
Assume $\Gamma \vdash M: \tau$.

1) If $x \# \Gamma$ and $\Gamma \vdash \tau^{\prime}$, then $\Gamma, x: \tau^{\prime} \vdash M: \tau$
2) If $\beta \# \Gamma$, then $\Gamma, \beta \vdash M: \tau$.

That is, if $\vdash \Gamma, \Gamma^{\prime}$, then $\Gamma, \Gamma^{\prime} \vdash M: \tau$.
The proof is by induction on M, then by cases on M applying the inversion lemma.

Cases for value and type abstraction appeal to the permutation lemma:
Lemma (Permutation)
If $\Gamma, \Gamma_{1}, \Gamma_{2}, \Gamma^{\prime} \vdash M: \tau$ and $\Gamma_{1} \# \Gamma_{2}$ then $\Gamma, \Gamma_{2}, \Gamma_{1}, \Gamma^{\prime} \vdash M: \tau$.

Type soundness

Type substitution

Lemma (Expression substitution, strengthened)
If $\Gamma, x: \tau_{0}, \Gamma^{\prime} \vdash M: \tau$ and $\Gamma \vdash M_{0}: \tau_{0} \quad$ then $\Gamma, \Gamma^{\prime} \vdash\left[x \mapsto M_{0}\right] M: \tau$.
The proof is by induction on M.
The case for type and value abstraction requires the strengthened version with an arbitrary context Γ^{\prime}. The proof is then straightforward-using the weakening lemma at variables.

Type soundness

Type substitution

Lemma (Type substitition, strengthened)
If $\Gamma, \alpha, \Gamma^{\prime} \vdash M: \tau^{\prime}$ and $\Gamma \vdash \tau$ then $\Gamma,[\alpha \mapsto \tau] \Gamma^{\prime} \vdash[\alpha \mapsto \tau] M:[\alpha \mapsto \tau] \tau^{\prime}$.
The proof is by induction on M.
The interesting cases are for type and value abstraction, which require the strengthened version with an arbitrary typing context Γ^{\prime} on the right. Then, the proof is straightforward.

Compositionality

Lemma (Compositionality)
If $\varnothing \vdash E[M]: \tau$, then there exists $\quad \tau^{\prime}$ such that $\varnothing \vdash M: \tau^{\prime}$ and all M^{\prime} verifying $\varnothing \quad \vdash M^{\prime}: \tau^{\prime}$ also verify $\varnothing \vdash E\left[M^{\prime}\right]: \tau$.

Remarks

Compositionality

Lemma (Compositionality)

If $\Gamma \vdash E[M]: \tau$, then there exists $\vec{\alpha}$ and τ^{\prime} such that $\Gamma, \vec{\alpha} \vdash M: \tau^{\prime}$ and all M^{\prime} verifying $\Gamma, \vec{\alpha} \vdash M^{\prime}: \tau^{\prime}$ also verify $\Gamma \vdash E\left[M^{\prime}\right]: \tau$.

Remarks

- We need to state compositionality under a context Γ that may at least contain type variables. We allow program variables as well, as it does not complicate the proof.
- Extension of Γ by type variables is needed because evaluation proceeds under type abstractions, hence the evaluation context may need to bind new type variables.

Type soundness

Subject reduction

Theorem (Subject reduction)
Reduction preserves types: if $M_{1} \longrightarrow M_{2}$ then for any context $\vec{\alpha}$ and type τ such that $\vec{\alpha} \vdash M_{1}: \tau$, we also have $\vec{\alpha} \vdash M_{2}: \tau$.

The proof is by induction on M. Using the previous lemmas it is straightforward. Interestingly, the case for δ-rules follows from the subject-reduction assumption for constants (slide 78).

Type soundness

Progress is restated as follows:
Theorem (Progress, strengthened)
A well-typed, irreducible closed term is a value:
if $\vec{\alpha} \vdash M: \tau$ and $M \nrightarrow$, then M is some value V.
The theorem must be been stated using a sequence of type variables $\vec{\alpha}$ for the typing context instead of the empty environment. A closed term does not have free program variable, but may have free type variables (in particular under the value restriction).

The theorem is proved by induction and case analysis on M.
It relies mainly on the classification lemma (given below) and the progress assumption for destructors (slide 78).

Beware! We must take care of partial applications of constants
Lemma (Classification)
Assume $\vec{\alpha} \vdash V: \tau$

- If τ is an arrow type, then V is
?

Beware! We must take care of partial applications of constants
Lemma (Classification)
Assume $\vec{\alpha} \vdash V: \tau$

- If τ is an arrow type, then V is a function
?

Type soundness

Beware! We must take care of partial applications of constants
Lemma (Classification)
Assume $\vec{\alpha} \vdash V: \tau$

- If τ is an arrow type, then V is either a function or a partial application of a constant.

$?$

Type soundness

Classification

Beware! We must take care of partial applications of constants
Lemma (Classification)
Assume $\vec{\alpha} \vdash V: \tau$

- If τ is an arrow type, then V is either a function or a partial application of a constant.
- If τ is a polymorphic type, then V is
$?$

Type soundness

Classification

Beware! We must take care of partial applications of constants
Lemma (Classification)
Assume $\vec{\alpha} \vdash V: \tau$

- If τ is an arrow type, then V is either a function or a partial application of a constant.
- If τ is a polymorphic type, then V is either a type abstraction of a value or a partial application of a constant to types.
- If τ is a constructed type, then V is
$?$

Type soundness

Classification

Beware! We must take care of partial applications of constants Lemma (Classification)
Assume $\vec{\alpha} \vdash V: \tau$

- If τ is an arrow type, then V is either a function or a partial application of a constant.
- If τ is a polymorphic type, then V is either a type abstraction of a value or a partial application of a constant to types.
- If τ is a constructed type, then V is a constructed value.

This must be refined by partitioning constructors into their associated type-constructor:

$$
\begin{aligned}
& \text { If } \tau \text { is a } G \text {-constructed type }\left(\text { e.g. int, } \tau_{1} \times \tau_{2} \text {, or } \tau \text { list }\right) \text {, } \\
& \text { then } V \text { is a value constructed with a G-constructor } \\
& \left(\text { e.g. an integer } n \text {, a pair }\left(V_{1}, V_{2}\right) \text {, a list Nil or } \operatorname{Cons}\left(V_{1}, V_{2}\right)\right)
\end{aligned}
$$

Normalization

Theorem
Reduction terminates in pure System F.
This is also true for arbitrary reductions and not just for call-by-value reduction.

This is a difficult proof, due to Girard [1972]; Girard et al. [1990]). See the lesson on logical relations.

Contents

- Simply-typed λ-calculus
- Type soundness for simply-typed λ-calculus
- Simple extensions: Pairs, sums, recursive functions
- Polymorphism
- Polymorphic λ-calculus
- Type soundness
- Type erasing semantics

Implicitly-typed System F

The syntax and dynamic semantics of terms are that of the untyped λ-calculus. We use letters a, v, and e to range over implicitly-typed terms, values, and evaluation contexts. We write F and $\lceil F\rceil$ for the explicitly-typed and implicit-typed versions of System F.

Definition 1 A closed term a is in $\lceil F\rceil$ if it is the type erasure of a closed (with respect to term variables) term M in F.

We rewrite the typing rules to operate directly on unannotated terms by dropping all type information in terms:

Definition 2 (equivalent) Typing rules for $\lceil F\rceil$ are those of the implicitlty-typed simply-typed λ-calculus with two new rules:

$$
\begin{aligned}
& \mathrm{IF}-\mathrm{TABS} \\
& \Gamma, \alpha \vdash a: \tau \\
& \Gamma \vdash a: \forall \alpha . \tau
\end{aligned}
$$

$$
\begin{aligned}
& \text { IF-TAPP } \\
& \Gamma \vdash a: \forall \alpha . \tau \\
& \Gamma \vdash a:\left[\alpha \mapsto \tau_{0}\right] \tau
\end{aligned}
$$

Notice that these rules are not syntax directed.

Type-erasing typechecking

Type systems for implicitly-typed and explicitly-type System F coincide.
Lemma
$\Gamma \vdash a: \tau$ holds in implicitly-typed System F if and only if there exists an explicitly-typed expression M whose erasure is a such that $\Gamma \vdash M: \tau$.

Trivial.
One could write judgements of the form $\Gamma \vdash a \Rightarrow M: \tau$ to mean that the explicitly typed term M witnesses that the implicitly typed term a has type τ in the environment Γ.

Type soundness for $\lceil F\rceil$

Subject reduction and progress imply the soundness of the explicitly-typed System F. What about the implicitly-typed version?

Can we reuse the soundness proof for the explicitly-typed version? Can we pull back subject reduction and progress from F to $\lceil F\rceil$?

Progress? Given a well-typed term $a \in\lceil F\rceil$, can we find a term $M \in F$ whose erasure is a and since M is a value or reduces, conclude that a is a value or reduces?

Subject reduction? Given a well-typed term $a_{1} \in\lceil F\rceil$ of type τ that reduces to a_{2}, can we find a term $M_{1} \in F$ whose erasure is a_{1} and show that M_{1} reduces to a term M_{2} whose erasure is a_{2} to conclude that the type of a_{2} is the same as the type of a_{1} ?

In both cases, this reasoning requires a type-erasing semantics.

Type erasing semantics

We claimed earlier that the explicitly-typed System F has an erasing semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the reduction of type applications on explicitly-typed terms is dropped on implicitly-typed terms, hence the two reductions cannot coincide exactly.

The way to formalize this is to split reduction steps into $\beta \delta$-steps corresponding to β or δ rules that are preserved by type-erasure, and ι-steps corresponding to the reduction of type applications that disappear during type-erasure:

Type erasing semantics

We claimed earlier that the explicitly-typed System F has an erasing semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the reduction of type applications on explicitly-typed terms is dropped on implicitly-typed terms, hence the two reductions cannot coincide exactly.

The way to formalize this is to split reduction steps into $\beta \delta$-steps corresponding to β or δ rules that are preserved by type-erasure, and ι-steps corresponding to the reduction of type applications that disappear during type-erasure:

$$
\begin{gathered}
M_{0}-\stackrel{*}{\iota} \rightarrow M_{0}^{\prime} \xrightarrow[\beta \delta]{\longrightarrow} M_{1} \\
\ddots \ddots \\
a_{0} \xrightarrow{\ddots} \xrightarrow{\circ} a_{1}
\end{gathered}
$$

Type erasing semantics

We claimed earlier that the explicitly-typed System F has an erasing semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the reduction of type applications on explicitly-typed terms is dropped on implicitly-typed terms, hence the two reductions cannot coincide exactly.

The way to formalize this is to split reduction steps into $\beta \delta$-steps corresponding to β or δ rules that are preserved by type-erasure, and ι-steps corresponding to the reduction of type applications that disappear during type-erasure:

$$
\begin{aligned}
& M_{0}-\stackrel{*}{\iota} M_{0}^{\prime} \underset{\beta \delta}{\longrightarrow} M_{1} \quad M_{j}-\stackrel{*}{\iota} M_{j}^{\prime} \underset{\beta \delta}{\longrightarrow} M_{j+1} \\
& a_{0} \longrightarrow a_{1} \quad{ }_{\beta} \longrightarrow a_{j+1}
\end{aligned}
$$

Type erasing semantics

We claimed earlier that the explicitly-typed System F has an erasing semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the reduction of type applications on explicitly-typed terms is dropped on implicitly-typed terms, hence the two reductions cannot coincide exactly.

The way to formalize this is to split reduction steps into $\beta \delta$-steps corresponding to β or δ rules that are preserved by type-erasure, and ι-steps corresponding to the reduction of type applications that disappear during type-erasure:

$$
\begin{aligned}
& M_{0}-\stackrel{*}{\iota} M_{0}^{\prime} \underset{\beta \delta}{\longrightarrow} M_{1} \quad M_{j}-\stackrel{*}{\iota} M_{j}^{\prime} \underset{\beta \delta}{\longrightarrow} M_{j+1} \quad M_{n}--\stackrel{*}{\iota} \rightarrow V \nrightarrow \\
& { }_{a} \longrightarrow \underset{\beta \delta}{ }{ }^{2}
\end{aligned}
$$

Type erasing semantics

Type erasure simulates in $\lceil F\rceil$ the reduction in F upto ι-steps:
Lemma (Direct simulation)
Assume $\Gamma \vdash M_{1}: \tau$.

1) If $M_{1} \longrightarrow{ }_{\iota} M_{2}$, then $\left\lceil M_{1}\right\rceil=\left\lceil M_{2}\right\rceil$
2) If $M_{1} \longrightarrow_{\beta \delta} M_{2}$, then $\left\lceil M_{1}\right\rceil \longrightarrow_{\beta \delta}\left\lceil M_{2}\right\rceil$

Both parts are easy by definition of type erasure.

Type erasing semantics

Inverse simulation

The inverse direction is more delicate to state, since there are usually many expressions of F whose erasure is a given expression in $\lceil F\rceil$, as $\lceil\cdot\rceil$ is not injective.
Lemma (Inverse simulation)
Assume $\Gamma \vdash M_{1}: \tau$ and $\left\lceil M_{1}\right\rceil \longrightarrow a$.
Then, there exists a term M_{2} such that $M_{1} \longrightarrow_{\iota}^{*} \longrightarrow \beta \delta M_{2}$ and $\left\lceil M_{2}\right\rceil=a$.

Type erasing semantics

Assumption on δ-reduction

Of course, the semantics can only be type erasing if δ-rules do not themselves depend on type information.

We first need δ-reduction to be defined on type erasures.

- We may prove the theorem directly for some concrete examples of δ-reduction. However, keeping δ-reduction abstract is preferable to avoid repeating the same reasoning again and again.
- We assume that it is such that type erasure establishes a bisimulation for δ-reduction taken alone.

Type erasing semantics

Assumption on δ-reduction

We assume that for any explicitly-typed term M of the form $d \tau_{1} \ldots \tau_{j} V_{1} \ldots V_{k}$ such that $\Gamma \vdash M: \tau$, the following properties hold:
(1) If $M \longrightarrow_{\delta} M^{\prime}$, then $\lceil M\rceil \longrightarrow_{\delta}\left\lceil M^{\prime}\right\rceil$.
(2) If $\lceil M\rceil \longrightarrow_{\delta} a$, then there exists M^{\prime} such that $M \longrightarrow_{\delta} M^{\prime}$ and a is the type-erasure of M^{\prime}.

Remarks

- In most cases, the assumption on δ-reduction is obvious to check.
- In general the δ-reduction on untyped terms is larger than the projection of δ-reduction on typed terms.
- If we restrict δ-reduction to implicitly-typed terms, then it usually coincides with the projection of δ-reduction of explicitly-typed terms.

Type soundness

for implicitly-typed System F

We may now easily transpose subject reduction and progress from the implicitly-typed version to the implicitly-typed version of System F.

Progress Well-typed expressions in $\lceil F\rceil$ have a well-typed antecedent in ι-normal form in F, which, by progress in F, either $\beta \delta$-reduces or is a value; then, its type erasure $\beta \delta$-reduces (by direct simulation) or is a value (by observation).

Subject reduction Assume that $\Gamma \vdash a_{1}: \tau$ and $a_{1} \longrightarrow a_{2}$.

- By well-typedness of a_{1}, there exists a term M_{1} that erases to a_{1} such that $\Gamma \vdash M_{1}: \tau$.
- By inverse simulation in F, there exists M_{2} such that $M_{1} \longrightarrow{ }_{\iota}^{*} \longrightarrow \beta \delta M_{2}$ and $\left\lceil M_{2}\right\rceil$ is a_{2}.
- By subject reduction in $F, \Gamma \vdash M_{2}: \tau$, which implies $\Gamma \vdash a_{2}: \tau$.

Type erasing semantics

The design of advanced typed systems for programming languages is usually done in explicitly-typed versions, with a type-erasing semantics in mind, but this is not always checked in details.

While the direct simulation is usually straightforward, the inverse simulation is often harder. As type systems get more complicated, reduction at the level of types also gets more complicated.

It is important and not always obvious that type reduction terminates and is rich enough to never block reductions that could occur in the type erasure.

Type erasing semantics

On bisimulations

Using bisimulations to show that compilation preserves the semantics given in small-step style is a classical technique.

For example, this technique is heavily used in the CompCert project to prove the correctness of a C-compiler to assembly code in Coq, using a dozen of successive intermediate languages.

It is also used in program proofs by refinement, proving some properties on a high-level abstract version of a program and using bisimulation to show that the properties also hold for the real program.

Proof of inverse simulation

The inverse simulation can first be shown assuming that M_{1} is ι-normal.
The general case follows, since then $M_{1} \iota$-reduces to a normal form M_{1}^{\prime} preserving typings; then, the lemma can be applied to M_{1}^{\prime} instead of M_{1}.

Notice that this argument relies on the termination of ι-reduction alone.
The termination of ι-reduction is easy for System F, since it strictly decreases the number of type abstractions. (In F^{ω}, it requires termination of simply-typed λ-calculus.)

The proof of inverse simulation in the case M is ι-normal is by induction on the reduction in $\lceil F\rceil$, using a few helper lemmas, to deal with the fact that type-erasure is not injective.

Proof of inverse simulation

Retyping contexts are just wrapping type abstractions and type applications around expressions, without changing their type erasure.

$$
\mathcal{R}::=[]|\Lambda \alpha \cdot \mathcal{R}| \mathcal{R} \tau
$$

(Notice that \mathcal{R} are arbitrarily deep, as opposed to evaluation contexts.)

Lemma

1) A term that erases to $\bar{e}[a]$ can be put in the form $\bar{E}[M]$ where $\lceil\bar{E}\rceil$ is \bar{e} and $\lceil M\rceil$ is a, and moreover, M does not start with a type abstraction nor a type application.
2) An evaluation context \bar{E} whose erasure is the empty context is a retyping context \mathcal{R}.
3) If $\mathcal{R}[M]$ is in ι-normal form, then \mathcal{R} is of the form $\Lambda \vec{\alpha}$.[] $\vec{\tau}$.

Proof of inverse simulation

Helper lemmas

Lemma (inversion of type erasure)
Assume $\lceil M\rceil=a$

- If a is x, then M is of the form $\mathcal{R}[x]$
- If a is c, then M is of the form $\mathcal{R}[c]$
- If a is λx. a_{1}, then M is of the form $\mathcal{R}\left[\lambda x: \tau . M_{1}\right]$ with $\left\lceil M_{1}\right\rceil=a_{1}$
- If a is $a_{1} a_{2}$, then M is of the form $\mathcal{R}\left[M_{1} M_{2}\right]$ with $\left\lceil M_{i}\right\rceil=a_{i}$

The proof is by induction on M.

Proof of inverse simulation

Helper lemmas

Lemma (Inversion of type erasure for well-typed values)
Assume $\Gamma \vdash M: \tau$ and M is ι-normal. If $\lceil M\rceil$ is a value v, then M is a value V. Moreover,

- If v is $\lambda x . a_{1}$, then V is $\Lambda \vec{\alpha} . \lambda x: \tau . M_{1}$ with $\left\lceil M_{1}\right\rceil=a_{1}$.
- If v is a partial application $c v_{1} \ldots v_{n}$ then V is $\mathcal{R}\left[c \vec{\tau} V_{1} \ldots V_{n}\right]$ with $\left\lceil V_{i}\right\rceil=v_{i}$.

The proof is by induction on M. It uses the inversion of type erasure and analysis of the typing derivation to restrict the form of retyping contexts.

Corollary

Let M be a well-typed term in ι-normal form whose erasure is a.

- If a is $\left(\lambda x . a_{1}\right) v$, then M if of the form $\mathcal{R}\left[\left(\lambda x: \tau . M_{1}\right) V\right]$, with $\left\lceil M_{1}\right\rceil=a_{1}$ and $\lceil V\rceil=v$.
- If a is a full application $\left(d v_{1} \ldots v_{n}\right)$, then M is of the form $\mathcal{R}\left[d \vec{\tau} V_{1} \ldots V_{n}\right]$ and $\left\lceil V_{i}\right\rceil$ is v_{i}.

Abstract Data types, Existential types, GADTs

Contents

- Algebraic Data Types
- Equi- and iso- recursive types
- Existential types
- Implicitly-type existential types passing
- Iso-existential types
- Generalized Algebraic Datatypes
- Application to typed closure conversion
- Environment passing
- Closure passing

Algebraic Datatypes Types

Examples
In OCaml:
type 'a list =
Nil: 'a list
Cons: 'a * 'a list \rightarrow 'a list
or

```
type ('leaf, 'node) tree =
    Leaf: 'leaf \(\rightarrow\) ('leaf, 'node) tree
    Node : ('leaf, 'node) tree \(*\) 'node \(*\) ('leaf, 'node) tree \(\rightarrow\) ('leaf, 'node) tree
```


Algebraic Datatypes Types

General case

General case
type $G \vec{\alpha}=\Sigma_{i \in 1 . . n}\left(C_{i}: \forall \vec{\alpha} . \tau_{i} \rightarrow G \vec{\alpha}\right) \quad$ where $\vec{\alpha}=\bigcup_{i \in 1 . . n} \operatorname{ftv}\left(\tau_{i}\right)$
In System F, this amounts to declaring (implicit version for conciseness):
?

Algebraic Datatypes Types

General case

General case
type $G \vec{\alpha}=\Sigma_{i \in 1 . . n}\left(C_{i}: \forall \vec{\alpha} . \tau_{i} \rightarrow G \vec{\alpha}\right) \quad$ where $\vec{\alpha}=\bigcup_{i \in 1 . . n} \operatorname{ftv}\left(\tau_{i}\right)$
In System F, this amounts to declaring (implicit version for conciseness):

- a new type constructor G,

Algebraic Datatypes Types

General case

General case
type $G \vec{\alpha}=\Sigma_{i \in 1 . . n}\left(C_{i}: \forall \vec{\alpha} . \tau_{i} \rightarrow G \vec{\alpha}\right) \quad$ where $\vec{\alpha}=\bigcup_{i \in 1 . . n} \operatorname{ftv}\left(\tau_{i}\right)$
In System F, this amounts to declaring (implicit version for conciseness):

- a new type constructor G,
- n constructors $\quad C_{i}: \forall \vec{\alpha} . \tau_{i} \rightarrow G \vec{\alpha}$
?

Algebraic Datatypes Types

General case

General case

$$
\operatorname{type} G \vec{\alpha}=\Sigma_{i \in 1 . . n}\left(C_{i}: \forall \vec{\alpha} . \tau_{i} \rightarrow G \vec{\alpha}\right) \quad \text { where } \vec{\alpha}=\bigcup_{i \in 1 . . n} \operatorname{ftv}\left(\tau_{i}\right)
$$

In System F, this amounts to declaring (implicit version for conciseness):

- a new type constructor G,
- n constructors $\quad C_{i}: \forall \vec{\alpha} . \tau_{i} \rightarrow G \vec{\alpha}$
- one destructor $\quad d_{G}: \forall \vec{\alpha}, \gamma \cdot G \vec{\alpha} \rightarrow\left(\tau_{1} \rightarrow \gamma\right) \ldots\left(\tau_{n} \rightarrow \gamma\right) \rightarrow \gamma$

Algebraic Datatypes Types

General case

$$
\text { type } G \vec{\alpha}=\Sigma_{i \in 1 . . n}\left(C_{i}: \forall \vec{\alpha} . \tau_{i} \rightarrow G \vec{\alpha}\right) \quad \text { where } \vec{\alpha}=\bigcup_{i \in 1 . . n} \operatorname{ftv}\left(\tau_{i}\right)
$$

In System F, this amounts to declaring (implicit version for conciseness):

- a new type constructor G,
- n constructors

$$
\begin{aligned}
& C_{i}: \forall \vec{\alpha} \cdot \tau_{i} \rightarrow G \vec{\alpha} \\
& d_{G}: \forall \vec{\alpha}, \gamma \cdot G \vec{\alpha} \rightarrow\left(\tau_{1} \rightarrow \gamma\right) \ldots\left(\tau_{n} \rightarrow \gamma\right) \rightarrow \gamma
\end{aligned}
$$

- one destructor
- n reduction rules $d_{G}\left(C_{i} v\right) v_{1} \ldots v_{n} \leadsto v_{i} v$

Exercise

Show that this extension verifies the subject reduction and progress axioms for constants.

Algebraic Datatypes Types

General case

$$
\text { type } G \vec{\alpha}=\Sigma_{i \in 1 . . n}\left(C_{i}: \forall \vec{\alpha} . \tau_{i} \rightarrow G \vec{\alpha}\right) \quad \text { where } \vec{\alpha}=\bigcup_{i \in 1 . . n} \operatorname{ftv}\left(\tau_{i}\right)
$$

Notice that

- All constructors build values of the same type $G \vec{\alpha}$ and are surjective (all types can be reached)
- The definition may be recursive, i.e. G may appear in τ_{i}

Algebraic datatypes introduce isorecursive types.

- Algebraic Data Types
- Equi- and iso- recursive types
- Existential types
- Implicitly-type existential types passing
- Iso-existential types
- Generalized Algebraic Datatypes
- Application to typed closure conversion
- Environment passing
- Closure passing

Recursive Types

Product and sum types alone do not allow describing data structures of unbounded size, such as lists and trees.

Indeed, if the grammar of types is $\tau::=u n i t|\tau \times \tau| \tau+\tau$, then it is clear that every type describes a finite set of values.

For every k, the type of lists of length at most k is expressible using this grammar. However, the type of lists of unbounded length is not.

Equi- versus isorecursive types

The following definition is inherently recursive:
"A list is either empty or a pair of an element and a list."
We need something like this:

$$
\text { list } \alpha \quad \diamond \text { unit }+\alpha \times \text { list } \alpha
$$

But what does \diamond stand for? Is it equality, or some kind of isomorphism?

Equi- versus isorecursive types

The following definition is inherently recursive:
"A list is either empty or a pair of an element and a list."
We need something like this:

$$
\text { list } \alpha \quad \diamond \text { unit }+\alpha \times \text { list } \alpha
$$

But what does \diamond stand for? Is it equality, or some kind of isomorphism?
There are two standard approaches to recursive types:

- equirecursive approach:
a recursive type is equal to its unfolding.
- isorecursive approach:
a recursive type and its unfolding are related via explicit coercions.

Equirecursive types

In the equirecursive approach, the usual syntax of types:

$$
\tau::=\alpha|\mathrm{F} \vec{\tau}| \forall \beta . \tau
$$

is no longer interpreted inductively. Instead, types are the regular infinite trees built on top of this grammar.

Finite syntax for recursive types

$$
\tau::=\alpha|\mu \alpha .(\mathrm{F} \vec{\tau})| \mu \alpha .(\forall \beta . \tau)
$$

We do not allow the seemingly more general form $\mu \alpha . \tau$, because $\mu \alpha . \alpha$ is meaningless, and $\mu \alpha . \beta$ or $\mu \alpha . \mu \beta . \tau$ are useless. If we write $\mu \alpha . \tau$, it should be understood that τ is contractive, that is, τ is a type constructor application or a forall introduction.

For instance, the type of lists of elements of type α is:

$$
\mu \beta .(\text { unit }+\alpha \times \beta)
$$

Equirecursive types

Inductive definition [Brandt and Henglein, 1998] show that equality is the least congruence generated by the following two rules:

$$
\begin{array}{ll}
\text { Fold } / \mathrm{UNFOLD} & \begin{array}{l}
\text { UniQUENESS } \\
\mu \alpha . \tau=[\alpha \mapsto \mu \alpha . \tau] \tau
\end{array} \\
\frac{\tau_{1}=\left[\alpha \mapsto \tau_{1}\right] \tau \quad \tau_{2}=\left[\alpha \mapsto \tau_{2}\right] \tau}{\tau_{1}=\tau_{2}}
\end{array}
$$

In both rules, τ must be contractive.
This axiomatization does not directly lead to an efficient algorithm for deciding equality, though.

Equirecursive types

Inductive definition [Brandt and Henglein, 1998] show that equality is the least congruence generated by the following two rules:

$$
\begin{array}{ll}
\text { Fold } / \mathrm{UnFOLD} & \begin{array}{l}
\text { UniQUENESS } \\
\mu \alpha . \tau=[\alpha \mapsto \mu \alpha . \tau] \tau
\end{array} \\
\frac{\tau_{1}=\left[\alpha \mapsto \tau_{1}\right] \tau \quad \tau_{2}=\left[\alpha \mapsto \tau_{2}\right] \tau}{\tau_{1}=\tau_{2}}
\end{array}
$$

In both rules, τ must be contractive.
This axiomatization does not directly lead to an efficient algorithm for deciding equality, though.

Co-inductive definition
$\alpha=\alpha \frac{[\alpha \mapsto \mu \alpha \cdot \mathrm{F} \vec{\tau}] \vec{\tau}=\left[\alpha \mapsto \mu \alpha \cdot \mathrm{F} \vec{\tau}^{\prime}\right] \vec{\tau}^{\prime}}{\mu \alpha \cdot \mathrm{F} \vec{\tau}=\mu \alpha \cdot \mathrm{F} \vec{\tau}^{\prime}} \quad \frac{[\alpha \mapsto \mu \alpha \cdot \forall \beta . \tau] \tau=\left[\alpha \mapsto \mu \alpha \cdot \forall \beta \cdot \tau^{\prime}\right] \tau^{\prime}}{\mu \alpha . \forall \beta \cdot \tau=\mu \alpha . \forall \beta \cdot \tau^{\prime}}$

Equirecursive types

Inductive definition [Brandt and Henglein, 1998] show that equality is the least congruence generated by the following two rules:

$$
\begin{array}{ll}
\text { FoLd/UNFOLD } \\
\mu \alpha . \tau=[\alpha \mapsto \mu \alpha . \tau] \tau
\end{array} \quad \frac{\tau_{1}=\left[\alpha \mapsto \tau_{1}\right] \tau \quad \tau_{2}=\left[\alpha \mapsto \tau_{2}\right] \tau}{\tau_{1}=\tau_{2}}
$$

UniQueness

In both rules, τ must be contractive.
This axiomatization does not directly lead to an efficient algorithm for deciding equality, though.

Co-inductive definition

$\alpha=\alpha \frac{[\alpha \mapsto \mu \alpha \cdot \mathrm{F} \vec{\tau}] \vec{\tau}=\left[\alpha \mapsto \mu \alpha \cdot \mathrm{F} \vec{\tau}^{\prime}\right] \vec{\tau}^{\prime}}{\mu \alpha \cdot \mathrm{F} \vec{\tau}=\mu \alpha \cdot \mathrm{F} \vec{\tau}^{\prime}} \quad \frac{[\alpha \mapsto \mu \alpha \cdot \forall \beta \cdot \tau] \tau=\left[\alpha \mapsto \mu \alpha \cdot \forall \beta \cdot \tau^{\prime}\right] \tau^{\prime}}{\mu \alpha . \forall \beta \cdot \tau=\mu \alpha \cdot \forall \beta \cdot \tau^{\prime}}$

Exercise

Show that $\mu \alpha \cdot A \alpha=\mu \alpha \cdot A A \alpha$ and $\mu \alpha \cdot A B \alpha=A \mu \alpha \cdot B A \alpha$ with both inductive and co-inductive definitions. Can you do it without the Uniqueness rule?

Equirecursive types

In the absence of quantifiers

Each type in this syntax denotes a unique regular tree, sometimes known as its infinite unfolding. Conversely, every regular tree can be expressed in this notation (possibly in more than one way).

If one builds a type-checker on top of this finite syntax, then one must be able to decide whether two types are equal, that is, have identical infinite unfoldings.

This can be done efficiently, either via the algorithm for comparing two DFAs, or better, by unification. (The latter approach is simpler, faster, and extends to the type inference problem.)

Equirecursive types

Without quantifiers

Proof of $\mu \alpha A A \alpha=\mu \alpha A A A \alpha$

By coinduction
Let u be $\mu \alpha A A \alpha$ v be $\mu \alpha A A A \alpha$

$$
\begin{gather*}
\frac{\overline{A u=A v}}{u=A A v} \tag{1}\\
\frac{A u=v}{u=A v} \\
\frac{A u=A A v}{u=v(1)}
\end{gather*}
$$

Equirecursive types

Without quantifiers

Proof of $\mu \alpha A A \alpha=\mu \alpha A A A \alpha$
By coinduction
By unification
Equivalent classes, using small terms
To do:

$$
\begin{align*}
& \hline u \sim A u_{1} \wedge u_{1} \sim A u \wedge v \sim A v_{1} \wedge v_{1} \sim A v_{2} \wedge v_{2} \sim A v \\
& u \sim A u_{1} \sim v \sim A v_{1} \wedge u_{1} \sim A u \wedge v_{1} \sim A v_{2} \wedge v_{2} \sim A v \\
& u \sim v \sim A v_{1} \wedge u_{1} \sim A u \sim v_{1} \sim A v_{2} \wedge v_{2} \sim A v \\
& u \sim v \sim A v_{1} \sim v_{2} \sim A v \wedge v_{1} \\
& u \sim v \sim v_{2} \sim A v \sim u_{1} \sim v_{1} \sim A v_{2} \\
& u \sim v \sim v_{2} \sim A v_{2} \\
& v_{1} \sim v \\
& v=v_{2} \\
& \hline
\end{align*}
$$

Equirecursive types

In the presence of quantifiers

The situation is more subtle because of α-conversion.
A (somewhat involved) canonical form can still be found, so that checking equality and first-order unification on types can still be done in $O(n \log n)$. See [Gauthier and Pottier, 2004].

Otherwise, without the use of such canonical forms, the best known algorithm is in $O\left(n^{2}\right)$ [Glew, 2002] testing equality of automatons with binders.

Equirecursive types

With quantifiers

Example of unfolding with canonical forms [Gauthier and Pottier, 2004].

- the letter in gray, is just any name, subject to α-conversion
- the number is the canonical name: it is the number of free variables under the binder-including recursive occurrences.

$$
\begin{align*}
& \forall a 1 . \mu \ell . a 1 \rightarrow \forall a 2 .(a 2 \rightarrow \ell) \tag{1}\\
& \forall a 1 . \mu \ell . a 1 \rightarrow \forall b 2 .(b 2 \rightarrow \ell) \\
= & \forall a 1 . \quad a 1 \rightarrow \forall b 2 .(b 2 \rightarrow \mu \ell . a 1 \rightarrow \forall b 2 .(b 2 \rightarrow \ell)) \\
= & \forall a 1 .
\end{align*} a 1 \rightarrow \forall b 2 .(b 2 \rightarrow \mu \ell . a 1 \rightarrow \forall c 2 .(c 2 \rightarrow \ell))
$$

With the canonical representation,

- Syntactic unfolding (i.e. without any renaming) avoids name capture and is also a correct semantical unfolding
- It shares free variables and can reuse the same name for the new bound variables without name capture.

Equirecursive types

Type soundness

In the presence of equirecursive types, structural induction on types is no longer permitted, but we never used it anyway - in soundness proofs.

Equirecursive types

Type soundness

In the presence of equirecursive types, structural induction on types is no longer permitted, but we never used it anyway - in soundness proofs.

We only need it to prove the termination of reduction, which does not hold any longer.

It remains true that

- $\mathrm{F} \vec{\tau}_{1}=\mathrm{F} \vec{\tau}_{2}$ implies $\vec{\tau}_{1}=\vec{\tau}_{2}$ (symbols are injective)—this is used in the proof of Subject Reduction.
- $\mathrm{F}_{1} \vec{\tau}_{1}=\mathrm{F}_{2} \vec{\tau}_{2}$ implies $\mathrm{F}_{1}=\mathrm{F}_{2}$-this was is the proof of Progress.

So, the reasoning that leads to type soundness is unaffected.

Exercise

Prove type soundness for the simply-typed λ-calculus in Coq. Then, change the syntax of types from Inductive to CoInductive.

Equirecursive types

break termination, indeed!

That is no a surprise, but...
What is the expressiveness of simply-typed λ-calculus with equirecursive types alone (no other constructs and/or constants)?

Equirecursive types

break termination, indeed!

That is no a surprise, but...
What is the expressiveness of simply-typed λ-calculus with equirecursive types alone (no other constructs and/or constants)?

All terms of the untyped λ-calculus are typable!

- define the universal type U as rec $\alpha . \alpha \rightarrow \alpha$
- we have $U=U \rightarrow U$, hence all terms are typable with type U.

Notce that one can emulate recursive types $U=U \rightarrow U$ by defining two functions fold and unfold of respective types $(U \rightarrow U) \rightarrow U$ and $U \rightarrow(U \rightarrow U)$ with side effects, such as:

- references, or
- exceptions

Equirecursive types

OCaml has both iso- and) equirecursive types.

- equirecursive types are restricted by default to object or data types.
- unrestricted equirecursive types are available upon explicit request.

Quiz: why so?

Isorecursive types

The folding/unfolding is witnessed by an explicit coercion.
The uniqueness rule is often omitted
(hence, the equality relation is weaker).
Encoding isorecursive types with ADT
The recursive type $\mu \beta . \tau$ can be represented in System F by introducing a datatype with a unique constructor:
?

Isorecursive types

The folding/unfolding is witnessed by an explicit coercion.
The uniqueness rule is often omitted
(hence, the equality relation is weaker).

Encoding isorecursive types with ADT

The recursive type $\mu \beta . \tau$ can be represented in System F by introducing a datatype with a unique constructor:

$$
\text { type } G \vec{\alpha}=\Sigma(C: \forall \vec{\alpha} \cdot[\beta \mapsto G \vec{\alpha}] \tau \rightarrow G \vec{\alpha}) \quad \text { where } \vec{\alpha}=\operatorname{ftv}(\tau) \backslash\{\beta\}
$$

The constructor C coerces $[\beta \mapsto G \vec{\alpha}] \tau$ to $G \vec{\alpha}$ and the reverse coercion is the function $\lambda x . d_{G} x(\lambda y . y)$.

Since this datatype has a unique constructor, pattern matching always succeeds and amounts to the identity. Hence, in $\lceil F\rceil$, the constructor could be removed: coercions have no computational content.

Records

A record can be defined as

$$
\text { type } G \vec{\alpha}=\Pi_{i \in 1 . . n}\left(\ell_{i}: \tau_{i}\right)
$$

where $\vec{\alpha}=\bigcup_{i \in 1 . . n} \mathrm{ftv}\left(\tau_{i}\right)$

Exercise

What are the corresponding declarations in System F?
?

Records

A record can be defined as

$$
\text { type } G \vec{\alpha}=\Pi_{i \in 1 . . n}\left(\ell_{i}: \tau_{i}\right)
$$

where $\vec{\alpha}=\bigcup_{i \in 1 . . n} \mathrm{ftv}\left(\tau_{i}\right)$

Exercise

What are the corresponding declarations in System F?

- a new type constructor G_{Π},

$?$

Records

A record can be defined as

$$
\text { type } G \vec{\alpha}=\Pi_{i \in 1 . . n}\left(\ell_{i}: \tau_{i}\right)
$$

where $\vec{\alpha}=\bigcup_{i \in 1 . . n} \mathrm{ftv}\left(\tau_{i}\right)$

Exercise

What are the corresponding declarations in System F?

- a new type constructor G_{Π},
- 1 constructor $\quad C_{\Pi}: \forall \vec{\alpha} . \tau_{1} \rightarrow \ldots \tau_{n} \rightarrow G \vec{\alpha}$
?

Records

A record can be defined as

$$
\text { type } G \vec{\alpha}=\Pi_{i \in 1 . . n}\left(\ell_{i}: \tau_{i}\right)
$$

where $\vec{\alpha}=\bigcup_{i \in 1 . . n} \mathrm{ftv}\left(\tau_{i}\right)$

Exercise

What are the corresponding declarations in System F?

- a new type constructor G_{Π},
- 1 constructor

$$
\begin{aligned}
& C_{\Pi}: \forall \vec{\alpha} . \tau_{1} \rightarrow \ldots \tau_{n} \rightarrow G \vec{\alpha} \\
& d_{\ell_{i}}: \forall \vec{\alpha} . G \vec{\alpha} \rightarrow \tau_{i}
\end{aligned}
$$

?

Records

A record can be defined as

$$
\text { type } G \vec{\alpha}=\Pi_{i \in 1 . . n}\left(\ell_{i}: \tau_{i}\right)
$$

where $\vec{\alpha}=\bigcup_{i \in 1 . . n} \mathrm{ftv}\left(\tau_{i}\right)$

Exercise

What are the corresponding declarations in System F?

- a new type constructor G_{Π},
- 1 constructor $\quad C_{\Pi}: \forall \vec{\alpha} . \tau_{1} \rightarrow \ldots \tau_{n} \rightarrow G \vec{\alpha}$
- n destructors $\quad d_{\ell_{i}}: \forall \vec{\alpha} . G \vec{\alpha} \rightarrow \tau_{i}$
- n reduction rules $d_{\ell_{i}}\left(C_{\Pi} v_{1} \ldots v_{n}\right) \leadsto v_{i}$

$?$

Records

A record can be defined as

$$
\text { type } G \vec{\alpha}=\Pi_{i \in 1 . . n}\left(\ell_{i}: \tau_{i}\right)
$$

where $\vec{\alpha}=\bigcup_{i \in 1 . . n} \mathrm{ftv}\left(\tau_{i}\right)$

Exercise

What are the corresponding declarations in System F?

- a new type constructor G_{Π},
- 1 constructor $\quad C_{\Pi}: \forall \vec{\alpha} . \tau_{1} \rightarrow \ldots \tau_{n} \rightarrow G \vec{\alpha}$
- n destructors $\quad d_{\ell_{i}}: \forall \vec{\alpha} . G \vec{\alpha} \rightarrow \tau_{i}$
- n reduction rules $d_{\ell_{i}}\left(C_{\Pi} v_{1} \ldots v_{n}\right) \leadsto v_{i}$

Can a record also be used for defining recursive types? Show type soundness for records.

Deep pattern matching

In practice, one allows deep pattern matching and wildcards in patterns.

```
type nat = Z | S of nat
let rec equal n1 n2 = match n1, n2 with
    Z,Z }->\mathrm{ true
    S m1,S m2 }->\mathrm{ equal m1 m2
    _ f false
```

Then, one should check for exhaustiveness of pattern matching.
Deep pattern matching can be compiled away into shallow patterns-or directly compiled to efficient code.

See [Le Fessant and Maranget, 2001; Maranget, 2007]

$$
\text { type } G \vec{\alpha}=\sum_{i \in 1 . . n}\left(C_{i}: \forall \vec{\alpha} . \tau_{i} \rightarrow G \vec{\alpha}\right)
$$

If all occurrences of G in τ_{i} are $\vec{\alpha}$ then, the ADT is regular.
Remark regular ADTs can be encoded in System-F. (More precisely, the church encodings of regular ADTs are typable in System-F.)

Non-regular ADT's do not have this restriction:

```
type 'a seq =
    Nil
    Zero of ('a * 'a) seq
    One of 'a * ('a * 'a) seq
```

They usually need polymorphic recursion to be manipulated.
Non regular ADT are heavily used by Okasaki [1999] for implementing purely functional data structures.
(They are also typically used with with GADTs.)
Non-regular ADT can be encoded in F^{ω}.

Contents

- Algebraic Data Types
- Equi- and iso- recursive types
- Existential types
- Implicitly-type existential types passing
- Iso-existential types
- Generalized Algebraic Datatypes
- Application to typed closure conversion
- Environment passing
- Closure passing

Existential types

Examples

A frozen application returning a value of type (\approx a thunk)

$$
\exists \alpha .(\alpha \rightarrow \tau) \times \alpha
$$

Existential types

A frozen application returning a value of type (\approx a thunk)

$$
\exists \alpha .(\alpha \rightarrow \tau) \times \alpha
$$

Type of closures in the environment-passing variant:

$$
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\exists \alpha \cdot\left(\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket\right) \times \alpha
$$

Existential types

Examples

A frozen application returning a value of type (\approx a thunk)

$$
\exists \alpha .(\alpha \rightarrow \tau) \times \alpha
$$

Type of closures in the environment-passing variant:

$$
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\exists \alpha \cdot\left(\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket\right) \times \alpha
$$

A possible encoding of objects:

$$
\begin{aligned}
=\exists \rho . & \rho \text { describes the state } \\
\mu \alpha . & \alpha \text { is the concrete type of the closure } \\
\Pi(\quad & \text { a tuple... } \\
\left\{\left(\alpha \times \tau_{1}\right) \rightarrow \tau_{1}^{\prime} ;\right. & \ldots \text { that begins with a record... }
\end{aligned}
$$

$\left.\left(\alpha \times \tau_{n}\right) \rightarrow \tau_{n}^{\prime}\right\} ; \quad \ldots$ of method code pointers...
ρ
)
...and continues with the state (a tuple of unknown length)

Existential types

One can extend System F with existential types, in addition to universals:

$$
\tau::=\ldots \mid \exists \alpha . \tau
$$

As in the case of universals, there are type-passing and type-erasing interpretations of the terms and typing rules... and in the latter interpretation, there are explicit and implicit versions.

Let's first look at the type-erasing interpretation, with an explicit notation for introducing and eliminating existential types.

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:
Unpack

$$
\frac{\Gamma \vdash M:\left[\alpha \mapsto \tau^{\prime}\right] \tau}{\Gamma \vdash \operatorname{pack} \tau^{\prime}, M \text { as } \exists \alpha . \tau: \exists \alpha . \tau}
$$

$$
\begin{gathered}
\Gamma \vdash M_{1}: \exists \alpha . \tau_{1} \\
\frac{\Gamma, \alpha, x: \tau_{1} \vdash M_{2}: \tau_{2}}{\Gamma \vdash \text { let } \alpha, x=\text { unpack } M_{1} \text { in } M_{2}: \tau_{2}}
\end{gathered}
$$

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:
Unpack

$$
\frac{\Gamma \vdash M:\left[\alpha \mapsto \tau^{\prime}\right] \tau}{\Gamma \vdash \operatorname{pack} \tau^{\prime}, M \text { as } \exists \alpha . \tau: \exists \alpha . \tau}
$$

$$
\begin{gathered}
\Gamma \vdash M_{1}: \exists \alpha . \tau_{1} \\
\Gamma, \alpha, x: \tau_{1} \vdash M_{2}: \tau_{2} \\
\Gamma \vdash \text { let } \alpha, x=\text { unpack } M_{1} \text { in } M_{2}: \tau_{2}
\end{gathered}
$$

Anything wrong?

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:
Unpack

$$
\frac{\Gamma \vdash M:\left[\alpha \mapsto \tau^{\prime}\right] \tau}{\Gamma \vdash \operatorname{pack} \tau^{\prime}, M \text { as } \exists \alpha . \tau: \exists \alpha . \tau}
$$

$$
\begin{aligned}
& \Gamma \vdash M_{1}: \exists \alpha . \tau_{1} \\
& \Gamma, \alpha, x: \tau_{1} \vdash M_{2}: \tau_{2} \quad \alpha \# \tau_{2} \\
& \Gamma \vdash \text { let } \alpha, x=\text { unpack } M_{1} \text { in } M_{2}: \tau_{2}
\end{aligned}
$$

The side condition $\alpha \# \tau_{2}$ is mandatory here to ensure well-formedness of the conclusion.

The side condition may also be written $\Gamma \vdash \tau_{2}$ which implies $\alpha \# \tau_{2}$, given that the well-formedness of the last premise implies $\alpha \notin \operatorname{dom}(\Gamma)$.

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:
Unpack

$$
\frac{\Gamma \vdash M:\left[\alpha \mapsto \tau^{\prime}\right] \tau}{\Gamma \vdash \operatorname{pack} \tau^{\prime}, M \text { as } \exists \alpha . \tau: \exists \alpha . \tau}
$$

$$
\begin{aligned}
& \Gamma \vdash M_{1}: \exists \alpha . \tau_{1} \\
& \Gamma, \alpha, x: \tau_{1} \vdash M_{2}: \tau_{2} \quad \alpha \# \tau_{2} \\
& \Gamma \vdash \text { let } \alpha, x=\text { unpack } M_{1} \text { in } M_{2}: \tau_{2}
\end{aligned}
$$

The side condition $\alpha \# \tau_{2}$ is mandatory here to ensure well-formedness of the conclusion.

The side condition may also be written $\Gamma \vdash \tau_{2}$ which implies $\alpha \# \tau_{2}$, given that the well-formedness of the last premise implies $\alpha \notin \operatorname{dom}(\Gamma)$.

Note the imperfect duality between universals and existentials:

TABs

$$
\frac{\Gamma, \alpha \vdash M: \tau}{\Gamma \vdash \Lambda \alpha \cdot M: \forall \alpha \cdot \tau}
$$

TApp
$\Gamma \vdash M: \forall \alpha . \tau$
$\overline{\Gamma \vdash M \tau^{\prime}:\left[\alpha \mapsto \tau^{\prime}\right] \tau}$

On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

$$
\frac{\Gamma, \alpha \vdash M: \exists \alpha \cdot \tau}{\Gamma, \alpha \vdash \text { unpack } M: \tau}
$$

Informally, this could mean that, if M has type τ for some unknown α, then it has type τ, where α is "fresh"...

Why is this broken?

On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

$$
\frac{\Gamma, \alpha \vdash M: \exists \alpha \cdot \tau}{\Gamma, \alpha \vdash \text { unpack } M: \tau}
$$

Informally, this could mean that, if M has type τ for some unknown α, then it has type τ, where α is "fresh"...

Why is this broken?
We could immediately universally quantify over α, and conclude that $\Gamma \vdash \Lambda \alpha$. unpack $M: \forall \alpha . \tau$. This is nonsense!

Replacing the premise $\Gamma, \alpha \vdash M: \exists \alpha . \tau$ by the conjunction $\Gamma \vdash M: \exists \alpha . \tau$ and $\alpha \in \operatorname{dom}(\Gamma)$ would make the rule even more permissive, so it wouldn't help.

On existential elimination

A correct elimination rule must force the existential package to be used in a way that does not rely on the value of α.

Hence, the elimination rule must have control over the user of the package - that is, over the term M_{2}.

$$
\begin{aligned}
\text { UnPack } & \Gamma \vdash M_{1}: \exists \alpha \cdot \tau_{1} \\
& \\
& \Gamma, \alpha ; x: \tau_{1} \vdash M_{2}: \tau_{2} \quad \alpha \# \tau_{2} \\
\Gamma \vdash \text { let } \alpha, x & =\text { unpack } M_{1} \text { in } M_{2}: \tau_{2}
\end{aligned}
$$

The restriction $\alpha \# \tau_{2}$ prevents writing "let $\alpha, x=$ unpack M_{1} in x ", which would be equivalent to the unsound "unpack M " of the previous slide.

The fact that α is bound within M_{2} forces it to be treated abstractly. In fact, M_{2} must be ??? in α.

On existential elimination

In fact, M_{2} must be polymorphic in α : the second premise could be:

$$
\frac{\Gamma \vdash M_{1}: \exists \alpha \cdot \tau_{1} \quad \Gamma, \alpha, x: \tau_{1} \vdash M_{2}: \quad \tau_{2} \quad \alpha \# \tau_{2}}{\Gamma \vdash \text { let } \alpha, x=\text { unpack } M_{1} \text { in } M_{2}: \tau_{2}}
$$

On existential elimination

In fact, M_{2} must be polymorphic in α : the second premise could be:

$$
\frac{\Gamma \vdash M_{1}: \exists \alpha \cdot \tau_{1} \quad \Gamma \vdash \Lambda \alpha \cdot \lambda x: \tau_{1} \cdot M_{2}: \forall \alpha \cdot \tau_{1} \rightarrow \tau_{2} \quad \alpha \# \tau_{2}}{\Gamma \vdash \text { let } \alpha, x=\text { unpack } M_{1} \text { in } M_{2}: \tau_{2}}
$$

On existential elimination

In fact, M_{2} must be polymorphic in α : the second premise could be:

$$
\frac{\Gamma \vdash M_{1}: \exists \alpha \cdot \tau_{1} \quad \Gamma \vdash \Lambda \alpha \cdot \lambda x: \tau_{1} \cdot M_{2}: \forall \alpha . \tau_{1} \rightarrow \tau_{2} \quad \alpha \# \tau_{2}}{\Gamma \vdash \text { let } \alpha, x=\text { unpack } M_{1} \text { in } M_{2}: \tau_{2}}
$$

or, if N_{2} stands for $\Lambda \alpha \cdot \lambda x: \tau_{1} . M_{2}$:

$$
\frac{\Gamma \vdash M_{1}: \exists \alpha . \tau_{1} \quad \Gamma \vdash N_{2}: \forall \alpha . \tau_{1} \rightarrow \tau_{2} \quad \alpha \# \tau_{2}}{\Gamma \vdash \text { unpack } M_{1} N_{2}: \tau_{2}}
$$

On existential elimination

In fact, M_{2} must be polymorphic in α : the second premise could be:

$$
\frac{\Gamma \vdash M_{1}: \exists \alpha \cdot \tau_{1} \quad \Gamma \vdash \Lambda \alpha \cdot \lambda x: \tau_{1} \cdot M_{2}: \forall \alpha \cdot \tau_{1} \rightarrow \tau_{2} \quad \alpha \# \tau_{2}}{\Gamma \vdash \text { let } \alpha, x=\text { unpack } M_{1} \text { in } M_{2}: \tau_{2}}
$$

or, if N_{2} stands for $\Lambda \alpha, \lambda x: \tau_{1} . M_{2}$:

$$
\frac{\Gamma \vdash M_{1}: \exists \alpha . \tau_{1} \quad \Gamma \vdash N_{2}: \forall \alpha . \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash \text { unpack } M_{1} N_{2}: \tau_{2}}
$$

One could even view "unpack $\exists_{\exists \alpha . \tau_{1}}$ " as a family of constants of types:

$$
\text { unpack }_{\exists \alpha . \tau_{1}}: \quad\left(\exists \alpha . \tau_{1}\right) \rightarrow\left(\forall \alpha .\left(\tau_{1} \rightarrow \tau_{2}\right)\right) \rightarrow \tau_{2} \quad \alpha \# \tau_{2}
$$

On existential elimination

In fact, M_{2} must be polymorphic in α : the second premise could be:

$$
\frac{\Gamma \vdash M_{1}: \exists \alpha \cdot \tau_{1} \quad \Gamma \vdash \Lambda \alpha \cdot \lambda x: \tau_{1} \cdot M_{2}: \forall \alpha . \tau_{1} \rightarrow \tau_{2} \quad \alpha \# \tau_{2}}{\Gamma \vdash \text { let } \alpha, x=\text { unpack } M_{1} \text { in } M_{2}: \tau_{2}}
$$

or, if N_{2} stands for $\Lambda \alpha, \lambda x: \tau_{1} . M_{2}$:

$$
\frac{\Gamma \vdash M_{1}: \exists \alpha . \tau_{1} \quad \Gamma \vdash N_{2}: \forall \alpha . \tau_{1} \rightarrow \tau_{2} \quad \alpha \# \tau_{2}}{\Gamma \vdash \text { unpack } M_{1} N_{2}: \tau_{2}}
$$

One could even view "unpack $\exists_{\exists \alpha . \tau_{1}}$ " as a family of constants of types:

Thus,

$$
\text { unpack }_{\exists \alpha . \tau_{1}}: \quad\left(\exists \alpha . \tau_{1}\right) \rightarrow\left(\forall \alpha .\left(\tau_{1} \rightarrow \tau_{2}\right)\right) \rightarrow \tau_{2} \quad \alpha \# \tau_{2}
$$

$$
\text { unpack }_{\exists \alpha . \tau}: \quad \forall \beta .((\exists \alpha . \tau) \rightarrow(\forall \alpha .(\tau \rightarrow \beta)) \rightarrow \beta)
$$

On existential elimination

In fact, M_{2} must be polymorphic in α : the second premise could be:

$$
\frac{\Gamma \vdash M_{1}: \exists \alpha \cdot \tau_{1} \quad \Gamma \vdash \Lambda \alpha \cdot \lambda x: \tau_{1} \cdot M_{2}: \forall \alpha \cdot \tau_{1} \rightarrow \tau_{2} \quad \alpha \# \tau_{2}}{\Gamma \vdash \text { let } \alpha, x=\text { unpack } M_{1} \text { in } M_{2}: \tau_{2}}
$$

or, if N_{2} stands for $\Lambda \alpha, \lambda x: \tau_{1} . M_{2}$:

$$
\frac{\Gamma \vdash M_{1}: \exists \alpha . \tau_{1} \quad \Gamma \vdash N_{2}: \forall \alpha . \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash \text { unpack } M_{1} N_{2}: \tau_{2}}
$$

One could even view "unpack $\exists_{\exists \alpha . \tau_{1}}$ " as a family of constants of types:

Thus, unpack $\exists_{\exists \alpha . \tau}: \quad \forall \beta \cdot((\exists \alpha . \tau) \rightarrow(\forall \alpha \cdot(\tau \rightarrow \beta)) \rightarrow \beta)$
or, better unpack $\exists_{\exists \alpha . \tau}: \quad(\exists \alpha . \tau) \rightarrow \forall \beta .((\forall \alpha .(\tau \rightarrow \beta)) \rightarrow \beta)$
β stands for τ_{2} : it is bound prior to α, so it cannot be instantiated to a type that refers to α, which reflects the side condition $\alpha \# \tau_{2}$.

On existential introduction

$$
\frac{\Gamma \vdash M:\left[\alpha \mapsto \tau^{\prime}\right] \tau}{\Gamma \vdash \operatorname{pack} \tau^{\prime}, M \text { as } \exists \alpha . \tau: \exists \alpha . \tau}
$$

Hence, "pack ${ }_{\exists \alpha . \tau}$ " can be viewed as a family constant of types:

$$
\operatorname{pack}_{\exists \alpha . \tau}: \quad\left[\alpha \mapsto \tau^{\prime}\right] \tau \rightarrow \exists \alpha . \tau
$$

i.e. of polymorphic types:

$$
\operatorname{pack}_{\exists \alpha . \tau}: \quad \forall \alpha .(\tau \rightarrow \exists \alpha . \tau)
$$

Existentials as constants

In System F, existential types can be presented as a family of constants:

$$
\begin{aligned}
\text { pack }_{\exists \alpha . \tau} & : \forall \alpha .(\tau \rightarrow \exists \alpha . \tau) \\
\text { unpack }_{\exists \alpha . \tau} & : \exists \alpha . \tau \rightarrow \forall \beta .((\forall \alpha .(\tau \rightarrow \beta)) \rightarrow \beta)
\end{aligned}
$$

Read:

- for any α, if you have a τ, then, for some α, you have a τ;
- if, for some α, you have a τ, then, (for any β,) if you wish to obtain a β out of it, you must present a function which, for any α, obtains a β out of a τ.

This is somewhat reminiscent of ordinary first-order logic: $\exists x . F$ is equivalent to, and can be defined as, $\neg(\forall x . \neg F)$.

Is there an encoding of existential types into universal types?

Encoding existentials into universals

The type translation is double negation:

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \quad \text { if } \beta \# \tau
$$

The term translation is:

$$
\begin{aligned}
\llbracket p a c k_{\exists \alpha . \tau} \rrbracket & : \quad \forall \alpha .(\llbracket \tau \rrbracket \rightarrow \llbracket \exists \alpha . \tau \rrbracket) \\
& =? \\
\llbracket \text { unpack }_{\exists \alpha . \tau} \rrbracket & : \llbracket \exists \alpha . \tau \rrbracket \rightarrow \forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \\
& =?
\end{aligned}
$$

Encoding existentials into universals

The type translation is double negation:

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \quad \text { if } \beta \# \tau
$$

The term translation is:

$$
\begin{aligned}
\llbracket p a c k_{\exists \alpha . \tau} \rrbracket & : \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \llbracket \exists \alpha \cdot \tau \rrbracket) \\
& =\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot ? \\
\llbracket u^{4} p a c k_{\exists \alpha . \tau} \rrbracket & : \llbracket \exists \alpha \cdot \tau \rrbracket \rightarrow \forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \\
& =?
\end{aligned}
$$

Encoding existential into universals

The type translation is double negation:

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \quad \text { if } \beta \# \tau
$$

The term translation is:

$$
\begin{aligned}
\llbracket \text { pack }_{\exists \alpha . \tau} \rrbracket & : \quad \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \llbracket \exists \alpha \cdot \tau \rrbracket) \\
& =\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) \cdot ?: \beta \\
\llbracket \text { unpack }_{\exists \alpha . \tau \rrbracket} & : \llbracket \exists \alpha \cdot \tau \rrbracket \rightarrow \forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \\
& =?
\end{aligned}
$$

Encoding existential into universals

The type translation is double negation:

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \quad \text { if } \beta \# \tau
$$

The term translation is:

$$
\begin{aligned}
\llbracket \text { pack }_{\exists \alpha \cdot \tau} \rrbracket & : \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \llbracket \exists \alpha \cdot \tau \rrbracket) \\
& =\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) \cdot k \alpha x \\
\llbracket \text { unpack }_{\exists \alpha \cdot \tau \rrbracket} & : \llbracket \exists \alpha \cdot \tau \rrbracket \rightarrow \forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \\
& =?
\end{aligned}
$$

Encoding existential into universals

The type translation is double negation:

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \quad \text { if } \beta \# \tau
$$

The term translation is:

$$
\begin{aligned}
\llbracket \text { pack }_{\exists \alpha \cdot \tau} \rrbracket & : \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \llbracket \exists \alpha \cdot \tau \rrbracket) \\
& =\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) \cdot k \alpha x \\
\llbracket \text { unpack }_{\exists \alpha \cdot \tau \rrbracket} \rrbracket & : \llbracket \exists \alpha \cdot \tau \rrbracket \rightarrow \forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \\
& =\lambda x: \llbracket \exists \alpha \cdot \tau \rrbracket \cdot x
\end{aligned}
$$

Encoding existential into universals

The type translation is double negation:

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \quad \text { if } \beta \# \tau
$$

The term translation is:

$$
\begin{aligned}
\llbracket \text { pack }_{\exists \alpha \cdot \tau} \rrbracket & : \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \llbracket \exists \alpha \cdot \tau \rrbracket) \\
& =\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) \cdot k \alpha x \\
\llbracket \text { unpack }_{\exists \alpha \cdot \tau} \rrbracket & : \llbracket \exists \alpha \cdot \tau \rrbracket \rightarrow \forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \\
& =\lambda x: \llbracket \exists \alpha \cdot \tau \rrbracket \cdot x
\end{aligned}
$$

There is little choice, if the translation is to be type-preserving.
What is the computational content of this encoding?

Encoding existentials into universals

The type translation is double negation:

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \quad \text { if } \beta \# \tau
$$

The term translation is:

$$
\begin{aligned}
\llbracket \text { pack }_{\exists \alpha \cdot \tau} \rrbracket & : \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \llbracket \exists \alpha \cdot \tau \rrbracket) \\
& =\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) \cdot k \alpha x \\
\llbracket \text { unpack }_{\exists \alpha \cdot \tau} \rrbracket & : \llbracket \exists \alpha \cdot \tau \rrbracket \rightarrow \forall \beta \cdot((\forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta)) \rightarrow \beta) \\
& =\lambda x: \llbracket \exists \alpha \cdot \tau \rrbracket \cdot x
\end{aligned}
$$

There is little choice, if the translation is to be type-preserving.
What is the computational content of this encoding?
A continuation-passing transform.
This encoding is due to Reynolds [1983], although it has more ancient roots in logic.

The semantics of existential types

as constants

$\operatorname{pack}_{\exists \alpha . \tau}$ can be treated as a unary constructor, and unpack ${ }_{\exists \alpha . \tau}$ as a unary destructor. The δ-reduction rule is:

$$
\text { unpack }_{\exists \alpha . \tau_{0}}\left(\text { pack }_{\exists \alpha . \tau} \tau^{\prime} V\right) \longrightarrow \Lambda \beta . \lambda y: \forall \alpha . \tau \rightarrow \beta . y \tau^{\prime} V
$$

It would be more intuitive, however, to treat unpack $\exists_{\exists \alpha . \tau_{0}}$ as a binary destructor:

$$
\text { unpack }_{\exists \alpha . \tau_{0}}\left(\text { pack }_{\exists \alpha . \tau} \tau^{\prime} V\right) \tau_{1}(\Lambda \alpha . \lambda x: \tau . M) \longrightarrow\left[\alpha \mapsto \tau^{\prime}\right][x \mapsto V] M
$$

Remark:

- This does not quite fit in our generic framework for constants, which must receive all type arguments prior to value arguments.
- But our framework could be easily extended.

The semantics of existential types

We extend values and evaluation contexts as follows:

$$
\begin{aligned}
& V::=\quad \ldots \text { pack } \tau^{\prime}, V \text { as } \tau \\
& E::=\ldots \text { pack } \tau^{\prime},[] \text { as } \tau \mid \text { let } \alpha, x=\text { unpack }[] \text { in } M
\end{aligned}
$$

We add the reduction rule:

$$
\text { let } \alpha, x=\text { unpack }\left(\text { pack } \tau^{\prime}, V \text { as } \tau\right) \text { in } M \longrightarrow\left[\alpha \mapsto \tau^{\prime}\right][x \mapsto V] M
$$

Exercise
Show that subject reduction and progress hold.

The semantics of existential types

The reduction rule for existentials destructs its arguments.
Hence, let $\alpha, x=$ unpack M_{1} in M_{2} cannot be reduced unless M_{1} is itself a packed expression, which is indeed the case when M_{1} is a value (or in head normal form).

This contrasts with let $x: \tau=M_{1}$ in M_{2} where M_{1} need not be evaluated and may be an application (e.g. with call-by-name or strong reduction strategies).

The semantics of existential types

Exercise

Find an example that illustrates why the reduction of let $\alpha, x=$ unpack M_{1} in M_{2} could be problematic when M_{1} is not a value.

The semantics of existential types

Exercise

Find an example that illustrates why the reduction of
let $\alpha, x=$ unpack M_{1} in M_{2} could be problematic when M_{1} is not a value.
Need a hint?
Use a conditional

The semantics of existential types

Exercise

Find an example that illustrates why the reduction of let $\alpha, x=$ unpack M_{1} in M_{2} could be problematic when M_{1} is not a value.

Solution

Let M_{1} be if M then V_{1} else V_{2} where V_{i} is of the form pack τ_{i}, V_{i} as $\exists \alpha . \tau$ and the two witnesses τ_{1} and τ_{2} differ.

There is no common type for the unpacking of the two possible results V_{1} and V_{2}. The choice between those two possible results must be made, by evaluating M_{1}, before unpacking.

Is pack too verbose?

Exercise

Recall the typing rule for pack:

$$
\frac{\Gamma \vdash M:\left[\alpha \mapsto \tau^{\prime}\right] \tau}{\Gamma \vdash \operatorname{pack} \tau^{\prime}, M \text { as } \exists \alpha . \tau: \exists \alpha . \tau}
$$

Isn't the witness type τ^{\prime} annotation superfluous?

Is pack too verbose?

Exercise

Recall the typing rule for pack:

$$
\frac{\Gamma \vdash M:\left[\alpha \mapsto \tau^{\prime}\right] \tau}{\Gamma \vdash \operatorname{pack} \tau^{\prime}, M \text { as } \exists \alpha . \tau: \exists \alpha . \tau}
$$

Isn't the witness type τ^{\prime} annotation superfluous?

- The type τ_{0} of M is fully determined by M. Given the type $\exists \alpha . \tau$ of the packed value, checking that τ_{0} is of the form $\left[\alpha \mapsto \tau^{\prime}\right] \tau$ is the matching problem for second-order types, which is simple.
- However, the reduction rule need the witness type τ^{\prime}. If it were not available, it would have to be computed during reduction. The reduction rule would then not be pure rewriting.

The explicitly-typed language need the witness type for simplicity, while in the surface language, it could be omitted and reconstructed.

- Algebraic Data Types
- Equi- and iso- recursive types
- Existential types
- Implicitly-type existential types passing
- Iso-existential types
- Generalized Algebraic Datatypes
- Application to typed closure conversion
- Environment passing
- Closure passing

Implicitly-typed existential types

Intuitively, pack and unpack are just type annotations that could be dropped, leaving a let-binding instead of the unpack form.

Hence, the typing rule for implicitly-typed existential types:

$\frac{\stackrel{\text { UnPack }}{\Gamma \vdash a_{1}: \exists \alpha . \tau_{1}} \quad \Gamma, \alpha, x: \tau_{1} \vdash a_{2}: \tau_{2}}{\Gamma \vdash \text { let } x=a_{1} \text { in } a_{2}: \tau_{2}} \quad \alpha \# \tau_{2} \quad \frac{$| Pack |
| :--- |
| $\Gamma \vdash a:\left[\alpha \mapsto \tau^{\prime}\right] \tau$ |
| $\Gamma \vdash a: \exists \alpha . \tau$ |}{l}

Notice, however, that this let-binding is not typechecked as syntactic sugar for an immediate application!

The semantics of this let-binding is as before:

$$
E::=\ldots \mid \text { let } x=E \text { in } M \quad \text { let } x=V \text { in } M \longrightarrow[x \mapsto V] M
$$

Is the semantics type-erasing?

Implicitly-typed existential types

Yes, it is.
But there is a subtlety!

Implicitly-typed existential types

Yes, it is.
But there is a subtlety! What about the call-by-name semantics?

Implicitly-typed existential types

Yes, it is.
But there is a subtlety! What about the call-by-name semantics?
We chose a call-by-value semantics, but so far, as long as there is no side-effect, we could have chosen a call-by-name semantics (or even perform reduction under abstraction).

In a call-by-name semantics, the let-bound expression is not reduced prior to substitution in the body:

$$
\text { let } x=M_{1} \text { in } M_{2} \longrightarrow\left[x \mapsto M_{1}\right] M_{2}
$$

With existential types, this breaks subject reduction!
Why?

Implicitly-typed existential types

Let τ_{0} be $\exists \alpha .(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha)$ and v_{0} a value of type mol. Let v_{1} and v_{2} be two values of type τ_{0} with incompatible witness types, egg. $\lambda f . \lambda x .1+(f(1+x))$ and $\lambda f . \lambda x$.not $(f(\operatorname{not} x))$.

Let v be the function λb. if b then v_{1} else v_{2} of type fol $\rightarrow \tau_{0}$.

$$
a_{1}=\text { let } x=v v_{0} \text { in } x(x(\lambda y . y)) \longrightarrow v v_{0}\left(v v_{0}(\lambda y . y)\right)=a_{2}
$$

We have $\varnothing \vdash a_{1}: \exists \alpha . \alpha \rightarrow \alpha$ while $\varnothing \nvdash a_{2}: \tau$.
What happened?

Implicitly-typed existential types

Let τ_{0} be $\exists \alpha .(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha)$ and v_{0} a value of type mol. Let v_{1} and v_{2} be two values of type τ_{0} with incompatible witness types, e.g. $\lambda f . \lambda x .1+(f(1+x))$ and $\lambda f . \lambda x$.not $(f(\operatorname{not} x))$.

Let v be the function λb. if b then v_{1} else v_{2} of type fol $\rightarrow \tau_{0}$.

$$
a_{1}=\text { let } x=v v_{0} \text { in } x(x(\lambda y . y)) \longrightarrow v v_{0}\left(v v_{0}(\lambda y . y)\right)=a_{2}
$$

We have $\varnothing \vdash a_{1}: \exists \alpha . \alpha \rightarrow \alpha$ while \varnothing भ $a_{2}: \tau$.
The term a_{1} is well-typed since $v v_{0}$ has type τ_{0}, hence x can be assumed of type $(\beta \rightarrow \beta) \rightarrow(\beta \rightarrow \beta)$ for some unknown type β and λy. y is of type $\beta \rightarrow \beta$.

However, without the outer existential type $v v_{0}$ can only be typed with $(\forall \alpha . \alpha \rightarrow \alpha) \rightarrow \exists \alpha .(\alpha \rightarrow \alpha)$, because the value returned by the function need different witnesses for α. This is demanding too much on its argument and the outer application is ill-typed.

Implicitly-typed existential types

One could wonder whether the syntax should not allow the implicit introduction of unpacking (instead of requesting a let-binding).
One could argue that if some expression is the expansion of a well-typed let-binding, then it should also be well-typed:

$$
\frac{\Gamma \vdash a_{1}: \exists \alpha \cdot \tau_{1} \quad \Gamma, \alpha, x: \tau_{1} \vdash a_{2}: \tau_{2} \quad \alpha \# \tau_{2}}{\Gamma \vdash\left[x \mapsto a_{1}\right] a_{2}: \tau_{2}}
$$

Comments?

Implicitly-typed existential types

One could wonder whether the syntax should not allow the implicit introduction of unpacking (instead of requesting a let-binding).

One could argue that if some expression is the expansion of a well-typed let-binding, then it should also be well-typed:

$$
\frac{\Gamma \vdash a_{1}: \exists \alpha \cdot \tau_{1} \quad \Gamma, \alpha, x: \tau_{1} \vdash a_{2}: \tau_{2} \quad \alpha \# \tau_{2}}{\Gamma \vdash\left[x \mapsto a_{1}\right] a_{2}: \tau_{2}}
$$

Comments:

- This rule does not have a logical flavor...
- It fixes the previous example, but not the general case:

Pick a_{1} that is not yet a value after one reduction step.
Then, after let-expansion, reduce one of the two occurrences of a_{1}.
The result is no longer of the form $\left[x \mapsto a_{1}\right] a_{2}$.

Implicitly-typed existential types

Existential types are trickier than they may appear at first.
The subject reduction property breaks if reduction is not restricted to expressions in head-normal forms.

Unrestricted reduction is still safe because well-typedness may eventually be recovered by further reduction steps-so that progress will never break.

Implicitly-typed existential types

Notice that the CPS encoding of existential types (1) enforces the evaluation of the packed value (2) before it can be unpacked (3) and substituted (4):

$$
\begin{align*}
\llbracket u n p a c k a_{1}\left(\lambda x \cdot a_{2}\right) \rrbracket & =\llbracket a_{1} \rrbracket\left(\lambda x \cdot \llbracket a_{2} \rrbracket\right) \tag{1}\\
& \longrightarrow(\lambda k \cdot \llbracket a \rrbracket k)\left(\lambda x \cdot \llbracket a_{2} \rrbracket\right) \tag{2}\\
& \longrightarrow\left(\lambda x \cdot \llbracket a_{2} \rrbracket\right) \llbracket a \rrbracket \tag{3}\\
& \longrightarrow(x \mapsto \llbracket a \rrbracket] \llbracket a_{2} \rrbracket \tag{4}
\end{align*}
$$

In the call-by-value setting, $\lambda k . \llbracket a \rrbracket k$ would come from the reduction of $\llbracket p a c k a \rrbracket$, i.e. is $(\lambda k . \lambda x . k x) \llbracket a \rrbracket$, so that a is always a value v.

However, a need not be a value. What is essential is that a_{1} be reduced to some head normal form $\lambda k . \llbracket a \rrbracket k$.

- Algebraic Data Types
- Equi- and iso- recursive types
- Existential types
- Implicitly-type existential types passing
- Iso-existential types
- Generalized Algebraic Datatypes
- Application to typed closure conversion
- Environment passing
- Closure passing

Iso-existential types in ML

What if one wished to extend ML with existential types?
Full type inference for existential types is undecidable, just like type inference for universals.

However, introducing existential types in ML is easy if one is willing to rely on user-supplied annotations that indicate where and how to pack and unpack.

Iso-existential types in ML

This iso-existential approach was suggested by Läufer and Odersky [1994].

Iso-existential types are explicitly declared:

$$
D \vec{\alpha} \approx \exists \bar{\beta} \cdot \tau \quad \text { if } \operatorname{ftv}(\tau) \subseteq \bar{\alpha} \cup \bar{\beta} \quad \text { and } \quad \bar{\alpha} \# \bar{\beta}
$$

This introduces two constants, with the following type schemes:

$$
\begin{aligned}
\operatorname{pack}_{D} & : \forall \bar{\alpha} \bar{\beta} \cdot \tau \rightarrow D \vec{\alpha} \\
\text { unpack }_{D} & : \forall \bar{\alpha} \gamma \cdot D \vec{\alpha} \rightarrow(\forall \bar{\beta} \cdot(\tau \rightarrow \gamma)) \rightarrow \gamma
\end{aligned}
$$

(Compare with basic isorecursive types, where $\bar{\beta}=\varnothing$.)

Iso-existential types in ML

One point has been hidden on the previous slide. The "type scheme:"

$$
\forall \bar{\alpha} \gamma \cdot D \vec{\alpha} \rightarrow(\forall \bar{\beta} \cdot(\tau \rightarrow \gamma)) \rightarrow \gamma
$$

is in fact not an ML type scheme. How could we address this?

Iso-existential types in ML

One point has been hidden on the previous slide. The "type scheme:"

$$
\forall \bar{\alpha} \gamma \cdot D \vec{\alpha} \rightarrow(\forall \bar{\beta} \cdot(\tau \rightarrow \gamma)) \rightarrow \gamma
$$

is in fact not an ML type scheme. How could we address this?
A solution is to make unpack ${ }_{D}$ a (binary) primitive construct again (rather than a constant), with an ad hoc typing rule:

UnPaCK $_{D}$

$$
\begin{aligned}
& \Gamma \vdash M_{1}: D \vec{\tau} \\
& \Gamma \vdash M_{2}: \forall \bar{\beta} .\left([\vec{\alpha} \mapsto \vec{\tau}] \tau \rightarrow \tau_{2}\right) \quad \bar{\beta} \# \vec{\tau}, \tau_{2} \\
& \Gamma \vdash \text { unpack }_{D} M_{1} M_{2}: \tau_{2}
\end{aligned}
$$

where $D \vec{\alpha} \approx \exists \bar{\beta} . \tau$
We have seen a version of this rule in System F earlier; this in an ML version. The term M_{2} must be polymorphic, which Gen can prove.

Iso-existential types in ML

(type inference, skip)
Iso-existential types are perfectly compatible with ML type inference.
The constant pack $_{D}$ admits an ML type scheme, so it is unproblematic.
The construct unpack ${ }_{D}$ leads to this constraint generation rule (see type inference):

$$
\left\langle\text { unpack }_{D} M_{1} M_{2}: \tau_{2}\right\rangle=\exists \bar{\alpha} \cdot\binom{\left\langle M_{1}: D \vec{\alpha}\right\rangle}{\forall \bar{\beta} \cdot\left\langle\left\langle M_{2}: \tau \rightarrow \tau_{2}\right\rangle\right.}
$$

where $D \vec{\alpha} \approx \exists \bar{\beta} . \tau$ and, w.l.o.g., $\bar{\alpha} \bar{\beta} \# M_{1}, M_{2}, \tau_{2}$.
A universally quantified constraint appears where polymorphism is required.

Iso-existential types in ML

In practice, Läufer and Odersky suggest fusing iso-existential types with algebraic data types.
This can be done in OCaml using GADTs (see last part of the course). The syntax for this in OCaml is:

$$
\text { type } D \vec{\alpha}=\ell: \tau \rightarrow D \vec{\alpha}
$$

where ℓ is a data constructor and $\bar{\beta}$ appears free in τ but does not appear in $\vec{\alpha}$. The elimination construct is typed as:

$$
\left.\left\langle\text { match } M_{1} \text { with } \ell x \rightarrow M_{2}: \tau_{2}\right\rangle\right\rangle=\exists \bar{\alpha} \cdot\binom{\left\langle M_{1}: D \vec{\alpha}\right\rangle}{\forall \bar{\beta} \cdot \operatorname{def} x: \tau \text { in }\left\langle M_{2}: \tau_{2}\right\rangle}
$$

where, w.l.o.g., $\bar{\alpha} \bar{\beta} \# M_{1}, M_{2}, \tau_{2}$.

Existential types calls for universal types!

Exercise We reuse the type $D \alpha \approx \exists \beta .(\beta \rightarrow \alpha) \times \beta$ of frozen computations. Assume given a list l with elements of type $D \tau_{1}$.

Assume given a function g of type $\tau_{1} \rightarrow \tau_{2}$. Transform the list l into a new list l^{\prime} of frozen computations of type $D \tau_{2}$ (without actually running any computation).

$$
\text { List.map }(\lambda(z) \text { let } D(f, y)=z \text { in } D((\lambda(z) g(f z)), y))
$$

Try generalizing this example to a function that receives g and l and returns l^{\prime}

Existential types calls for universal types!

Exercise We reuse the type $D \alpha \approx \exists \beta .(\beta \rightarrow \alpha) \times \beta$ of frozen computations. Assume given a list l with elements of type $D \tau_{1}$.

Assume given a function g of type $\tau_{1} \rightarrow \tau_{2}$. Transform the list l into a new list l^{\prime} of frozen computations of type $D \tau_{2}$ (without actually running any computation).

$$
\text { List.map }(\lambda(z) \text { let } D(f, y)=z \text { in } D((\lambda(z) g(f z)), y))
$$

Try generalizing this example to a function that receives g and l and returns l^{\prime} : it does not typecheck...

```
let lift g | =
    List.map ( }\lambda(z)\mathrm{ let D(f, y) = z in D(( }\lambda(z)g(fz)),y)
```


Existential types calls for universal types!

Exercise We reuse the type $D \alpha \approx \exists \beta .(\beta \rightarrow \alpha) \times \beta$ of frozen computations. Assume given a list l with elements of type $D \tau_{1}$.

Assume given a function g of type $\tau_{1} \rightarrow \tau_{2}$. Transform the list l into a new list l^{\prime} of frozen computations of type $D \tau_{2}$ (without actually running any computation).

$$
\text { List.map }(\lambda(z) \text { let } D(f, y)=z \text { in } D((\lambda(z) g(f z)), y))
$$

Try generalizing this example to a function that receives g and l and returns l^{\prime} : it does not typecheck...

```
let lift gl=
    List.map ( }\lambda(z)\mathrm{ let D(f, y) = z in D(( }\lambda(z)g(fz)),y)
```

In expression let $\alpha, x=$ unpack M_{1} in M_{2}, occurrences of x in M_{2} can only be passed to external functions (free variables) that are polymorphic so that x does not leak out of its context.

Limits of iso-encodings

Using datatypes for existential and especially universal types is a simple solution to make them compatible with ML, but it comes with some limitations:

- All types must be declared before being used
- Programs become quite verbose, with many constructors that amount to writting type annotations, but in a more rigid way
- In particular, there is no canonical way of representing them. For exemple, a thunk of type $\exists \beta(\beta \rightarrow i n t) \times \beta$ could have been defined as Thunk (succ, 1) where Thunk is either one of

$$
\begin{aligned}
& \text { type int_thunk }=\text { Thunk : }(' b \rightarrow \text { int }) * \text { ' } b \rightarrow \text { int_thunk } \\
& \text { type 'a thunk }=\text { Thunk : }(' b \rightarrow \text { 'a) } * \text { ' } b \rightarrow \text { 'a thunk }
\end{aligned}
$$

but the two types are incompatible.
Hence, other primitive solutions have been considered, especially for universal types.

Uses of existential types

Mitchell and Plotkin [1988] note that existential types offer a means of explaining abstract types. For instance, the type:

$$
\begin{aligned}
& \text { ヨstack. }\{\text { empty : stack; } \\
& \quad \text { push : int } \times \text { stack } \rightarrow \text { stack; } \\
& \text { pop : stack } \rightarrow \text { option }(\text { int } \times \text { stack })\}
\end{aligned}
$$

specifies an abstract implementation of integer stacks.
Unfortunately, it was soon noticed that the elimination rule is too awkward, and that existential types alone do not allow designing module systems [Harper and Pierce, 2005].

Montagu and Rémy [2009] make existential types more flexible in several important ways, and argue that they might explain modules after all.

Rossberg, Russo, and Dreyer show that after all, generative modules can be encoding into System F with existential types [Rossberg et al., 2014].

Existential types in OCaml

Existential types are available indirectly in OCaml as a degenerate case of GADT and via abstract types and first-class modules.

Via GADT (iso-existential types)
type 'a $\mathrm{d}=\mathrm{D}:(\mathrm{b} \rightarrow$ ' a$) *$ ' $\mathrm{b} \rightarrow$ 'a d
let freeze $f x=D(f, x)$
let unfreeze $(D(f, x))=f x$
Via first-class modules (abstract types)
module type $D=$ sig type b type a val $f: b \rightarrow a$ val $x: b$ end let freeze (type u) (type v) f $x=$
(module struct type $b=u$ type $a=v$ let $f=f$ let $x=x$ end : D) let unfreeze (type u) (module M : D with type $\mathrm{a}=\mathrm{u}$) $=$ M.f $\mathrm{M} . \mathrm{x}$

Contents

- Algebraic Data Types
- Equi- and iso- recursive types
- Existential types
- Implicitly-type existential types passing
- Iso-existential types
- Generalized Algebraic Datatypes
- Application to typed closure conversion
- Environment passing
- Closure passing

An introduction to GADTs

What are they?

ADTs
Types of constructors are surjective: all types can potentially be reached type α list $=$ Nil : α list
Const : $\alpha * \alpha$ list $\rightarrow \alpha$ list
GADTs
This is no more the case with GADTs

$$
\begin{aligned}
& \text { type }(\alpha, \beta) \text { eq }= \\
& \mid E q:(\alpha, \alpha) \text { eq }
\end{aligned}
$$

The Eq constructor may only build values of types of (α, α) eq. For example, it cannot build values of type (int, string) eq.

What are they?

ADTs

Types of constructors are surjective: all types can potentially be reached type α list $=$ Nil : α list
Const : $\alpha * \alpha$ list $\rightarrow \alpha$ list
GADTs
This is no more the case with GADTs

$$
\begin{aligned}
& \text { type }(\alpha, \beta) \text { eq }= \\
& \mid E q:(\alpha, \alpha) \text { eq } \\
& \mid \text { Any : }(\alpha, \beta) \text { eq }
\end{aligned}
$$

The Eq constructor may only build values of types of (α, α) eq.
For example, it cannot build values of type (int, string) eq.
The criteria is per constructor: it remains a GADT when another (even regular) constructor is added.

Examples

let add $(x, y)=x+y$ in
let not $x=$ if x then false else true in
let body $b=$
let step $\mathrm{x}=$
add (x , if not b then 1 else 2)
in step (step 0))
in body true

Examples

Defunctionalization

let add $(x, y)=x+y$ in
let not $x=$ if x then false else true in
let body $b=$
let step $\mathrm{x}=$
add (x , if not b then 1 else 2)
in step (step 0))
in body true

Introduce a constructor per function

type (_, -) apply =
Fadd : (int * int, int) apply
Fnot : (bool, bool) apply
Fbody : (bool, int) apply
Fstep : bool \rightarrow (int, int) apply

Examples

Defunctionalization

let $\operatorname{add}(x, y)=x+y$ in
let not $x=$ if x then false else true in
let body $b=$
let step $x=$
add (x , if not b then 1 else 2)
in step $(\operatorname{step} 0)$)
in body true

Introduce a constructor per function

```
type (_, -) apply =
    Fadd : (int * int, int) apply
    Fnot : (bool, bool) apply
    Fbody : (bool, int) apply
    Fstep : bool }->\mathrm{ (int, int) apply
```

Define a single apply function that dispatches all function calls:
let rec apply : type $a b$. (a, b) apply $\rightarrow a \rightarrow b=$ fun f arg \rightarrow match f with

```
Fadd \(\rightarrow\) let \(x, y=\arg\) in \(x+y\)
    Fnot \(\rightarrow\) let \(x=\arg\) in if \(x\) then false else true
    Fstep \(b \rightarrow\) let \(x=\arg\) in
                                    apply Fadd (x, if apply Fnot b then 1 else 2)
Fbody \(\rightarrow\) let \(b=\arg\) in
                                    apply (Fstep b) (apply (Fstep b) 0)
```


Examples

Defunctionalization

let add $(x, y)=x+y$ in
let not $x=$ if x then false else true in
let body $b=$
let step $x=$
add (x, if not b then 1 else 2)
in step (step 0))
in body true

Introduce a constructor per function

```
type (_, -) apply =
    Fadd : (int * int, int) apply
    Fnot : (bool, bool) apply
    Fbody:(bool, int) apply
    Fstep : bool }->\mathrm{ (int, int) apply
```

Key point: the typechecker refines the types a and b in each branch
let rec apply: type $a b$. (a, b) apply $\rightarrow a \rightarrow b=$ fun f arg \rightarrow match f with

Fadd \rightarrow let $\mathrm{x}, \mathrm{y}=\arg \operatorname{in} \mathrm{x}+\mathrm{y}$	$(*$ int $*$ int	int $*)$
Fnot \rightarrow let $\mathrm{x}=\arg$ in if x then false else true	$(*$ bool	bool $*)$
Fstep $\mathrm{b} \rightarrow$ let $\mathrm{x}=\arg$ in	$(*$ int	int *)

Fbody \rightarrow let $\mathrm{b}=$ arg in (* bool int *) apply (Fstep b) (apply (Fstep b) 0)
in apply Fbody true

Examples

Typed evaluator
A typed abstract-syntax tree

```
type _ expr =
    Int : int \(\rightarrow\) int expr
    Zerop : int exp \(\rightarrow\) bool exp
    If : (bool expr * 'a expr * 'a expr) \(\rightarrow\) 'a expr
let eD
\[
=(\operatorname{If}(\text { Zerop }(\operatorname{Int} 0), \operatorname{Int} 1, \operatorname{Int} 2))
\]
```

What is the type of en?

Examples

Typed evaluator

A typed abstract-syntax tree

```
type _ exp =
        Int : int \(\rightarrow\) int expr
    Zerop : int expr \(\rightarrow\) bool expr
    If : (bool expr * 'a expr * 'a expr) \(\rightarrow\) 'a expr
let en : int expr \(=(\operatorname{If}(\) Zerop \((\operatorname{Int} 0), \operatorname{Int} 1\), Int 2\())\)
```

A typed evaluator (with no failure)
let rec eval : type a. a exp $\rightarrow \mathrm{a}=$ fun $x \rightarrow$ match \times with

Int x	$\rightarrow x$	$(* a=$ int $*)$
Zerop x	\rightarrow eval $x>0$	$(* a=$ pol $*)$

If $(b, e 1, e 2) \rightarrow$ if eval b then reval el else eval e2
let $b 0=$ val $e 0$

Examples

Typed evaluator

A typed abstract-syntax tree

```
type _ expr =
    Int : int }->\mathrm{ int expr
    Zerop : int expr }->\mathrm{ bool expr
    If : (bool expr * 'a expr * 'a expr) }->\mathrm{ 'a expr
let e0 : int expr = (If (Zerop (Int 0), Int 1, Int 2))
```

A typed evaluator (with no failure)

```
let rec eval : type a . a expr }->\textrm{a}=\mathrm{ fun }x->\mathrm{ match }x\mathrm{ with
```

Int x	$\rightarrow x$	$(* a=$ int $*)$
Zerop x	\rightarrow eval $x>0$	$(* a=$ bool $*)$

If $(b, e 1, e 2) \rightarrow$ if eval b then eval e1 else eval e2
let $b 0=$ eval $e 0$

Exercise

Define a typed abstract syntax tree for the simply-typed lambda-calculus and a typed evaluator.

Examples

Generic programming

Example of printing

```
type - ty \(=\)
    Tint: int ty
    Tbool : boo ty
    Tlist : 'a ty \(\rightarrow\) ('a list) ty
    Tpair : 'a ty * 'b ty \(\rightarrow\) ('a * 'b) ty
let rec to_string : type \(a\). \(a\) ty \(\rightarrow a \rightarrow\) string \(=\) fun \(t x \rightarrow\) match \(t\) with
    Tint \(\rightarrow\) string_of_int \(x\)
    Tbool \(\rightarrow\) if \(x\) then "true" else "false"
    Tlist \(t \rightarrow\) "[" ^ String.concat "; "(List.map (to_string t) x) ^ "]"
    Tpair (a, b) \(\rightarrow\)
        let \(u, v=x\) in " (" ^ to_string \(a u^{\wedge} ", " \wedge\) to_string \(\left.b v{ }^{\wedge} "\right) "\)
let \(s=\) to_string (Tpair (Tlist Tint, Tbool)) ([1; 2; 3], true)
```


Examples

Encoding sum types

```
type (\alpha,\beta) sum = Left of \alpha| Right of }
```

can be encoded as a product:

$$
\begin{aligned}
& \text { type }(-,-,-) \text { tag }=\operatorname{Ltag}:(\alpha, \alpha, \beta) \operatorname{tag} \mid \operatorname{Rtag}:(\beta, \alpha, \beta) \operatorname{tag} \\
& \text { type }(\alpha, \beta) \text { prod }=\operatorname{Prod}:(\gamma, \alpha, \beta) \operatorname{tag} * \gamma \rightarrow(\alpha, \beta) \text { prod } \\
& \text { let sum_of_prod (type a b) }(\mathrm{p}:(\mathrm{a}, \mathrm{~b}) \operatorname{prod}):(\mathrm{a}, \mathrm{~b}) \text { sum }= \\
& \text { let Prod }(\mathrm{t}, \mathrm{v})=\mathrm{p} \text { in match } \mathrm{t} \text { with Ltag } \rightarrow \text { Left } \mathrm{v} \mid \operatorname{Rtag} \rightarrow \text { Right } \mathrm{v}
\end{aligned}
$$

Prod is a single, hence superfluous constructor: it need not be allocated.
A field common to both cases can be accessed without looking at the tag.

$$
\begin{aligned}
& \text { type }(\alpha, \beta) \text { prod }=\operatorname{Prod}:(\gamma, \alpha, \beta) \operatorname{tag} * \gamma * \text { bool } \rightarrow(\alpha, \beta) \text { prod } \\
& \text { let get }(\text { type } \mathrm{a} \mathrm{~b})(\mathrm{p}:(\mathrm{a}, \mathrm{~b}) \text { prod }): \text { bool }= \\
& \text { let } \operatorname{Prod}(\mathrm{t}, \mathrm{v}, \mathrm{~s})=\mathrm{p} \text { in } \mathrm{s}
\end{aligned}
$$

Examples

Encoding sum types

Exercise

Specialize the encoding of sum types to the encoding of 'a list

Other uses of GADTs

GADTs

- May encode data-structure invariants, such as the state of an automaton, as illustrated by Pottier and Régis-Gianas [2006] for typechecking LR-parsers.
- They may be used to implement a form of dynamic type (similarly to the generic printer)
- They may be used to optimize representation (e.g. sum's encoding)
- GADTs can be used to encode type classes, using a technique analogous to defunctionalization [Pottier and Gauthier, 2006].

Reducing GADTs to type equality (and existential types)

All GADTs can be encoded with a single one, encoding type equality:

$$
\text { type }(\alpha, \beta) \text { eq }=E q:(\alpha, \alpha) \text { eq }
$$

For instance, generic programming can then be redefined as follows:

```
type \alpha ty =
    Tint : ( }\alpha,\mathrm{ int) eq }->\alpha\mathrm{ ty (* int ty *)
    Tlist : (\alpha,\beta list) eq * \beta ty }->\alpha\mathrm{ ty }\quad(*\alpha\mathrm{ ty }->\alpha\mathrm{ list ty *)
    Tpair: (\alpha,(\beta*\gamma)) eq * \beta ty * \gamma ty }->\alpha\mathrm{ ty
```

This declaration is not a GADT, just an existential type!
\triangleright We enlarge the domain of each constructor,
\triangleright But require a proof evidence as an extra argument that a certain equality holds to restrict the possibkle uses of the constructors.

Reducing GADTs to type equality
 (and existential types)

All GADTs can be encoded with a single one, encoding type equality:
type (α, β) eq $=E q:(\alpha, \alpha)$ eq
For instance, generic programming can then be redefined as follows:

$$
\text { type } \alpha \text { ty }=
$$

Tint : $(\alpha$, int $)$ eq $\rightarrow \alpha$ ty
Tlist : $(\alpha, \beta$ list $)$ eq $* \beta$ ty $\rightarrow \alpha$ ty $\quad(* \alpha$ ty $\rightarrow \alpha$ list ty $*)$
Tpair : $(\alpha,(\beta * \gamma))$ eq $* \beta$ ty $* \gamma$ ty $\rightarrow \alpha$ ty
This declaration is not a GADT, just an existential type!
let rec to_string : type a. a ty $\rightarrow \mathrm{a} \rightarrow$ string $=$ fun $\mathrm{t} x \rightarrow$ match t with
Tint Eq \rightarrow string_of_int \times
Tlist (Eq, I) \rightarrow "[" ^String.concat "; " (List.map (to_string I) x) ^" "]"
Tpair (Eq,a,b) \rightarrow
let $u, v=x$ in " (" ^ to_string $a u^{\wedge}$ ", " ^ to_string $b v^{\wedge}$ ")"
let $\mathrm{s}=$ to_string (Tpair $(E q$, Tlist $(E q$, Tint $E q)$, Tint $E q))([1 ; 2 ; 3], 0)$

Reducing GADTs to type equality (and existential types)

All GADTs can be encoded with a single one :
type (α, β) eq $=E q:(\alpha, \alpha)$ eq
For instance, generic programming can be redefined as follows:

$$
\text { type } \alpha \text { ty }=
$$

Tint : $(\alpha$, int $)$ eq $\rightarrow \alpha$ ty
Tlist : $(\alpha, \beta$ list $)$ eq $* \beta$ ty $\rightarrow \alpha$ ty
Tpair : $(\alpha,(\beta * \gamma))$ eq $* \beta$ ty $* \gamma$ ty $\rightarrow \alpha$ ty
This declaration is not a GADT, just an existential type!
let rec to_string : type a. a ty $\rightarrow a \rightarrow$ string $=$ fun $t x \rightarrow$ match t with
Tint $E q \rightarrow$ string_of_int \times
Tlist $(E q, I) \rightarrow \ldots$
Tpair $(E q, a, b) \rightarrow \ldots$
\triangleright Pattern "Tint $E q$ " is GADT matching

Reducing GADTs to type equality (and existential types)

All GADTs can be encoded with a single one :
type (α, β) eq $=E q:(\alpha, \alpha)$ eq
For instance, generic programming can be redefined as follows:

$$
\text { type } \alpha \text { ty }=
$$

Tint : $(\alpha$, int $)$ eq $\rightarrow \alpha$ ty
Tlist : $(\alpha, \beta$ list $)$ eq $* \beta$ ty $\rightarrow \alpha$ ty
Tpair : $(\alpha,(\beta * \gamma))$ eq $* \beta$ ty $* \gamma$ ty $\rightarrow \alpha$ ty
This declaration is not a GADT, just an existential type!
let rec to_string : type a. a ty $\rightarrow a \rightarrow$ string $=$ fun $t x \rightarrow$ match t with
Tint $\mathrm{p} \rightarrow$ let $E q=\mathrm{p}$ in string_of_int x
Tlist $(E q, I) \rightarrow \ldots$
Tpair $(E q, a, b) \rightarrow \ldots$
\triangleright Pattern "Tint p" is ordinary ADT matching
\triangleright let $E q=\mathrm{p}$ in.. introduces the equality $\mathrm{a}=$ int in the current branch

Formalisation of GADTs

We can encode GADTs with type equalities
We cannot encode type equalities in System F.
They bring something more, namely local equalities in the typing context.
We write $\tau_{1} \sim \tau_{2}$ for $\left(\tau_{1}, \tau_{2}\right)$ eq
When typechecking an expression

$$
E\left[\text { let } x: \tau_{1} \sim \tau_{2}=M_{0} \text { in } M\right] \quad E\left[\lambda x: \tau_{1} \sim \tau_{2} . M\right]
$$

$\triangleright M$ is typechecked with the asumption that $\tau_{1} \sim \tau_{2}$, i.e. types τ_{1} and τ_{2} are equivalent, which allows for type conversion within M
\triangleright but E and M_{0} are typechecked without this asumption
\triangleright What is learned by an equation remains local to its static scope, and does not extend to its surrounding context (or the rest of the program execution trace).

Fc (simplified)

Add equality coercions to System F

Coercions witness type equivalences:

Types

$$
\tau::=\ldots \mid \tau_{1} \sim \tau_{2}
$$

Expressions

$$
M::=\ldots|\gamma \triangleleft M| \gamma
$$

Coercions are first-class and can be applied to terms.

Typing rules:
sym $\gamma \quad$ symmetry
$\gamma_{1} ; \gamma_{2}$
$\gamma_{1} \rightarrow \gamma_{2}$
left γ
right γ
$\forall \alpha . \gamma$
$\gamma @ \tau$
variable reflexivity transitivity arrow coercions left projection right projection type generalization type instantiation

$$
\begin{array}{ll}
\text { Coerce } \\
& \Gamma \vdash M: \tau_{1} \\
& \text { Coercion } \\
\Gamma \vdash \gamma: \tau_{1} \sim \tau_{2} \\
\Gamma \vdash \gamma \triangleleft M: \tau_{2} &
\end{array} \frac{\Gamma \Vdash \gamma: \tau_{1} \sim \tau_{2}}{\Gamma \vdash \gamma: \tau_{1} \sim \tau_{2}}
$$

Coabs
$\Gamma, x: \tau_{1} \sim \tau_{2} \vdash M: \tau$
$\Gamma \vdash \lambda x: \tau_{1} \sim \tau_{2} . M: \tau_{1} \sim \tau_{2} \rightarrow \tau$

Fc (simplified)

Typing of coercions

$$
\begin{aligned}
& \mathrm{EQ} \text {-HYP } \\
& \frac{y: \tau_{1} \sim \tau_{2} \in \Gamma}{\Gamma \Vdash y: \tau_{1} \sim \tau_{2}}
\end{aligned}
$$

Eq-Ref
$\frac{\Gamma \vdash \tau}{\Gamma \Vdash\langle\tau\rangle: \tau \sim \tau}$

Eq-Sym
$\frac{\Gamma \Vdash \gamma: \tau_{1} \sim \tau_{2}}{\Gamma \Vdash \operatorname{sym} \gamma: \tau_{2} \sim \tau_{1}}$

Eq-Trans
$\frac{\Gamma \Vdash \gamma_{1}: \tau_{1} \sim \tau \quad \Gamma \Vdash \gamma_{2}: \tau \sim \tau_{2}}{\Gamma \Vdash \gamma_{1} ; \gamma_{2}: \tau_{1} \sim \tau_{2}}$
Eq-Left

$$
\frac{\Gamma \Vdash \gamma: \tau_{1} \rightarrow \tau_{2} \sim \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}}{\Gamma \Vdash \operatorname{left} \gamma: \tau_{1}^{\prime} \sim \tau_{1}}
$$

Eq-All
$\frac{\Gamma, \alpha \Vdash \gamma: \tau_{1} \sim \tau_{2}}{\Gamma \Vdash \forall \alpha \cdot \gamma: \forall \alpha \cdot \tau_{1} \sim \forall \alpha . \tau_{2}}$

Eq-Arrow

$$
\frac{\Gamma \Vdash \gamma_{1}: \tau_{1}^{\prime} \sim \tau_{1} \quad \Gamma \Vdash \gamma_{2}: \tau_{2} \sim \tau_{2}^{\prime}}{\Gamma \Vdash \gamma_{1} \rightarrow \gamma_{2}: \tau_{1} \rightarrow \tau_{2} \sim \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}}
$$

Eq-Right

$$
\frac{\Gamma \Vdash \gamma: \tau_{1} \rightarrow \tau_{2} \sim \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}}{\Gamma \Vdash \text { right } \gamma: \tau_{2} \sim \tau_{2}^{\prime}}
$$

Eq-Inst
$\frac{\Gamma \Vdash \gamma: \forall \alpha . \tau_{1} \sim \forall \alpha . \tau_{2} \quad \Gamma \vdash \tau}{\Gamma \Vdash \gamma @ \tau:[\alpha \mapsto \tau] \tau_{1} \sim[\alpha \mapsto \tau] \tau_{2}}$

Fc (simplified)

Typing of coercions

$$
\begin{aligned}
& \mathrm{EQ} \text {-HYP } \\
& \frac{y: \tau_{1} \sim \tau_{2} \in \Gamma}{\Gamma \Vdash y: \tau_{1} \sim \tau_{2}}
\end{aligned}
$$

Eq-Ref
$\frac{\Gamma \vdash \tau}{\Gamma \Vdash\langle\tau\rangle: \tau \sim \tau}$

Eq-Sym

$$
\frac{\Gamma \Vdash \gamma: \tau_{1} \sim \tau_{2}}{\Gamma \Vdash \operatorname{sym} \gamma: \tau_{2} \sim \tau_{1}}
$$

Eq-Trans
$\frac{\Gamma \Vdash \gamma_{1}: \tau_{1} \sim \tau \quad \Gamma \Vdash \gamma_{2}: \tau \sim \tau_{2}}{\Gamma \Vdash \gamma_{1} ; \gamma_{2}: \tau_{1} \sim \tau_{2}}$

> EQ-Left

$$
\frac{\Gamma \Vdash \gamma: \tau_{1} \rightarrow \tau_{2} \sim \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}}{\Gamma \Vdash \operatorname{left} \gamma: \tau_{1}^{\prime} \sim \tau_{1}}
$$

Eq-All

$$
\frac{\Gamma, \alpha \Vdash \gamma: \tau_{1} \sim \tau_{2}}{\Gamma \Vdash \forall \alpha \cdot \gamma: \forall \alpha . \tau_{1} \sim \forall \alpha . \tau_{2}}
$$

Eq-Arrow

$$
\frac{\Gamma \Vdash \gamma_{1}: \tau_{1}^{\prime} \sim \tau_{1} \quad \Gamma \Vdash \gamma_{2}: \tau_{2} \sim \tau_{2}^{\prime}}{\Gamma \Vdash \gamma_{1} \rightarrow \gamma_{2}: \tau_{1} \rightarrow \tau_{2} \sim \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}}
$$

Eq-Right

$$
\frac{\Gamma \Vdash \gamma: \tau_{1} \rightarrow \tau_{2} \sim \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}}{\Gamma \Vdash \text { right } \gamma: \tau_{2} \sim \tau_{2}^{\prime}}
$$

$$
\begin{aligned}
& \text { EQ-INST } \\
& \frac{\Gamma \Vdash \gamma: \forall \alpha . \tau_{1} \sim \forall \alpha . \tau_{2} \quad \Gamma \vdash \tau}{\Gamma \Vdash \gamma @ \tau:[\alpha \mapsto \tau] \tau_{1} \sim[\alpha \mapsto \tau] \tau_{2}}
\end{aligned}
$$

Only equalities between injective type constructors can be decomposed.

Semantics

Coercions should be without computational content

?

Semantics

Coercions should be without computational content
\triangleright they are just type information, and should be erased at runtime
\triangleright they should not block redexes
\triangleright in Ec, we may always push them down inside terms, adding new reduction rules:

$$
\begin{array}{rll}
\left(\gamma \triangleleft V_{1}\right) V_{2} & \longrightarrow & \text { right } \gamma \triangleleft\left(V_{1}\left(\text { left } \gamma \triangleleft V_{2}\right)\right) \\
(\gamma \triangleleft V) \tau & \longrightarrow & (\gamma @ \tau) \triangleleft(V \tau) \\
\gamma_{1} \triangleleft\left(\gamma_{2} \triangleleft V\right) & \longrightarrow & \left(\gamma_{1} ; \gamma_{2}\right) \triangleleft V
\end{array}
$$

Semantics

Coercions should be without computational content
Always?

Semantics

Coercions should be without computational content

Except ...

$?$

Semantics

Coercions should be without computational content
Except for coercion abstractions that must stop the evaluation

Why?

Semantics

Coercions should be without computational content
Except for coercion abstractions that must stop the evaluation
\triangleright Otherwise, one could attempt to reduce M in λ int \sim bool. M when M is not (bool $\triangleleft 0$), which is well-typed in this context.
\triangleright In call-by-value,

$$
\begin{array}{lll}
\lambda x: \tau_{1} \sim \tau_{2} . M & \text { freezes } & \text { the evaluation of } M, \\
M \triangleleft \gamma & \text { resumes } & \text { the evaluation of } M .
\end{array}
$$

Must always be enforced, even with other strategies
\triangleright Full reduction at compile time

$?$

Semantics

Coercions should be without computational content
Except for coercion abstractions that must stop the evaluation
\triangleright Otherwise, one could attempt to reduce M in λ int \sim bool. M when M is not (bool $\triangleleft 0$), which is well-typed in this context.
\triangleright In call-by-value,

$$
\begin{array}{lll}
\lambda x: \tau_{1} \sim \tau_{2} . M & \text { freezes } & \text { the evaluation of } M, \\
M \triangleleft \gamma & \text { resumes } & \text { the evaluation of } M .
\end{array}
$$

Must always be enforced, even with other strategies
\triangleright Full reduction at compile time may still be performed,

Semantics

Coercions should be without computational content
Except for coercion abstractions that must stop the evaluation
\triangleright Otherwise, one could attempt to reduce M in $\lambda i n t \sim$ bool. M when M is not (bool $\triangleleft 0$), which is well-typed in this context.
\triangleright In call-by-value,

$$
\begin{array}{lll}
\lambda x: \tau_{1} \sim \tau_{2} . M & \text { freezes } & \text { the evaluation of } M \\
M \triangleleft \gamma & \text { resumes } & \text { the evaluation of } M
\end{array}
$$

Must always be enforced, even with other strategies
\triangleright Full reduction at compile time may still be performed, but be aware of stuck programs and treat them as dead branches.

Type soundness

Type soundness

By subject reduction and progress with explicit coercions
Erasing semantics
Important and not so obvious.

$$
\begin{array}{lll}
\gamma \triangleleft M & \text { erases } & \text { to } M \\
\gamma & \text { erases } & \text { to } \diamond
\end{array}
$$

Slogan that "coercion have 0-bit information", i.e.
Coercions need not be passed at runtime--but still block the reduction. Expressions and typing rules.

Coerce

$$
\begin{gathered}
\Gamma \vdash M: \tau_{1} \\
\frac{\Gamma \vdash \diamond: \tau_{1} \sim \tau_{2}}{\Gamma \vdash M: \tau_{2}}
\end{gathered}
$$

Coercion

$$
\frac{\Gamma \Vdash \tau_{1} \sim \tau_{2}}{\Gamma \vdash \diamond: \tau_{1} \sim \tau_{2}}
$$

Coabs

$$
\frac{\Gamma, x: \tau_{1} \sim \tau_{2} \vdash M: \tau}{\Gamma \vdash \lambda x: \tau_{1} \sim \tau_{2} . M: \tau_{1} \sim \tau_{2} \rightarrow \tau}
$$

Type soundness

The introduction of type equality constraints in System F has been introduced and formalized by Sulzmann et al. [2007].
Scherer and Rémy [2015] show how strong reduction and confluence can be recovered in the presence of possibly uninhabited coercions.

Type soundness

Semantic proofs

Equality coercions are a small logic of type conversions.
Type conversions may be enriched with more operations.
A very general form of coercions has been introduced by Cretin and Rémy [2014].

The type soundness proof became too cumbersome to be conducted syntactically.
Instead a semantic proof is used, interpreting types as sets of terms (a technique similar to unary logical relations)

Type checking / inference

With explicit coercions, types are fully determined from expressions.
However, the user prefers to leave applications of Coerce implicit.
Then types becomes ambiguous: when leaving the scope of an equation: which form should be used, among the equivalent ones?

This must be determined from the context, including the return type, and calls for extra type annotations:

$$
\begin{aligned}
& \text { let rec eval : type a . a expr } \rightarrow \mathrm{a}=\text { fun } \mathrm{x} \rightarrow \text { match } \mathrm{x} \text { with } \\
& \left\lvert\, \begin{array}{ll}
\text { Int } \mathrm{x} & \rightarrow \mathrm{x} \quad(* x: \text { int, but } a=\text { int, should we return } x: a ? *) \\
\mid \text { Zerop } x & \rightarrow \text { eval } x>0 \\
\text { If }(\mathrm{b}, \mathrm{e} 1, \mathrm{e} 2) & \rightarrow \text { if eval } b \text { then eval e1 else eval e2 }
\end{array}\right.
\end{aligned}
$$

In ML, type annotations must be used to tell

- the type of the context
- which datatypes must be typed as GADTs.

In Coq, one must use return type annotations on matches.

Type inference in ML-like languages with GADTs

Simonet and Pottier [2007] gave a presentation of type inference for GADTs with general typing constraints for ML-like languages.

Pottier and Régis-Gianas [2006] introduced a stratified approach to better propagate constraints from outisde to inside GADTs contexts.

Vytiniotis et al. [2011] introduced the outside-in approach, used in Haskell, which restricts type information to flow from outside to inside GADT contexts.

Garrigue and Rémy [2013] introduced the notion of ambivalent types, used in OCaml, to restrict type occurrences that must be considered ambiguous and explicitly specified using type annotations.

Contents

- Algebraic Data Types
- Equi- and iso- recursive types
- Existential types
- Implicitly-type existential types passing
- Iso-existential types
- Generalized Algebraic Datatypes
- Application to typed closure conversion
- Environment passing
- Closure passing

Type-preserving compilation

Compilation is type-preserving when each intermediate language is explicitly typed, and each compilation phase transforms a typed program into a typed program in the next intermediate language.

Why preserve types during compilation?

- it can help debug the compiler;
- types can be used to drive optimizations;
- types can be used to produce proof-carrying code;
- proving that types are preserved can be the first step towards proving that the semantics is preserved [Chlipala, 2007].

Type-preserving compilation

Type-preserving compilation exhibits an encoding of programming constructs into programming languages with usually richer type systems.

The encoding may sometimes be used directly as a programming idiom in the source language.

For example:

- Closure conversion requires an extension of the language with existential types, which happens to be very useful on their own.
- Closures are themselves a simple form of objects, which can also be explained with existential types.
- Defunctionalization may be done manually on some particular programs, e.g. in web applications to monitor the computation.

Type-preserving compilation

A classic paper by Morrisett et al. [1999] shows how to go from System F to Typed Assembly Language, while preserving types along the way. Its main passes are:

- CPS conversion fixes the order of evaluation, names intermediate computations, and makes all function calls tail calls;
- closure conversion makes environments and closures explicit, and produces a program where all functions are closed;
- allocation and initialization of tuples is made explicit;
- the calling convention is made explicit, and variables are replaced with (an unbounded number of) machine registers.

Translating types

In general, a type-preserving compilation phase involves not only a translation of terms, mapping M to $\llbracket M \rrbracket$, but also a translation of types, mapping τ to $\llbracket \tau \rrbracket$, with the property:

$$
\Gamma \vdash M: \tau \quad \text { implies } \quad \llbracket \Gamma \rrbracket \vdash \llbracket M \rrbracket: \llbracket \tau \rrbracket
$$

The translation of types carries a lot of information: examining it is often enough to guess what the translation of terms will be.

See the old lecture on type closure conversion.

Closure conversion

First-class functions may appear in the body of other functions. hence, their own body may contain free variables that will be bound to values during the evaluation in the execution environment.

Because they can be returned as values, and thus used outside of their definition environment, they must store their execution environment in their value.

A closure is the packaging of the code of a first-class function with its runtime environment, so that it becomes closed, i.e. independent of the runtime environment and can be moved and applied in another runtime environment.

Closures can also be used to represent recursive functions and objects (in the object-as-record-of-methods paradigm).

Source and target

In the following,

- the source calculus has unary λ-abstractions, which can have free variables;
- the target calculus has binary λ-abstractions, which must be closed.

Closure conversion can be easily extended to n-ary functions, or n-ary functions may be uncurried in a separate, type-preserving compilation pass.

Variants of closure conversion

There are at least two variants of closure conversion:

- in the closure-passing variant, the closure and the environment are a single memory block;
- in the environment-passing variant, the environment is a separate block, to which the closure points.

The impact of this choice on the translation of terms is minor.
Its impact on the translation of types is more important: the closure-passing variant requires more type-theoretic machinery.

Closure-passing closure conversion

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be $\operatorname{fv}(\lambda x . a)$:

$$
\begin{aligned}
\llbracket \lambda x . a \rrbracket= & \text { let } \operatorname{code}=\lambda(\text { clo }, x) . \\
& \text { let }\left(-, x_{1}, \ldots, x_{n}\right)=\text { clo in } \llbracket a \rrbracket \text { in } \\
& \left(\text { code }, x_{1}, \ldots, x_{n}\right) \\
\llbracket a_{1} & a_{2} \rrbracket= \\
& \text { let clo }=\llbracket a_{1} \rrbracket \text { in } \\
& \text { let code }=\text { proj } j_{0} \text { clo in } \\
& \text { } \operatorname{code}\left(\text { clo }, \llbracket a_{2} \rrbracket\right)
\end{aligned}
$$

(The variables code and clo must be suitably fresh.)

Closure-passing closure conversion

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be $\operatorname{fv}(\lambda x . a)$:

$$
\begin{aligned}
\llbracket \lambda x \cdot a \rrbracket= & \text { let } \operatorname{code}=\lambda(\text { clos }, x) . \\
& \quad \text { let }\left(-, x_{1}, \ldots, x_{n}\right)=\text { clo in } \llbracket a \rrbracket \text { in } \\
& \left(\text { code }, x_{1}, \ldots, x_{n}\right) \\
\llbracket a_{1} a_{2} \rrbracket= & \text { let clos }=\llbracket a_{1} \rrbracket \text { in } \\
& \text { let code }=\text { proj} j_{0} \text { clo in } \\
& \text { code }\left(\text { clo }, \llbracket a_{2} \rrbracket\right)
\end{aligned}
$$

Important! The layout of the environment must be known only at the closure allocation site, not at the call site. In particular, proj_{0} clo need not know the size of clos.

Environment-passing closure conversion

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be $\operatorname{fv}(\lambda x . a)$:

$$
\begin{aligned}
\llbracket \lambda x \cdot a \rrbracket= & \text { let } \operatorname{code}=\lambda(e n v, x) . \\
& \quad \text { let }\left(x_{1}, \ldots, x_{n}\right)=\text { ens in } \llbracket a \rrbracket \text { in } \\
& \left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right) \\
\llbracket a_{1} a_{2} \rrbracket= & \text { let }(\text { code }, \text { env })=\llbracket a_{1} \rrbracket \text { in } \\
& \text { code }\left(\text { env }, \llbracket a_{2} \rrbracket\right)
\end{aligned}
$$

Environment-passing closure conversion

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be $\operatorname{fv}(\lambda x . a)$:

$$
\begin{aligned}
\llbracket \lambda x . a \rrbracket= & \text { let } \operatorname{code}=\lambda(e n v, x) . \\
& \quad \text { let }\left(x_{1}, \ldots, x_{n}\right)=\text { env in } \llbracket a \rrbracket \text { in } \\
& \left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right) \\
\llbracket a_{1} a_{2} \rrbracket= & \text { let }(\text { code }, \text { env })=\llbracket a_{1} \rrbracket \text { in } \\
& \text { code }\left(\text { env }, \llbracket a_{2} \rrbracket\right)
\end{aligned}
$$

Questions: How can closure conversion be made type-preserving?

Environment-passing closure conversion

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be $\operatorname{fv}(\lambda x . a)$:

$$
\begin{aligned}
\llbracket \lambda x \cdot a \rrbracket= & \text { let } \operatorname{code}=\lambda(e n v, x) . \\
& \quad \text { let }\left(x_{1}, \ldots, x_{n}\right)=\text { ens in } \llbracket a \rrbracket \text { in } \\
& \left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right) \\
\llbracket a_{1} a_{2} \rrbracket= & \text { let }(\text { code }, \text { env })=\llbracket a_{1} \rrbracket \text { in } \\
& \text { code }\left(e n v, \llbracket a_{2} \rrbracket\right)
\end{aligned}
$$

Questions: How can closure conversion be made type-preserving?
The key issue is to find a sensible definition of the type translation. In particular, what is the translation of a function type, $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$?

Environment-passing closure conversion

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be $\operatorname{fv}(\lambda x . a)$:

$$
\begin{aligned}
\llbracket \lambda x \cdot a \rrbracket= & \text { let } \operatorname{code}=\lambda(e n v, x) . \\
& \text { let }\left(x_{1}, \ldots, x_{n}\right)=\text { env in } \llbracket a \rrbracket \text { in } \\
& \left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Assume $\Gamma \vdash \lambda x . a: \tau_{1} \rightarrow \tau_{2}$.
Assume, w.l.o.g.. $\operatorname{dom}(\Gamma)=\operatorname{fv}(\lambda x . a)=\left\{x_{1}, \ldots, x_{n}\right\}$.
Write $\llbracket \Gamma \rrbracket$ for the tuple type $x_{1}: \llbracket \tau_{1}^{\prime} \rrbracket ; \ldots ; x_{n}: \llbracket \tau_{n}^{\prime} \rrbracket$ where Γ is $x_{1}: \tau_{1}^{\prime} ; \ldots ; x_{n}: \tau_{n}^{\prime}$. We also use $\llbracket \Gamma \rrbracket$ as a type to mean $\llbracket \tau_{1}^{\prime} \rrbracket \times \ldots \times \llbracket \tau_{n}^{\prime} \rrbracket$.

We have $\Gamma, x: \tau_{1} \vdash a: \tau_{2}$, so in environment $\llbracket \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket$, we have

- env has type $\llbracket \Gamma \rrbracket$,
- code has type $\left(\llbracket \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket$, and
- the entire closure has type $\left(\left(\llbracket \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket\right) \times \llbracket \Gamma \rrbracket$.

Now, what should be the definition of $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$?

Towards a type translation

Can we adopt this as a definition?

$$
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\left(\left(\llbracket \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket\right) \times \llbracket \Gamma \rrbracket
$$

Towards a type translation

Can we adopt this as a definition?

$$
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\left(\left(\llbracket \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket\right) \times \llbracket \Gamma \rrbracket
$$

Naturally not. This definition is mathematically ill-formed: we cannot use Γ out of the blue.

That is, this definition is not uniform: it depends on Γ, i.e. the size and layout of the environment.

Do we really need to have a uniform translation of types?

Towards a type translation

Yes, we do.

Towards a type translation

Yes, we do.
We need a uniform translation of types, not just because it is nice to have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct types, then we will be unable to translate this well-typed code:

Towards a type translation

Yes, we do.
We need a uniform translation of types, not just because it is nice to have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct types, then we will be unable to translate this well-typed code:

$$
\text { if } \ldots \text { then } \lambda x . x+y \text { else } \lambda x . x
$$

Furthermore, we want function invocations to be translated uniformly, without knowledge of the size and layout of the closure's environment.

Towards a type translation

Yes, we do.
We need a uniform translation of types, not just because it is nice to have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct types, then we will be unable to translate this well-typed code:

$$
\text { if } \ldots \text { then } \lambda x . x+y \text { else } \lambda x . x
$$

Furthermore, we want function invocations to be translated uniformly, without knowledge of the size and layout of the closure's environment.

So, what could be the definition of $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$?

The type translation

The only sensible solution is:

$$
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\exists \alpha \cdot\left(\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket\right) \times \alpha
$$

An existential quantification over the type of the environment abstracts away the differences in size and layout.

Enough information is retained to ensure that the application of the code to the environment is valid: this is expressed by letting the variable α occur twice on the right-hand side.

The type translation

The existential quantification also provides a form of security: the caller cannot do anything with the environment except pass it as an argument to the code; in particular, it cannot inspect or modify the environment.

For instance, in the source language, the following coding style guarantees that x remains even, no matter how f is used:

$$
\text { let } f=\text { let } x=\operatorname{ref} 0 \text { in } \lambda() \cdot x:=(x+2) ;!x
$$

After closure conversion, the reference x is reachable via the closure of f. A malicious, untyped client could write an odd value to x. However, a well-typed client is unable to do so.

This encoding is not just type-preserving, but also fully abstract: it preserves (a typed version of) observational equivalence [Ahmed and Blume, 2008].

- Algebraic Data Types
- Equi- and iso- recursive types
- Existential types
- Implicitly-type existential types passing
- Iso-existential types
- Generalized Algebraic Datatypes
- Application to typed closure conversion
- Environment passing
- Closure passing

Typed closure conversion

Everything is now set up to prove that, in System F with existential types:
$\Gamma \vdash M: \tau \quad$ implies $\quad \llbracket \Gamma \rrbracket \vdash \llbracket M \rrbracket: \llbracket \tau \rrbracket$

Environment-passing closure conversion

```
Assume \(\Gamma \vdash \lambda x . M: \tau_{1} \rightarrow \tau_{2}\) and \(\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}=\mathrm{fv}(\lambda x . M)\).
\(\llbracket \lambda x: \tau_{1} \cdot M \rrbracket=\) let code \(:=\)
    \(\lambda(e n v: \quad, x: \quad)\).
    let \(\left(x_{1}, \ldots, x_{n}: \quad\right)=e n v\) in
        \(\llbracket M \rrbracket\)
    in
    pack \(\quad,\left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right)\)
    as
```


Environment-passing closure conversion

Assume $\Gamma \vdash \lambda x . M: \tau_{1} \rightarrow \tau_{2}$ and $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}=\mathrm{fv}(\lambda x . M)$.

$$
\begin{aligned}
\llbracket \lambda x: \tau_{1} \cdot M \rrbracket= & \text { let code }: \\
& \lambda\left(e n v: \llbracket \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket\right) . \\
& \quad \text { let }\left(x_{1}, \ldots, x_{n}: \llbracket \Gamma \rrbracket\right)=\text { ens in } \\
& \llbracket M \rrbracket \\
& \text { in } \\
& \text { pack } \quad,\left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as }
\end{aligned}
$$

Environment-passing closure conversion

Assume $\Gamma \vdash \lambda x . M: \tau_{1} \rightarrow \tau_{2}$ and $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}=\mathrm{fv}(\lambda x . M)$.

$$
\begin{aligned}
\llbracket \lambda x: \tau_{1} \cdot M \rrbracket= & \text { let code }:\left(\llbracket \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket= \\
& \lambda\left(e n v: \llbracket \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket\right) . \\
& \quad \text { let }\left(x_{1}, \ldots, x_{n}: \llbracket \Gamma \rrbracket\right)=\text { ens in } \\
& \llbracket M \rrbracket \\
& \text { in } \\
& \text { pack } \quad,\left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as }
\end{aligned}
$$

Environment-passing closure conversion

Assume $\Gamma \vdash \lambda x . M: \tau_{1} \rightarrow \tau_{2}$ and $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}=\mathrm{fv}(\lambda x . M)$.

$$
\begin{aligned}
\llbracket \lambda x: \tau_{1} \cdot M \rrbracket= & \text { let } \operatorname{code}:\left(\llbracket \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket= \\
& \lambda\left(\operatorname{env}: \llbracket \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket\right) . \\
& \text { let }\left(x_{1}, \ldots, x_{n}: \llbracket \Gamma \rrbracket\right)=\text { ens in } \\
& \llbracket M \rrbracket \\
& \text { in } \\
& \text { pack } \llbracket \Gamma \rrbracket,\left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as } \exists \alpha \cdot\left(\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket\right) \times \alpha
\end{aligned}
$$

Environment-passing closure conversion

Assume $\Gamma \vdash \lambda x . M: \tau_{1} \rightarrow \tau_{2}$ and $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}=\mathrm{fv}(\lambda x . M)$.

$$
\begin{aligned}
\llbracket \lambda x: \tau_{1} \cdot M \rrbracket= & \text { let } \operatorname{code}:\left(\llbracket \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket= \\
& \lambda\left(\operatorname{env}: \llbracket \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket\right) . \\
& \text { let }\left(x_{1}, \ldots, x_{n}: \llbracket \Gamma \rrbracket\right)=e n v \text { in } \\
& \llbracket M \rrbracket \\
& \text { in } \\
& \operatorname{pack} \llbracket \Gamma \rrbracket,\left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as } \exists \alpha \cdot\left(\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket\right) \times \alpha
\end{aligned}
$$

We find $\llbracket \Gamma \rrbracket \vdash \llbracket \lambda x: \tau_{1} . M \rrbracket: \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket$, as desired.

Environment-passing closure conversion

Assume $\Gamma \vdash M: \tau_{1} \rightarrow \tau_{2}$ and $\Gamma \vdash M_{1}: \tau_{1}$.

$$
\begin{aligned}
\llbracket M M_{1} \rrbracket= & \text { let } \alpha,\left(\operatorname{code}:\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket, \text { env }: \alpha\right)= \\
& \quad \text { unpack } \llbracket M \rrbracket \text { in } \\
& \operatorname{code}\left(e n v, \llbracket M_{1} \rrbracket\right)
\end{aligned}
$$

We find $\llbracket \Gamma \rrbracket \vdash \llbracket M M_{1} \rrbracket: \llbracket \tau_{2} \rrbracket$, as desired.

Environment-passing closure conversion

Recursive functions can be translated in this way, known as the "fix-code" variant [Morrisett and Harper, 1998] (leaving out type information):

$$
\begin{aligned}
\llbracket \mu f . \lambda x \cdot M \rrbracket= & \text { let rec } \operatorname{code}(e n v, x)= \\
& \text { let } f=\text { pack }(\operatorname{code}, \text { env }) \text { in } \\
& \text { let }\left(x_{1}, \ldots, x_{n}\right)=\text { env in } \\
& \llbracket M \rrbracket i n \\
& \text { pack }\left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

where $\left\{x_{1}, \ldots, x_{n}\right\}=\mathrm{fv}(\mu f . \lambda x . M)$.
The translation of applications is unchanged: recursive and non-recursive functions have an identical calling convention.

Environment-passing closure conversion

Recursive functions can be translated in this way, known as the "fix-code" variant [Morrisett and Harper, 1998] (leaving out type information):

$$
\begin{aligned}
\llbracket \mu f . \lambda x \cdot M \rrbracket= & \text { let rec code }(\text { env }, x)= \\
& \text { let } f=\text { pack }(\operatorname{code}, \text { env }) \text { in } \\
& \text { let }\left(x_{1}, \ldots, x_{n}\right)=\text { env in } \\
& \llbracket M \rrbracket i n \\
& \text { pack }\left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

where $\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{fv}(\mu f . \lambda x . M)$.
The translation of applications is unchanged: recursive and non-recursive functions have an identical calling convention.

What is the weak point of this variant?

Environment-passing closure conversion

Recursive functions can be translated in this way, known as the "fix-code" variant [Morrisett and Harper, 1998] (leaving out type information):

$$
\begin{aligned}
\llbracket \mu f . \lambda x \cdot M \rrbracket= & \text { let rec code }(\text { env }, x)= \\
& \text { let } f=\text { pack }(\operatorname{code}, \text { env }) \text { in } \\
& \text { let }\left(x_{1}, \ldots, x_{n}\right)=\text { env in } \\
& \llbracket M \rrbracket i n \\
& \text { pack }\left(\operatorname{code},\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

where $\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{fv}(\mu f . \lambda x . M)$.
The translation of applications is unchanged: recursive and non-recursive functions have an identical calling convention.

What is the weak point of this variant?
A new closure is allocated at every call.

Environment-passing closure conversion

Instead, the "fix-pack" variant [Morrisett and Harper, 1998] uses an extra field in the environment to store a back pointer to the closure:

$$
\begin{aligned}
\llbracket \mu f . \lambda x . M \rrbracket= & \text { let } \operatorname{code}(e n v, x)= \\
& \quad \text { et }\left(f, x_{1}, \ldots, x_{n}\right)=\text { ens in } \\
& \llbracket M \rrbracket
\end{aligned} \quad \text { in } \begin{aligned}
& \text { let rec clo }=\left(\operatorname{code},\left(\operatorname{clo}, x_{1}, \ldots, x_{n}\right)\right) \text { in } \\
& \text { clos }
\end{aligned}
$$

where $\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{fv}(\mu f . \lambda x . M)$.
This requires general, recursively-defined values. Closures are now cyclic data structures.

Environment-passing closure conversion

Here is how the "fix-pack" variant is type-checked. Assume $\Gamma \vdash \mu f . \lambda x . M: \tau_{1} \rightarrow \tau_{2}$ and $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{fv}(\mu f . \lambda x . M)$.

$$
\begin{aligned}
& \llbracket \mu f \quad . \lambda x \cdot M \rrbracket= \\
& \text { let code : } \\
& \lambda(e n v: \quad, x: \quad) . \\
& \text { let }\left(f, x_{1}, \ldots, x_{n}\right): \quad=e n v \text { in } \\
& \llbracket M \rrbracket i n \\
& \text { let rec clot : } \\
& \text { pack } \\
& ,\left(\operatorname{code},\left(\operatorname{clo}, x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as } \\
& \text { in ilo }
\end{aligned}
$$

Environment-passing closure conversion

Here is how the "fix-pack" variant is type-checked. Assume $\Gamma \vdash \mu f . \lambda x . M: \tau_{1} \rightarrow \tau_{2}$ and $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{fv}(\mu f . \lambda x . M)$.

$$
\begin{aligned}
& \llbracket \mu f: \tau_{1} \rightarrow \\
& \quad \tau_{2} \cdot \lambda x \cdot M \rrbracket= \\
& \text { let code : } \\
& \lambda\left(\text { ens }: \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket\right) . \\
& \quad \text { et }\left(f, x_{1}, \ldots, x_{n}\right): \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket=\text { ens in } \\
& \llbracket M \rrbracket \text { in } \\
& \text { let rec clos: } \\
& \text { pack } \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket,\left(\operatorname{code},\left(\text { clo }, x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as } \\
& \text { in clos }
\end{aligned}
$$

Environment-passing closure conversion

Here is how the "fix-pack" variant is type-checked. Assume $\Gamma \vdash \mu f . \lambda x . M: \tau_{1} \rightarrow \tau_{2}$ and $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{fv}(\mu f . \lambda x . M)$.

$$
\begin{aligned}
& \llbracket \mu f: \tau_{1} \rightarrow \tau_{2} \cdot \lambda x . M \rrbracket= \\
& \text { let code }:\left(\llbracket f: \tau_{1} \rightarrow \tau_{2} ; \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket= \\
& \lambda\left(\text { ens }: \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket\right) . \\
& \text { let }\left(f, x_{1}, \ldots, x_{n}\right): \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket=\text { ens in } \\
& \llbracket M \rrbracket \text { in } \\
& \text { let rec clos : } \\
& \text { pack } \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket,\left(\operatorname{code},\left(\text { clo }, x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as } \\
& \text { in clos }
\end{aligned}
$$

Environment-passing closure conversion

Here is how the "fix-pack" variant is type-checked. Assume $\Gamma \vdash \mu f . \lambda x . M: \tau_{1} \rightarrow \tau_{2}$ and $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{fv}(\mu f . \lambda x . M)$.

$$
\begin{aligned}
& \llbracket \mu f: \tau_{1} \rightarrow \tau_{2} \cdot \lambda x \cdot M \rrbracket= \\
& \quad \text { let code }:\left(\llbracket f: \tau_{1} \rightarrow \tau_{2} ; \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket= \\
& \lambda\left(\text { env }: \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket\right) . \\
& \text { let }\left(f, x_{1}, \ldots, x_{n}\right): \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket=\text { ens in } \\
& \llbracket M \rrbracket \text { in } \\
& \text { let rec coo }: \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket= \\
& \text { pack } \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket,\left(\operatorname{code},\left(\text { clo }, x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as } \\
& \text { in clos }
\end{aligned}
$$

Environment-passing closure conversion

Here is how the "fix-pack" variant is type-checked. Assume
$\Gamma \vdash \mu f . \lambda x . M: \tau_{1} \rightarrow \tau_{2}$ and $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{fv}(\mu f . \lambda x . M)$.

$$
\begin{aligned}
& \llbracket \mu f: \tau_{1} \rightarrow \tau_{2} \cdot \lambda x . M \rrbracket= \\
& \text { let code }:\left(\llbracket f: \tau_{1} \rightarrow \tau_{2} ; \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket= \\
& \lambda\left(\text { ens }: \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket\right) . \\
& \text { let }\left(f, x_{1}, \ldots, x_{n}\right): \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket=\text { ens in } \\
& \llbracket M \rrbracket \text { in } \\
& \text { let rec clos }: \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket= \\
& \text { pack } \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket,\left(\operatorname{code},\left(\text { clo }, x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as } \left.\exists \alpha\left(\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket\right) \times \alpha\right) \\
& \text { in clos }
\end{aligned}
$$

Environment-passing closure conversion

Here is how the "fix-pack" variant is type-checked. Assume $\Gamma \vdash \mu f . \lambda x . M: \tau_{1} \rightarrow \tau_{2}$ and $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{fv}(\mu f . \lambda x . M)$.

$$
\begin{aligned}
& \llbracket \mu f: \tau_{1} \rightarrow \tau_{2} \cdot \lambda x \cdot M \rrbracket= \\
& \text { let code }:\left(\llbracket f: \tau_{1} \rightarrow \tau_{2} ; \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket= \\
& \lambda\left(\text { ens }: \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket\right) . \\
& \text { let }\left(f, x_{1}, \ldots, x_{n}\right): \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket=\text { ens in } \\
& \llbracket M \rrbracket \text { in } \\
& \text { let rec clos }: \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket= \\
& \text { pack } \llbracket f: \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket,\left(\operatorname{code},\left(\text { clo }, x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as } \left.\exists \alpha\left(\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket\right) \times \alpha\right) \\
& \text { in clos }
\end{aligned}
$$

Problem?

Environment-passing closure conversion

The recursive function may be polymorphic, but recursive calls are monomorphic...

We can generalize the encoding afterwards,

$$
\llbracket \Lambda \vec{\beta} \cdot \mu f: \tau_{1} \rightarrow \tau_{2} \cdot \lambda x \cdot M \rrbracket=\Lambda \vec{\beta} . \llbracket \mu f: \tau_{1} \rightarrow \tau_{2} \cdot \lambda x \cdot M \rrbracket
$$

whenever the right-hand side is well-defined.
This allows the indirect compilation of polymorphic recursive functions as long as the recursion is monomorphic.

Fortunately, the encoding can be straightforwardly adapted to directly compile polymorphically recursive functions into polymorphic closure.

Environment-passing closure conversion

$$
\begin{aligned}
& \llbracket \mu f: \forall \vec{\beta} \cdot \tau_{1} \rightarrow \tau_{2} \cdot \lambda x \cdot M \rrbracket= \\
& \text { let code : } \forall \vec{\beta} .\left(\llbracket f: \forall \vec{\beta} . \tau_{1} \rightarrow \tau_{2} ; \Gamma \rrbracket \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket= \\
& \lambda\left(\text { env }: \llbracket f: \forall \vec{\beta} . \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket\right) \text {. } \\
& \text { let }\left(f, x_{1}, \ldots, x_{n}\right): \llbracket f: \forall \vec{\beta} . \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket=\text { env in } \\
& \llbracket M \rrbracket \text { in } \\
& \text { let rec clo: } \llbracket \forall \vec{\beta} . \tau_{1} \rightarrow \tau_{2} \rrbracket= \\
& \Lambda \vec{\beta} . \text { pack } \llbracket f: \forall \vec{\beta} . \tau_{1} \rightarrow \tau_{2}, \Gamma \rrbracket,\left(\operatorname{code} \vec{\beta},\left(\operatorname{clo}, x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as } \left.\exists \alpha\left(\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket\right) \times \alpha\right) \\
& \text { in clo }
\end{aligned}
$$

The encoding is simple.
However, this requires the introduction of recursive non-functional values "let rec $x=v$ ". While this is a useful construct, it really alters the operational semantics and requires updating the type soundness proof.

- Algebraic Data Types
- Equi- and iso- recursive types
- Existential types
- Implicitly-type existential types passing
- Iso-existential types
- Generalized Algebraic Datatypes
- Application to typed closure conversion
- Environment passing
- Closure passing

Closure-passing closure conversion

$$
\begin{aligned}
\llbracket \lambda x . M \rrbracket= & \text { let } \operatorname{code}=\lambda(\text { clo }, x) . \\
& \text { let }\left(-, x_{1}, \ldots, x_{n}\right)=\text { clo in } \\
& \llbracket M \rrbracket \\
& \text { in }\left(\text { code }, x_{1}, \ldots, x_{n}\right) \\
\llbracket M_{1} M_{2} \rrbracket= & \text { let plo }=\llbracket M_{1} \rrbracket \text { in } \\
& \text { let code }=\operatorname{proj}_{0} \text { clo in } \\
& \text { code }\left(\text { clo }, \llbracket M_{2} \rrbracket\right)
\end{aligned}
$$

where $\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{fv}(\lambda x . M)$.

Closure-passing closure conversion

$$
\begin{aligned}
\llbracket \lambda x . M \rrbracket= & \text { let } \operatorname{code}=\lambda(\text { clo }, x) . \\
& \text { let }\left(-, x_{1}, \ldots, x_{n}\right)=\text { clo in } \\
& \llbracket M \rrbracket \\
& \text { in }\left(\operatorname{code}, x_{1}, \ldots, x_{n}\right) \\
\llbracket M_{1} M_{2} \rrbracket= & \text { let clo }=\llbracket M_{1} \rrbracket \text { in } \\
& \text { let code }=p r j_{0} \text { clo in } \\
& \text { code }\left(\text { clo }, \llbracket M_{2} \rrbracket\right)
\end{aligned}
$$

where $\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{fv}(\lambda x . M)$.
How could we typecheck this? What are the difficulties?

Closure-passing closure conversion

$$
\begin{aligned}
\llbracket \lambda x . M \rrbracket= & \text { let } \operatorname{code}=\lambda(\text { clo }, x) . \\
& \text { let }\left(-, x_{1}, \ldots, x_{n}\right)=\text { clo in } \\
& \llbracket M \rrbracket \\
& \text { in }\left(\operatorname{code}, x_{1}, \ldots, x_{n}\right) \\
\llbracket M_{1} M_{2} \rrbracket= & \text { let clo }=\llbracket M_{1} \rrbracket \text { in } \\
& \text { let code }=\operatorname{proj}_{0} \text { clo in } \\
& \text { code }\left(\text { clo }, \llbracket M_{2} \rrbracket\right)
\end{aligned}
$$

There are two difficulties:

- a closure is a tuple, whose first field should be exposed (it is the code pointer), while the number and types of the remaining fields should be abstract;
- the first field of the closure contains a function that expects the closure itself as its first argument.

Closure-passing closure conversion

There are two difficulties:

- a closure is a tuple, whose first field should be exposed (it is the code pointer), while the number and types of the remaining fields should be abstract;
- the first field of the closure contains a function that expects the closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

Closure-passing closure conversion

There are two difficulties:

- a closure is a tuple, whose first field should be exposed (it is the code pointer), while the number and types of the remaining fields should be abstract;
- the first field of the closure contains a function that expects the closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

- existential quantification over the tail of a tuple (a.k.a. a row);
- recursive types.

Tuples, rows, row variables

The standard tuple types that we have used so far are:

$$
\begin{array}{rlll}
\tau & ::= & \ldots \mid \Pi R & \text { - types } \\
R & ::=\epsilon \mid(\tau ; R) & \text { - rows }
\end{array}
$$

The notation $\left(\tau_{1} \times \ldots \times \tau_{n}\right)$ was sugar for $\Pi\left(\tau_{1} ; \ldots ; \tau_{n} ; \epsilon\right)$.
Let us now introduce row variables and allow quantification over them:

$$
\begin{array}{rll}
\tau & ::= & \ldots|\Pi R| \forall \rho . \tau \mid \exists \rho . \tau \\
R & \text { - types } \\
R|\epsilon|(\tau ; R) & \text { - rows }
\end{array}
$$

This allows reasoning about the first few fields of a tuple whose length is not known.

Typing rules for tuples

The typing rules for tuple construction and deconstruction are:
Tuple

$$
\frac{\stackrel{\text { ProJ }}{\Gamma \vdash M: \Pi\left(\tau_{1} ; \ldots ; \tau_{i} ; R\right)}}{\Gamma \vdash \operatorname{proj}_{i} M: \tau_{i}}
$$

These rules make sense with or without row variables
Projection does not care about the fields beyond i. Thanks to row variables, this can be expressed in terms of parametric polymorphism:

$$
\operatorname{proj}_{i}: \forall \alpha .1 \ldots \alpha_{i} \rho . \Pi\left(\alpha_{1} ; \ldots ; \alpha_{i} ; \rho\right) \rightarrow \alpha_{i}
$$

About Rows

Rows were invented by Wand and improved by RÃ(C)my in order to ascribe precise types to operations on records.

The case of tuples, presented here, is simpler.
Rows are used to describe objects in Objective Caml [Rémy and Vouillon, 1998].
Rows are explained in depth by Pottier and RÃ(C)my [Pottier and Rémy, 2005].

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the closure-passing variant:

$$
\begin{array}{ll}
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & \\
\exists \rho . & \rho \text { describes the environment } \\
\mu \alpha . & \alpha \text { is the concrete type of the closure } \\
\Pi(& \text { a tuple... } \\
\quad\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket ; & \text {...that begins with a code pointer... } \\
\rho & \text {...and continues with the environment }
\end{array}
$$

See Morrisett and Harper's "fix-type" encoding [1998].

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the closure-passing variant:

$$
\begin{array}{ll}
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & \\
\exists \rho . & \rho \text { describes the environment } \\
\mu \alpha . & \alpha \text { is the concrete type of the closure } \\
\Pi(& \text { a tuple... } \\
\quad\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket ; & \text {...that begins with a code pointer... } \\
\rho & \text {...and continues with the environment }
\end{array}
$$

See Morrisett and Harper's "fix-type" encoding [1998].
Question: Why is it $\exists \rho . \mu \alpha . \tau$ and not $\mu \alpha . \exists \rho . \tau$

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the closure-passing variant:

$$
\begin{array}{ll}
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & \\
\exists \rho . & \rho \text { describes the environment } \\
\mu \alpha . & \alpha \text { is the concrete type of the closure } \\
\Pi(& \text { a tuple... } \\
\quad \begin{array}{ll}
\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket ; & \text {...that begins with a code pointer... } \\
\rho & \text {...and continues with the environment }
\end{array}
\end{array}
$$

See Morrisett and Harper's "fix-type" encoding [1998].
Question: Why is it $\exists \rho . \mu \alpha . \tau$ and not $\mu \alpha . \exists \rho . \tau$
The type of the environment is fixed once for all and does not change at each recursive call.

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the closure-passing variant:

$$
\begin{array}{ll}
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & \\
\exists \rho \rho . & \rho \text { describes the environment } \\
\mu \alpha . & \alpha \text { is the concrete type of the closure } \\
\Pi(& \text { a tuple... } \\
\quad\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket ; & \text {...that begins with a code pointer... } \\
\rho & \text {...and continues with the environment }
\end{array}
$$

See Morrisett and Harper's "fix-type" encoding [1998].
Question: Notice that ρ appears only once. Any comments?

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the closure-passing variant:

$$
\begin{array}{ll}
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & \\
\exists \rho . & \rho \text { describes the environment } \\
\mu \alpha . & \alpha \text { is the concrete type of the closure } \\
\Pi(& \text { a tuple... } \\
\quad \begin{array}{ll}
\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket ; & \text {...that begins with a code pointer... } \\
\rho & \text {...and continues with the environment }
\end{array}
\end{array}
$$

See Morrisett and Harper's "fix-type" encoding [1998].
Question: Notice that ρ appears only once. Any comments?
Usually, an existential type variable appears both at positive and negative occurrences.

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the closure-passing variant:

$$
\begin{array}{ll}
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & \\
\exists \rho . & \rho \text { describes the environment } \\
\mu \alpha . & \alpha \text { is the concrete type of the closure } \\
\Pi(& \text { a tuple... } \\
\quad\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket ; & \text {...that begins with a code pointer... } \\
\rho & \text {...and continues with the environment }
\end{array}
$$

See Morrisett and Harper's "fix-type" encoding [1998].
Question: Notice that ρ appears only once. Any comments?
Usually, an existential type variable appears both at positive and negative occurrences. Here, the variable appear only at a negative occurrence, but in a recursive part of the type that can be unfolded.

Closure-passing closure conversion

Let $C l o(R)$ abbreviate $\mu \alpha . \Pi\left(\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket ; R\right)$.
Let $\operatorname{UClo}(R)$ abbreviate its unfolded version, $\Pi\left(\left(C l o(R) \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket ; R\right)$.
We have $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\exists \rho \cdot C l o(\rho)$.

$$
\begin{aligned}
& \llbracket \lambda x: \quad . M \rrbracket=\text { let code : } \\
& = \\
& \lambda(\text { clo: } \quad, x: \quad) . \\
& \text { let }\left(-, x_{1}, \ldots, x_{n}\right): \quad=\text { unfold clo in } \\
& \llbracket M \rrbracket i n \\
& \text { pack } \quad,\left(\text { fold }\left(\operatorname{code}, x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as } \\
& \llbracket M_{1} M_{2} \rrbracket=\text { let } \rho, \text { clo }=\text { unpack } \llbracket M_{1} \rrbracket \text { in } \\
& \text { let code : }
\end{aligned}
$$

Closure-passing closure conversion

Let $C l o(R)$ abbreviate $\mu \alpha . \Pi\left(\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket ; R\right)$.
Let $\operatorname{UClo}(R)$ abbreviate its unfolded version, $\Pi\left(\left(C l o(R) \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket ; R\right)$.

We have $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\exists \rho \cdot C l o(\rho)$.

$$
\begin{aligned}
\llbracket \lambda x: \llbracket \tau_{1} \rrbracket . M \rrbracket= & \text { let } \operatorname{code}:\left(C l o(\llbracket \Gamma \rrbracket) \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket= \\
& \lambda\left(\text { clo }: C l o\left(\llbracket \Gamma \rrbracket, x: \llbracket \tau_{1} \rrbracket\right) .\right. \\
& \text { let }\left(,, x_{1}, \ldots, x_{n}\right): U C l o \llbracket \Gamma \rrbracket=\text { unfold clo in } \\
& \llbracket M \rrbracket \text { in } \\
& \operatorname{pack} \llbracket \Gamma \rrbracket,\left(\text { fold }\left(\operatorname{code}, x_{1}, \ldots, x_{n}\right)\right) \\
& \text { as } \exists \rho . C l o(\rho) \\
\llbracket M_{1} M_{2} \rrbracket= & \text { let } \rho, \text { clo }=\text { unpack } \llbracket M_{1} \rrbracket \text { in } \\
& \text { let } \operatorname{code}:\left(C l o(\rho) \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket= \\
& \operatorname{proj} j_{0}(\text { unfold clo }) \text { in } \\
& \operatorname{code}\left(\text { clo }, \llbracket M_{2} \rrbracket\right)
\end{aligned}
$$

Closure-passing closure conversion

In the closure-passing variant, recursive functions can be translated as:

$$
\begin{aligned}
\llbracket \mu f . \lambda x \cdot M \rrbracket= & \text { let } \operatorname{code}=\lambda(\text { clo }, x) . \\
& \text { let } f=\text { clo in } \\
& \text { let }\left(-, x_{1}, \ldots, x_{n}\right)=\text { clo in } \\
& \llbracket M \rrbracket \\
& \operatorname{in}\left(\operatorname{code}, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

where $\left\{x_{1}, \ldots, x_{n}\right\}=\mathrm{fv}(\mu f . \lambda x . M)$.
No extra field or extra work is required to store or construct a representation of the free variable f : the closure itself plays this role.

However, this untyped code can only be typechecked when recursion is monomorphic.

Exercise:

Check well-typedness with monomorphic recursion.

Closure-passing closure conversion

The problem to adapt this encoding to polymorphic recursion is that recursive occurrences of f are rebuilt from the current invocation of the closure, i.e. is monomorphic since the closure is invoked after type specialization.

By contrast, in the environment passing encoding, the environment contained a polymorphic binding for the recursive calls that was filled with the closure before its invokation, i.e. with a polymorphic type.

Fortunately, we may slightly change the encoding, using a recursive closure as in the type-passing version, to allow typechecking in System F.

Closure-passing closure conversion

Let τ be $\forall \vec{\alpha} . \tau_{1} \rightarrow \tau_{2}$ and Γ_{f} be $f: \tau, \Gamma$ where $\vec{\beta} \# \Gamma$

$$
\llbracket \mu f: \tau \cdot \lambda x \cdot M \rrbracket=\text { let } \operatorname{code}=
$$

$$
\Lambda \vec{\beta} \cdot \lambda\left(c l o: C l o \llbracket \Gamma_{f} \rrbracket, x: \llbracket \tau_{1} \rrbracket\right)
$$

$$
\text { let }\left(_\operatorname{code}, f, x_{1}, \ldots, x_{n}\right): \forall \vec{\beta} \cdot U C l o\left(\llbracket \Gamma_{f} \rrbracket\right)=
$$ unfold clo in

$\llbracket M \rrbracket$ in
let rec clo : $\forall \vec{\beta} . \exists \rho . \operatorname{Clo}(\rho)=\Lambda \vec{\beta}$.
pack $\llbracket \Gamma \rrbracket,\left(\right.$ fold $\left(\operatorname{code} \vec{\beta}\right.$, clo $\left.\left., x_{1}, \ldots, x_{n}\right)\right)$ as $\exists \rho . C l o(\rho)$
in clo
Remind that $C l o(R)$ abbreviates $\mu \alpha . \Pi\left(\left(\alpha \times \llbracket \tau_{1} \rrbracket\right) \rightarrow \llbracket \tau_{2} \rrbracket ; R\right)$. Hence, $\vec{\beta}$ are free variables of $\operatorname{Clo}(R)$.

Here, a polymorphic recursive function is directly compiled into a polymorphic recursive closure. Notice that the type of closures is unchanged so the encoding of applications is also unchanged.

Mutually recursive functions

Environment passing

Can we compile mutually recursive functions?

$$
M \triangleq \mu\left(f_{1}, f_{2}\right) \cdot\left(\lambda x_{1} \cdot M_{1}, \lambda x_{2} \cdot M_{2}\right)
$$

Environment passing:

$$
\llbracket M \rrbracket=
$$

Mutually recursive functions

Environment passing

Can we compile mutually recursive functions?

$$
M \triangleq \mu\left(f_{1}, f_{2}\right) \cdot\left(\lambda x_{1} \cdot M_{1}, \lambda x_{2} \cdot M_{2}\right)
$$

Environment passing:

$$
\begin{aligned}
& \llbracket M \rrbracket= \text { let } \operatorname{code} e_{i}=\lambda(e n v, x) . \\
& \text { let }\left(f_{1}, f_{2}, x_{1}, \ldots, x_{n}\right)=e n v \text { in } \\
& \llbracket M_{i} \rrbracket
\end{aligned} \quad \begin{aligned}
& \text { in } \\
& \\
& \quad \text { let rec } \operatorname{clo}_{1}=\left(\operatorname{code}_{1},\left(\operatorname{clo}_{1}, \operatorname{clo}_{2}, x_{1}, \ldots, x_{n}\right)\right) \\
& \quad \text { and } \operatorname{clo}_{2}=\left(\operatorname{code}_{2},\left(\operatorname{clo}_{1}, \operatorname{clo}_{2}, x_{1}, \ldots, x_{n}\right)\right) \text { in } \\
& \\
& \text { clos }_{1}, \text { clog }_{2}
\end{aligned}
$$

Mutually recursive functions

Environment passing

Can we compile mutually recursive functions?

$$
M \triangleq \mu\left(f_{1}, f_{2}\right) \cdot\left(\lambda x_{1} \cdot M_{1}, \lambda x_{2} \cdot M_{2}\right)
$$

Environment passing:

$$
\begin{aligned}
& \llbracket M \rrbracket= \text { let } \operatorname{code} e_{i}=\lambda(e n v, x) . \\
& \text { let }\left(f_{1}, f_{2}, x_{1}, \ldots, x_{n}\right)=\text { env in } \\
& \llbracket M_{i} \rrbracket \\
& \text { in } \\
& \text { let rec } \operatorname{clo}_{1}=\left(\operatorname{code}_{1},\left(\operatorname{clo}_{1}, \operatorname{clo}_{2}, x_{1}, \ldots, x_{n}\right)\right) \\
& \quad{\text { and } \operatorname{clo}_{2}}=\left(\operatorname{code}_{2},\left(\operatorname{clo}_{1}, \operatorname{clo}_{2}, x_{1}, \ldots, x_{n}\right)\right) \text { in } \\
& \operatorname{clo}_{1}, \operatorname{clo}_{2}
\end{aligned}
$$

Comments?

Mutually recursive functions

Environment passing

Can we compile mutually recursive functions?

$$
M \triangleq \mu\left(f_{1}, f_{2}\right) \cdot\left(\lambda x_{1} \cdot M_{1}, \lambda x_{2} \cdot M_{2}\right)
$$

Environment passing:

$$
\begin{aligned}
& \llbracket M \rrbracket=\text { let } \operatorname{code}_{i}=\lambda(e n v, x) . \\
& \text { let }\left(f_{1}, f_{2}, x_{1}, \ldots, x_{n}\right)=e n v \text { in } \\
& \llbracket M_{i} \rrbracket \\
& \text { in } \\
& \text { let rec end }=\left(\text { clot }_{1}, \text { ilo }_{2}, x_{1}, \ldots, x_{n}\right) \\
& \text { and } \operatorname{clo}_{1}=\left(\operatorname{code} e_{1}, e n v\right) \\
& \text { and } \mathrm{clo}_{2}=\left(\text { code }_{2}, e n v\right) \text { in } \\
& \text { ilo }_{1}, \text { ilo }_{2}
\end{aligned}
$$

Mutually recursive functions

Closure passing

Can we compile mutually recursive functions?

$$
M \triangleq \mu\left(f_{1}, f_{2}\right) \cdot\left(\lambda x_{1} \cdot M_{1}, \lambda x_{2} \cdot M_{2}\right)
$$

Closure passing:

$$
\begin{aligned}
& \text { let } \operatorname{code}_{i}=\lambda(\operatorname{clo}, x) . \\
& \quad \text { let }\left(-, f_{1}, f_{2}, x_{1}, \ldots, x_{n}\right)=\text { clo in } \llbracket M_{i} \rrbracket \\
& \text { in } \\
& \text { let rec } \text { clos }_{1}=\left(\operatorname{code}_{1}, \operatorname{clo}_{1}, \operatorname{clo}_{2}, x_{1}, \ldots, x_{n}\right) \\
& \text { and } \text { clog }_{2}=\left(\operatorname{code}_{2}, \operatorname{clo}_{1}, \operatorname{clo}_{2}, x_{1}, \ldots, x_{n}\right) \\
& \text { in } \text { lo }_{1}, \text { clog }_{2}
\end{aligned}
$$

Mutually recursive functions

Closure passing

Can we compile mutually recursive functions?

$$
M \triangleq \mu\left(f_{1}, f_{2}\right) \cdot\left(\lambda x_{1} \cdot M_{1}, \lambda x_{2} \cdot M_{2}\right)
$$

Closure passing:

$$
\begin{aligned}
& \text { let } \operatorname{code}_{i}=\lambda(\operatorname{clo}, x) . \\
& \quad \text { let }\left(-, f_{1}, f_{2}, x_{1}, \ldots, x_{n}\right)=\text { clo in } \llbracket M_{i} \rrbracket \\
& \text { in } \\
& \text { let rec } \text { clos }_{1}=\left(\operatorname{code}_{1}, \text { clos }_{1}, \operatorname{clo}_{2}, x_{1}, \ldots, x_{n}\right) \\
& \text { and } \text { clog }_{2}=\left(\operatorname{code}_{2}, \text { clos }_{1}, \operatorname{clo}_{2}, x_{1}, \ldots, x_{n}\right) \\
& \text { in flo } 1, \text { clog }_{2}
\end{aligned}
$$

Question: Can we share the closures c_{1} and c_{2} in case n is large?

Mutually recursive functions

Closure passing

Can we compile mutually recursive functions?

$$
M \triangleq \mu\left(f_{1}, f_{2}\right) \cdot\left(\lambda x_{1} \cdot M_{1}, \lambda x_{2} \cdot M_{2}\right)
$$

Closure passing:

$$
\begin{aligned}
& \text { let } \text { code }_{1}=\lambda(\text { clo }, x) . \\
& \text { let }\left(_ \text {code }{ }_{1}, \ldots \text { code } e_{2}, f_{1}, f_{2}, x_{1}, \ldots, x_{n}\right)=\text { clo in } \llbracket M_{1} \rrbracket \text { in } \\
& \text { let } \text { code }_{2}=\lambda(\text { clo, } x) \text {. } \\
& \text { let }\left(_ \text {code }_{2}, f_{1}, f_{2}, x_{1}, \ldots, x_{n}\right)=\text { clo in } \llbracket M_{2} \rrbracket \text { in } \\
& \text { let rec clo }=\left(\operatorname{code}_{1}, \operatorname{code}_{2}, \text { clo }_{1}, \text { clo }_{2}, x_{1}, \ldots, x_{n}\right) \text { and } \text { clo }_{2}=\text { clo }_{1} \cdot \text { tail } \\
& \text { in } \text { clo }_{1}, \text { clo }_{2}
\end{aligned}
$$

- clo $_{1}$.tail returns a pointer to the tail $\left(\operatorname{code}_{2}\right.$, clo $_{1}$, clo $\left._{2}, x_{1}, \ldots, x_{n}\right)$ of $c o_{1}$ without allocating a new tuple.
- This is only possible with some support from the GC (and extra-complexity and runtime cost for GC)

Optimizing representations

Can closure passing and environment passing be mixed?

Encoding of objects

The closure-passing representation of mutually recursive functions is similar to the representations of objects in the object-as-record-of-functions paradigm:

A class definition is an object generator:

$$
\begin{aligned}
& \text { class } c\left(x_{1}, \ldots x_{q}\right)\{ \\
& \quad \begin{array}{l}
\text { meth } m_{1}
\end{array}=M_{1} \\
& \\
& \ldots \\
& \text { \} meth } m_{p}=M_{p}
\end{aligned}
$$

Given arguments for parameter $x_{1}, \ldots x_{1}$, it will build recursive methods $m_{1}, \ldots m_{n}$.

Encoding of objects

A class can be compiled into an object closure:

$$
\begin{aligned}
& \text { let } m= \\
& \quad \text { let } m_{1}=\lambda\left(m, x_{1}, \ldots, x_{q}\right) \cdot M_{1} \text { in } \\
& \quad \ldots \\
& \quad \text { let } m_{p}=\lambda\left(m, x_{1}, \ldots, x_{q}\right) \cdot M_{p} \text { in } \\
& \quad\left\{m_{1}, \ldots, m_{p}\right\} \text { in } \\
& \lambda x_{1} \ldots x_{q} \cdot\left(m, x_{1}, \ldots x_{q}\right)
\end{aligned}
$$

Each m_{i} is bound to the code for the corresponding method. The code of all methods are combined into a record of methods, which is shared between all objects of the same class.

Calling method m_{i} of an object p is

$$
\left(\text { proj }_{0} p\right) \cdot m_{i} p
$$

How can we type the encoding?

Typed encoding of objects

Let τ_{i} be the type of M_{i}, and row R describe the types of $\left(x_{1}, \ldots x_{q}\right)$.
Let $C l o(R)$ be $\mu \alpha . \Pi\left(\left\{\left(m_{i}: \alpha \rightarrow \tau_{i}\right)^{i \in 1 . . n}\right\} ; R\right)$ and $\operatorname{UClo}(R)$ its unfolding.
Fields R are hidden in an existential type $\exists \rho . \mu \alpha . \Pi\left(\left\{\left(m_{i}: \alpha \rightarrow \tau_{i}\right)^{i \in I}\right\} ; \rho\right)$:

$$
\begin{aligned}
& \text { let } m=\{ \\
& \quad m_{1}=\lambda\left(m, x_{1}, \ldots x_{q}: U C l o(R)\right) \cdot \llbracket M_{1} \rrbracket \\
& \quad \ldots \\
& \quad m_{p}=\lambda\left(m, x_{1}, \ldots x_{q}: U C l o(R)\right) \cdot \llbracket M_{p} \rrbracket \\
& \text { \} in } \\
& \lambda x_{1} . \ldots \lambda x_{q} . \text { pack } R, \text { fold }\left(m, x_{1}, \ldots x_{q}\right) \text { as } \exists \rho .(M, \rho)
\end{aligned}
$$

Calling a method of an object p of type M is

$$
p \# m_{i} \triangleq \text { let } \rho, z=\text { unpack } p \text { in }\left(\text { proj}_{0} \text { unfold } z\right) \cdot m_{i} z
$$

An object has a recursive type but it is not a recursive value.

Typed encoding of objects

Typed encoding of objects were first studied in the 90's to understand what objects really are in a type setting.

These encodings are in fact type-preserving compilation of (primitive) objects.

There are several variations on these encodings. See [Bruce et al., 1999] for a comparison.

See [Rémy, 1994] for an encoding of objects in (a small extension of) ML with iso-existentials and universals.

See [Abadi and Cardelli, 1996, 1995] for more details on primitive objects.

Moral of the story

Type-preserving compilation is rather fun. (Yes, really!)
It forces compiler writers to make the structure of the compiled program fully explicit, in type-theoretic terms.

In practice, building explicit type derivations, ensuring that they remain small and can be efficiently typechecked, can be a lot of work.

Optimizations

Because we have focused on type preservation, we have studied only naÃ ${ }^{-}$ve closure conversion algorithms.

More ambitious versions of closure conversion require program analysis: see, for instance, Steckler and Wand [1997]. These versions can be made type-preserving.

Other challenges

Defunctionalization, an alternative to closure conversion, offers an interesting challenge, with a simple solution [Pottier and Gauthier, 2006].

Designing an efficient, type-preserving compiler for an object-oriented language is quite challenging. See, for instance, Chen and Tarditi [2005].

Fomega: higher-kinds and higher-order types

Contents

- Presentation

- Expressiveness

Polymorphism in System F

Simply-typed λ-calculus

- no polymorphism
- many functions must be duplicated at different types

Via ML toplevel polymorphism

- Already, extremely useful! (avoiding dupplication of code)
- ML has also local let-polymorphism (less critical).
- Still, ML is lacking existential types-compensated by modules and sometimes lacking higher-rank polymorphism

System F brings much more expressiveness

- Existential types—allows for type abstraction
- First-class universal types
- Allows for encoding of data structures and more programming patterns Still, limited...

Limits of System F

$$
\lambda f x y .(f x, f y)
$$

Map on pairs, say distrib_pair, has the following types:

Limits of System F

$\lambda f x y .(f x, f y)$

Map on pairs, say distrib_pair, has the following types:

$$
\begin{gathered}
\forall \alpha_{1} \cdot \forall \alpha_{2} \cdot\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{1} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \times \alpha_{2} \\
\forall \alpha_{1} \cdot \forall \alpha_{2} \cdot(\forall \alpha \cdot \alpha \rightarrow \alpha) \rightarrow \alpha_{1} \rightarrow \alpha_{2} \rightarrow \alpha_{1} \times \alpha_{2}
\end{gathered}
$$

Limits of System F

Map on pairs, say distrib_pair, has the following types:

$$
\begin{gathered}
\forall \alpha_{1} \cdot \forall \alpha_{2} \cdot\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{1} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \times \alpha_{2} \\
\forall \alpha_{1} \cdot \forall \alpha_{2} \cdot(\forall \alpha \cdot \alpha \rightarrow \alpha) \rightarrow \alpha_{1} \rightarrow \alpha_{2} \rightarrow \alpha_{1} \times \alpha_{2}
\end{gathered}
$$

The first one requires x and y to admit a common type, while the second one requires f to be polymorphic.

Limits of System F

$\lambda f x y .(f x, f y)$

Map on pairs, say distrib_pair, has the following incompatible types:

$$
\begin{gathered}
\forall \alpha_{1} \cdot \forall \alpha_{2} \cdot\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{1} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \times \alpha_{2} \\
\forall \alpha_{1} \cdot \forall \alpha_{2} \cdot(\forall \alpha \cdot \alpha \rightarrow \alpha) \rightarrow \alpha_{1} \rightarrow \alpha_{2} \rightarrow \alpha_{1} \times \alpha_{2}
\end{gathered}
$$

The first one requires x and y to admit a common type, while the second one requires f to be polymorphic.

Limits of System F

Map on pairs, say distrib_pair, has the following incompatible types:

$$
\begin{gathered}
\forall \alpha_{1} \cdot \forall \alpha_{2} \cdot\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{1} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \times \alpha_{2} \\
\forall \alpha_{1} \cdot \forall \alpha_{2} \cdot(\forall \alpha \cdot \alpha \rightarrow \alpha) \rightarrow \alpha_{1} \rightarrow \alpha_{2} \rightarrow \alpha_{1} \times \alpha_{2}
\end{gathered}
$$

The first one requires x and y to admit a common type, while the second one requires f to be polymorphic.

It is missing the ability to describe the types of functions

- that are polymorphic in one parameter
- but whose domain and codomain are otherwise arbitrary
ie. of the form $\forall \alpha . \tau[\alpha] \rightarrow \sigma[\alpha]$ for arbitrary one-hole types τ and σ.

Limits of System F

Map on pairs, say distrib_pair, has the following incompatible types:

$$
\begin{gathered}
\forall \alpha_{1} \cdot \forall \alpha_{2} \cdot\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{1} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \times \alpha_{2} \\
\forall \alpha_{1} \cdot \forall \alpha_{2} \cdot(\forall \alpha \cdot \alpha \rightarrow \alpha) \rightarrow \alpha_{1} \rightarrow \alpha_{2} \rightarrow \alpha_{1} \times \alpha_{2}
\end{gathered}
$$

The first one requires x and y to admit a common type, while the second one requires f to be polymorphic.

It is missing the ability to describe the types of functions

- that are polymorphic in one parameter
- but whose domain and codomain are otherwise arbitrary
i.e. of the form $\forall \alpha . \tau[\alpha] \rightarrow \sigma[\alpha]$ for arbitrary one-hole types τ and σ.

We just need to abstract over type functions:

$$
\forall \varphi \cdot \forall \psi \cdot \forall \alpha_{1} \cdot \forall \alpha_{2} \cdot(\forall \alpha . \varphi \alpha \rightarrow \psi \alpha) \rightarrow \varphi \alpha_{1} \rightarrow \varphi \alpha_{2} \rightarrow \psi \alpha_{1} \times \psi \alpha_{2}
$$

From System F to System F^{ω}

Introduce kinds κ for types (with a single kind $*$ to stay with System F)
Well-formedness of types becomes $\Gamma \vdash \tau: *$ to check kinds:

$$
\begin{aligned}
& \frac{\vdash \Gamma \quad \alpha: \kappa \in \Gamma}{\Gamma \vdash \alpha: \kappa} \quad \frac{\Gamma \vdash \tau_{1}: * \Gamma \vdash \tau_{2}: *}{\Gamma \vdash \tau_{1} \rightarrow \tau_{2}: *} \quad \frac{\Gamma, \alpha: \kappa \vdash \tau: *}{\Gamma \vdash \forall \alpha:: \kappa \cdot \tau: *} \\
& \vdash \varnothing \\
& \frac{\vdash \Gamma \alpha \notin \operatorname{dom}(\Gamma)}{\vdash \Gamma, \alpha: \kappa} \quad \frac{\Gamma \vdash \tau: * x \notin \operatorname{dom}(\Gamma)}{\vdash \Gamma, x: \tau}
\end{aligned}
$$

Add and check kinds on type abstractions and applications:

TABS

$$
\frac{\Gamma, \alpha: \kappa \vdash M: \tau}{\Gamma \vdash \Lambda \alpha:: \kappa \cdot M: \forall \alpha:: \kappa \cdot \tau}
$$

$$
\frac{\Gamma \vdash M: \forall \alpha:: \kappa \cdot \tau \quad \Gamma \vdash \tau^{\prime}: \kappa}{\Gamma \vdash M \tau^{\prime}:\left[\alpha \mapsto \tau^{\prime}\right] \tau}
$$

So far, this is an equivalent formalization of System F

From System F to System F^{ω}

Type functions

Redefine kinds as

$$
\kappa::=* \mid \kappa \Rightarrow \kappa
$$

$$
\frac{\vdash \Gamma \quad \alpha: \kappa \in \Gamma}{\Gamma \vdash \alpha: \kappa} \quad \frac{\Gamma \vdash \tau_{1}: * \quad \Gamma \vdash \tau_{2}: *}{\Gamma \vdash \tau_{1} \rightarrow \tau_{2}: *} \quad \frac{\Gamma, \alpha: \kappa \vdash \tau: *}{\Gamma \vdash \forall \alpha:: \kappa . \tau: *}
$$

New types

$$
\tau::=\ldots|\lambda \alpha:: \kappa . \tau| \tau \tau
$$

WfTypeApp

$$
\frac{\Gamma \vdash \tau_{1}: \kappa_{2} \Rightarrow \kappa_{1} \quad \Gamma \vdash \tau_{2}: \kappa_{2}}{\Gamma \vdash \tau_{1} \tau_{2}: \kappa_{1}}
$$

$$
\frac{\Gamma, \alpha: \kappa_{1} \vdash \tau: \kappa_{2}}{\Gamma \vdash \lambda \alpha:: \kappa_{1} \cdot \tau: \kappa_{1} \Rightarrow \kappa_{2}}
$$

Typing of expressions is up to type equivalence:

$$
\frac{\begin{array}{l}
\text { TConv } \\
\Gamma \vdash M: \tau \\
\Gamma \vdash M: \tau^{\prime}
\end{array} \quad \tau \equiv_{\beta} \tau^{\prime}}{\Gamma \vdash M}
$$

From System F to System F^{ω}

Type functions

Redefine kinds as

$$
\kappa::=* \mid \kappa \Rightarrow \kappa
$$

$$
\frac{\vdash \Gamma \quad \alpha: \kappa \in \Gamma}{\Gamma \vdash \alpha: \kappa} \quad \frac{\Gamma \vdash \tau_{1}: * \quad \Gamma \vdash \tau_{2}: *}{\Gamma \vdash \tau_{1} \rightarrow \tau_{2}: *} \quad \frac{\Gamma, \alpha: \kappa \vdash \tau: *}{\Gamma \vdash \forall \alpha:: \kappa . \tau: *}
$$

New types

$$
\tau::=\ldots|\lambda \alpha:: \kappa . \tau| \tau \tau
$$

WfTypeApp

$$
\frac{\Gamma \vdash \tau_{1}: \kappa_{2} \Rightarrow \kappa_{1} \quad \Gamma \vdash \tau_{2}: \kappa_{2}}{\Gamma \vdash \tau_{1} \tau_{2}: \kappa_{1}}
$$

$$
\frac{\Gamma, \alpha: \kappa_{1} \vdash \tau: \kappa_{2}}{\Gamma \vdash \lambda \alpha:: \kappa_{1} \cdot \tau: \kappa_{1} \Rightarrow \kappa_{2}}
$$

Typing of expressions is up to type equivalence:

$$
\begin{aligned}
& \text { TConv } \\
& \frac{\Gamma \vdash M: \tau \quad \tau \equiv{ }_{\beta} \tau^{\prime}}{\Gamma \vdash M: \tau^{\prime}}
\end{aligned}
$$

Remark

$$
\Gamma \vdash M: \tau \Longrightarrow \Gamma \vdash \tau: *
$$

F^{ω}, static semantics

(altogether on one slide)

Syntax

$$
\begin{array}{rll}
\kappa & ::= & * \mid \kappa \Rightarrow \kappa \\
\tau & ::= & \alpha|\tau \rightarrow \tau| \forall \alpha:: \kappa . \tau|\lambda \alpha:: \kappa . \tau| \tau \tau \\
M & ::= & x|\lambda x: \tau . M| M M|\Lambda \alpha:: \kappa . M| M \tau
\end{array}
$$

Kinding rules

$$
\begin{aligned}
& \vdash \varnothing \quad \frac{\alpha \notin \operatorname{dom}(\Gamma)}{\vdash \Gamma, \alpha: \kappa} \quad \frac{x \notin \operatorname{dom}(\Gamma)}{\vdash \Gamma, x: \tau} \quad \frac{\alpha: \kappa \in \Gamma}{\Gamma \vdash \alpha: \kappa} \quad \frac{\Gamma \vdash \tau_{1}: *}{\Gamma \vdash \tau_{1} \rightarrow \tau_{2}: *} \\
& \frac{\Gamma, \alpha: \kappa \vdash \tau: *}{\Gamma \vdash \forall \alpha:: \kappa . \tau: *} \quad \frac{\Gamma, \alpha: \kappa_{1} \vdash \tau: \kappa_{2}}{\Gamma \vdash \lambda \alpha:: \kappa_{1} \cdot \tau: \kappa_{1} \Rightarrow \kappa_{2}} \quad \frac{\Gamma \vdash \tau_{1}: \kappa_{2} \Rightarrow \kappa_{1} \Gamma \vdash \tau_{2}: \kappa_{2}}{\Gamma \vdash \tau_{1} \tau_{2}: \kappa_{1}}
\end{aligned}
$$

Typing rules

VAR $x: \tau \in \Gamma$ $\Gamma \vdash x: \tau$	ABS $\Gamma \vdash, x: \tau_{1} \vdash M: \tau_{2}$	$\frac{$ App $\Gamma \vdash M_{1}: \tau_{1} \rightarrow \tau_{2}$ $\Gamma \vdash \tau_{1} \cdot M: \tau_{1} \rightarrow \tau_{2}$}{}$\quad$$\Gamma \vdash M_{2}: \tau_{1}: \tau_{2}$

$\Gamma, o: \kappa \vdash M: \tau$
$\Gamma \vdash \Lambda \alpha:: \kappa . M: \forall \alpha:: \kappa . \tau$

$\Gamma \vdash M \tau^{\prime}:\left[\alpha \mapsto \tau^{\prime}\right] \tau$ | TAPP |
| :--- |
| $\Gamma \vdash M: \forall \alpha:: \kappa . \tau \quad \Gamma \vdash \tau^{\prime}: \kappa$ |
| $\Gamma \vdash M: \tau \Gamma \vdash \tau \equiv_{\beta} \tau^{\prime}$ |
| $\Gamma \vdash M: \tau^{\prime}$ |

F^{ω}, static semantics

(altogether on one slide)

Syntax

$$
\begin{array}{rll}
\kappa & ::= & * \mid \kappa \Rightarrow \kappa \\
\tau & ::= & \alpha|\tau \rightarrow \tau| \forall \alpha:: \kappa . \tau|\lambda \alpha:: \kappa . \tau| \tau \tau \\
M & ::= & x|\lambda x: \tau . M| M M|\Lambda \alpha:: \kappa . M| M \tau
\end{array}
$$

Kinding rules

$$
\begin{array}{lccc}
\vdash \varnothing & \frac{\alpha \notin \operatorname{dom}(\Gamma)}{\vdash \Gamma, \alpha: \kappa} & \frac{x \notin \operatorname{dom}(\Gamma)}{\vdash \Gamma, x: \tau} \quad \frac{\alpha: \kappa \in \Gamma}{\Gamma \vdash \alpha: \kappa} \quad \frac{\Gamma \vdash \tau_{1}: *}{\Gamma \vdash \tau_{1} \rightarrow \tau_{2}: *} \\
\frac{\Gamma, \alpha: \kappa \vdash \tau: *}{\Gamma \vdash \forall \alpha:: \kappa . \tau: *} & \frac{\Gamma, \alpha: \kappa_{1} \vdash \tau: \kappa_{2}}{\Gamma \vdash \lambda \alpha:: \kappa_{1} \cdot \tau: \kappa_{1} \Rightarrow \kappa_{2}} \quad \frac{\Gamma \vdash \tau_{1}: \kappa_{2} \Rightarrow \kappa_{1}}{\Gamma \vdash \tau_{2}: \kappa_{2}} \\
\Gamma \vdash \tau_{1} \tau_{2}: \kappa_{1}
\end{array}
$$

Typing rules

VAR $x: \tau \in \Gamma$ $\Gamma \vdash x: \tau$	ABS $\Gamma \vdash, x: \tau_{1} \vdash M: \tau_{2}$	$\frac{$ App $\Gamma \vdash M_{1}: \tau_{1} \rightarrow \tau_{2}$ $\Gamma \vdash \tau_{1} \cdot M: \tau_{1} \rightarrow \tau_{2}$}{}$\quad$$\Gamma \vdash M_{2}: \tau_{1}: \tau_{2}$

$\Gamma, o: \kappa \vdash M: \tau$
$\Gamma \vdash \Lambda \alpha:: \kappa . M: \forall \alpha:: \kappa . \tau$

$\Gamma \vdash M \tau^{\prime}:\left[\alpha \mapsto \tau^{\prime}\right] \tau$ | TAPP |
| :--- |
| $\Gamma \vdash M: \forall \alpha:: \kappa . \tau \quad \Gamma \vdash \tau^{\prime}: \kappa$ |
| $\Gamma \vdash M: \tau \Gamma \vdash \tau \equiv_{\beta} \tau^{\prime}$ |
| $\Gamma \vdash M: \tau^{\prime}$ |

F^{ω}, static semantics

(altogether on one slide)

Syntax

$$
\kappa \quad::=\quad * \mid \kappa \Rightarrow \kappa
$$

With implicit kinds

Kinding rules

$$
\begin{gathered}
\vdash \varnothing \\
\frac{\alpha \notin \operatorname{dom}(\Gamma)}{\vdash \Gamma, \alpha: \kappa}
\end{gathered} \frac{x \notin \operatorname{dom}(\Gamma)}{\vdash \Gamma, x: \tau} \quad \frac{\alpha: \kappa \in \Gamma}{\Gamma \vdash \alpha: \kappa} \quad \frac{\Gamma \vdash \tau_{1}: * \quad \Gamma \vdash \tau_{2}: *}{\Gamma \vdash \tau_{1} \rightarrow \tau_{2}: *}
$$

Typing rules
VAR
$x: \tau \in \Gamma$

$\Gamma \vdash x: \tau$$\quad$	ABS
$\Gamma \vdash \lambda, x: \tau_{1} \vdash M: \tau_{2}$	\quad
:---	
$\Gamma \vdash M_{1}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash \tau_{1} \rightarrow \tau_{2}$	$\quad \frac{\Gamma \tau_{1}}{\Gamma \vdash M_{1} M_{2}: \tau_{2}}$

TABS

TAPp

$\frac{\Gamma, o: \kappa \vdash M: \tau}{\Gamma \vdash \Lambda \alpha . M: \forall \alpha . \tau}$

$$
\frac{\Gamma \vdash M: \forall \alpha . \tau \quad \Gamma \vdash \tau^{\prime}: \kappa}{\Gamma \vdash M \tau^{\prime}:\left[\alpha \mapsto \tau^{\prime}\right] \tau}
$$

TEQuIV
$\frac{\Gamma \vdash M: \tau \quad \Gamma \vdash \tau \equiv{ }_{\beta} \tau^{\prime}}{\Gamma \vdash M: \tau^{\prime}}$

F^{ω}, dynamic semantics

The semantics is unchanged (modulo kind annotations in terms)

$$
\begin{aligned}
& V \quad::=\quad \lambda x: \tau . M \mid \Lambda \alpha:: \kappa . V \\
& E \quad::=\quad[] M|V[]|[] \tau \mid \Lambda \alpha:: \kappa .[] \\
& (\lambda x: \tau . M) V \longrightarrow[x \mapsto V] M \\
& (\Lambda \alpha:: \kappa . V) \tau \longrightarrow[\alpha \mapsto \tau] V
\end{aligned}
$$

$$
\frac{\begin{array}{l}
\text { Context } \\
\\
E[M] \longrightarrow M^{\prime}
\end{array} \frac{M\left[M^{\prime}\right]}{}}{\text { C }}
$$

No type reduction

- We need not reduce types inside terms.
- Type reduction is needed for type conversion (i.e. for typing) but such reduction need not be performed on terms.

Kinds are erasable

- Reduction preserves kinds.
- Kinds are just ignored during the reduction (they need not be reduced). In fact, kinds can be erased prior to reduction.

Properties

Main properties are preserved. Proofs are similar to those for System F.
Type soundness

- Subject reduction
- Progress

Termination of reduction
(In the absence of construct for recursion.)
Typechecking is decidable

- This requires reduction at the level of types to check type equality
- Can be done by putting types in normal forms using full reduction (on types only), or just head normal forms.

Type reduction

Used for typechecking to check type equivalence \equiv
Full reduction of the simply typed λ-calculus

$$
(\lambda \alpha . \tau) \sigma \longrightarrow[\alpha \mapsto \tau] \sigma
$$

applicable in any type context.
Type reduction preserve types: this is subject reduction for simply-typed λ-calculus, but for full reduction (we have only proved it for CBV).

It is a key that reduction terminates.
(Again, we have only proved it for CBV.)

Contents

- Presentation
- Expressiveness

Expressiveness

More polymorphism

- distrib_pair

Abstraction over type operators

- monads
- encoding of existentials

Encodings

- non regular datatypes
- equality

Distrib pair in F^{ω}

Abstract over (one parameter) type functions (e.g. of kind $\star \rightarrow \star$)

$$
\begin{aligned}
& \Lambda \varphi:: * \Rightarrow * . \Lambda \psi:: * \Rightarrow * . \Lambda \alpha_{1}:: * \cdot \Lambda \alpha_{2}:: * . \\
& \quad \lambda(f: \forall \alpha:: * \cdot \varphi \alpha \rightarrow \psi \alpha) \cdot \lambda x: \varphi \alpha_{1} \cdot \lambda y: \varphi \alpha_{2} .\left(f \alpha_{1} x, f \alpha_{2} y\right)
\end{aligned}
$$

call it distrib_pair of type:

$$
\begin{aligned}
& \forall \varphi:: ~ * \Rightarrow * . \forall \psi:: * \Rightarrow * . \forall \alpha_{1}:: * . \forall \alpha_{2}:: * . \\
& \quad(\forall \alpha:: * . \varphi \alpha \rightarrow \psi \alpha) \rightarrow \varphi \alpha_{1} \rightarrow \varphi \alpha_{2} \rightarrow \psi \alpha_{1} \times \psi \alpha_{2}
\end{aligned}
$$

We may recover, in particular, the two types it had in System F:

$$
\begin{aligned}
& \Lambda \alpha_{1}:: * . \Lambda \alpha_{2}:: * \text {.distrib_pair }\left(\lambda \alpha:: * . \alpha_{1}\right)\left(\lambda \alpha:: * . \alpha_{2}\right) \alpha_{1} \alpha_{2} \\
& \quad: \forall \alpha_{1}:: * . \forall \alpha_{2}:: * .\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{1} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \times \alpha_{2} \\
& \text { distrib_pair }(\lambda \alpha:: * . \alpha)(\lambda \alpha:: * . \alpha) \\
& \quad: \forall \alpha_{1}:: * . \forall \alpha_{2} .(\forall \alpha:: * . \alpha \rightarrow \alpha) \rightarrow \alpha_{1} \rightarrow \alpha_{2} \rightarrow \alpha_{1} \times \alpha_{2}
\end{aligned}
$$

Distrib pair in F^{ω} (with implicit kinds) $\quad \lambda f x y .(f x, f y)$

Abstract over (one parameter) type functions (e.g. of kind $\star \rightarrow \star$)

$$
\begin{aligned}
& \Lambda \varphi \cdot \Lambda \psi \cdot \Lambda \alpha_{1} \cdot \Lambda \alpha_{2} . \\
& \quad \lambda(f: \forall \alpha \cdot \varphi \alpha \rightarrow \psi \alpha) \cdot \lambda x: \varphi \alpha_{1} \cdot \lambda y: \varphi \alpha_{2} \cdot\left(f \alpha_{1} x, f \alpha_{2} y\right)
\end{aligned}
$$

call it distrib_pair of type:
$\forall \varphi . \forall \psi . \forall \alpha_{1} . \forall \alpha_{2}$.

$$
(\forall \alpha . \varphi \alpha \rightarrow \psi \alpha) \rightarrow \varphi \alpha_{1} \rightarrow \varphi \alpha_{2} \rightarrow \psi \alpha_{1} \times \psi \alpha_{2}
$$

We may recover, in particular, the two types it had in System F:

$$
\begin{aligned}
& \Lambda \alpha_{1} \cdot \Lambda \alpha_{2} \cdot \text { distrib_pair }\left(\lambda \alpha \cdot \alpha_{1}\right)\left(\lambda \alpha \cdot \alpha_{2}\right) \alpha_{1} \alpha_{2} \\
& \quad: \forall \alpha_{1} \cdot \forall \alpha_{2} \cdot\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{1} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \times \alpha_{2} \\
& \text { distrib_pair }(\lambda \alpha \cdot \alpha)(\lambda \alpha \cdot \alpha) \\
& \quad: \forall \alpha_{1} \cdot \forall \alpha_{2} \cdot(\forall \alpha \cdot \alpha \rightarrow \alpha) \rightarrow \alpha_{1} \rightarrow \alpha_{2} \rightarrow \alpha_{1} \times \alpha_{2}
\end{aligned}
$$

Distrib pair in F^{ω} (with implicit kinds) $\quad \lambda f x y .(f x, f y)$

Abstract over (one parameter) type functions (e.g. of kind $\star \rightarrow \star$)

$$
\begin{aligned}
& \Lambda \varphi \cdot \Lambda \psi \cdot \Lambda \alpha_{1} \cdot \Lambda \alpha_{2} . \\
& \quad \lambda(f: \forall \alpha \cdot \varphi \alpha \rightarrow \psi \alpha) \cdot \lambda x: \varphi \alpha_{1} \cdot \lambda y: \varphi \alpha_{2} \cdot\left(f \alpha_{1} x, f \alpha_{2} y\right)
\end{aligned}
$$

call it distrib_pair of type:

$$
\forall \varphi \cdot \forall \psi \cdot \forall \alpha_{1} . \forall \alpha_{2} .
$$

$$
(\forall \alpha . \varphi \alpha \rightarrow \psi \alpha) \rightarrow \varphi \alpha_{1} \rightarrow \varphi \alpha_{2} \rightarrow \psi \alpha_{1} \times \psi \alpha_{2}
$$

We may recover, in particular, the two types it had in System F:

$$
\begin{aligned}
& \Lambda \alpha_{1} \cdot \Lambda \alpha_{2} \cdot \text { distrib_pair }\left(\lambda \alpha \cdot \alpha_{1}\right)\left(\lambda \alpha \cdot \alpha_{2}\right) \alpha_{1} \alpha_{2} \\
& \quad: \forall \alpha_{1} \cdot \forall \alpha_{2} \cdot\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{1} \rightarrow \alpha_{1} \rightarrow \alpha_{2} \times \alpha_{2} \\
& \text { distrib_pair }(\lambda \alpha \cdot \alpha)(\lambda \alpha \cdot \alpha) \\
& \quad: \forall \alpha_{1} \cdot \forall \alpha_{2} \cdot(\forall \alpha \cdot \alpha \rightarrow \alpha) \rightarrow \alpha_{1} \rightarrow \alpha_{2} \rightarrow \alpha_{1} \times \alpha_{2}
\end{aligned}
$$

Still, the type of distrib_pair is not principal. φ and ψ could depend on two variables, i.e. be of kind $* \Rightarrow * \Rightarrow *$, or many other kinds...

Abstracting over type operators

Type of monads Given a type operator φ, a monad is given by a pair of two functions of the following type (satisfying certain laws).

$$
:(* \Rightarrow *) \Rightarrow *
$$

(Notice that M is itself of higher kind)

$$
\begin{aligned}
& M \triangleq \lambda(\varphi:: * \Rightarrow *) . \\
& \{\text { ret: } \forall(\alpha:: *) . \alpha \rightarrow \varphi \alpha \text {; } \\
& \text { bind: } \forall(\alpha:: *) \cdot \forall(\beta:: *) \cdot \varphi \alpha \rightarrow(\alpha \rightarrow \varphi \beta) \rightarrow \varphi \beta\}
\end{aligned}
$$

Abstracting over type operators

Type of monads Given a type operator φ, a monad is given by a pair of two functions of the following type (satisfying certain laws).

$$
:(* \Rightarrow *) \Rightarrow *
$$

(Notice that M is itself of higher kind)
A generic map function: can then be defined:
frap

$$
\begin{aligned}
& \triangleq \quad \Lambda(\varphi:: * \Rightarrow *) \cdot \lambda m: M \varphi . \\
& \Lambda(\alpha:: *) \cdot \Lambda(\beta:: *) \cdot \lambda f:(\alpha \rightarrow \beta) \cdot \lambda x: \varphi \alpha . \\
& \quad m \cdot \operatorname{bind} \alpha \beta x(\lambda x: \alpha \cdot m \cdot r e t(f x)) \\
& : \quad \forall(\varphi:: * \Rightarrow *) \cdot M \varphi \rightarrow \forall(\alpha:: *) \cdot \forall(\beta:: *) \cdot(\alpha \rightarrow \beta) \rightarrow \varphi \alpha \rightarrow \varphi \beta
\end{aligned}
$$

$$
\begin{aligned}
& M \triangleq \lambda(\varphi:: * \Rightarrow *) . \\
& \{\text { ret: } \forall(\alpha:: *) . \alpha \rightarrow \varphi \alpha \text {; } \\
& \text { bind: } \forall(\alpha:: *) . \forall(\beta:: *) \cdot \varphi \alpha \rightarrow(\alpha \rightarrow \varphi \beta) \rightarrow \varphi \beta\}
\end{aligned}
$$

Abstracting over type operators

Type of monads Given a type operator φ, a monad is given by a pair of two functions of the following type (satisfying certain laws).

$$
\begin{aligned}
& M \triangleq \quad \lambda \varphi . \\
& \quad\{\text { ret: } \forall \alpha \cdot \alpha \rightarrow \varphi \alpha ; \\
& \quad \quad \text { bind: } \forall \alpha \cdot \forall \beta \cdot \varphi \alpha \rightarrow(\alpha \rightarrow \varphi \beta) \rightarrow \varphi \beta\}
\end{aligned}
$$

$$
:(* \Rightarrow *) \Rightarrow *
$$

(Notice that M is itself of higher kind)
A generic map function: can then be defined:
fmap

$$
\begin{aligned}
& \triangleq \quad \Lambda \varphi \cdot \lambda m: M \varphi \cdot \\
& \quad \Lambda \alpha \cdot \Lambda \beta \cdot \lambda f:(\alpha \rightarrow \beta) \cdot \lambda x: \varphi \alpha . \\
& \quad \text { m.bind } \alpha \beta x(\lambda x: \alpha \cdot m \cdot r e t(f x)) \\
& : \quad \forall \varphi \cdot M \varphi \rightarrow \forall \alpha \cdot \forall \beta \cdot(\alpha \rightarrow \beta) \rightarrow \varphi \alpha \rightarrow \varphi \beta
\end{aligned}
$$

Abstracting over type operators

Type of monads Given a type operator φ, a monad is given by a pair of two functions of the following type (satisfying certain laws).

$$
\begin{aligned}
& M \triangleq \quad \lambda \varphi . \\
& \quad\{\text { ret: } \forall \alpha \cdot \alpha \rightarrow \varphi \alpha ; \\
& \quad \text { bind: } \forall \alpha \cdot \forall \beta \cdot \varphi \alpha \rightarrow(\alpha \rightarrow \varphi \beta) \rightarrow \varphi \beta\}
\end{aligned}
$$

$$
:(* \Rightarrow *) \Rightarrow *
$$

(Notice that M is itself of higher kind)
A generic map function: can then be defined:
fmap

$$
\begin{aligned}
& \triangleq \quad \lambda m . \\
& \quad \lambda f \cdot \lambda x . \\
& : \quad \forall \varphi \cdot M \varphi \rightarrow \forall \alpha \cdot \forall \beta \cdot(\alpha \rightarrow \beta) \rightarrow \varphi \alpha \rightarrow \varphi \beta
\end{aligned}
$$

Abstracting over type operators

Available in Haskell

- $\varphi \alpha$ is treated as a type $\operatorname{App}(\varphi, \alpha)$ where App: $\left(\kappa_{1} \Rightarrow \kappa_{2}\right) \Rightarrow \kappa_{1} \Rightarrow \kappa_{2}$
- No β-reduction at the level of types: $\varphi \alpha=\psi \beta \Longleftrightarrow \varphi=\psi \wedge \alpha=\beta$
- Compatible with type inference (first-order unification)
- Since there is no type β-reduction, this does enable F^{ω}.

Encodable in OCaml with modules

- See [Yallop and White, 2014] (and also [Kiselyov])
- As in Haskell, the encoding does not handle type β-reduction
- As a counterpart, this allows for type inference at higher kinds.

Encoding of existential

Limits of System F

We saw

$$
\llbracket \exists \alpha . \tau \rrbracket=?
$$

Encoding of existentials
 Limits of System F

We saw

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot(\forall \alpha \cdot \tau \rightarrow \beta) \rightarrow \beta
$$

Encoding of existential

Limits of System F

We saw

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot(\forall \alpha \cdot \tau \rightarrow \beta) \rightarrow \beta
$$

Hence,

$$
\llbracket \operatorname{pack}_{\exists \alpha . \tau} \rrbracket=\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) . k \alpha x
$$

This requires a different code for each type τ

Encoding of existentials

Limits of System F

We saw

$$
\llbracket \exists \alpha . \tau \rrbracket=\forall \beta .(\forall \alpha . \tau \rightarrow \beta) \rightarrow \beta
$$

Hence,

$$
\llbracket \operatorname{pack}_{\exists \alpha . \tau} \rrbracket=\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) . k \alpha x
$$

This requires a different code for each type τ
To have a unique code, we need to abstract over the type function $\lambda \alpha . \tau$:

Encoding of existentials

We saw

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot(\forall \alpha \cdot \tau \rightarrow \beta) \rightarrow \beta
$$

Hence,

$$
\llbracket p a c k_{\exists \alpha . \tau} \rrbracket=\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) . k \alpha x
$$

This requires a different code for each type τ
To have a unique code, we need to abstract over the type function $\lambda \alpha . \tau$:
In System F^{ω}, we may defined

$$
\llbracket p a c k \rrbracket=?
$$

Encoding of existential

We saw

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot(\forall \alpha \cdot \tau \rightarrow \beta) \rightarrow \beta
$$

Hence,

$$
\llbracket p a c k_{\exists \alpha . \tau} \rrbracket=\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) . k \alpha x
$$

This requires a different code for each type τ
To have a unique code, we need to abstract over the type function $\lambda \alpha . \tau$:
In System F^{ω}, we may defined

$$
\llbracket p a c k \rrbracket=\Lambda(\varphi:: * \Rightarrow *) . ?
$$

Encoding of existentials

We saw

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot(\forall \alpha \cdot \tau \rightarrow \beta) \rightarrow \beta
$$

Hence,

$$
\llbracket p a c k_{\exists \alpha . \tau} \rrbracket=\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) . k \alpha x
$$

This requires a different code for each type τ
To have a unique code, we need to abstract over the type function $\lambda \alpha . \tau$:
In System F^{ω}, we may defined

$$
\begin{aligned}
& \llbracket p a c k \rrbracket=\Lambda(\varphi:: * \Rightarrow *) \cdot \Lambda(\alpha:: *) . \\
& \lambda x: \varphi \alpha \cdot \Lambda(\beta:: *) \cdot \lambda k: \forall(\alpha:: *) \cdot(\varphi \alpha \rightarrow \beta) \cdot k \alpha x
\end{aligned}
$$

Encoding of existentials

We saw

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot(\forall \alpha \cdot \tau \rightarrow \beta) \rightarrow \beta
$$

Hence,

$$
\llbracket p a c k_{\exists \alpha . \tau} \rrbracket=\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) . k \alpha x
$$

This requires a different code for each type τ
To have a unique code, we need to abstract over the type function $\lambda \alpha . \tau$:
In System F^{ω}, we may defined

$$
\begin{gathered}
\llbracket p a c k \rrbracket=\Lambda \varphi \cdot \Lambda \alpha . \\
\lambda x: \varphi \alpha \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\varphi \alpha \rightarrow \beta) \cdot k \alpha x
\end{gathered}
$$

Encoding of existentials

We saw

$$
\llbracket \exists \alpha \cdot \tau \rrbracket=\forall \beta \cdot(\forall \alpha \cdot \tau \rightarrow \beta) \rightarrow \beta
$$

Hence,

$$
\llbracket \operatorname{pack}_{\exists \alpha . \tau} \rrbracket=\Lambda \alpha \cdot \lambda x: \llbracket \tau \rrbracket \cdot \Lambda \beta \cdot \lambda k: \forall \alpha \cdot(\llbracket \tau \rrbracket \rightarrow \beta) . k \alpha x
$$

This requires a different code for each type τ
To have a unique code, we need to abstract over the type function $\lambda \alpha . \tau$:
In System F^{ω}, we may defined

$$
\begin{aligned}
& \llbracket p a c 1_{\kappa} \rrbracket=\Lambda(\varphi:: \kappa \Rightarrow *) \cdot \Lambda(\alpha:: \kappa) . \\
& \lambda x: \varphi \alpha \cdot \Lambda(\beta:: *) \cdot \lambda k: \forall(\alpha:: \kappa) \cdot(\varphi \alpha \rightarrow \beta) \cdot k \alpha x
\end{aligned}
$$

Allows abstraction at higher kinds!

Exploiting kinds

Once we have kind functions, the language of types could be reduced to λ-calculus with constants (plus the arrow types kept as primitive):

$$
\tau=\alpha|\lambda \alpha . \tau| \tau \tau|\tau \rightarrow \tau| g
$$

where type constants $g \in \mathcal{G}$ are given with their kind and syntactic sugar:

$$
\begin{array}{lll}
\times:: * \Rightarrow * \Rightarrow * & (\tau \times \tau) \triangleq(\times) \tau_{1} \tau_{2} \\
+:: * \Rightarrow * \Rightarrow \kappa & (\tau+\tau) \triangleq(+) \tau_{1} \tau_{2} \\
\forall::(\kappa \Rightarrow *) \Rightarrow * & \forall \varphi \cdot \tau \triangleq \forall(\lambda \varphi \cdot \tau) \\
\exists::(\kappa \Rightarrow *) \Rightarrow * & \exists \varphi \cdot \tau \triangleq \exists(\lambda \varphi \cdot \tau)
\end{array}
$$

Church encoding of regular ADT

```
type List \alpha=
    | Nil : \forall\alpha.List \alpha
    Cons: }\forall\alpha.\alpha->\mathrm{ List }\alpha->\mathrm{ List }
```

Church encoding (CPS style) in System F

$$
\begin{aligned}
\text { List } & \triangleq \lambda \alpha \cdot \forall \beta \cdot \beta \rightarrow(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \\
\text { Nil } & \triangleq \lambda n \cdot \lambda c \cdot n \\
\text { Cons } & \triangleq \lambda x \cdot \lambda \ell \cdot \lambda n \cdot \lambda c \cdot c x(\ell \beta n c) z
\end{aligned}
$$

$$
\text { fold } \triangleq \quad \lambda n \cdot \lambda c \cdot \lambda \ell \cdot \ell \beta n c
$$

Church encoding of regular ADT

```
type List \alpha=
    Nil : }\forall\alpha.List 
    Cons: }\forall\alpha.\alpha->\mathrm{ List }\alpha->\mathrm{ List }
```

Church encoding (CPS style) in System F

$$
\begin{aligned}
\text { List } & \triangleq \\
\text { Nil } & \triangleq \alpha \cdot \forall \beta \cdot \beta \rightarrow(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \\
\text { Cons } \triangleq & \Lambda \alpha \cdot \Lambda \beta \cdot \lambda n: \beta \cdot \lambda c:(\alpha \rightarrow \beta \rightarrow \beta) \cdot n \\
& \Lambda \alpha \cdot \lambda x: \alpha \cdot \lambda \ell: \text { List } \alpha . \\
& \Lambda \beta \cdot \lambda n: \beta \cdot \lambda c:(\alpha \rightarrow \beta \rightarrow \beta) \cdot c x(\ell \beta n c) z
\end{aligned}
$$

fold $\triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \lambda n: \beta \cdot \lambda c:(\alpha \rightarrow \beta \rightarrow \beta) . \lambda \ell:$ List $\alpha \cdot \ell \beta n c$

Church encoding of regular ADT

$$
\begin{aligned}
& \text { type } \quad \text { List } \alpha= \\
& \mid \text { Nil }: \forall \alpha . \text { List } \alpha \\
& \mid \text { Cons }: \forall \alpha . \alpha \rightarrow \text { List } \alpha \rightarrow \text { List } \alpha
\end{aligned}
$$

Church encoding (CPS style) enhanced in F^{ω} ?

$$
\begin{aligned}
\text { List } & \triangleq \\
\text { Nil } & \lambda \alpha \cdot \forall \varphi \cdot \varphi \alpha \rightarrow(\alpha \rightarrow \varphi \alpha \rightarrow \varphi \alpha) \rightarrow \varphi \alpha \\
\text { Cons } \triangleq & \Lambda \alpha \cdot \Lambda \varphi \cdot \lambda n: \varphi \alpha \cdot \lambda c:(\alpha \rightarrow \varphi \alpha \rightarrow \varphi \alpha) \cdot n \\
& \Lambda \alpha \cdot \lambda x: \alpha \cdot \lambda \ell: \text { List } \alpha \\
& \Lambda \varphi \cdot \lambda n: \varphi \alpha \cdot \lambda c:(\alpha \rightarrow \varphi \alpha \rightarrow \varphi \alpha) \cdot c x(\ell \varphi n c) z
\end{aligned}
$$

$$
\text { fold } \triangleq \Lambda \alpha \cdot \Lambda \varphi \cdot \lambda n: \varphi \alpha \cdot \lambda c:(\alpha \rightarrow \varphi \alpha \rightarrow \varphi \alpha) \cdot \lambda \ell: \text { List } \alpha \cdot \ell \varphi n c
$$

Actually not!
Be aware of useless over-generalization!
For regular ADTs, all uses of φ are $\varphi \alpha$.
Hence, $\forall \alpha . \forall \varphi . \tau[\varphi \alpha]$ is not more general than $\forall \alpha . \forall \beta . \tau[\beta]$

Church encoding of non-regular ADTs

Okasaki's Seq

type \quad Seq $\alpha=$
| Nil : $\forall \alpha$. Seq α
Zero: $\forall \alpha$. Seq $(\alpha \times \alpha) \rightarrow \operatorname{Seq} \alpha$
One : $\forall \alpha . \alpha \rightarrow \operatorname{Seq}(\alpha \times \alpha) \rightarrow \operatorname{Seq} \alpha$
Encoded as:

$$
\begin{aligned}
\text { Seq } & \triangleq \lambda \alpha \cdot \forall F \cdot F \alpha \rightarrow(F(\alpha \times \alpha) \rightarrow F \alpha) \rightarrow(\alpha \rightarrow F(\alpha \times \alpha) \rightarrow F \alpha) \rightarrow F \alpha \\
\text { Nil } & \triangleq \lambda n \cdot \lambda z \cdot \lambda s \cdot n \\
\text { Zero } & \triangleq \lambda \ell \cdot \lambda n \cdot \lambda z \cdot \lambda s \cdot z(\ell n z s) \\
\text { One } & \triangleq \lambda x \cdot \lambda \ell \cdot \lambda n \cdot \lambda z \cdot \lambda s . s x(\ell n z s)
\end{aligned}
$$

$$
\text { fold } \triangleq \lambda n \cdot \lambda z \cdot \lambda s \cdot \lambda \ell \cdot \ell n z s
$$

Church encoding of non-regular ADTs

type $\quad \operatorname{Seq} \alpha=$
\mid Nil : $\forall \alpha$. Seq α
Zero: $\forall \alpha$. Seq $(\alpha \times \alpha) \rightarrow \operatorname{Seq} \alpha$
One : $\forall \alpha . \alpha \rightarrow$ Seq $(\alpha \times \alpha) \rightarrow$ Seq α
Encoded as:

$$
\begin{aligned}
& \text { Seq } \triangleq \lambda \alpha . \forall F . F \alpha \rightarrow(F(\alpha \times \alpha) \rightarrow F \alpha) \rightarrow(\alpha \rightarrow F(\alpha \times \alpha) \rightarrow F \alpha) \rightarrow F \alpha \\
& \text { Nil } \triangleq \Lambda \alpha . \Lambda F . \lambda n: F \alpha . \lambda z: F(\alpha \times \alpha) \rightarrow F \alpha . \lambda s: \alpha \rightarrow F(\alpha \times \alpha) \rightarrow F \alpha . n \\
& \text { Zero } \triangleq \Lambda \alpha \cdot \lambda \ell: \text { Seq } \alpha \text {.... } \\
& \text { One } \triangleq \Lambda \alpha \cdot \lambda x: \alpha \cdot \lambda \ell: \text { Seq } \alpha \text {. } \\
& \Lambda F . \lambda n: F \alpha . \lambda z: F(\alpha \times \alpha) \rightarrow F \alpha . \lambda s: \alpha \rightarrow F(\alpha \times \alpha) \rightarrow F \alpha . \\
& s x(\ell F n z s) \\
& \text { fold } \triangleq \Lambda \alpha . \Lambda F \cdot \lambda n: F \alpha \cdot \lambda z: F(\alpha \times \alpha) \rightarrow F \alpha . \lambda s: \alpha \rightarrow F(\alpha \times \alpha) \rightarrow F \alpha \text {. } \\
& \lambda \ell: \text { Seq } \alpha . \ell F n z s
\end{aligned}
$$

Church encoding of non-regular ADTs

type $\quad \operatorname{Seq} \alpha=$
| Nil : $\forall \alpha$. Seq α
Zero: $\forall \alpha$. Seq $(\alpha \times \alpha) \rightarrow \operatorname{Seq} \alpha$
One : $\forall \alpha . \alpha \rightarrow$ Seq $(\alpha \times \alpha) \rightarrow$ Seq α
Encoded as:

$$
\begin{aligned}
& \text { Seq } \triangleq \lambda \alpha . \forall F . F \alpha \rightarrow(F(\alpha \times \alpha) \rightarrow F \alpha) \rightarrow(\alpha \rightarrow F(\alpha \times \alpha) \rightarrow F \alpha) \rightarrow F \alpha \\
& \text { Nil } \triangleq \Lambda \alpha . \Lambda F . \lambda n: F \alpha . \lambda z: F(\alpha \times \alpha) \rightarrow F \alpha . \lambda s: \alpha \rightarrow F(\alpha \times \alpha) \rightarrow F \alpha . n \\
& \text { Zero } \triangleq \Lambda \alpha \cdot \lambda \ell: \text { Seq } \alpha \text {. ... } \\
& \text { One } \triangleq \Lambda \alpha \cdot \lambda x: \alpha \cdot \lambda \ell: \text { Seq } \alpha \text {. } \\
& \Lambda F . \lambda n: F \alpha . \lambda z: F(\alpha \times \alpha) \rightarrow F \alpha . \lambda s: \alpha \rightarrow F(\alpha \times \alpha) \rightarrow F \alpha . \\
& s x(\ell F n z s) \\
& \text { fold } \triangleq \Lambda \alpha . \Lambda F \cdot \lambda n: F \alpha \cdot \lambda z: F(\alpha \times \alpha) \rightarrow F \alpha . \lambda s: \alpha \rightarrow F(\alpha \times \alpha) \rightarrow F \alpha . \\
& \lambda \ell: \text { Seq } \alpha . \ell F n z s
\end{aligned}
$$

Cannot be simplified! Indeed φ is applied to both α and $\alpha \times \alpha$. Non regular ADTs cannot be encoded in System F.

Equality

Encoded with GADT

```
module Eq : EQ = struct
    type ('a, 'b) eq = Eq : ('a, 'a) eq
    let coerce (type a) (type b) (ab: (a,b) eq) (x:a) : b = let Eq = ab in x
    let refl : ('a, 'a) eq = Eq
    (* all these are propagation are automatic with GADTs *)
    let symm (type a) (type b) (ab: (a,b) eq) : (b,a) eq = let Eq = ab in ab
    let trans (type a) (type b) (type c)
            (ab:(a,b) eq) (bc:(b,c) eq) : (a,c) eq = let Eq = ab in bc
    let lift (type a) (type b) (ab: (a,b) eq) : (a list, b list ) eq =
    let Eq = ab in Eq
end
```


Equality

Leibnitz equality in F^{ω}

$$
E q \alpha \beta \equiv \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \beta
$$

```
\(E q \triangleq \lambda \alpha \cdot \lambda \beta \cdot \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \beta\)
coerce \(\triangleq \Lambda \alpha . \Lambda \beta \cdot \lambda p: E q \alpha \beta . \lambda x: \alpha . p(\lambda \gamma \cdot \gamma) x\)
\(r e f l \triangleq \Lambda \alpha \cdot \Lambda \varphi \cdot \lambda x: \varphi \alpha . x\)
    \(: \forall \alpha . \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \alpha \equiv \forall \alpha . E q \alpha \alpha\)
symm \(\triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \lambda p: E q \alpha \beta \cdot p(\lambda \gamma \cdot E q \gamma \alpha)(\) refl \(\alpha)\)
    \(: \quad \forall \alpha . \forall \beta . E q \alpha \beta \rightarrow E q \beta \alpha\)
trans \(\triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \Lambda \gamma \cdot \lambda p: E q \alpha \beta \cdot \lambda q: E q \beta \gamma \cdot q(E q \alpha) p\)
    \(: \quad \forall \alpha . \forall \beta . \forall \gamma . E q \alpha \beta \rightarrow E q \beta \gamma \rightarrow E q \alpha \gamma\)
lift \(\triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \Lambda \varphi \cdot \lambda p: E q \alpha \beta \cdot p(\lambda \gamma . E q(\varphi \alpha)(\varphi \gamma))(r e f l(\varphi \alpha))\)
    \(: \quad \forall \alpha . \forall \beta . \forall \varphi . E q \alpha \beta \rightarrow E q(\varphi \alpha)(\varphi \beta)\)
```


Equality

$$
E q \alpha \beta \equiv \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \beta
$$

```
\(E q \triangleq \lambda \alpha \cdot \lambda \beta \cdot \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \beta\)
coerce \(\triangleq \Lambda \alpha . \Lambda \beta \cdot \lambda p: E q \alpha \beta . \lambda x: \alpha . p(\lambda \gamma \cdot \gamma) x\)
\(r e f l \triangleq \Lambda \alpha \cdot \Lambda \varphi \cdot \lambda x: \varphi \alpha . x\)
    \(: \forall \alpha . \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \alpha \equiv \forall \alpha . E q \alpha \alpha\)
symm \(\triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \lambda p: E q \alpha \beta \cdot p(\lambda \gamma . E q \gamma \alpha)(\) refl \(\alpha)\)
    \(: \forall \alpha . \forall \beta . E q \alpha \beta \rightarrow E q \beta \alpha \quad: E q \alpha \alpha \rightarrow E q \beta \alpha\)
trans \(\triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \Lambda \gamma \cdot \lambda p: E q \alpha \beta \cdot \lambda q: E q \beta \gamma \cdot q(E q \alpha) p\)
    \(: \quad \forall \alpha . \forall \beta . \forall \gamma . E q \alpha \beta \rightarrow E q \beta \gamma \rightarrow E q \alpha \gamma\)
lift
    \(\triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \Lambda \varphi \cdot \lambda p: E q \alpha \beta \cdot p(\lambda \gamma \cdot E q(\varphi \alpha)(\varphi \gamma))(r e f l(\varphi \alpha))\)
    \(: \quad \forall \alpha . \forall \beta . \forall \varphi . E q \alpha \beta \rightarrow E q(\varphi \alpha)(\varphi \beta)\)
```


Equality

Leibnitz equality in F^{ω}

$$
E q \alpha \beta \equiv \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \beta
$$

$$
\begin{aligned}
E q & \triangleq \lambda \alpha \cdot \lambda \beta \cdot \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \beta \\
\text { coerce } & \triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \lambda p: E q \alpha \beta \cdot \lambda x: \alpha \cdot p(\lambda \gamma \cdot \gamma) x \\
\text { refl } & \triangleq \Lambda \alpha \cdot \Lambda \varphi \cdot \lambda x: \varphi \alpha \cdot x \\
& : \forall \alpha \cdot \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \alpha \equiv \forall \alpha \cdot E q \alpha \alpha \\
\text { symm } & \triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \lambda p: E q \alpha \beta \cdot p(\lambda \gamma \cdot E q \gamma \alpha)(\text { refl } \alpha) \\
& : \forall \alpha \cdot \forall \beta \cdot E q \alpha \beta \rightarrow E q \beta \alpha \\
\text { trans } & \triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \Lambda \gamma \cdot \lambda p: E q \alpha \beta \cdot \lambda q: E q \beta \gamma \cdot q(E q \alpha) p \\
& : \forall \alpha \cdot \forall \beta \cdot \forall \gamma \cdot E q \alpha \beta \rightarrow E q \beta \gamma \rightarrow E q \alpha \gamma: E q \alpha \beta \rightarrow E q \alpha \gamma \\
\text { lift } & \triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \Lambda \varphi \cdot \lambda p: E q \alpha \beta \cdot p(\lambda \gamma \cdot E q(\varphi \alpha)(\varphi \gamma))(r e f I(\varphi \alpha)) \\
& : \forall \alpha \cdot \forall \beta \cdot \forall \varphi \cdot E q \alpha \beta \rightarrow E q(\varphi \alpha)(\varphi \beta)
\end{aligned}
$$

Equality

Leibnitz equality in F^{ω}

$$
E q \alpha \beta \equiv \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \beta
$$

```
\(E q \triangleq \lambda \alpha \cdot \lambda \beta \cdot \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \beta\)
coerce \(\triangleq \Lambda \alpha . \Lambda \beta \cdot \lambda p: E q \alpha \beta . \lambda x: \alpha . p(\lambda \gamma \cdot \gamma) x\)
\(r e f l \triangleq \Lambda \alpha \cdot \Lambda \varphi \cdot \lambda x: \varphi \alpha . x\)
    \(: \forall \alpha . \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \alpha \equiv \forall \alpha . E q \alpha \alpha\)
symm \(\triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \lambda p: E q \alpha \beta \cdot p(\lambda \gamma \cdot E q \gamma \alpha)(\) refl \(\alpha)\)
    \(: \quad \forall \alpha . \forall \beta . E q \alpha \beta \rightarrow E q \beta \alpha\)
trans \(\triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \Lambda \gamma \cdot \lambda p: E q \alpha \beta \cdot \lambda q: E q \beta \gamma \cdot q(E q \alpha) p\)
    \(: \quad \forall \alpha . \forall \beta . \forall \gamma . E q \alpha \beta \rightarrow E q \beta \gamma \rightarrow E q \alpha \gamma\)
lift \(\triangleq \Lambda \alpha \cdot \Lambda \beta \cdot \Lambda \varphi \cdot \lambda p: E q \alpha \beta \cdot p(\lambda \gamma . E q(\varphi \alpha)(\varphi \gamma))(r e f l(\varphi \alpha))\)
    \(: \quad \forall \alpha . \forall \beta . \forall \varphi . E q \alpha \beta \rightarrow E q(\varphi \alpha)(\varphi \beta)\)
```


Equality

```
\(E q \alpha \beta \equiv \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \beta\)
```

```
\(E q \triangleq \lambda \alpha \cdot \lambda \beta \cdot \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \beta\)
coerce \(\triangleq \lambda p . \lambda x . p x\)
refl \(\triangleq \lambda x . x\)
    : \(\forall \alpha . \forall \varphi \cdot \varphi \alpha \rightarrow \varphi \alpha \equiv \forall \alpha . E q \alpha \alpha\)
symm \(\triangleq \lambda p . p(r e f l)\)
    \(: \quad \forall \alpha . \forall \beta . E q \alpha \beta \rightarrow E q \beta \alpha\)
trans \(\triangleq \lambda p . \lambda q . q p\)
    \(: \quad \forall \alpha . \forall \beta . \forall \gamma . E q \alpha \beta \rightarrow E q \beta \gamma \rightarrow E q \alpha \gamma\)
lift \(\triangleq \lambda p . p(r e f l)\)
    \(: \quad \forall \alpha . \forall \beta . \forall \varphi . E q \alpha \beta \rightarrow E q(\varphi \alpha)(\varphi \beta)\)
```


Equality

Leibnitz equality in F^{ω}

We implemented parts of the coercions of System Fc.

- We do not have decomposition of equalities (the inverse of Lift).
- This requires injectivity of the type operator, which is not given.
- Equivalences and liftings must be written explicitly, while they are implicit with GADTs.

Some GATDs can be encoded, using equality plus existential types.

A hierarchy of type systems

Kinds have a rank:

- the base kind $*$ is of rank 0
- kinds $* \Rightarrow *$ and $* \Rightarrow * \Rightarrow *$ have rank 1 . They are the kinds of type functions taking type parameters of base kind.
- kind $(* \Rightarrow *) \Rightarrow *$ has rank 2 -it is a type function whose parameter is itself a simple type function (of rank 1).
- more generally, $\operatorname{rank}\left(\kappa_{1} \Rightarrow \kappa_{2}\right)=\max \left(1+\operatorname{rank} \kappa_{1}, \operatorname{rank} \kappa_{2}\right)$

This defines a sequence $F^{0} \subseteq F^{1} \subseteq F^{2} \ldots \subseteq F^{\omega}$ of type systems of increasing expressiveness, where F^{n} only uses kinds of rank n, whose limit is F^{ω} and where System F is F^{0}.
Note that ranks are often shifted by one, starting with $F=F^{1}$ or even by 2 , starting with $F=F^{2}$.
Most examples in practice (and those we wrote) are in F^{1}, just above F.

F^{ω} with several base kinds

We could have several base kinds, e.g. * and field with type constructors:

$$
\begin{aligned}
& \text { filled }: * \Rightarrow \text { field } \quad \text { box : field } \Rightarrow * \\
& \text { empty : field }
\end{aligned}
$$

Prevents ill-formed types such as box $(\alpha \rightarrow$ filled $\alpha)$.
This allows to build values v of type box θ where θ of kind field statically tells whether v is filled with a value of type τ or empty.

Application:
This is used in OCaml for rows of object types, but kinds are hidden to the user:
let get ($\mathrm{x}:<$ get: ' $\mathrm{a} ;$.. $>$) : ' $\mathrm{a}=\mathrm{x} \#$ get
The dots ".." stands for a variable of another base kind (representing a row of types).

System F^{ω} with equirecursive types

Checking equality of equirecursive types in System F is already non obvious, since unfolding may require alpha-conversion to avoid variable capture. (See also [Gauthier and Pottier, 2004].)

With higher-order types, it is even trickier, since unfolding at functional kinds could expose new type redexes.

Besides, the language of types would be the simply type λ-calculus with a fix-point operator: type reduction would not terminate.

Therefore type equality would be undecidable, as well as type checking.
A solution is to restrict to recursion at the base kind *. This allows to define recursive types but not recursive type functions.

Such an extension has been proven sound and and decidable, but only for the weak form or equirecursive types (with the unfolding but not the uniqueness rule)-see [Cai et al., 2016].

System F^{ω} with equirecursive kinds

Instead, recursion could also occur just at the level of kinds, allowing kinds to be themselves recursive.

Then, the language of types is the simply type λ-calculus with recursive types, equivalent to the untyped λ-calculus-every term is typable. Reduction of types does not terminate and type equality is ill-defined.

A solution proposed by Pottier [2011] is to force recursive kinds to be productive, reusing an idea from an [Nakano, 2000, 2001] for controlling recursion on terms, but pushing it one level up. Type equality become well-defined and semi-decidable.

The extension has been used to show that references in System F can be translated away in F^{ω} with guarded recursive kinds.

System F^{ω}

For applicative functors

Generative ML modules (without parametric types) can be encoding in System F with existential types.

- A functor F has a type of the form: $\forall \alpha . \tau[\alpha] \rightarrow \exists \beta . . \sigma[\alpha, \beta]$
- If X, Y has type $\tau[\rho]$, then two successive applications $\mathrm{F}(\mathrm{X})$ and $\mathrm{F}(\mathrm{X})$ have types $\exists \beta$. $[\rho, \beta]$ with different abstract types β and cannot interoperate (on components involving β).

$$
\begin{aligned}
& \text { let } Y=\text { unpack } F X \text { in } \\
& \text { let } Z=\text { unpack } F X \text { in } \quad \text { is ill-typed } \\
& Y=Z
\end{aligned}
$$

System F^{ω}

For applicative functors

Generative ML modules (without parametric types) can be encoding in System F with existential types.

- A functor F has a type of the form: $\forall \alpha . \tau[\alpha] \rightarrow \exists \beta . \sigma[\alpha, \beta]$

However, applicative modules require the use of F^{ω} to keep track of type equalities! See [Rossberg et al., 2014] and [Rossberg, 2018].

- A functor F has a type of the form: $\exists \varphi . \forall \alpha . \tau[\alpha] \rightarrow \sigma[\alpha, \varphi \alpha]$ or when open $\forall \alpha . \tau[\alpha] \rightarrow \sigma[\alpha, \psi \rho]$ for some unknown ψ.
- Then if X has type $\tau[\rho]$, two successive applications $\mathrm{F}(\mathrm{X})$ and $\mathrm{F}(\mathrm{X})$ have the same type $\sigma[\rho, \varphi \rho]$ sharing the abstract type (application) $\psi \rho$.
- Hence, the two applications can interoperate,
- Key: ψ is abstract, which makes $\psi \rho$ abstract and incompatible with ρ, but all occurrences of $\psi \rho$ are compatible.

$$
\begin{aligned}
& \text { let } \psi, f=\text { unpack } F \text { in } \\
& \text { let } Y=F X \text { in let } Z=F X \text { in } Y=Z \quad \text { is well-typed }
\end{aligned}
$$

System F^{ω} in OCamll

Second-order polymorphism in OCaml

- Via polymorphic methods
let id = object method $\mathrm{f}:$ ' a . ' $\mathrm{a} \rightarrow$ ' $\mathrm{a}=\mathrm{fun} \mathrm{x} \rightarrow \mathrm{x}$ end let $\mathrm{y}\left(\mathrm{x}:<\mathrm{f}:\right.$ ' a . $\mathrm{a} \rightarrow{ }^{\prime} \mathrm{a}>$) $=\mathrm{x} \# \mathrm{f} \mathrm{x}$ in y id

System F^{ω} in OCamll

Second-order polymorphism in OCaml

- Via polymorphic methods
let id $=$ object method $\mathrm{f}:$ ' a. ' $a \rightarrow$ ' $a=$ fun $x \rightarrow x$ end let $y(x:<f: ' a$. 'a \rightarrow ' $a>)=x \# f x$ in y id
- Via first-class modules
module type $S=$ sig val f : 'a \rightarrow 'a end
let id $=($ module struct let $f x=x$ end : S)
let $y(x:($ module $S))=$ let module $X=($ val $x)$ in $X . f x$ in y id

System F^{ω} in OCamll

Second-order polymorphism in OCaml

- Via polymorphic methods
- Via first-class modules

Higher-order types in OCaml

- In principle, they could be encoded with first-class modules.
- Not currently possible, due to (unnecessary) restrictions.
- Modular explicits, an extension that allows a better integration of abstraction over first-class modules will remove these limitations and allow a light-weight encoding of F^{ω}-with boiler-plate glue code.

System F^{ω} in OCaml

Available at git@github.com:mrmr1993/ocaml.git
module type $s=$ sig type t end
module type op $=$ functor (A:s) $\rightarrow s$
let $d p\{F: o p\}\{G: o p\}\{A: s\}\{B: s\}(f:\{C: s\} \rightarrow F(C) . t \rightarrow G(C) . t)$ $(x: F(A) \cdot t)(y: F(B) \cdot t): G(A) \cdot t * G(B) \cdot t=f\{A\} x, f\{B\} y$

And its two specialized versions:
let dp1 (type a) (type b) (f: \{C:s $\} \rightarrow$ C.t \rightarrow C.t) : $a \rightarrow b \rightarrow a * b=$ let module $F(C: s)=C$ in let module $G=F$ in let module $A=$ struct type $t=a$ end in let module $B=$ struct type $t=b$ end in $\mathrm{dp}\{\mathrm{F}\}\{\mathrm{G}\}\{\mathrm{A}\}\{\mathrm{B}\} \mathrm{f}$
let dp2 (type a) (type b) (f:a $\rightarrow \mathrm{b}$) : $\mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{b} * \mathrm{~b}=$ let module $A=$ struct type $t=a$ end in let module $B=$ struct type $t=b$ end in let module $\mathrm{F}(\mathrm{C}: \mathrm{s})=\mathrm{A}$ in let module $\mathrm{G}(\mathrm{C}: \mathrm{s})=\mathrm{B}$ in $\mathrm{dp}\{\mathrm{F}\}\{\mathrm{G}\}\{\mathrm{A}\}\{\mathrm{B}\}($ fun $\{\mathrm{C}: \mathrm{s}\} \rightarrow \mathrm{f})$

System F^{ω} in Scala-3

Higher-order polymorphism a la System F^{ω} is now accessible in Scala-3.
The monad example (with some variation on the signature) is:

```
trait Monad[F[-]] {
    def pure[A](x:A): F[A]
    def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
}
```

See https://www.baeldung.com/scala/dotty-scala-3
Still, this feature of Scala-3 is not emphrasized

- It was not directly accessible in previous version Scala.
- Scala's syntax and other complex features of Scala are obfuscating.

What's next?

Barendregt's λ-cube

(1) Term abstraction on Types (example: System F)
(2) Type abstraction on Types (example: F^{ω})
(3) Type abstraction on Terms (dependent types)

Logical relations and parametricity

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

What are logical relations?

So far, most proofs involving terms have proceeded by induction on the structure of terms (or, equivalently, typing derivations).

Logical relations are relations between well-typed terms defined inductively on the structure of types. They allow proofs between terms by induction on the structure of types.

Unary relations

- Unary relations are predicates on expressions
- They can be used to prove type safety and strong normalization Binary relations
- Binary relations relates two expressions of related types.
- They can be used to prove equivalence of programs and non-interference properties.
Logical relations are a common proof method for programming languages.

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

What can do a term of type $\forall \alpha . \alpha \rightarrow$ int ?

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

What can do a term of type $\forall \alpha . \alpha \rightarrow$ int ?
\triangleright the function cannot examine its argument

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

What can do a term of type $\forall \alpha . \alpha \rightarrow$ int ?
\triangleright the function cannot examine its argument
\triangleright it always returns the same integer

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

What can do a term of type $\forall \alpha . \alpha \rightarrow$ int ?
\triangleright the function cannot examine its argument
\triangleright it always returns the same integer
$\triangleright \lambda x . n$,
$\lambda x .(\lambda y . y) n$,
$\lambda x .(\lambda y . n) x$.
etc.
What do they all have in common ?

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

What can do a term of type $\forall \alpha . \alpha \rightarrow$ int ?
\triangleright the function cannot examine its argument
\triangleright it always returns the same integer
$\triangleright \lambda x . n$,
$\lambda x .(\lambda y . y) n$,
$\lambda x .(\lambda y . n) x$.
etc.
\triangleright they are all $\beta \eta$-equivalent to a term of the form λx.n

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

A term of type $\forall \alpha . \alpha \rightarrow$ int?
\triangleright behaves as λx.n

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

A term of type $\forall \alpha . \alpha \rightarrow$ int ?
\triangleright behaves as λx.n
A term a of type $\forall \alpha . \alpha \rightarrow \alpha$?

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

A term of type $\forall \alpha . \alpha \rightarrow$ int ?
\triangleright behaves as λx.n
A term a of type $\forall \alpha . \alpha \rightarrow \alpha$?
\triangleright behaves as $\lambda x . x$

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

A term of type $\forall \alpha . \alpha \rightarrow$ int ?
\triangleright behaves as λx.n
A term a of type $\forall \alpha . \alpha \rightarrow \alpha$?
\triangleright behaves as $\lambda x . x$
A term type $\forall \alpha \beta . \alpha \rightarrow \beta \rightarrow \alpha$?

$?$

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

A term of type $\forall \alpha . \alpha \rightarrow$ int ?
\triangleright behaves as λx.n
A term a of type $\forall \alpha . \alpha \rightarrow \alpha$?
\triangleright behaves as $\lambda x . x$
A term type $\forall \alpha \beta . \alpha \rightarrow \beta \rightarrow \alpha$?
\triangleright behaves as $\lambda x . \lambda y . x$
A term type $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$?

$?$

Parametricity?

Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type can reveal a lot of information about the terms that inhabit it.

A term of type $\forall \alpha . \alpha \rightarrow$ int?
\triangleright behaves as λx.n
A term a of type $\forall \alpha . \alpha \rightarrow \alpha$?
\triangleright behaves as $\lambda x . x$
A term type $\forall \alpha \beta . \alpha \rightarrow \beta \rightarrow \alpha$?
\triangleright behaves as $\lambda x . \lambda y . x$
A term type $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$?
\triangleright behaves either as $\lambda x . \lambda y . x$ or $\lambda x . \lambda y . y$

Pametricity

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {.list } \alpha \rightarrow \text { list } \alpha
$$

Pametricity

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {.list } \alpha \rightarrow \text { list } \alpha
$$

\triangleright The length of the result depends only on the length of the argument

Pametricity

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {.list } \alpha \rightarrow \text { list } \alpha
$$

\triangleright The length of the result depends only on the length of the argument
\triangleright All elements of the results are elements of the argument

Pametricity

Theorems for free

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {. list } \alpha \rightarrow \text { list } \alpha
$$

\triangleright The length of the result depends only on the length of the argument
\triangleright All elements of the results are elements of the argument
\triangleright The choice (i, j) of pairs such that i-th element of the result is the j-th element of the argument does not depend on the element itself.

Pametricity

Theorems for free

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {. list } \alpha \rightarrow \text { list } \alpha
$$

\triangleright The length of the result depends only on the length of the argument
\triangleright All elements of the results are elements of the argument
\triangleright The choice (i, j) of pairs such that i-th element of the result is the j-th element of the argument does not depend on the element itself.
\triangleright the function is preserved by a transformation of its argument that preserves the shape of the argument

$$
\forall f, x, \quad \text { whoami }(\operatorname{map} f x)=\operatorname{map} f(\text { whoami } x)
$$

Pametricity

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {. list } \alpha \rightarrow \text { list } \alpha
$$

What property may we learn for the list sorting function?

$$
\text { sort : } \forall \alpha .(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

Pametricity

Theorems for free

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {.list } \alpha \rightarrow \text { list } \alpha
$$

What property may we learn for the list sorting function?

$$
\text { sort : } \forall \alpha .(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

If f is order-preserving, then sorting commutes with $\operatorname{map} f$

$$
\begin{aligned}
&(\forall x, y, \quad \operatorname{cmp}(f x)(f y)=c m p x y) \Longrightarrow \\
& \forall \ell, \operatorname{sort} \operatorname{cmp}(\operatorname{map} f \ell)=\operatorname{map} f(\text { sort amp } \ell)
\end{aligned}
$$

Pametricity

Theorems for free

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {.list } \alpha \rightarrow \text { list } \alpha
$$

What property may we learn for the list sorting function?

$$
\text { sort : } \forall \alpha .(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

If f is order-preserving, then sorting commutes with $\operatorname{map} f$

$$
\begin{aligned}
\left(\forall x, y, c m p_{2}(f x)(f y)=c m p_{1}\right. & x y) \Longrightarrow \\
\forall \ell, \text { sort } c m p_{2}(\operatorname{map} f \ell) & =\operatorname{map} f(\text { sort comp } 1 \ell)
\end{aligned}
$$

Pametricity

Theorems for free

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {. list } \alpha \rightarrow \text { list } \alpha
$$

What property may we learn for the list sorting function?

$$
\text { sort : } \forall \alpha .(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

If f is order-preserving, then sorting commutes with map f

$$
\left.\begin{array}{r}
\left(\forall x, y, \quad c m p_{2}(f x)(f y)=c m p_{1} x y\right) \Longrightarrow \\
\forall \ell, \text { sort } c m p_{2}(\text { map } f \ell)
\end{array}\right)=\operatorname{map} f(\text { sort cmp } \ell \ell)
$$

Application:
\triangleright If sort is correct on lists of integers, then it is correct on any list
\triangleright May be useful to reduce testing.

Pametricity

Theorems for free

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha . \text { list } \alpha \rightarrow \text { list } \alpha
$$

What property may we learn for the list sorting function?

$$
\text { sort : } \forall \alpha .(\alpha \rightarrow \alpha \rightarrow b o o l) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

If f is order-preserving, then sorting commutes with map f

$$
\begin{array}{r}
\left(\forall x, y, \quad c m p_{2}(f x)(f y)=c m p_{1} x y\right) \Longrightarrow \\
\forall \ell, \text { sort } c m p_{2}(\text { map } f \ell)
\end{array}=\operatorname{map} f(\text { sort cmp } \ell)
$$

Note that there are many other inhabitants of this type, but they all satisfy this free theorem.

Can you give a few?

Pametricity

Theorems for free

Similarly, the type of a polymorphic function may also reveal a "free theorem" about its behavior!

What properties may we learn from a function

$$
\text { whoami : } \forall \alpha \text {. list } \alpha \rightarrow \text { list } \alpha
$$

What property may we learn for the list sorting function?

$$
\text { sort : } \forall \alpha .(\alpha \rightarrow \alpha \rightarrow \text { bool }) \rightarrow \text { list } \alpha \rightarrow \text { list } \alpha
$$

If f is order-preserving, then sorting commutes with map f

$$
\begin{array}{r}
\left(\forall x, y, c m p_{2}(f x)(f y)=c m p_{1} \quad x y\right) \Longrightarrow \\
\forall \ell, \text { sort } c m p_{2}(\operatorname{map} f \ell)=\operatorname{map} f(\text { sort cmp } 1 \ell)
\end{array}
$$

Note that there are many other inhabitants of this type, but they all satisfy this free theorem. (e.g., a function that sorts in reverse order, or a function that removes (or adds) duplicates).

Parametricity

This phenomenon was studied by Reynolds [1983] and by Wadler [1989; 2007], among others. Wadler's paper contains the 'free theorem' about the list sorting function.

An account based on an operational semantics is offered by Pitts [2000].
Bernardy et al. [2010] generalize the idea of testing polymorphic functions to arbitrary polymorphic types and show how testing any function can be restricted to testing it on (possibly infinitely many) particular values at some particular types.

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

Normalization of simply-typed λ-calculus

Types usually ensure termination of programs-as long as neither types nor terms contain any form of recursion.

Normalization of simply-typed λ-calculus

Types usually ensure termination of programs-as long as neither types nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important property of the design that non-termination is originating from the constructions introduced especially for recursion and could not occur without them.

Normalization of simply-typed λ-calculus

Types usually ensure termination of programs-as long as neither types nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important property of the design that non-termination is originating from the constructions introduced especially for recursion and could not occur without them.

The simply-typed λ-calculus is also lifted at the level of types in richer type systems such as F^{ω}; then, the decidability of type-equality depends on the termination of the reduction at the type level.

Normalization of simply-typed λ-calculus

Types usually ensure termination of programs-as long as neither types nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important property of the design that non-termination is originating from the constructions introduced especially for recursion and could not occur without them.

The simply-typed λ-calculus is also lifted at the level of types in richer type systems such as F^{ω}; then, the decidability of type-equality depends on the termination of the reduction at the type level.

The proof of termination for the simply-typed λ-calculus is a simple and illustrative use of logical relations.

Notice however, that our simply-typed λ-calculus is equipped with a call-by-value semantics. Proofs of termination are usually done with a strong evaluation strategy where reduction can occur in any context.

Normalization

Proving termination of reduction in fragments of the λ-calculus is often a difficult task because reduction may create new redexes or duplicate existing ones.

Hence the size of terms may grow (much) larger during reduction. The difficulty is to find some underlying structure that decreases.

We follow the proof schema of Pierce [2002], which is a modern presentation in a call-by-value setting of an older proof by Hindley and Seldin [1986]. The proof method is due to [Tait, 1967].

Calculus

Take the call-by-value $\lambda_{s t}$ with primitive booleans and conditional. Write B the type of booleans and tt and ff for true and false.
We define $\mathcal{V} \llbracket \tau \rrbracket$ and $\mathcal{E} \llbracket \tau \rrbracket$ the subsets of closed values and closed expressions of (ground) type τ by induction on types as follows:

$$
\begin{aligned}
\mathcal{V} \llbracket \mathrm{B} \rrbracket \triangleq & \{\mathrm{tt}, \mathrm{ff}\} \\
\mathcal{V} \llbracket \tau_{1} \rightarrow & \tau_{2} \rrbracket \triangleq\left\{\lambda x: \tau_{1} \cdot M \mid\right. \\
& \lambda x: \tau_{1} \cdot M: \tau_{1} \rightarrow \tau_{2} \\
& \left.\wedge \forall V \in \mathcal{V} \llbracket \tau_{1} \rrbracket, \quad\left(\lambda x: \tau_{1} . M\right) V \in \mathcal{E} \llbracket \tau_{2} \rrbracket\right\} \\
\mathcal{E} \llbracket \tau \rrbracket \triangleq\{M \mid M: \tau & \wedge \exists V \in \mathcal{V} \llbracket \tau \rrbracket, M \Downarrow V\}
\end{aligned}
$$

We write $M \Downarrow V$ for $M \longrightarrow{ }^{*} V$.
The goal is to show that any closed expression of type τ is in $\mathcal{E} \llbracket \tau \rrbracket$.

Remarks

Although usual with logical relations, well-typedness is actually not required here and omitted: otherwise, we would have to carry unnecessary type-preservation proof obligations.

Calculus

Take the call-by-value $\lambda_{s t}$ with primitive booleans and conditional. Write B the type of booleans and tt and ff for true and false.
We define $\mathcal{V} \llbracket \tau \rrbracket$ and $\mathcal{E} \llbracket \tau \rrbracket$ the subsets of closed values and closed expressions of (ground) type τ by induction on types as follows:

$$
\begin{aligned}
\mathcal{V} \llbracket \mathrm{B} \rrbracket & \triangleq\{\mathrm{tt}, \mathrm{ff}\} \\
\mathcal{V} \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & \triangleq\left\{\lambda x: \tau_{1} \cdot M \mid \forall V \in \mathcal{V} \llbracket \tau_{1} \rrbracket, \quad\left(\lambda x: \tau_{1} \cdot M\right) V \in \mathcal{E} \llbracket \tau_{2} \rrbracket\right\} \\
\mathcal{E} \llbracket \tau \rrbracket & \triangleq\{M \mid \exists V \in \mathcal{V} \llbracket \tau \rrbracket, M \Downarrow V\}
\end{aligned}
$$

We write $M \Downarrow V$ for $M \longrightarrow{ }^{*} V$.
The goal is to show that any closed expression of type τ is in $\mathcal{E} \llbracket \tau \rrbracket$.
Remarks
$\mathcal{V} \llbracket \tau \rrbracket \subseteq \mathcal{E} \llbracket \tau \rrbracket$ —by definition.
$\mathcal{E} \llbracket \tau \rrbracket$ is closed by inverse reduction-by definition, i.e.
If $M \longrightarrow N$ and $N \in \mathcal{E} \llbracket \tau \rrbracket$ then $M \in \mathcal{E} \llbracket \tau \rrbracket$.

Problem

We wish to show that every closed term of type τ is in $\mathcal{E} \llbracket \tau \rrbracket$

- Proof by induction on the typing derivation.
- Problem with abstraction: the premise is not closed.

We need to strengthen the hypothesis, i.e. also give a semantics to open terms.

- The semantics of open terms can be given by abstracting over the semantics of their free variables.

Generalize the definition to open terms

We define a semantic judgment for open terms $\Gamma \vDash M: \tau$ so that $\Gamma \vdash M: \tau$ implies $\Gamma \vDash M: \tau$ and $\varnothing \vDash M: \tau$ means $M \in \mathcal{E} \llbracket \tau \rrbracket$.

We interpret free term variables of type τ as closed values in $\mathcal{V} \llbracket \tau \rrbracket$.
We interpret environments Γ as closing substitutions γ, i.e. mappings from term variables to closed values:

We write $\gamma \in \mathcal{G} \llbracket \Gamma \rrbracket$ to mean $\operatorname{dom}(\gamma)=\operatorname{dom}(\Gamma)$ and $\gamma(x) \in \mathcal{V} \llbracket \tau \rrbracket$ for all $x: \tau \in \Gamma$.

$$
\Gamma \vDash M: \tau \stackrel{\text { def }}{\Longleftrightarrow} \forall \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket, \quad \gamma(M) \in \mathcal{E} \llbracket \tau \rrbracket
$$

Fundamental Lemma

Theorem (fundamental lemma)
If $\Gamma \vdash M: \tau$ then $\Gamma \vDash M: \tau$.
Corollary (termination of well-typed terms):
If $\varnothing \vdash M: \tau$ then $M \in \mathcal{E} \llbracket \tau \rrbracket$.
That is, closed well-typed terms of type τ evaluate to values of type τ.

Proof by induction on the typing derivation

Routine cases

Case $\Gamma \vdash \mathrm{tt}: \mathrm{B}$ or $\Gamma \vdash \mathrm{ff}: \mathrm{B}$: by definition, $\mathrm{tt}, \mathrm{ff} \in \mathcal{V} \llbracket \mathrm{B} \rrbracket$ and $\mathcal{V} \llbracket \mathrm{B} \rrbracket \subseteq \mathcal{E} \llbracket \mathrm{B} \rrbracket$.
Case $\Gamma \vdash x: \tau: \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket$, thus $\gamma(x) \in \mathcal{V} \llbracket \tau \rrbracket \subseteq \mathcal{E} \llbracket \tau \rrbracket$
Case $\Gamma \vdash M_{1} M_{2}: \tau$:
By inversion, $\Gamma \vdash M_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma \vdash M_{2}: \tau_{2}$.
Let $\gamma \in \mathcal{G} \llbracket \Gamma \rrbracket$. We have $\gamma\left(M_{1} M_{2}\right)=\left(\gamma M_{1}\right)\left(\gamma M_{2}\right)$.
By IH , we have $\Gamma \vDash M_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma \vDash M_{2}: \tau_{2}$.
Thus $\gamma M_{1} \in \mathcal{E} \llbracket \tau_{2} \rightarrow \tau \rrbracket$ (1) and $\gamma M_{2} \in \mathcal{E} \llbracket \tau_{2} \rrbracket$ (2).
By (2), there exists $V \in \mathcal{V} \llbracket \tau_{2} \rrbracket$ such that $\gamma M_{2} \Downarrow V$.
Thus $\left(\gamma M_{1}\right)\left(\gamma M_{2}\right) \leadsto\left(\gamma M_{1}\right) V \in \mathcal{E} \llbracket \tau \rrbracket$ by (1).
Then, $\left(\gamma M_{1}\right)\left(\gamma M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$, by closure by inverse reduction.
Case $\Gamma \vdash$ if M then M_{1} else $M_{2}: \tau$: By cases on the evaluation of γM.

Proof by induction on the typing derivation

The interesting case

Case $\Gamma \vdash \lambda x: \tau_{1} . M: \tau_{1} \rightarrow \tau:$
Assume $\gamma \in \mathcal{G} \llbracket \Gamma \rrbracket$.
We must show that $\gamma\left(\lambda x: \tau_{1} . M\right) \in \mathcal{E} \llbracket \tau_{1} \rightarrow \tau \rrbracket$ (1)
That is, $\lambda x: \tau_{1} . \gamma M \in \mathcal{V} \llbracket \tau_{1} \rightarrow \tau \rrbracket \quad$ (we may assume $x \notin \operatorname{dom}(\gamma)$ w.l.o.g.) Let $V \in \mathcal{V} \llbracket \tau_{1} \rrbracket$, it suffices to show $\left(\lambda x: \tau_{1} . \gamma M\right) V \in \mathcal{E} \llbracket \tau \rrbracket(2)$.

We have $\left(\lambda x: \tau_{1} \cdot \gamma M\right) V \longrightarrow(\gamma M)[x \mapsto V]=\gamma^{\prime} M$ where γ^{\prime} is $\gamma[x \mapsto V] \in \mathcal{G} \llbracket \Gamma, x: \tau_{1} \rrbracket$ (3)

Since $\Gamma, x: \tau_{1} \vdash M: \tau$, we have $\Gamma, x: \tau_{1} \vDash M: \tau$ by IH on M. Therefore by (3), we have $\gamma^{\prime} M \in \mathcal{E} \llbracket \tau \rrbracket$. Since $\mathcal{E} \llbracket \tau \rrbracket$ is closed by inverse reduction, this proves (2) which finishes the proof of (1).

Variations

We have shown both termination and type soundness, simultaneously.
Termination would not hold if we had a fix point. But type soundness would still hold.

The proof may be modified by choosing:

$$
\mathcal{E} \llbracket \tau \rrbracket=\left\{M: \tau \mid \forall N, M \Downarrow N \Longrightarrow\left(N \in \mathcal{V} \llbracket \tau \rrbracket \vee \exists N^{\prime}, N \longrightarrow N^{\prime}\right)\right\}
$$

Compare with

$$
\mathcal{E} \llbracket \tau \rrbracket=\{M: \tau \mid \exists V \in \mathcal{V} \llbracket \tau \rrbracket, M \Downarrow V\}
$$

Exercise

Show type soundness with this semantics.

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

(Bibliography)

Mostly following Bob Harper's course notes Practical foundations for programming languages [Harper, 2012].

See also

- Types, Abstraction and Parametric Polymorphism [Reynolds, 1983]
- Parametric Polymorphism and Operational Equivalence [Pitts, 2000].
- Theorems for free! [Wadler, 1989].
- Course notes taken by Lau Skorstengaard on Amal Ahmed's OPLSS lectures.

We assume a call-by-value operational semantics instead of call-by-name in [Harper, 2012].

When are two programs equivalent

$M \Downarrow N$?
$M \Downarrow V$ and $N \Downarrow V$?
But what if M and N are functions?

$$
\text { Aren't } \quad \lambda x .(x+x) \text { and } \quad \lambda x .2 * x \quad \text { equivalent? }
$$

Idea

When are two programs equivalent

$M \Downarrow N$?
$M \Downarrow V$ and $N \Downarrow V$?
But what if M and N are functions?

$$
\text { Aren't } \quad \lambda x .(x+x) \text { and } \quad \lambda x .2 * x \quad \text { equivalent? }
$$

Idea two functions are observationally equivalent if when applied to equivalent arguments, they lead to observationally equivalent results.

Are we general enough?

Observational equivalence

We can only observe the behavior of full programs, i.e. closed terms of some computation type, such as B (the only one so far).

If $M: \mathrm{B}$ and $N: \mathrm{B}$, then $M \simeq N$ iff there exists V such that $M \Downarrow V$ and $N \Downarrow V$. (Call $M \simeq N$ behavioral equivalence.)

To compare programs at other types, we

Observational equivalence

We can only observe the behavior of full programs, i.e. closed terms of some computation type, such as B (the only one so far).

If $M: \mathrm{B}$ and $N: \mathrm{B}$, then $M \simeq N$ iff there exists V such that $M \Downarrow V$ and $N \Downarrow V$. (Call $M \simeq N$ behavioral equivalence.)
To compare programs at other types, we place them in arbitrary closing contexts.

Definition (observational equivalence)

$$
\Gamma \vdash M \cong N: \tau \triangleq \forall \mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\varnothing \triangleright \mathrm{B}), \mathcal{C}[M] \cong \mathcal{C}[N]
$$

Typing of contexts
$\mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\Delta \triangleright \sigma) \Longleftrightarrow(\forall M, \Gamma \vdash M: \tau \Longrightarrow \Delta \vdash \mathcal{C}[M]: \sigma)$
There is an equivalent definition given by a set of typing rules. This is needed to prove some properties by induction on the typing derivations.

We write $M \cong \cong_{\tau} N$ for $\varnothing \vdash M \cong N: \tau$

Observational equivalence

Observational equivalence is the coarsiest consistent congruence, where:
\equiv is consistent if $\varnothing \vdash M \equiv N: \mathrm{B}$ implies $M \simeq N$.
\equiv is a congruence if it is an equivalence and is closed by context, i.e.

$$
\Gamma \vdash M \equiv N: \tau \wedge \mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\Delta \triangleright \sigma) \Longrightarrow \Delta \vdash \mathcal{C}[M] \equiv \mathcal{C}[N]: \sigma
$$

Consistent: by definition, using the empty context.
Congruence: by compositionality of contexts.
Coarsiest: Assume \equiv is a consistent congruence. Assume $\Gamma \vdash M \equiv N: \tau$ holds and show that $\Gamma \vdash M \cong N: \tau$ holds (1).
Let $\mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\varnothing \triangleright \mathrm{B})(2)$. We must show that $\mathcal{C}[M] \simeq \mathcal{C}[N]$.
This follows by consistency applied to $\Gamma \vdash \mathcal{C}[M] \equiv \mathcal{C}[N]: \mathrm{B}$ which follows by congruence from (1) and (2).

Problem with Observational Equivalence

Problems

- Observational equivalence is too difficult to test.
- Because of quantification over all contexts (too many for testing).
- But many contexts will do the same experiment.

Solution

We take advantage of types to reduce the number of experiments.

- Defining/testing the equivalence on base types.
- Propagating the definition mechanically at other types.

Logical relations provide the infrastructure for conducting such proofs.

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

Logical equivalence for closed terms

Unary logical relations interpret types by predicates on (i.e. sets of) closed values of that type.

Binary relations interpret types by binary relations on closed values of that type, i.e. sets of pairs of related values of that type.

That is $\mathcal{V} \llbracket \tau \rrbracket \subseteq \operatorname{Val}(\tau) \times \operatorname{Val}(\tau)$.
Then, $\mathcal{E} \llbracket \tau \rrbracket$ is the closure of $\mathcal{V} \llbracket \tau \rrbracket$ by inverse reduction
We have $\mathcal{V} \llbracket \tau \rrbracket \subseteq \mathcal{E} \llbracket \tau \rrbracket \subseteq \operatorname{Exp}(\tau) \times \operatorname{Exp}(\tau)$.

Logical equivalence for closed terms

We recursively define two relations $\mathcal{V} \llbracket \tau \rrbracket$ and $\mathcal{E} \llbracket \tau \rrbracket$ between values of type τ and expressions of type τ by

$$
\begin{aligned}
\mathcal{V} \llbracket \mathrm{B} \rrbracket \triangleq & \{(\mathrm{tt}, \mathrm{tt}),(\mathrm{ff}, \mathrm{ff})\} \\
\mathcal{V} \llbracket \tau \rightarrow \sigma \rrbracket \triangleq & \left\{\left(V_{1}, V_{2}\right) \mid V_{1}, V_{2} \vdash \tau \rightarrow \sigma \wedge\right. \\
& \left.\quad \forall\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket,\left(V_{1} W_{1}, V_{2} W_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket\right\} \\
\mathcal{E} \llbracket \tau \rrbracket \triangleq & \left\{\left(M_{1}, M_{2}\right) \mid M_{1}, M_{2}: \tau \wedge\right. \\
& \left.\exists\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket, M_{1} \Downarrow V_{1} \wedge M_{2} \Downarrow V_{2}\right\}
\end{aligned}
$$

In the following we will leave the typing constraint in gray implicit (as global condition for sets $\mathcal{V} \llbracket \cdot \rrbracket$ and $\mathcal{E} \llbracket \cdot \rrbracket$).

We also write

$$
\begin{aligned}
& M_{1} \sim \tau M_{2} \text { for }\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \text { and } \\
& V_{1} \approx_{\tau} V_{2} \text { for }\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket .
\end{aligned}
$$

Logical equivalence for closed terms

We recursively define two relations $\mathcal{V} \llbracket \tau \rrbracket$ and $\mathcal{E} \llbracket \tau \rrbracket$ between values of type τ and expressions of type τ by

$$
\begin{aligned}
\mathcal{V} \llbracket \mathrm{B} \rrbracket \triangleq & \{(\mathrm{tt}, \mathrm{tt}),(\mathrm{ff}, \mathrm{ff})\} \\
\mathcal{V} \llbracket \tau \rightarrow \sigma \rrbracket \triangleq & \left\{\left(V_{1}, V_{2}\right) \mid V_{1}, V_{2} \vdash \tau \rightarrow \sigma \wedge\right. \\
& \left.\quad \forall\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket,\left(V_{1} W_{1}, V_{2} W_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket\right\} \\
\mathcal{E} \llbracket \tau \rrbracket \triangleq & \left\{\left(M_{1}, M_{2}\right) \mid M_{1}, M_{2}: \tau \wedge\right. \\
& \left.\Downarrow\left(M_{1}, M_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket\right\}
\end{aligned}
$$

In the following we will leave the typing constraint in gray implicit (as global condition for sets $\mathcal{V} \llbracket \cdot \rrbracket$ and $\mathcal{E} \llbracket \cdot \rrbracket)$.

We also write

$$
\begin{aligned}
& M_{1} \sim \tau M_{2} \text { for }\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \text { and } \\
& V_{1} \approx_{\tau} V_{2} \text { for }\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket .
\end{aligned}
$$

Logical equivalence for closed terms (variant)

In a language with non-termination
We change the definition of $\mathcal{E} \llbracket \tau \rrbracket$ to

$$
\begin{aligned}
& \mathcal{E} \llbracket \tau \rrbracket \triangleq\{ \left(M_{1}, M_{2}\right) \mid M_{1}, M_{2}: \tau \wedge \\
&\left(\forall V_{1}, M_{1} \Downarrow V_{1} \Longrightarrow \exists V_{2}, M_{2} \Downarrow V_{2} \wedge\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket\right) \\
&\left.\wedge\left(\forall V_{2}, M_{2} \Downarrow V_{2} \Longrightarrow \exists V_{1}, M_{1} \Downarrow V_{1} \wedge\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket\right)\right\}
\end{aligned}
$$

Notice

$$
\begin{aligned}
\mathcal{V} \llbracket \tau \rightarrow \sigma \rrbracket \triangleq & \left\{\left(V_{1}, V_{2}\right) \mid V_{1}, V_{2} \vdash \tau \rightarrow \sigma \wedge\right. \\
& \left.\forall\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket,\left(V_{1} W_{1}, V_{2} W_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket\right\} \\
= & \left\{\left(\left(\lambda x: \tau . M_{1}\right),\left(\lambda x: \tau . M_{2}\right)\right) \mid\left(\lambda x: \tau . M_{1}\right),\left(\lambda x: \tau . M_{2}\right) \vdash \tau \rightarrow \sigma \wedge\right. \\
& \left.\forall\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket,\left(\left(\lambda x: \tau . M_{1}\right) W_{1},\left(\lambda x: \tau . M_{2}\right) W_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket\right\}
\end{aligned}
$$

Properties of logical equivalence for closed terms

Closure by reduction

By definition, since reduction is deterministic: Assume $M_{1} \Downarrow N_{1}$ and $M_{2} \Downarrow N_{2}$ and $\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$, i.e. there exists $\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket(1)$ such that $M_{i} \Downarrow V_{i}$. Since reduction is deterministic, we must have $M_{i} \Downarrow N_{i} \Downarrow V_{i}$. This, together with (1), implies $\left(N_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$.

Closure by inverse reduction

Immediate, by construction of $\mathcal{E} \llbracket \tau \rrbracket$.

Corollaries

- If $\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rightarrow \sigma \rrbracket$ and $\left(N_{1}, N_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$, then $\left(M_{1} N_{1}, M_{2} N_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket$.
- To prove $\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rightarrow \sigma \rrbracket$, it suffices to show $\left(M_{1} V_{1}, M_{2} V_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket$ for all $\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket$.

Properties of logical equivalence for closed terms

Consistency $(\sim$ B) $\subseteq(\simeq)$
Immediate, by definition of $\mathcal{E} \llbracket \mathrm{B} \rrbracket$ and $\mathcal{V} \llbracket \mathrm{B} \rrbracket \subseteq(\simeq)$.
Lemma
Logical equivalence is symmetric and transitive (at any given type).
Note: Reflexivity is not at all obvious.

Proof

We show it simultaneously for \sim_{τ} and \approx_{τ} by induction on type τ.

Properties of logical equivalence for closed terms (proof)

For \sim_{τ}, the proof is immediate by transitivity and symmetry of \approx_{τ}.
For \approx_{τ}, it goes as follows.
Case τ is B for values: the result is immediate.
Case τ is $\tau \rightarrow \sigma$:
By IH , symmetry and transitivity hold at types τ and σ.
For symmetry, assume $V_{1} \approx_{\tau \rightarrow \sigma} V_{2}(\mathrm{H})$, we must show $V_{2} \approx_{\tau \rightarrow \sigma} V_{1}$.
Assume $W_{1} \approx_{\tau} W_{2}$. We must show $V_{2} M_{1} \sim_{\tau_{2}} V_{1} W_{2}(\mathrm{C})$. We have $W_{2} \approx_{\tau_{1}} W_{1}$ by symmetry at type τ. By (H), we have $V_{2} W_{2} \sim_{\tau_{2}} V_{1} W_{1}$ and (C) follows by symmetry of \sim at type σ.

For transitivity, assume $V_{1} \approx_{\tau} V_{2}(\mathrm{H} 1)$ and $V_{2} \approx_{\tau} V_{3}(\mathrm{H} 2)$. To show $V_{1} \approx_{\tau} V_{3}$, we assume $W_{1} \approx_{\tau} W_{3}$ and show $V_{1} W_{1} \sim_{\sigma} V_{3} W_{3}(\mathrm{C})$.
By (H 1), we have $V_{1} W_{1} \sim_{\tau_{2}} V_{2} W_{3}(\mathrm{C} 1)$.
By symmetry and transitivity of \approx_{τ}, we get $W_{3} \approx_{\tau} W_{3}$.
(not reflexivity!)
By (H 2), we have $V_{2} W_{3} \sim_{\sigma} V_{3} W_{3}(\mathrm{C} 2)$.
(C) follows by transitivity of $\sim_{\sigma}(\mathrm{C} 1)$ and (C2).

Logical equivalence for open terms

When $\Gamma \vdash M_{1}: \tau$ and $\Gamma \vdash M_{2}: \tau$, we wish to define a judgment $\Gamma \vdash M_{1} \sim M_{2}: \tau$ to mean that the open terms M_{1} and M_{2} are equivalent at type τ.

The solution is to interpret program variables of dom (Γ) by pairs of related values and typing contexts Γ by a set of bisubstitutions γ mapping variable type assignments to pairs of related values.

$$
\begin{aligned}
\mathcal{G} \llbracket \varnothing \rrbracket & \triangleq\{\varnothing\} \\
\mathcal{G} \llbracket \Gamma, x: \tau \rrbracket & \triangleq\left\{\gamma, x \mapsto\left(V_{1}, V_{2}\right) \mid \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket \wedge\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket\right\}
\end{aligned}
$$

Given a bisubstitution γ, we write γ_{i} for the substitution that maps x to V_{i} whenever γ maps x to $\left(V_{1}, V_{2}\right)$.

Definition

$$
\Gamma \vdash M_{1} \sim M_{2}: \tau \quad \Longleftrightarrow \quad \forall \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket, \quad\left(\gamma_{1} M_{1}, \gamma_{2} M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket
$$

We also write $\vdash M_{1} \sim M_{2}: \tau$ or $M_{1} \sim \tau M_{2}$ for $\varnothing \vdash M_{1} \sim M_{2}: \tau$.

Properties of logical equivalence for open terms

Immediate properties

Open logical equivalence is symmetric and transitive.
(Proof is immediate by the definition and the symmetry and transitivity of closed logical equivalence.)

Fundamental lemma of logical equivalence

```
Theorem (Reflexivity) (also called the fundamental lemma))
If }\Gamma\vdashM:\tau\mathrm{ , then }\Gamma\vdashM~M:\tau\mathrm{ .
```

Proof By induction on the typing derivation, using compatibility lemmas.
Compatibility lemmas

$$
\begin{array}{lll}
\text { C-True } & \text { C-FALSE } & \text { C-VAR } \\
\Gamma \vdash \mathrm{tt}: \text { bool } & \Gamma \vdash \mathrm{ff}: \text { bool } & \frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{C}-\mathrm{ABS} \\
& \stackrel{\Gamma, x: \tau \vdash M_{1}: \sigma}{\Gamma \vdash \lambda x: \tau . M_{1}: \tau \rightarrow \sigma}
\end{aligned}
$$

C-App

$$
\frac{\Gamma \vdash M_{1}: \tau \rightarrow \sigma \quad \Gamma \vdash N_{1}: \tau}{\Gamma \vdash M_{1} N_{1}: \sigma}
$$

C-IF

$$
\frac{\Gamma \vdash M_{1}: \mathrm{B} \quad \Gamma \vdash N_{1}: \tau \quad \Gamma \vdash N_{1}^{\prime}: \tau}{\Gamma \vdash \text { if } M_{1} \text { then } N_{1} \text { else } N_{1}^{\prime}: \tau}
$$

Fundamental lemma of logical equivalence

```
Theorem (Reflexivity) (also called the fundamental lemma))
If }\Gamma\vdashM:\tau\mathrm{ , then }\Gamma\vdashM~M:\tau\mathrm{ .
```

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

$$
\begin{array}{lll}
\text { C-True } & \text { C-FALSE } & \text { C-VAR } \\
\Gamma \vdash \mathrm{tt}: \text { bool } & \Gamma \vdash \mathrm{ff}: \text { bool } & \frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
\end{array}
$$

C-Abs
C-App

$$
\begin{array}{ccc}
\frac{\Gamma, x: \tau \vdash M_{1}: \sigma}{\Gamma \vdash \lambda x: \tau . M_{1}: \tau \rightarrow \sigma} & \frac{\Gamma \vdash M_{1}: \tau \rightarrow \sigma}{\Gamma \vdash M_{1} N_{1}: \sigma} \\
\begin{array}{ll}
\frac{\Gamma \vdash-\text { IF }}{} & \Gamma \vdash N_{1}: \mathrm{B} \\
\frac{\Gamma \vdash \text { if } M_{1} \text { then } N_{1} \text { else } N_{1}^{\prime}: \tau}{}
\end{array}
\end{array}
$$

Fundamental lemma of logical equivalence

```
Theorem (Reflexivity) (also called the fundamental lemma))
If }\Gamma\vdashM:\tau\mathrm{ , then }\Gamma\vdashM~M:\tau\mathrm{ .
```

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

$$
\begin{array}{llll}
\text { C-True } & \text { C-FalSE } & \text { C-VAR } \\
\Gamma \vdash \mathrm{tt} & : \text { bool } & \Gamma \vdash \mathrm{ff} & \text { bool }
\end{array} \frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
$$

Fundamental lemma of logical equivalence

```
Theorem (Reflexivity) (also called the fundamental lemma))
If }\Gamma\vdashM:\tau\mathrm{ , then }\Gamma\vdashM~M:\tau\mathrm{ .
```

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

$$
\begin{array}{lll}
\text { C-True } & \text { C-FalSE } & \text { C-VAR } \\
\Gamma \vdash \mathrm{tt} \sim \mathrm{tt}: \text { bool } & \Gamma \vdash \mathrm{ff} \sim \mathrm{ff}: \text { bool } & \frac{x: \tau \in \Gamma}{\Gamma \vdash x \sim x: \tau}
\end{array}
$$

Fundamental lemma of logical equivalence

```
Theorem (Reflexivity) (also called the fundamental lemma))
If }\Gamma\vdashM:\tau\mathrm{ , then }\Gamma\vdashM~M:\tau\mathrm{ .
```

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

$$
\begin{array}{lll}
\text { C-True } & \text { C-FALSE } & \text { C-VAR } \\
\Gamma \vdash \mathrm{tt} \sim \mathrm{tt}: \text { bool } & \Gamma \vdash \mathrm{ff} \sim \mathrm{ff}: \text { bool } & \frac{x: \tau \in \Gamma}{\Gamma \vdash x \sim x: \tau}
\end{array}
$$

Fundamental lemma of logical equivalence

```
Theorem (Reflexivity) (also called the fundamental lemma))
If }\Gamma\vdashM:\tau\mathrm{ , then }\Gamma\vdashM~M:\tau\mathrm{ .
```

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

$$
\begin{array}{lll}
\text { C-True } & \text { C-FalSE } & \text { C-VAR } \\
\Gamma \vdash \mathrm{tt} \sim \mathrm{tt}: \text { bool } & \Gamma \vdash \mathrm{ff} \sim \mathrm{ff}: \text { bool } & \frac{x: \tau \in \Gamma}{\Gamma \vdash x \sim x: \tau}
\end{array}
$$

Proof of compatibility lemmas

Each case can be shown independently.
Rule C-Abs: Assume $\Gamma, x: \tau \vdash M_{1} \sim M_{2}: \sigma$ (1). We show $\Gamma \vdash \lambda x: \tau . M_{1} \sim \lambda x: \tau . M_{2}: \tau \rightarrow \sigma$. Let $\gamma \in \mathcal{G} \llbracket \gamma \rrbracket$. We show $\left(\gamma_{1}\left(\lambda x: \tau . M_{1}\right), \gamma_{2}\left(\lambda x: \tau . M_{2}\right)\right) \in \mathcal{V} \llbracket \tau \rightarrow \sigma \rrbracket$. Let $\left(V_{1}, V_{2}\right)$ be in $\mathcal{V} \llbracket \tau \rrbracket$. It suffices to show that $\left(\gamma_{1}\left(\lambda x: \tau . M_{1}\right) V_{1}, \gamma_{2}\left(\lambda x: \tau . M_{2}\right) V_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket(2)$.

Let γ^{\prime} be $\gamma, x \mapsto\left(V_{1}, V_{2}\right)$. We have $\gamma^{\prime} \in \mathcal{G} \llbracket \Gamma, x: \tau \rrbracket$. Thus, from (1), we have $\left(\gamma_{1}^{\prime} M_{1}, \gamma_{2}^{\prime} M_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket$, which proves (2), since $\mathcal{E} \llbracket \sigma \rrbracket$ is closed by inverse reduction and $\gamma_{1}\left(\lambda x: \tau . M_{1}\right) V_{1} \Downarrow \gamma_{i}^{\prime} M_{i}$.

Rule C-App (and C-IF): By induction hypothesis and the fact that substitution distribute over applications (and conditional).
We must show $\Gamma \vdash M_{1} N_{1} \sim M_{2} M_{2}: \sigma(1)$. Let $\gamma \in \mathcal{G} \llbracket \Gamma \rrbracket$. From the premises $\Gamma \vdash M_{1} \sim M_{2}: \tau \rightarrow \sigma$ and $\Gamma \vdash N_{1} \sim N_{2}: \tau$, we have $\left(\gamma_{1} M_{1}, \gamma_{2} M_{2}\right) \in \mathcal{E} \llbracket \tau \rightarrow \sigma \rrbracket$ and $\left(\gamma_{1} N_{1}, \gamma_{2} N_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$. Therefore $\left(\gamma_{1} M_{1} \gamma_{1} N_{1}, \gamma_{2} M_{2} \gamma_{2} N_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket$. That is $\left(\gamma_{1}\left(M_{1} N_{1}\right), \gamma_{2}\left(M_{2} N_{2}\right)\right) \in \mathcal{E} \llbracket \sigma \rrbracket$, which proves (1).

Rule C-True, C-False, and C-Var: are immediate

Proof of compatibility lemmas (cont.)

Rule C-IF: We show $\Gamma \vdash$ if M_{1} then N_{1} else $N_{1}^{\prime} \sim$ if M_{2} then N_{2} else $N_{2}^{\prime}: \tau$. Assume $\gamma \in \mathcal{G} \llbracket \gamma \rrbracket$.
We show $\left(\gamma_{1}\left(\right.\right.$ if M_{1} then N_{1} else $\left.N_{1}^{\prime}\right), \gamma_{2}\left(\right.$ if M_{2} then N_{2} else $\left.\left.N_{2}^{\prime}\right)\right) \in \mathcal{E} \llbracket \tau \rrbracket$, That is (if $\gamma_{1} M_{1}$ then $\gamma_{1} N_{1}$ else $\gamma_{1} N_{1}^{\prime}$, if $\gamma_{2} M_{2}$ then $\gamma_{2} N_{2}$ else $\gamma_{2} N_{2}^{\prime}$) $\in \mathcal{E} \llbracket \tau \rrbracket$ (1).

From the premise $\Gamma \vdash M_{1} \sim M_{2}$: B, we have $\left(\gamma_{1} M_{1}, \gamma_{2} M_{2}\right) \in \mathcal{E} \llbracket \mathrm{B} \rrbracket$. Therefore $M_{1} \Downarrow V$ and $M_{2} \Downarrow V$ where V is either tt or ff:

- Case V is tt:. Then, (if $\gamma_{i} M_{i}$ then $\gamma_{i} N_{i}$ else $\gamma_{i} N_{i}^{\prime}$) $\Downarrow \gamma_{i} N_{i}$, i.e. $\gamma_{i}\left(\right.$ if M_{i} then N_{i} else $\left.N_{i}^{\prime}\right) \Downarrow \gamma_{i} N_{i}$. From the premise $\Gamma \vdash N_{1} \sim N_{2}: \tau$, we have $\left(\gamma_{1} N_{1}, \gamma_{2} N_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket$ and (1) follows by closer by inverse reduction.
- Case V is ff : similar.

Proof of reflexivity

By induction on the proof of $\Gamma \vdash M: \tau$. We must show $\Gamma \vdash M \sim M: \tau$:

All cases immediately follow from compatibility lemmas.
Case M is it or ff: Immediate by Rule C-True or Rule C-False Case M is x : Immediate by Rule C-Var.

Case M is $M^{\prime} N$: By inversion of the typing rule App, induction hypothesis, and Rule C-App.

Case M is $\lambda \tau: N .:$ By inversion of the typing rule Abs, induction hypothesis, and Rule C-Abs.

Properties of logical relations

Corollary (equivalence) Open logical relation is an equivalence relation
Logical equivalence is a congruence
If $\Gamma \vdash M \sim M^{\prime}: \tau$ and $\mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\Delta \triangleright \sigma)$, then
$\Delta \vdash \mathcal{C}[M] \sim \mathcal{C}\left[M^{\prime}\right]: \sigma$.
Proof By induction on the proof of $\mathcal{C}:(\Gamma \triangleright \tau) \leadsto(\Delta \triangleright \sigma)$.
Similar to the proof of reflexivity-but we need a syntactic definition of context-typing derivations (which we have omitted) to be able to reason by induction on the context-typing derivation.

Soundness of logical equivalence

Logical equivalence implies observational equivalence.
If $\Gamma \vdash M \sim M^{\prime}: \tau$ then $\Gamma \vdash M \cong M^{\prime}: \tau$.
Proof: Logical equivalence is a consistent congruence, hence included in observational equivalence which is the coarsiest such relation.

Properties of logical equivalence

Completeness of logical equivalence

Observational equivalence of closed terms implies logical equivalence.
That is $\left(\cong_{\tau}\right) \subseteq\left(\sim_{\tau}\right)$.
Proof by induction on τ.
Case B: In the empty context, by consistency \cong_{B} is a subrelation of \simeq_{B} which coincides with \sim_{B}.

Case $\tau \rightarrow \sigma$: By congruence of observational equivalence!
By hypothesis, we have $M_{1} \cong{ }_{\tau \rightarrow \sigma} M_{2}$ (1). To show $M_{1} \sim_{\tau \rightarrow \sigma} M_{2}$, we assume $V_{1} \approx_{\tau} V_{2}(2)$ and it suffices to show $M_{1} V_{1} \sim_{\sigma} M_{2} V_{2}(3)$.

By soundness applied to (2), we have $V_{1} \cong_{\tau} V_{2}$ from (4). By congruence with (1), we have $M_{1} V_{1} \cong{ }_{\sigma} M_{2} V_{2}$, which implies (3) by IH at type σ.

Logical equivalence: example of application

Fact: Assume $n o t \triangleq \lambda x$: B. if x then ff else ft and $M \triangleq \lambda x: \mathrm{B} . \lambda y: \tau . \lambda z: \tau$. if not x then y else z and $M^{\prime} \triangleq \lambda x:$ B. $\lambda y: \tau . \lambda z: \tau$. if x then z else y.

Show that $M \cong_{\mathrm{B} \rightarrow \tau \rightarrow \tau \rightarrow \tau} M^{\prime}$.

Logical equivalence: example of application

Fact: Assume $n o t \triangleq \lambda x$: B. if x then ff else ft and $M \triangleq \lambda x: \mathrm{B} . \lambda y: \tau . \lambda z: \tau$. if not x then y else z and $M^{\prime} \triangleq \lambda x: \mathrm{B} . \lambda y: \tau$. $\lambda z: \tau$. if x then z else y.

Show that $M \cong_{\mathrm{B} \rightarrow \tau \rightarrow \tau \rightarrow \tau} M^{\prime}$.

Proof

It suffices to show $M V_{0} V_{1} V_{2} \sim_{\tau} M^{\prime} V_{0}^{\prime} V_{1}^{\prime} V_{2}^{\prime}$ whenever $V_{0} \approx_{\mathrm{B}} V_{0}^{\prime}(\mathbf{1})$ and $V_{1} \approx_{\tau} V_{1}^{\prime}(\mathbf{2})$ and $V_{2} \approx_{\tau} V_{2}^{\prime}(3)$.

Logical equivalence: example of application

Fact: Assume $n o t \triangleq \lambda x$: B. if x then ff else ft and $M \triangleq \lambda x: \mathrm{B} . \lambda y: \tau . \lambda z: \tau$. if not x then y else z and $M^{\prime} \triangleq \lambda x:$ B. $\lambda y: \tau . \lambda z: \tau$. if x then z else y.

Show that $M \cong_{\mathrm{B} \rightarrow \tau \rightarrow \tau \rightarrow \tau} M^{\prime}$.

Proof

It suffices to show $M V_{0} V_{1} V_{2} \sim_{\tau} M^{\prime} V_{0}^{\prime} V_{1}^{\prime} V_{2}^{\prime}$ whenever $V_{0} \approx_{\mathrm{B}} V_{0}^{\prime}$ (1) and $V_{1} \approx_{\tau} V_{1}^{\prime}(\mathbf{2})$ and $V_{2} \approx_{\tau} V_{2}^{\prime}(3)$. By inverse reduction, it suffices to show: if not V_{0} then V_{1} else $V_{2} \sim_{\tau}$ if V_{0}^{\prime} then V_{2}^{\prime} else V_{1}^{\prime} (4).
?

Logical equivalence: example of application

Fact: Assume $n o t \triangleq \lambda x$: B. if x then ff else tt and $M \triangleq \lambda x: \mathrm{B} . \lambda y: \tau . \lambda z: \tau$. if not x then y else z and $M^{\prime} \triangleq \lambda x: \mathrm{B} . \lambda y: \tau$. $\lambda z: \tau$. if x then z else y.

Show that $M \cong_{\mathrm{B} \rightarrow \tau \rightarrow \tau \rightarrow \tau} M^{\prime}$.

Proof

It suffices to show $M V_{0} V_{1} V_{2} \sim_{\tau} M^{\prime} V_{0}^{\prime} V_{1}^{\prime} V_{2}^{\prime}$ whenever $V_{0} \approx_{\mathrm{B}} V_{0}^{\prime}(\mathbf{1})$ and $V_{1} \approx_{\tau} V_{1}^{\prime}(\mathbf{2})$ and $V_{2} \approx_{\tau} V_{2}^{\prime}(3)$. By inverse reduction, it suffices to show: if not V_{0} then V_{1} else $V_{2} \sim_{\tau}$ if V_{0}^{\prime} then V_{2}^{\prime} else $V_{1}^{\prime}(4)$.

It follows from (1) that we have only two cases:
Case $V_{0}=V_{0}^{\prime}=\mathrm{tt}$: Then not $V_{0} \Downarrow$ ff and thus $M \Downarrow V_{2}$ while $M^{\prime} \Downarrow V_{2}$. Then (4) follows by inverse reduction and (3).

Case $V_{0}=V_{0}^{\prime}=\mathrm{ff}$: is symmetric.

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

Observational equivalence

We now extend the notion of logical equivalence to System F.

$$
\tau::=\ldots|\alpha| \forall \alpha . \tau \quad M::=\ldots|\Lambda \alpha . M| M \tau
$$

We write typing contexts $\Delta ; \Gamma$ where Δ binds variables and Γ binds program variables.

Typing of contexts becomes $\mathcal{C}:(\Delta ; \Gamma \triangleright \tau) \leadsto\left(\Delta^{\prime} ; \Gamma^{\prime} \triangleright \tau^{\prime}\right)$.

Observational equivalence

We (re)defined $\Delta ; \Gamma \vdash M \cong M^{\prime}: \tau$ as

$$
\forall \mathcal{C}:(\Delta ; \Gamma \triangleright \tau) \leadsto(\varnothing ; \varnothing \triangleright \mathrm{B}), \mathcal{C}[M] \simeq \mathcal{C}\left[M^{\prime}\right]
$$

As before, write $M \cong_{\tau} N$ for $\varnothing ; \varnothing \vdash M \cong N: \tau$ (in particular, τ is closed).

Logical equivalence

For closed terms (no free program variables)

- We need to give the semantics of polymoprhic types $\forall \alpha . \tau$
- Problem: We cannot do it in terms of the semantics of instances $\tau[\alpha \mapsto \sigma]$ since the semantics is defined by induction on types.
- Solution: we give the semantics of terms with open types-in some suitable environment that interprets type variables by logical relations (sets of pairs of related values) of closed types ρ_{1} and ρ_{2}

Let $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$ be the set of relations on values of closed types ρ_{1} and ρ_{2}, that is, $\mathcal{P}\left(\operatorname{Val}\left(\rho_{1}\right) \times \operatorname{Val}\left(\rho_{2}\right)\right)$. We optionally restrict to admissible relations, i.e. which are closed by observational equivalence:

$$
\begin{aligned}
& R \in \mathcal{R}\left(\tau_{1}, \tau_{2}\right) \Longrightarrow \\
& \quad \forall\left(V_{1}, V_{2}\right) \in R, \forall W_{1}, W_{2}, W_{1} \cong V_{1} \wedge W_{2} \cong V_{2} \Longrightarrow\left(W_{1}, W_{2}\right) \in R
\end{aligned}
$$

The restriction to admissible relations is required for completeness of logical equivalence with respect to observational equivalence (not for soundness)

Example of admissible relations

For example, both

$$
\begin{aligned}
& R_{1} \triangleq\{(\mathrm{tt}, 0),(\mathrm{ff}, 1)\} \\
& R_{2} \triangleq\{(\mathrm{tt}, 0)\} \cup\left\{(\mathrm{ff}, n) \mid n \in \mathbb{Z}^{\star}\right\}
\end{aligned}
$$

are admissible relations in $\mathcal{R}(\mathrm{B}$, int $)$.
But

$$
R_{3} \triangleq\{(\mathrm{tt}, \lambda x: \tau .0),(\mathrm{ff}, \lambda x: \tau .1)\}
$$

although in $\mathcal{R}(\mathrm{B}, \tau \rightarrow$ int $)$, is not admissible.

Why?

Example of admissible relations

For example, both

$$
\begin{aligned}
& R_{1} \triangleq\{(\mathrm{tt}, 0),(\mathrm{ff}, 1)\} \\
& R_{2} \triangleq\{(\mathrm{tt}, 0)\} \cup\left\{(\mathrm{ff}, n) \mid n \in \mathbb{Z}^{\star}\right\}
\end{aligned}
$$

are admissible relations in $\mathcal{R}(\mathrm{B}$, int $)$.
But

$$
R_{3} \triangleq\{(\mathrm{tt}, \lambda x: \tau .0),(\mathrm{ff}, \lambda x: \tau .1)\}
$$

although in $\mathcal{R}(\mathrm{B}, \tau \rightarrow$ int $)$, is not admissible.
Indeed, taking $M_{0} \triangleq \lambda x: \tau$. $(\lambda z:$ int. $z) 0$. we have $M \cong{ }_{\tau \rightarrow \text { int }} \lambda x: \tau$. 0 but (tt, M) is not in R_{3}.

Example of admissible relations

For example, both

$$
\begin{aligned}
& R_{1} \triangleq\{(\mathrm{tt}, 0),(\mathrm{ff}, 1)\} \\
& R_{2} \triangleq\{(\mathrm{tt}, 0)\} \cup\left\{(\mathrm{ff}, n) \mid n \in \mathbb{Z}^{\star}\right\}
\end{aligned}
$$

are admissible relations in $\mathcal{R}(\mathrm{B}$, int $)$.
But

$$
R_{3} \triangleq\{(\mathrm{tt}, \lambda x: \tau .0),(\mathrm{ff}, \lambda x: \tau .1)\}
$$

although in $\mathcal{R}(\mathrm{B}, \tau \rightarrow$ int $)$, is not admissible.

Note

It is a key that such relations can relate values at different types.

Interpretation of type environments

Interpretation of type variables

We write η for mappings $\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$ where $R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right)$.
We write η for mappings from type variables to such triples and $\eta_{i}\left(r e s p . \eta_{R}\right)$ for the type (resp. relational) substitution that maps α to ρ_{i} (resp. R) whenever η maps α to (ρ_{1}, ρ_{2}, R).

We define

$$
\begin{aligned}
\mathcal{V} \llbracket \alpha \rrbracket_{\eta} \triangleq & \eta_{R}(\alpha) \\
\mathcal{V} \llbracket \forall \alpha \cdot \tau \rrbracket_{\eta} \triangleq & \left\{\left(V_{1}, V_{2}\right) \mid V_{1}: \eta_{1}(\forall \alpha \cdot \tau) \wedge V_{2}: \eta_{2}(\forall \alpha \cdot \tau) \wedge\right. \\
& \left.\forall \rho_{1}, \rho_{2}, \forall R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right),\left(V_{1} \rho_{1}, V_{2} \rho_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta, \alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)}\right\}
\end{aligned}
$$

Logical equivalence for closed terms with open types

We redefine

$$
\begin{aligned}
& \mathcal{V} \llbracket \mathrm{B} \rrbracket_{\eta} \triangleq \triangleq\{(\mathrm{tt}, \mathrm{tt}),(\mathrm{ff}, \mathrm{ff})\} \\
& \mathcal{V} \llbracket \tau \rightarrow \sigma \rrbracket \eta \triangleq\left\{\left(V_{1}, V_{2}\right) \mid V_{1} \vdash \eta_{1}(\tau \rightarrow \sigma) \wedge V_{2} \vdash \eta_{2}(\tau \rightarrow \sigma) \wedge\right. \\
&\left.\forall\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket \eta,\left(V_{1} W_{1}, V_{2} W_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket \eta\right\} \\
& \mathcal{E} \llbracket \tau \rrbracket \eta \triangleq\left\{\left(M_{1}, M_{2}\right) \mid M_{1}: \eta_{1} \tau \wedge M_{2}: \eta_{2} \tau \wedge\right. \\
&\left.\exists\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket \eta, M_{1} \Downarrow V_{1} \wedge M_{2} \Downarrow V_{2}\right\} \\
& \mathcal{G} \llbracket \varnothing \rrbracket \eta \triangleq\{\varnothing\} \\
& \mathcal{G} \llbracket \Gamma, x: \tau \rrbracket \eta \triangleq\left\{\gamma, x \mapsto\left(V_{1}, V_{2}\right) \mid \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket \eta \wedge\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket \eta\right\} \\
& \text { and define } \\
& \mathcal{D} \llbracket \varnothing \rrbracket \triangleq\{\varnothing\} \\
& \mathcal{D} \llbracket \Delta, \alpha \rrbracket \triangleq\left\{\eta, \alpha \mapsto\left(\rho_{1}, \rho_{2}, \mathcal{R}\right) \mid \eta \in \mathcal{D} \llbracket \Delta \rrbracket \wedge R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right)\right\}
\end{aligned}
$$

Logical equivalence for open terms

Definition We define $\Delta ; \Gamma \vdash M \sim M^{\prime}: \tau$ as

$$
\wedge\left\{\begin{array}{l}
\Delta ; \Gamma \vdash M, M^{\prime}: \tau \\
\forall \eta \in \mathcal{D} \llbracket \Delta \rrbracket, \forall \gamma \in \mathcal{G} \llbracket \Gamma \rrbracket_{\eta},\left(\eta_{1}\left(\gamma_{1} M_{1}\right), \eta_{2}\left(\gamma_{2} M_{2}\right)\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta}
\end{array}\right.
$$

(Notations are a bit heavy, but intuitions should remain simple.)

Notation

We also write $M_{1} \sim_{\tau} M_{2}$ for $\vdash M_{1} \sim M_{2}: \tau\left(\right.$ i.e. $\left.\varnothing ; \varnothing \vdash M_{1} \sim M_{2}: \tau\right)$.
In this case, τ is a closed type and M_{1} and M_{2} are closed terms of type τ; hence, this coincides with the previous definition $\left(M_{1}, M_{2}\right)$ in $\mathcal{E} \llbracket \tau \rrbracket$, which may still be used as a shorthand for $\mathcal{E} \llbracket \tau \rrbracket \varnothing$.

Properties

Respect for observational equivalence

If $\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta}^{\sharp}$ and $N_{1} \cong \eta_{1}(\tau), M_{1}$ and $N_{2} \cong_{\eta_{2}(\tau)} M_{2}$ then $\left(N_{1}, N_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rrbracket_{\eta}^{\sharp}$.

Requires admissibility
(We use ${ }^{\sharp}$ to indicate that admissibility is required in the definition of \mathcal{R}^{\sharp})
Proof. By induction on τ.
Assume $\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta}$ (1) and $N_{1} \cong \eta_{1}(\tau) M_{1}$ (2). We show $\left(N_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta}$.

Case τ is $\forall \alpha . \sigma$: Assume $R \in \mathcal{R}^{\sharp}\left(\rho_{1}, \rho_{2}\right)$. Let η_{α} be $\eta, \alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$.
We have ($M_{1} \rho_{1}, M_{2} \rho_{2}$) $\mathcal{E} \llbracket \sigma \rrbracket_{\eta_{\alpha}}$, from (1).
By congruence from (2), we have $N_{1} \rho_{1} \cong \delta(\tau) M_{1} \rho_{1}$. Hence, by induction hypothesis, $\left(M_{1} \rho_{1}, M_{2} \rho_{2}\right) \in \mathcal{E} \llbracket \sigma \rrbracket_{\eta_{\alpha}}$, as expected.

Case τ is α : Relies on admissibility.
Other cases: the proof is similar to the case of the simply-typed λ-calculus.

Properties

Respect for observational equivalence

If $\left(M_{1}, M_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta}^{\sharp}$ and $N_{1} \cong \eta_{1(\tau)} M_{1}$ and $N_{2} \cong \eta_{\eta_{2}(\tau)} M_{2}$ then
$\left(N_{1}, N_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket \rrbracket_{\eta}^{\sharp}$.
Requires admissibility
(We use ${ }^{\sharp}$ to indicate that admissibility is required in the definition of \mathcal{R}^{\sharp})
Proof. By induction on τ.
Corollary
The relation $\mathcal{V} \llbracket \tau \rrbracket_{\eta}^{\sharp}$ is an admissible relation in $\mathcal{R}^{\sharp}\left(\eta_{1} \tau, \eta_{2} \tau\right)$.
Application: we may take this relation when admissibility is required.

Properties

Lemma (Closure under observational equivalence)
If $\Delta ; \Gamma \vdash M_{1} \sim \sharp M_{2}: \tau$ and $\Delta ; \Gamma \vdash M_{1} \cong N_{1}: \tau$ and $\Delta ; \Gamma \vdash M_{2} \cong N_{2}: \tau$, then $\Delta ; \Gamma \vdash N_{1} \sim \sharp N_{2}: \tau$

Requires admissibility
Lemma (Compositionality)
Key lemma
Assume $\Delta \vdash \sigma$ and $\Delta, \alpha \vdash \tau$ and $\eta \in \mathcal{D} \llbracket \Delta \rrbracket$. Let R be $\mathcal{V} \llbracket \sigma \rrbracket_{\eta}$. Then,

$$
\mathcal{V} \llbracket \tau[\alpha \mapsto \sigma] \rrbracket_{\eta}=\mathcal{V} \llbracket \tau \rrbracket_{\eta, \alpha \mapsto\left(\eta_{1} \sigma, \eta_{2} \sigma, R\right)}
$$

Proof by structural induction on τ.

Parametricity

Theorem (Reflexivity) (also called the fundamental lemma) If $\Delta ; \Gamma \vdash M: \tau$ then $\Delta ; \Gamma \vdash M \sim M: \tau$.

Notice: Admissibility is not required for the fundamental lemma
Proof by induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

We redefined the lemmas to work in a typing context of the form Δ, Γ instead of Γ and add two new lemmas:

$$
\begin{aligned}
& \mathrm{C-TABS} \\
& \frac{\Delta, \alpha ; \Gamma \vdash M_{1} \sim M_{2}: \tau}{\Delta ; \Gamma \vdash \Lambda \alpha . M_{1} \sim \Lambda \alpha . M_{2}: \forall \alpha . \tau}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C-TAPP } \\
& \frac{\Delta ; \Gamma \vdash M_{1} \sim M_{2}: \forall \alpha . \tau \quad \Delta \vdash \sigma}{\Delta ; \Gamma \vdash M_{1} \sigma \sim M_{2} \sigma: \tau[\alpha \mapsto \sigma]}
\end{aligned}
$$

Properties

Soundness of logical equivalence

Logical equivalence implies implies observational equivalence.
If $\Delta ; \Gamma \vdash M_{1} \sim M_{2}: \tau$ then $\Delta ; \Gamma \vdash M_{1} \cong M_{2}: \tau$.

Completeness of logical equivalence

Observational equivalence implies logical equivalence with admissibility. If $\Delta ; \Gamma \vdash M_{1} \cong M_{2}: \tau$ then $\Delta ; \Gamma \vdash M_{1} \sim M_{2}: \tau$.

Note: Admissibility is required for completeness, but not for soundness.
As a particular case, $M_{1} \sim_{\tau}^{\sharp} M_{2}$ iff $M_{1} \cong{ }_{\tau} M_{2}$.

Properties

Extensionality
(Uses but does not depend on admissibility)
$M_{1} \cong_{\tau \rightarrow \sigma} M_{2}$ iff $\forall(V: \tau), M_{1} V \cong_{\sigma} M_{2} V$ iff $\forall(N: \tau), M_{1} N \cong_{\sigma} M_{2} N$
$M_{1} \cong{ }_{\vartheta} \forall_{\alpha . \tau} M_{2}$ iff for all closed type $\rho, M_{1} \rho_{\tau[\alpha \leftrightarrow \rho]} M_{2} \rho$.
Proof. Forward direction is immediate as \cong is a congruence. Backward:
Case Value abstraction: It suffices to show $M_{1} \sim_{\tau \rightarrow \sigma} M_{2}$. That is, assuming $N_{1} \sim_{\tau} N_{2}$ (1), we show $M_{1} N_{1} \sim_{\sigma} M_{2} N_{2}$ (2). By assumption, we have $M_{1} N_{1} \cong_{\sigma} M_{2} N_{1}$ (3). By the fundamental lemma, we have $M_{2} \sim_{\tau \rightarrow \sigma} M_{2}$. Hence, from (1), we must have $M_{2} N_{1} \sim_{\sigma} M_{2} N_{2}$, We conclude (2) by respect for observational equivalence with (3).
Case Type abstraction: It suffices to show $M_{1} \sim \not \mathcal{\alpha}_{\sim} \tau M_{2}$. That is, given $R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right)$, we show ($\left.M_{1} \rho_{1}, M_{2} \rho_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\alpha \hookleftarrow\left(\rho_{1}, \rho_{2}, R\right)}$ (4).
By assumption, we have $M_{1} \rho_{1} \cong_{\tau\left[\alpha \leftrightarrow \rho_{1}\right]} M_{2} \rho_{1}$ (5).
By the fundamental lemma, we have $M_{2} \sim \forall \alpha, \tau M_{2}$.
Hence, we have $\left(M_{2} \rho_{1}, M_{2} \rho_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\alpha \leftrightarrow\left(\rho_{1}, \rho_{2}, R\right)}$
We conclude (4) by respect for observational equivalence with (5).

Properties

Identity extension

Requires admissibiily
Let θ be a substitution of variables for ground types.
Let R be the restriction of $\cong_{\alpha \theta}$ to $\left.\operatorname{Val}(\alpha \theta) \times \operatorname{Val}(\alpha \theta)\right)$ and
$\eta: \alpha \mapsto(\alpha \theta, \alpha \theta, R)$.
Then $\mathcal{E} \llbracket \tau \rrbracket_{\eta}$ is equal to $\cong \tau \theta$.
(The proof uses respect for observational equivalence.)

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha$

Fact If $M: \forall \alpha . \alpha \rightarrow \alpha$, then $M \cong \forall \alpha . \alpha \rightarrow \alpha$ id where $i d \triangleq \Lambda \alpha . \lambda x: \alpha . x$.
Proof By extensionality, it suffices to show that for any ρ and $V: \rho$ we have $M \rho V \cong \cong_{\rho} i d \rho V$. In fact, by closure by inverse reduction, it suffices to show $M \rho V \cong_{\rho} V(\mathbf{1})$.

By parametricity, we have $M \sim_{\forall \alpha . \alpha \rightarrow \alpha} M$ (2).
Consider R in $\mathcal{R}(\rho, \rho)$ equal to $\{(V, V)\}$ and η be $[\alpha \mapsto(\rho, \rho, R)]$. By construction, we have $(V, V) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.

Hence, from (2), we have ($M \rho V, M \rho V) \in \mathcal{E} \llbracket \alpha \rrbracket_{\eta}$, which means that the pair ($M \rho V, M \rho V$) reduces to a pair of values in (the singleton) R. This implies that $M \rho V$ reduces to V, which in turn, implies (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha . x_{1} \quad$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong \rho W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.

?

Applications

 Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha . x_{1} \quad$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}$ (1).
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$.

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong_{\sigma} W_{1} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1} \quad$ or $M \cong{ }_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}$ (1).
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$. We have ($\left.\mathrm{tt}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathrm{tt}, V_{1}\right)$ and, similarly, $\left(\mathrm{ff}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have $(M, M) \in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity.

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1}$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$. We have ($\left.\mathrm{tt}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathrm{tt}, V_{1}\right)$ and, similarly, $\left(\mathrm{ff}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have (M, M) $\in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathrm{~B}$ tt $\mathrm{ff}, M \rho V_{1} V_{2}$) in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathrm{~B}$ tt $\mathrm{ff}, M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\bigvee\left\{\begin{array}{l}
M \mathrm{Bttff} \cong_{\mathrm{B}} \mathrm{tt} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{1} \\
M \mathrm{Bttff} \cong_{\mathrm{B}} \mathrm{ff} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{2}
\end{array}\right.
$$

Next?

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1}$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$. We have ($\left.\mathrm{tt}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathrm{tt}, V_{1}\right)$ and, similarly, $\left(\mathrm{ff}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have (M, M) $\in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathrm{~B}$ tt $\mathrm{ff}, M \rho V_{1} V_{2}$) in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathrm{~B}$ tt $\mathrm{ff}, M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\forall \rho, V_{1}, V_{2}, \quad \bigvee\left\{\begin{array}{l}
M \mathrm{Btt} \mathrm{ff} \cong_{\mathrm{B}} \mathrm{tt} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{1} \\
M \mathrm{~B} t \mathrm{ff} \cong_{\mathrm{B}} \mathrm{ff} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{2}
\end{array}\right.
$$

Since, $M \mathrm{~B} \mathrm{tt} \mathrm{ff}$ is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1}$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$. We have ($\left.\mathrm{tt}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathrm{tt}, V_{1}\right)$ and, similarly, $\left(\mathrm{ff}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have (M, M) $\in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathrm{~B}$ tt $\mathrm{ff}, M \rho V_{1} V_{2}$) in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathrm{~B}$ tt ff, $M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\bigvee\left\{\begin{array}{l}
\forall \rho, V_{1}, V_{2}, M \mathrm{Bttff} \cong_{\mathrm{B}} \mathrm{tt} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{1} \\
\forall \rho, V_{1}, V_{2}, M \mathrm{Btt} \mathrm{ff} \cong_{\mathrm{B}} \mathrm{ff} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{2}
\end{array}\right.
$$

Since, $M \mathrm{~B}$ tt ff is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1}$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$. We have ($\left.\mathrm{tt}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathrm{tt}, V_{1}\right)$ and, similarly, $\left(\mathrm{ff}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have (M, M) $\in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathrm{~B}$ tt $\mathrm{ff}, M \rho V_{1} V_{2}$) in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathrm{~B}$ tt ff, $M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\bigvee\left\{\begin{array}{l}
M \mathrm{~B} \mathrm{tt} \mathrm{ff} \cong_{\mathrm{B}} \mathrm{tt} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{1} \\
M \mathrm{Bttff} \cong_{\mathrm{B}} \mathrm{ff} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{2}
\end{array}\right.
$$

Since, $M \mathrm{~B} \mathrm{tt} \mathrm{ff}$ is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1}$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$. We have $\left(\mathrm{tt}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathrm{tt}, V_{1}\right)$ and, similarly, $\left(\mathrm{ff}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have $(M, M) \in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathrm{~B}$ tt ff,$M \rho V_{1} V_{2}$) in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathrm{~B}$ tt ff,$M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\bigvee\left\{\begin{array}{llll}
M \mathrm{~B} & \mathrm{tt} \mathrm{ff} \cong \mathrm{~B} & \mathrm{tt} & \wedge \\
M \mathrm{~B} & \mathrm{tt} \mathrm{ff} \cong V_{1} V_{2} \cong_{\rho} V_{1} \\
\mathrm{ff} & \wedge M \rho V_{1} V_{2} \cong \rho V_{2}
\end{array}\right.
$$

Since, $M \mathrm{~B}$ tt ff is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong W_{1} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1} \quad$ or $M \cong W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong \rho W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathbf{0}, V_{1}\right),\left(\mathbf{1}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathbb{N}, \rho)$ and η be $\alpha \mapsto(\mathbb{N}, \rho, R)$. We have $\left(\mathbf{0}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathbf{0}, V_{1}\right)$ and, similarly, $\left(\mathbf{1}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have $(M, M) \in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathbb{N} \mathbf{0} 1, M \rho V_{1} V_{2}$) in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathbb{N} \mathbf{0} \mathbf{1}, M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\bigvee\left\{\begin{array}{lllllll}
M & \mathbb{N} & \mathbf{0} & \mathbf{1} & \cong_{\mathbb{N}} & \mathbf{0} & \wedge \\
M & M \rho V_{1} V_{2} \cong_{\rho} V_{1} \\
M & \mathbf{0} & \mathbf{1} & \cong \mathbb{N} & \mathbf{1} & \wedge & M \rho V_{1} V_{2} \cong_{\rho} V_{2}
\end{array}\right.
$$

Since, $M \mathbb{N} 01$ is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1}$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(W_{1}, V_{1}\right),\left(W_{2}, V_{2}\right)\right\}$ in $\mathcal{R}(\sigma, \rho)$ and η be $\alpha \mapsto(\sigma, \rho, R)$. We have $\left(W_{1}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(W_{1}, V_{1}\right)$ and, similarly, $\left(W_{2}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have $(M, M) \in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \sigma \quad W_{1} W_{2}, M \rho V_{1} V_{2}$) in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \sigma \quad W_{1} W_{2}, M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\bigvee\left\{\begin{array}{lll}
M \sigma & W_{1} W_{2} \cong \sigma & W_{1} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{1} \\
M \sigma & W_{1} W_{2} \cong \sigma & W_{2} \wedge M \rho V_{1} V_{2} \cong_{\rho} V_{2}
\end{array}\right.
$$

Since, $M \sigma \quad W_{1} W_{2}$ is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Applications

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$

Fact Let σ be $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$. If $M: \sigma$, then either
$M \cong \cong_{\sigma} W_{1} \triangleq \Lambda \alpha . \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{1}$ or $M \cong_{\sigma} W_{2} \triangleq \Lambda \alpha \cdot \lambda x_{1}: \alpha \cdot \lambda x_{2}: \alpha \cdot x_{2}$
Proof By extensionality, it suffices to show that for either $i=1$ or $i=2$, for any closed type ρ and $V_{1}, V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} W_{i} \rho V_{1} V_{2}$, or just $M \rho V_{1} V_{2} \cong_{\sigma} V_{i}(\mathbf{1})$.
Let ρ and $V_{1}, V_{2}: \rho$ be fixed. Consider R equal to $\left\{\left(\mathrm{tt}, V_{1}\right),\left(\mathrm{ff}, V_{2}\right)\right\}$ in $\mathcal{R}(\mathrm{B}, \rho)$ and η be $\alpha \mapsto(\mathrm{B}, \rho, R)$. We have $\left(\mathrm{tt}, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(\mathrm{tt}, V_{1}\right)$ and, similarly, $\left(\mathrm{ff}, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We have $(M, M) \in \mathcal{E} \llbracket \sigma \rrbracket$ by parametricity. Hence, ($M \mathrm{~B}$ tt ff,$M \rho V_{1} V_{2}$) in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, which means that ($M \mathrm{~B}$ tt ff,$M \rho V_{1} V_{2}$) reduces to a pair of values in R, which implies:

$$
\bigvee\left\{\begin{array}{llll}
M \mathrm{~B} & \mathrm{tt} \mathrm{ff} \cong \mathrm{~B} & \mathrm{tt} & \wedge \\
M \mathrm{~B} & \mathrm{tt} \mathrm{ff} \cong V_{1} V_{2} \cong_{\rho} V_{1} \\
\mathrm{ff} & \wedge M \rho V_{1} V_{2} \cong \rho V_{2}
\end{array}\right.
$$

Since, $M \mathrm{~B}$ tt ff is independent of ρ, V_{1}, and V_{2}, this actually shows (1).

Exercise

Inhabitants of $\forall \alpha . \alpha \rightarrow \alpha$

Redo the proof that all inhabitants of of $\forall \alpha . \alpha \rightarrow \alpha \rightarrow \alpha$ are observationally equivalent to the identity, following the schema that we used for booleans.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

?

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

That is, the inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$ are the Church naturals.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof

?

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong \cong_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.
Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(W_{1}, W_{2}\right) \mid \exists k \in \mathbb{N}, S^{k} Z \cong_{\text {nat }} W_{1} \wedge V_{1}^{k} V_{2} \cong_{\rho} W_{2}\right\}$ and η be $\alpha \mapsto($ nat $, \rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(Z, V_{2}\right)$ (reduce both sides for $k=0$). We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.

Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(W_{1}, W_{2}\right) \mid \exists k \in \mathbb{N}, S^{k} Z \cong{ }_{\text {nat }} W_{1} \wedge V_{1}^{k} V_{2} \cong_{\rho} W_{2}\right\}$ and η be $\alpha \mapsto($ nat, $\rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(Z, V_{2}\right)$ (reduce both sides for $k=0$). We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket{ }_{\eta}$.
(A key to the proof.)
Indeed,

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.
Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(W_{1}, W_{2}\right) \mid \exists k \in \mathbb{N}, S^{k} Z \cong_{\text {nat }} W_{1} \wedge V_{1}^{k} V_{2} \cong_{\rho} W_{2}\right\}$ and η be $\alpha \mapsto($ nat, $\rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(Z, V_{2}\right)$ (reduce both sides for $k=0$). We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)
Indeed, assume $\left(W_{1}, W_{2}\right)$ in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, i.e. R. There exists k such that $W_{1} \cong_{\text {nat }} S^{k} Z$ and $W_{2} \cong_{\rho} V_{1}^{k} V_{2}$. By congruence $S W_{1} \cong_{\text {nat }} S^{k+1} Z$ and $V_{1} W_{2} \cong_{\rho} V_{1}^{k+1} V_{2}$. Since $\left(S^{k+1} Z, V_{1}^{k+1} V_{2}\right)$ is in $\mathcal{E} \llbracket \alpha \rrbracket_{\eta}$, so is ($S W_{1}, V_{1} W_{2}$) by closure by observational equivalence.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.
Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(W_{1}, W_{2}\right) \mid \exists k \in \mathbb{N}, S^{k} Z \cong_{\text {nat }} W_{1} \wedge V_{1}^{k} V_{2} \cong_{\rho} W_{2}\right\}$ and η be $\alpha \mapsto($ nat $, \rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(Z, V_{2}\right)$ (reduce both sides for $k=0$). We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.

Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(W_{1}, W_{2}\right) \mid \exists k \in \mathbb{N}, S^{k} Z \cong{ }_{\text {nat }} W_{1} \wedge V_{1}^{k} V_{2} \cong_{\rho} W_{2}\right\}$ and η be $\alpha \mapsto($ nat, $\rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(Z, V_{2}\right)$ (reduce both sides for $k=0$).
We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)
By parametricity, we have $M \sim_{\text {nat }} M$.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.
Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(W_{1}, W_{2}\right) \mid \exists k \in \mathbb{N}, S^{k} Z \cong_{\text {nat }} W_{1} \wedge V_{1}^{k} V_{2} \cong_{\rho} W_{2}\right\}$ and η be $\alpha \mapsto($ nat $, \rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(Z, V_{2}\right)$ (reduce both sides for $k=0$). We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)
By parametricity, we have $M \sim_{\text {nat }} M$. Hence, (M nat $S Z, M \rho V_{1} V_{2}$) $\in \mathcal{E} \llbracket \alpha \rrbracket_{\eta}$. Thus, there exists n such that M nat $S Z \cong_{n a t} S^{n} Z$ and $M \rho V_{1} V_{2} \cong_{\rho} V_{1}^{n} V_{2}$.

Applications

Inhabitants of $\forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

Fact Let nat be $\forall \alpha$. $(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$. If $M:$ nat, then $M \cong{ }_{n a t} N_{n}$ for some integer n, where $N_{n} \triangleq \Lambda \alpha . \lambda f: \alpha \rightarrow \alpha . \lambda x: \alpha . f^{n} x$.

Proof By extensionality, it suffices to show that there exists n such that for any closed type ρ and closed values $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \cong_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $M \rho V_{1} V_{2} \sim_{\rho} V_{1}^{n} V_{2}(\mathbf{1})$, since $N_{n} \rho V_{1} V_{2}$ reduces to $V_{1}^{n} V_{2}$. Let ρ and $V_{1}: \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.
Let Z be N_{0} nat and S be N_{1} nat. Let R in $\mathcal{R}($ nat, $\rho)$ be $\left\{\left(W_{1}, W_{2}\right) \mid \exists k \in \mathbb{N}, S^{k} Z \cong_{\text {nat }} W_{1} \wedge V_{1}^{k} V_{2} \cong_{\rho} W_{2}\right\}$ and η be $\alpha \mapsto($ nat $, \rho, R)$.
We have $\left(Z, V_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$ since $R\left(Z, V_{2}\right)$ (reduce both sides for $k=0$).
We also have $\left(S, V_{1}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof.)
By parametricity, we have $M \sim_{\text {nat }} M$. Hence, (M nat $S Z, M \rho V_{1} V_{2}$) $\in \mathcal{E} \llbracket \alpha \rrbracket_{\eta}$. Thus, there exists n such that M nat $S Z \cong_{n a t} S^{n} Z$ and $M \rho V_{1} V_{2} \cong_{\rho} V_{1}^{n} V_{2}$.
Since, M nat $S Z$ is independent of n, we may conclude (1), provided the $S^{n} Z$ are all in different observational equivalence classes (easy to check).

Applications Inhabitants of $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$

■ Left as an exercise...

Applications

$\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$

Fact Let τ be closed and list be $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$. Let C be $\lambda H: \tau . \lambda T:$ list. $\Lambda \alpha . \lambda n: \alpha . \lambda c: \tau \rightarrow \alpha \rightarrow \alpha . c H(T \alpha n c)$ and N be $\Lambda \alpha . \lambda n: \alpha . \lambda c: \tau \rightarrow \alpha \rightarrow \alpha$. n. If M : list, then $M \cong$ list N_{n} for some N_{n} in \mathcal{L}_{n} where \mathcal{L}_{k} is defined inductively as $L_{0} \triangleq\{N\}$ and

$$
\mathcal{L}_{k+1} \triangleq\left\{C W_{k} N_{k} \mid W_{k} \in \operatorname{Val}(\tau) \wedge N_{k} \in \mathcal{L}_{k}\right\}
$$

Proof
$?$

Applications

$$
\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha
$$

Fact Let τ be closed and list be $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$. Let C be $\lambda H: \tau . \lambda T:$ list. $\Lambda \alpha . \lambda n: \alpha . \lambda c: \tau \rightarrow \alpha \rightarrow \alpha . c H(T \alpha n c)$ and N be $\Lambda \alpha$. $\lambda n: \alpha$. $\lambda c: \tau \rightarrow \alpha \rightarrow \alpha$. n. If M : list, then $M \cong$ list N_{n} for some N_{n} in \mathcal{L}_{n} where \mathcal{L}_{k} is defined inductively as $L_{0} \triangleq\{N\}$ and

$$
\mathcal{L}_{k+1} \triangleq\left\{C W_{k} N_{k} \mid W_{k} \in \operatorname{Val}(\tau) \wedge N_{k} \in \mathcal{L}_{k}\right\}
$$

Proof By extensionality, it suffices to show that there exists n and $N_{n} \in \mathcal{L}_{n}$ such that for any closed type ρ and closed values $V_{1}: \tau \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $M \rho V_{1} V_{2} \sim_{\rho} N_{n} \rho V_{1} V_{2}$, or, by closure by inverse reduction and replacing observational by logical equivalence, $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)(1)$, since $N_{n} \rho V_{1} V_{2}$ reduces to $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)$ where all W_{k} are in $\operatorname{Val}(\tau)$.
Let ρ and $V_{1}: \alpha \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed.
Let R in $\mathcal{R}($ list, $\rho)$ be defined inductively as $\cup \mathcal{R}_{n}$ where \mathcal{R}_{k+1} is $\left\{\Downarrow\left(C G T, V_{2} H U\right) \mid(G, H) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge(T, U) \in \mathcal{R}_{k}\right\}$ and \mathcal{R}_{0} is $\left\{\left(N, V_{1}\right)\right\}$.
We have $\left(N, V_{2}\right) \in \mathcal{R}_{0} \subseteq \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(C, V_{2}\right) \in \mathcal{V} \llbracket \tau \rightarrow \alpha \rightarrow \alpha \rrbracket_{\eta}$.

Applications

$$
\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha
$$

Fact Let τ be closed and list be $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$. If M : list, then $M \cong$ list N_{n} for some N_{n} in \mathcal{L}_{n} where \mathcal{L}_{k} is defined inductively as $L_{0} \triangleq\{N\}$ and $\mathcal{L}_{k+1} \triangleq\left\{C W_{k} N_{k} \mid W_{k} \in \operatorname{Val}(\tau) \wedge N_{k} \in \mathcal{L}_{k}\right\}$.

Proof By extensionality, it suffices to show that there exists n and $N_{n} \in \mathcal{L}_{n}$ such that for any closed type ρ and closed values $V_{1}: \tau \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)(1)$.
Let ρ and $V_{1}: \alpha \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed. Let R in \mathcal{R} (list, ρ) be defined inductively as $\cup \mathcal{R}_{n}$ where \mathcal{R}_{k+1} is $\left\{\Downarrow\left(C G T, V_{2} H U\right) \mid(G, H) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge(T, U) \in \mathcal{R}_{k}\right\}$ and \mathcal{R}_{0} is $\left\{\left(N, V_{1}\right)\right\}$.
We have $\left(N, V_{2}\right) \in \mathcal{R}_{0} \subseteq \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(C, V_{2}\right) \in \mathcal{V} \llbracket \tau \rightarrow \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof) Indeed,

Applications

$$
\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha
$$

Fact Let τ be closed and list be $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$. If M : list, then $M \cong$ list N_{n} for some N_{n} in \mathcal{L}_{n} where \mathcal{L}_{k} is defined inductively as $L_{0} \triangleq\{N\}$ and $\mathcal{L}_{k+1} \triangleq\left\{C W_{k} N_{k} \mid W_{k} \in \operatorname{Val}(\tau) \wedge N_{k} \in \mathcal{L}_{k}\right\}$.

Proof By extensionality, it suffices to show that there exists n and $N_{n} \in \mathcal{L}_{n}$ such that for any closed type ρ and closed values $V_{1}: \tau \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)(1)$.
Let ρ and $V_{1}: \alpha \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed. Let R in \mathcal{R} (list, ρ) be defined inductively as $\cup \mathcal{R}_{n}$ where \mathcal{R}_{k+1} is $\left\{\Downarrow\left(C G T, V_{2} H U\right) \mid(G, H) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge(T, U) \in \mathcal{R}_{k}\right\}$ and \mathcal{R}_{0} is $\left\{\left(N, V_{1}\right)\right\}$.
We have $\left(N, V_{2}\right) \in \mathcal{R}_{0} \subseteq \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$.
We also have $\left(C, V_{2}\right) \in \mathcal{V} \llbracket \tau \rightarrow \alpha \rightarrow \alpha \rrbracket_{\eta}$.
(A key to the proof)
Indeed, assume (G, H) in $\mathcal{V} \llbracket \tau \rrbracket_{\eta}$ and (T, U) in $\mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, i.e. in \mathcal{R}_{k} for some k. Then, $\Downarrow\left(C G T, V_{2} H U\right)$ is in $\mathcal{R}^{k+1} \subseteq \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$. Hence, $\left(C G T, V_{2} H U\right) \in \mathcal{E} \llbracket \alpha \rrbracket_{\eta}$, as expected.

Applications

$$
\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha
$$

Fact Let τ be closed and list be $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$. If M : list, then $M \cong$ list N_{n} for some N_{n} in \mathcal{L}_{n} where \mathcal{L}_{k} is defined inductively as $L_{0} \triangleq\{N\}$ and $\mathcal{L}_{k+1} \triangleq\left\{C W_{k} N_{k} \mid W_{k} \in \operatorname{Val}(\tau) \wedge N_{k} \in \mathcal{L}_{k}\right\}$.

Proof By extensionality, it suffices to show that there exists n and $N_{n} \in \mathcal{L}_{n}$ such that for any closed type ρ and closed values $V_{1}: \tau \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)(1)$.
Let ρ and $V_{1}: \alpha \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed. Let R in \mathcal{R} (list, ρ) be defined inductively as $\cup \mathcal{R}_{n}$ where \mathcal{R}_{k+1} is $\left\{\Downarrow\left(C G T, V_{2} H U\right) \mid(G, H) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge(T, U) \in \mathcal{R}_{k}\right\}$ and \mathcal{R}_{0} is $\left\{\left(N, V_{1}\right)\right\}$.
We have $\left(N, V_{2}\right) \in \mathcal{R}_{0} \subseteq \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$. We also have $\left(C, V_{2}\right) \in \mathcal{V} \llbracket \tau \rightarrow \alpha \rightarrow \alpha \rrbracket_{\eta}$.

Applications

$$
\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha
$$

Fact Let τ be closed and list be $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$. If M : list, then $M \cong$ list N_{n} for some N_{n} in \mathcal{L}_{n} where \mathcal{L}_{k} is defined inductively as $L_{0} \triangleq\{N\}$ and $\mathcal{L}_{k+1} \triangleq\left\{C W_{k} N_{k} \mid W_{k} \in \operatorname{Val}(\tau) \wedge N_{k} \in \mathcal{L}_{k}\right\}$.

Proof By extensionality, it suffices to show that there exists n and $N_{n} \in \mathcal{L}_{n}$ such that for any closed type ρ and closed values $V_{1}: \tau \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)(1)$.
Let ρ and $V_{1}: \alpha \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed. Let R in \mathcal{R} (list, ρ) be defined inductively as $\cup \mathcal{R}_{n}$ where \mathcal{R}_{k+1} is $\left\{\Downarrow\left(C G T, V_{2} H U\right) \mid(G, H) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge(T, U) \in \mathcal{R}_{k}\right\}$ and \mathcal{R}_{0} is $\left\{\left(N, V_{1}\right)\right\}$. We have $\left(N, V_{2}\right) \in \mathcal{R}_{0} \subseteq \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$. We also have $\left(C, V_{2}\right) \in \mathcal{V} \llbracket \tau \rightarrow \alpha \rightarrow \alpha \rrbracket_{\eta}$. By parametricity, we have $M \sim$ list M.

Applications

$$
\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha
$$

Fact Let τ be closed and list be $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$. If M : list, then $M \cong$ list N_{n} for some N_{n} in \mathcal{L}_{n} where \mathcal{L}_{k} is defined inductively as $L_{0} \triangleq\{N\}$ and $\mathcal{L}_{k+1} \triangleq\left\{C W_{k} N_{k} \mid W_{k} \in \operatorname{Val}(\tau) \wedge N_{k} \in \mathcal{L}_{k}\right\}$.

Proof By extensionality, it suffices to show that there exists n and $N_{n} \in \mathcal{L}_{n}$ such that for any closed type ρ and closed values $V_{1}: \tau \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)(1)$.
Let ρ and $V_{1}: \alpha \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed. Let R in $\mathcal{R}($ list, $\rho)$ be defined inductively as $\cup \mathcal{R}_{n}$ where \mathcal{R}_{k+1} is $\left\{\Downarrow\left(C G T, V_{2} H U\right) \mid(G, H) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge(T, U) \in \mathcal{R}_{k}\right\}$ and \mathcal{R}_{0} is $\left\{\left(N, V_{1}\right)\right\}$.
We have $\left(N, V_{2}\right) \in \mathcal{R}_{0} \subseteq \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$. We also have $\left(C, V_{2}\right) \in \mathcal{V} \llbracket \tau \rightarrow \alpha \rightarrow \alpha \rrbracket_{\eta}$.
By parametricity, we have $M \sim \sim_{\text {list }} M$. Hence, (M list $\left.C N, M \rho V_{1} V_{2}\right) \in \mathcal{E} \llbracket \alpha \rrbracket_{\eta}$. Thus, there exists n such that M list $C N \cong l_{\text {list }} C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)$ and $M \rho V_{1} V_{2} \cong{ }_{\rho} V_{2} W_{n}\left(\ldots\left(V_{2} W_{1} V_{1}\right) \ldots\right)$.

Applications

$$
\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha
$$

Fact Let τ be closed and list be $\forall \alpha . \alpha \rightarrow(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$. If M : list, then $M \cong$ list N_{n} for some N_{n} in \mathcal{L}_{n} where \mathcal{L}_{k} is defined inductively as $L_{0} \triangleq\{N\}$ and $\mathcal{L}_{k+1} \triangleq\left\{C W_{k} N_{k} \mid W_{k} \in \operatorname{Val}(\tau) \wedge N_{k} \in \mathcal{L}_{k}\right\}$.

Proof By extensionality, it suffices to show that there exists n and $N_{n} \in \mathcal{L}_{n}$ such that for any closed type ρ and closed values $V_{1}: \tau \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$, we have $C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)(1)$.
Let ρ and $V_{1}: \alpha \rightarrow \rho \rightarrow \rho$ and $V_{2}: \rho$ be fixed. Let R in \mathcal{R} (list, ρ) be defined inductively as $\cup \mathcal{R}_{n}$ where \mathcal{R}_{k+1} is $\left\{\Downarrow\left(C G T, V_{2} H U\right) \mid(G, H) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge(T, U) \in \mathcal{R}_{k}\right\}$ and \mathcal{R}_{0} is $\left\{\left(N, V_{1}\right)\right\}$.
We have $\left(N, V_{2}\right) \in \mathcal{R}_{0} \subseteq \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$. We also have $\left(C, V_{2}\right) \in \mathcal{V} \llbracket \tau \rightarrow \alpha \rightarrow \alpha \rrbracket_{\eta}$.
By parametricity, we have $M \sim \sim_{\text {list }} M$. Hence, (M list $\left.C N, M \rho V_{1} V_{2}\right) \in \mathcal{E} \llbracket \alpha \rrbracket_{\eta}$. Thus, there exists n such that M list $C N \cong l_{\text {list }} C W_{n}\left(\ldots\left(C W_{1} N\right) \ldots\right)$ and $M \rho V_{1} V_{2} \cong{ }_{\rho} V_{2} W_{n}\left(\ldots\left(V_{2} W_{1} V_{1}\right) \ldots\right)$.
Since, M list $C N$ is independent of n and $\left(W_{k}\right)_{k \in 1 . . n}$, we may conclude (1). (This uses that \mathcal{R}_{k} are all in different observational equivalence classes, which is easy to check, as a length function would return different integers.)

Contents

- Introduction
- Normalization of $\lambda_{s t}$
- Observational equivalence in $\lambda_{s t}$
- Logical relations in stlc
- Logical relations in F
- Applications
- Extensions

Encodable features

We have shown that all expressions of type nat behave as natural numbers. Hence, natural numbers are definable.

Still, we could also provide a type nat of natural numbers as primitive.
Then, we may extend

- behavioral equivalence: if $M_{1}: n a t$ and M_{2} : nat, we have $M_{1} \simeq_{n a t} M_{2}$ iff there exists n : nat such that $M_{1} \Downarrow n$ and $M_{2} \Downarrow n$.
- logical equivalence: uad $\mathcal{V} \llbracket n a t \rrbracket \triangleq\{(n, n) \mid n \in \mathbb{N}\}$

All properties are preserved.

Encodable features

Products

Given closed types τ_{1} and τ_{2}, we defined

$$
\begin{aligned}
\tau_{1} \times \tau_{2} & \triangleq \forall \alpha \cdot\left(\tau_{1} \rightarrow \tau_{2} \rightarrow \alpha\right) \rightarrow \alpha \\
\left(M_{1}, M_{2}\right) & \triangleq \Lambda \alpha \cdot \lambda x: \tau_{1} \rightarrow \tau_{2} \rightarrow \alpha \cdot x M_{1} M_{2} \\
M . i & \triangleq M\left(\lambda x_{1}: \tau_{1} \cdot \lambda x_{2}: \tau_{2} \cdot x_{i}\right)
\end{aligned}
$$

Facts

If $M: \tau_{1} \times \tau_{2}$, then $M \cong_{\tau_{1} \times \tau_{2}}\left(M_{1}, M_{2}\right)$ for some $M_{1}: \tau_{1}$ and $M_{2}: \tau_{2}$.
If $M: \tau_{1} \times \tau_{2}$ and $M .1 \cong \overbrace{\tau_{1}} M_{1}$ and $M .2 \cong_{\tau_{2}} M_{2}$, then $M \cong \tau_{\tau_{1} \times \tau_{2}}\left(M_{1}, M_{2}\right)$

Primitive pairs

We may instead extend the language with primitive pairs. Then,

$$
\begin{aligned}
& \mathcal{V} \llbracket \tau \times \sigma \rrbracket_{\eta} \triangleq\left\{\left(\left(V_{1}, W_{1}\right),\left(V_{2}, W_{2}\right)\right)\right. \\
&\left.\quad\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \sigma \rrbracket_{\eta}\right\}
\end{aligned}
$$

Sums

We define:

$$
\begin{aligned}
\mathcal{V} \llbracket \tau+\sigma \rrbracket_{\eta}= & \left\{\left(i n j_{1} V_{1}, i n j_{1} V_{2}\right) \mid\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta}\right\} \cup \cup \\
& \left\{\left(i n j_{2} V_{2}, i n j_{2} V_{2}\right) \mid\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \sigma \rrbracket \eta\right\}
\end{aligned}
$$

Notice that sums, as all datatypes, can also be encoded in System F.

Primitive Lists

We recursively ${ }^{1}$ define

$$
\begin{aligned}
& \mathcal{V} \llbracket \text { list } \tau \rrbracket_{\eta} \triangleq \cup_{k} \mathcal{V}_{k} \\
& \text { where } \quad \mathcal{V}_{0}=\{(\text { Nil, Nil) }\} \\
& \mathcal{V}_{k+1}=\left\{\left(\text { Cons } H_{1} T_{1}, \text { Cons } H_{2} T_{2}\right)\right. \\
&\left.\quad\left(H_{1}, H_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge\left(T_{1}, T_{2}\right) \in \mathcal{V}_{k}\right\}
\end{aligned}
$$

${ }^{1}$ This definition is well-founded. We may also use step-indexed relations.

Primitive Lists

We recursively ${ }^{1}$ define

$$
\begin{aligned}
& \mathcal{V} \llbracket \text { list } \tau \rrbracket_{\eta} \triangleq \cup_{k} \mathcal{V}_{k} \\
& \text { where } \quad \mathcal{V}_{0}=\{(\text { Nil, Nil) }\} \\
& \mathcal{V}_{k+1}=\left\{\left(\text { Cons } H_{1} T_{1}, \text { Cons } H_{2} T_{2}\right)\right. \\
&\left.\quad\left(H_{1}, H_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge\left(T_{1}, T_{2}\right) \in \mathcal{V}_{k}\right\}
\end{aligned}
$$

Let R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$ be the graph $\langle g\rangle$ of a function g, i.e. equal to $\{(x, y) \mid g x=y\}$ and η be $\eta\left(\tau \mapsto \rho_{1}, \rho_{2}, R\right)$. Then, we have:
$\mathcal{V} \llbracket$ list $\tau \rrbracket_{\eta}\left(y_{1}, y_{2}\right)$

$$
\triangleq \vee\left\{\begin{array}{l}
y_{1}=\text { Nil } \wedge y_{2}=\text { Nil } \\
y_{1}=\text { Cons } H_{1} T_{1} \wedge \\
y_{2}=\text { Cons } H_{2} T_{2} \wedge g H_{1}=H_{2} \wedge\left(T_{1}, T_{2}\right) \in \mathcal{V}_{k}
\end{array}\right.
$$

${ }^{1}$ This definition is well-founded. We may also use step-indexed relations.

Primitive Lists

We recursively ${ }^{1}$ define

$$
\begin{aligned}
& \mathcal{V} \llbracket \text { list } \tau \rrbracket_{\eta} \triangleq \cup_{k} \mathcal{V}_{k} \\
& \text { where } \quad \mathcal{V}_{0}=\{(\text { Nil, Nil) }\} \\
& \mathcal{V}_{k+1}=\left\{\left(\text { Cons } H_{1} T_{1}, \text { Cons } H_{2} T_{2}\right)\right. \\
&\left.\mid\left(H_{1}, H_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge\left(T_{1}, T_{2}\right) \in \mathcal{V}_{k}\right\}
\end{aligned}
$$

Let R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$ be the graph $\langle g\rangle$ of a function g, i.e. equal to $\{(x, y) \mid g x=y\}$ and η be $\eta\left(\tau \mapsto \rho_{1}, \rho_{2}, R\right)$. Then, we have:
$\mathcal{V} \llbracket$ list $\tau \rrbracket_{\eta}\left(y_{1}, y_{2}\right)$

$$
\triangleq \vee\left\{\begin{array}{l}
y_{1}=\operatorname{Nil} \wedge y_{2}=\text { Nil } \\
y_{1}=\operatorname{Cons} H_{1} T_{1} \wedge \\
\\
y_{2}=\operatorname{Cons}\left(g H_{1}\right) T_{2} \wedge\left(T_{1}, T_{2}\right) \in \mathcal{V}_{k}
\end{array}\right.
$$

${ }^{1}$ This definition is well-founded. We may also use step-indexed relations.

Primitive Lists

We recursively ${ }^{1}$ define

$$
\begin{aligned}
& \mathcal{V} \llbracket \text { list } \tau \rrbracket_{\eta} \triangleq \cup_{k} \mathcal{V}_{k} \\
& \text { where } \quad \mathcal{V}_{0}=\{(\text { Nil, Nil })\} \\
& \mathcal{V}_{k+1}=\left\{\left(\text { Cons } H_{1} T_{1}, \text { Cons } H_{2} T_{2}\right)\right. \\
&\left.\mid\left(H_{1}, H_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge\left(T_{1}, T_{2}\right) \in \mathcal{V}_{k}\right\}
\end{aligned}
$$

Let R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$ be the graph $\langle g\rangle$ of a function g, i.e. equal to $\{(x, y) \mid g x=y\}$ and η be $\eta\left(\tau \mapsto \rho_{1}, \rho_{2}, R\right)$. Then, we have:
$\mathcal{V} \llbracket$ list $\tau \rrbracket_{\eta}\left(y_{1}, y_{2}\right)$

$$
\begin{aligned}
& \triangleq \vee\left\{\begin{array}{l}
y_{1}=\text { Nil } \wedge y_{2}=\text { Nil } \\
y_{1}=\operatorname{Cons} H_{1} T_{1} \wedge \\
y_{2}=\operatorname{Cons}\left(g H_{1}\right) T_{2} \wedge\left(T_{1}, T_{2}\right) \in \mathcal{V}_{k}
\end{array}\right. \\
& \triangleq \operatorname{map} \rho_{1} \rho_{2} g y_{1} \Downarrow y_{2}
\end{aligned}
$$

${ }^{1}$ This definition is well-founded. We may also use step-indexed relations.

Primitive Lists

We recursively ${ }^{1}$ define

$$
\begin{aligned}
& \mathcal{V} \llbracket \text { list } \tau \rrbracket_{\eta} \triangleq \cup_{k} \mathcal{V}_{k} \\
& \text { where } \quad \mathcal{V}_{0}=\{(\text { Nil, Nil) }\} \\
& \mathcal{V}_{k+1}=\left\{\left(\text { Cons } H_{1} T_{1}, \text { Cons } H_{2} T_{2}\right)\right. \\
&\left.\quad\left(H_{1}, H_{2}\right) \in \mathcal{V} \llbracket \tau \rrbracket_{\eta} \wedge\left(T_{1}, T_{2}\right) \in \mathcal{V}_{k}\right\}
\end{aligned}
$$

Let R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$ be the graph $\langle g\rangle$ of a function g, i.e. equal to $\{(x, y) \mid g x=y\}$ and η be $\eta\left(\tau \mapsto \rho_{1}, \rho_{2}, R\right)$. Then, we have:
$\mathcal{V} \llbracket$ list $\tau \rrbracket_{\eta}=\Downarrow\left\langle\operatorname{map} \rho_{1} \rho_{2} g\right\rangle$
${ }^{1}$ This definition is well-founded. We may also use step-indexed relations.

Applications

sort : $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ boo $) \rightarrow$ list α

Fact: Assume sort : $\forall \alpha \cdot(\alpha \rightarrow \alpha \rightarrow$ boob $) \rightarrow$ list $\alpha \rightarrow$ list α (1). Then

$$
\begin{aligned}
&\left(\forall x, y, c m p_{2}(f x)(f y)=c m p_{1} x y\right) \Longrightarrow \\
& \forall \ell, \text { sort } c m p_{2}(\operatorname{map} f \ell)=\operatorname{map} f(\text { sort cmp } 1 \ell)
\end{aligned}
$$

Applications

sort: $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ boo $) \rightarrow$ list α

Fact: Assume sort : $\forall \alpha \cdot(\alpha \rightarrow \alpha \rightarrow$ boob $) \rightarrow$ list $\alpha \rightarrow$ list α (1). Then

$$
\begin{aligned}
&\left(\forall x, y, c m p_{2}(f x)(f y)=c m p_{1} x y\right) \Longrightarrow \\
& \forall \ell, \text { sort } c m p_{2}(\operatorname{map} f \ell)=\operatorname{map} f(\text { sort cmp } 1 \ell)
\end{aligned}
$$

Applications

sort: $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ boo $) \rightarrow$ list α

Fact: Assume sort : $\forall \alpha \cdot(\alpha \rightarrow \alpha \rightarrow$ boob $) \rightarrow$ list $\alpha \rightarrow$ list α (1). Then

$$
\begin{aligned}
&\left(\forall x, y, \operatorname{cmp}_{2}(f x)(f y) \cong c m p_{1} x y\right) \Longrightarrow \\
& \forall \ell, \text { sort } c m p_{2}(\operatorname{map} f \ell) \cong \operatorname{map} f(\text { sort comp } 1 \ell)
\end{aligned}
$$

Applications

sort : $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ boo $) \rightarrow$ list α

Proof: We have sort \sim_{σ} sort where σ is $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list $\alpha \rightarrow$ list α. Thus, for all ρ_{1}, ρ_{2}, and admissible relations R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$,

$$
\begin{align*}
& \forall\left(c p_{1}, c p_{2}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rightarrow \mathrm{B} \rrbracket_{\eta}, \tag{1}\\
& \left.\quad \forall\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \text { list } \alpha \rrbracket_{\eta}, \quad\left(\text { sort } \rho_{1} c p_{1} V_{1}, \text { sort } \rho_{2} c p_{2} \quad V_{2}\right) \in \mathcal{E} \llbracket \text { list } \alpha \rrbracket_{\eta}\right) \tag{2}
\end{align*}
$$

where η is $\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$.

Applications
 sort : $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list α

Proof: We have sort \sim_{σ} sort where σ is $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list $\alpha \rightarrow$ list α. Thus, for all ρ_{1}, ρ_{2}, and admissible relations R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$,

$$
\begin{align*}
& \forall\left(c p_{1}, c p_{2}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rightarrow \mathrm{B} \rrbracket_{\eta}, \tag{1}\\
& \left.\quad \forall\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \text { list } \alpha \rrbracket_{\eta}, \quad\left(\text { sort } \rho_{1} c p_{1} V_{1}, \text { sort } \rho_{2} c p_{2} \quad V_{2}\right) \in \mathcal{E} \llbracket \text { list } \alpha \rrbracket_{\eta}\right) \tag{2}
\end{align*}
$$

where η is $\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$.
We may choose R to be $\langle f\rangle$ for some f.
Then (1), which means

$$
\forall\left(V, V^{\prime}\right) \in\langle f\rangle, \quad \forall\left(W, W^{\prime}\right) \in\langle f\rangle, \quad\left(c p_{1} V W, c p_{2} V^{\prime} W^{\prime}\right) \in \mathcal{V} \llbracket \mathrm{B} \rrbracket
$$

becomes

$$
\forall V, W: \rho_{1}, c p_{1} V W \cong \subset p_{2}(f V)(f W)
$$

and

$$
\mathcal{V} \llbracket l i s t \alpha \rrbracket_{\eta} \triangleq \Downarrow\left\langle\operatorname{map} \rho_{1} \rho_{2} f\right\rangle \subseteq \mathcal{V} \llbracket \rho_{1} \rrbracket \times \mathcal{V} \llbracket \rho_{2} \rrbracket
$$

Applications
 sort : $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list α

Proof: We have sort \sim_{σ} sort where σ is $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list $\alpha \rightarrow$ list α. Thus, for all ρ_{1}, ρ_{2}, and admissible relations R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$,

$$
\begin{align*}
& \forall\left(c p_{1}, c p_{2}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rightarrow \mathrm{B} \rrbracket_{\eta}, \tag{1}\\
& \left.\quad \forall\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \text { list } \alpha \rrbracket_{\eta}, \quad\left(\text { sort } \rho_{1} c p_{1} \quad V_{1}, \text { sort } \rho_{2} c p_{2} \quad V_{2}\right) \in \mathcal{E} \llbracket \text { list } \alpha \rrbracket_{\eta}\right) \tag{2}
\end{align*}
$$

where η is $\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$.
We may choose R to be $\langle f\rangle$ for some f.
Then (1), which means

$$
\forall\left(V, V^{\prime}\right) \in\langle f\rangle, \quad \forall\left(W, W^{\prime}\right) \in\langle f\rangle, \quad\left(c p_{1} V W, c p_{2} V^{\prime} W^{\prime}\right) \in \mathcal{V} \llbracket \mathrm{B} \rrbracket
$$

becomes

$$
\forall V, W: \rho_{1}, c p_{1} V W \cong \subset p_{2}(f V)(f W)
$$

and

$$
\mathcal{V} \llbracket \text { list } \alpha \rrbracket_{\eta} \triangleq \Downarrow\left\langle\operatorname{map} \rho_{1} \rho_{2} f\right\rangle \subseteq \mathcal{V} \llbracket \rho_{1} \rrbracket \times \mathcal{V} \llbracket \rho_{2} \rrbracket
$$

Thus, (3) reads
$\forall V:$ list $\rho_{1}, V^{\prime}:$ list ρ_{2},
$\operatorname{map} \rho_{1} \rho_{2} f V \Downarrow V^{\prime} \Longrightarrow \operatorname{sort} \rho_{2} c p_{2} V^{\prime} \sim_{\text {list } \rho_{2}} \operatorname{map} \rho_{1} \rho_{2} f\left(\right.$ sort $\left.\rho_{1} c p_{1} V\right)$

Applications
 sort : $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list α

Proof: We have sort \sim_{σ} sort where σ is $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list $\alpha \rightarrow$ list α. Thus, for all ρ_{1}, ρ_{2}, and admissible relations R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$,

$$
\begin{align*}
& \forall\left(c p_{1}, c p_{2}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rightarrow \mathrm{B} \rrbracket_{\eta}, \tag{1}\\
& \left.\quad \forall\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \text { list } \alpha \rrbracket_{\eta}, \quad\left(\text { sort } \rho_{1} c p_{1} \quad V_{1}, \text { sort } \rho_{2} c p_{2} \quad V_{2}\right) \in \mathcal{E} \llbracket \text { list } \alpha \rrbracket_{\eta}\right) \tag{2}
\end{align*}
$$

where η is $\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$.
We may choose R to be $\langle f\rangle$ for some f.
Then (1), which means

$$
\forall\left(V, V^{\prime}\right) \in\langle f\rangle, \quad \forall\left(W, W^{\prime}\right) \in\langle f\rangle, \quad\left(c p_{1} V W, c p_{2} V^{\prime} W^{\prime}\right) \in \mathcal{V} \llbracket \mathrm{B} \rrbracket
$$

becomes

$$
\forall V, W: \rho_{1}, c p_{1} V W \cong \subset p_{2}(f V)(f W)
$$

and

$$
\mathcal{V} \llbracket \text { list } \alpha \rrbracket_{\eta} \triangleq \Downarrow\left\langle\operatorname{map} \rho_{1} \rho_{2} f\right\rangle \subseteq \mathcal{V} \llbracket \rho_{1} \rrbracket \times \mathcal{V} \llbracket \rho_{2} \rrbracket
$$

Thus, (3) implies

```
\(\forall V:\) list \(\rho_{1}, V^{\prime}:\) list \(\rho_{2}\),
    \(\operatorname{map} \rho_{1} \rho_{2} f V \sim_{\rho_{2}} V^{\prime} \Longrightarrow \operatorname{sort} \rho_{2} c p_{2} V^{\prime} \sim_{\text {list } \rho_{2}} \operatorname{map} \rho_{1} \rho_{2} f\left(\right.\) sort \(\left.\rho_{1} c p_{1} V\right)\)
```


Applications
 sort : $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list α

Proof: We have sort \sim_{σ} sort where σ is $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list $\alpha \rightarrow$ list α. Thus, for all ρ_{1}, ρ_{2}, and admissible relations R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$,

$$
\begin{align*}
& \forall\left(c p_{1}, c p_{2}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rightarrow \mathrm{B} \rrbracket_{\eta}, \tag{1}\\
& \left.\quad \forall\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \text { list } \alpha \rrbracket_{\eta}, \quad\left(\text { sort } \rho_{1} c p_{1} \quad V_{1}, \text { sort } \rho_{2} c p_{2} \quad V_{2}\right) \in \mathcal{E} \llbracket \text { list } \alpha \rrbracket_{\eta}\right) \tag{2}
\end{align*}
$$

where η is $\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$.
We may choose R to be $\langle f\rangle$ for some f.
Then (1), which means

$$
\forall\left(V, V^{\prime}\right) \in\langle f\rangle, \quad \forall\left(W, W^{\prime}\right) \in\langle f\rangle, \quad\left(c p_{1} V W, c p_{2} V^{\prime} W^{\prime}\right) \in \mathcal{V} \llbracket \mathrm{B} \rrbracket
$$

becomes

$$
\forall V, W: \rho_{1}, c p_{1} V W \cong \subset p_{2}(f V)(f W)
$$

and

$$
\mathcal{V} \llbracket l i s t a \rrbracket_{\eta} \triangleq \Downarrow\left\langle\operatorname{map} \rho_{1} \rho_{2} f\right\rangle \subseteq \mathcal{V} \llbracket \rho_{1} \rrbracket \times \mathcal{V} \llbracket \rho_{2} \rrbracket
$$

Thus, (3) implies
$\forall V:$ list ρ_{1},

$$
\text { sort } \rho_{2} c p_{2}\left(\operatorname{map} \rho_{1} \rho_{2} f V\right) \sim \sim_{\text {list } \rho_{2}} \operatorname{map} \rho_{1} \rho_{2} f\left(\operatorname{sort} \rho_{1} c p_{1} V\right)
$$

Applications
 sort : $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list α

Proof: We have sort \sim_{σ} sort where σ is $\forall \alpha .(\alpha \rightarrow \alpha \rightarrow$ bool $) \rightarrow$ list $\alpha \rightarrow$ list α. Thus, for all ρ_{1}, ρ_{2}, and admissible relations R in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$,

$$
\begin{align*}
& \forall\left(c p_{1}, c p_{2}\right) \in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rightarrow \mathrm{B} \rrbracket_{\eta}, \tag{1}\\
& \left.\quad \forall\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \text { list } \alpha \rrbracket_{\eta}, \quad\left(\text { sort } \rho_{1} c p_{1} \quad V_{1}, \text { sort } \rho_{2} c p_{2} \quad V_{2}\right) \in \mathcal{E} \llbracket \text { list } \alpha \rrbracket_{\eta}\right) \tag{2}
\end{align*}
$$

where η is $\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$.
We may choose R to be $\langle f\rangle$ for some f.
Then (1), which means

$$
\forall\left(V, V^{\prime}\right) \in\langle f\rangle, \quad \forall\left(W, W^{\prime}\right) \in\langle f\rangle, \quad\left(c p_{1} V W, c p_{2} V^{\prime} W^{\prime}\right) \in \mathcal{V} \llbracket \mathrm{B} \rrbracket
$$

becomes

$$
\forall V, W: \rho_{1}, c p_{1} V W \cong \subset p_{2}(f V)(f W)
$$

and

$$
\mathcal{V} \llbracket l i s t a \rrbracket_{\eta} \triangleq \Downarrow\left\langle\operatorname{map} \rho_{1} \rho_{2} f\right\rangle \subseteq \mathcal{V} \llbracket \rho_{1} \rrbracket \times \mathcal{V} \llbracket \rho_{2} \rrbracket
$$

Thus, (3) implies
$\forall V:$ list ρ_{1},

$$
\text { sort } \rho_{2} c p_{2}\left(\operatorname{map} \rho_{1} \rho_{2} f V\right) \cong \text { list } \rho_{2} \operatorname{map} \rho_{1} \rho_{2} f\left(\operatorname{sort} \rho_{1} c p_{1} V\right)
$$

Applications

whoami $: \forall \alpha$. list $\alpha \rightarrow$ list α

Left as an exercise...

Existential types

We define:

$$
\begin{aligned}
\mathcal{V} \llbracket \exists \alpha . \tau \rrbracket_{\eta} \triangleq & \left\{\left(\text { pack } V_{1}, \rho_{1} \text { as } \exists \alpha . \tau, \text { pack } V_{2}, \rho_{2} \text { as } \exists \alpha . \tau\right) \mid\right. \\
& \left.\exists \rho_{1}, \rho_{2}, R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right), \quad\left(V_{1}, V_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta, \alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)}\right\}
\end{aligned}
$$

Compare with

$$
\begin{aligned}
\mathcal{V} \llbracket \forall \alpha \cdot \tau \rrbracket_{\eta}= & \left\{\left(\Lambda \alpha \cdot M_{1}, \Lambda \alpha \cdot M_{2}\right) \mid\right. \\
& \forall \rho_{1}, \rho_{2}, R \in \mathcal{R}\left(\rho_{1}, \rho_{2}\right), \\
& \left.\left(\left(\Lambda \alpha \cdot M_{1}\right) \rho_{1},\left(\Lambda \alpha \cdot M_{2}\right) \rho_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta, \alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)}\right\}
\end{aligned}
$$

Existential types

Consider $V_{1} \triangleq(n o t, t \mathrm{tt})$, and $V_{2} \triangleq($ succ, 0$)$ and $\sigma \triangleq(\alpha \rightarrow \alpha) \times \alpha$. Let $R \in \mathcal{R}$ (pol, nat) be $\{(\mathrm{tt}, 2 n),(\mathrm{ff}, 2 n+1) \mid n \in \mathbb{N}\}$ and η be $\alpha \mapsto($ boole , nat, $R)$.
We have $\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \sigma \rrbracket_{\eta}$.
Hence, (pack V_{1}, boo as $\exists \alpha . \sigma$, pack V_{2}, nat as $\exists \alpha . \sigma$) $\in \mathcal{V} \llbracket \exists \alpha . \sigma \rrbracket$.

Existential types

Consider $V_{1} \triangleq(n o t, t \mathrm{tt})$, and $V_{2} \triangleq($ succ, 0$)$ and $\sigma \triangleq(\alpha \rightarrow \alpha) \times \alpha$. Let $R \in \mathcal{R}$ (pol, nat) be $\{(\mathrm{tt}, 2 n),(\mathrm{ff}, 2 n+1) \mid n \in \mathbb{N}\}$ and η be $\alpha \mapsto($ boole , nat, $R)$.
We have $\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \sigma \rrbracket_{\eta}$.
Hence, (pack V_{1}, fol as $\exists \alpha . \sigma$, pack V_{2}, nat as $\exists \alpha . \sigma$) $\in \mathcal{V} \llbracket \exists \alpha . \sigma \rrbracket$.

$$
\text { Proof of }((\text { not }, \mathrm{tt}),(\text { suck, }, 0)) \in \mathcal{V} \llbracket(\alpha \rightarrow \alpha) \times \alpha \rrbracket_{\eta}(\mathbf{1})
$$

?

Existential types

Example
Consider $V_{1} \triangleq(n o t, t \mathrm{tt})$, and $V_{2} \triangleq($ succ, 0$)$ and $\sigma \triangleq(\alpha \rightarrow \alpha) \times \alpha$. Let $R \in \mathcal{R}($ pol, nat $)$ be $\{(\mathrm{tt}, 2 n),(\mathrm{ff}, 2 n+1) \mid n \in \mathbb{N}\}$ and η be $\alpha \mapsto($ boole , nat, $R)$.
We have $\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \sigma \rrbracket_{\eta}$.
Hence, (pack V_{1}, fol as $\exists \alpha . \sigma$, pack V_{2}, nat as $\exists \alpha . \sigma$) $\in \mathcal{V} \llbracket \exists \alpha . \sigma \rrbracket$.
Proof of $(($ not, tt$),($ succ, 0$)) \in \mathcal{V} \llbracket(\alpha \rightarrow \alpha) \times \alpha \rrbracket_{\eta}(\mathbf{1})$
We have $(\mathrm{tt}, 0) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, since $(\mathrm{tt}, 0) \in R$.
We also have (not, succ) $\in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket \rrbracket_{\eta}$, which proves (1).
?

Existential types

Example
Consider $V_{1} \triangleq(n o t, t \mathrm{tt})$, and $V_{2} \triangleq($ succ, 0$)$ and $\sigma \triangleq(\alpha \rightarrow \alpha) \times \alpha$. Let $R \in \mathcal{R}($ bool, nat $)$ be $\{(\mathrm{tt}, 2 n),(\mathrm{ff}, 2 n+1) \mid n \in \mathbb{N}\}$ and η be $\alpha \mapsto($ bool , nat, $R)$.
We have $\left(V_{1}, V_{2}\right) \in \mathcal{V} \llbracket \sigma \rrbracket_{\eta}$.
Hence, (pack V_{1}, bool as $\exists \alpha . \sigma$, pack V_{2}, nat as $\exists \alpha . \sigma$) $\in \mathcal{V} \llbracket \exists \alpha . \sigma \rrbracket$.
Proof of $(($ not, tt) $),($ succ,, 0$)) \in \mathcal{V} \llbracket(\alpha \rightarrow \alpha) \times \alpha \rrbracket_{\eta}(\mathbf{1})$
We have $(\mathrm{tt}, 0) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$, since $(\mathrm{tt}, 0) \in R$.
We also have (not, succ) $\in \mathcal{V} \llbracket \alpha \rightarrow \alpha \rrbracket_{\eta}$, which proves (1). Indeed, assume $\left(W_{1}, W_{2}\right) \in \mathcal{V} \llbracket \alpha \rrbracket_{\eta}$. Then (W_{1}, W_{2}) is either of the form

- ($\mathrm{tt}, 2 n$) and (not W_{1}, succ W_{2}) reduces to (ff, $2 n+1$), or
- (ff, $2 n+1$) and (not W_{1}, succ W_{2}) reduces to ($\mathrm{tt}, 2 n+2$).

In both cases, (not W_{1}, succ W_{2}) reduces to a pair in R. Hence, $\left(\operatorname{not} W_{1}\right.$, succ $\left.W_{2}\right) \in \mathcal{E} \llbracket \alpha \rrbracket_{\eta}$.

Representation independence

A client of an existential type $\exists \alpha . \tau$ should not see the difference between two implementations N_{1} and N_{2} of $\exists \alpha . \tau$ with witness types ρ_{1} and ρ_{2}.

A client M has type $\forall \alpha . \tau \rightarrow \sigma$ with $\alpha \notin \operatorname{fv}(\sigma)$; it must use the argument parametrically, and the result is independent of the witness type.

Assume that ρ_{1} and ρ_{2} are two closed representation types and R is in $\mathcal{R}\left(\rho_{1}, \rho_{2}\right)$. Let η be $\alpha \mapsto\left(\rho_{1}, \rho_{2}, R\right)$.

Suppose that $N_{1}: \tau\left[\alpha \mapsto \rho_{1}\right]$ and $N_{2}: \tau\left[\alpha \mapsto \rho_{2}\right]$ are two equivalent implementations of the operations, i.e. such that $\left(N_{1}, N_{2}\right) \in \mathcal{E} \llbracket \tau \rrbracket_{\eta}$.

A client M satisfies $(M, M) \in \mathcal{E} \llbracket \forall \alpha . \tau \rightarrow \sigma \rrbracket \rrbracket_{\eta}$. Thus ($M \rho_{1} N_{1}, M \rho_{2} N_{2}$) is in $\mathcal{E} \llbracket \sigma \rrbracket$ (as α is not free in σ).

That is, $M \rho_{1} N_{1} \cong \cong_{\sigma} M \rho_{2} N_{2}$: the behavior with the implementation N_{1} with representation type ρ_{1} is indistinguishable from the behavior with implementation N_{2} with representation type ρ_{2}.

How do we deal with recursive types?

Assume that we allow equi-recursive types.

$$
\tau::=\ldots \mid \mu \alpha . \tau
$$

A naive definition would be

$$
\mathcal{V} \llbracket \mu \alpha . \tau \rrbracket_{\eta}=\mathcal{V} \llbracket[\alpha \mapsto \mu \alpha . \tau] \tau \rrbracket_{\eta}
$$

But this is ill-founded.
The solution is to use indexed-logical relations.
We use a sequence of decreasing relations indexed by integers (fuel), which is consumed during unfolding of recursive types.

Step-indexed logical relations

We define a sequence $\mathcal{V}_{k} \llbracket \tau \rrbracket_{\eta}$ indexed by natural numbers $n \in \mathbb{N}$ that relates values of type τ up to n reduction steps. Omitting typing clauses:

$$
\begin{aligned}
\mathcal{V}_{k} \llbracket \mathrm{~B} \rrbracket_{\eta}= & \{(\mathrm{tt}, \mathrm{tt}),(\mathrm{ff}, \mathrm{ff})\} \\
\mathcal{V}_{k} \llbracket \tau \rightarrow \sigma \rrbracket_{\eta}= & \left\{\left(V_{1}, V_{2}\right) \mid \forall j<k, \forall\left(W_{1}, W_{2}\right) \in \mathcal{V}_{j} \llbracket \tau \rrbracket_{\eta},\right. \\
& \left.\left(V_{1} W_{1}, V_{2} W_{2}\right) \in \mathcal{E}_{j} \llbracket \sigma \rrbracket_{\eta}\right\} \\
\mathcal{V}_{k} \llbracket \alpha \rrbracket_{\eta}= & \eta_{R}(\alpha) . k \\
\mathcal{V}_{k} \llbracket \forall \alpha \cdot \tau \rrbracket_{\eta}= & \left\{\left(V_{1}, V_{2}\right) \mid \forall \rho_{1}, \rho_{2}, R \in \mathcal{R}^{k}\left(\rho_{1}, \rho_{2}\right), \forall j<k,\right. \\
& \left.\left(V_{1} \rho_{1}, V_{2} \rho_{2}\right) \in \mathcal{V}_{j} \llbracket \tau \rrbracket_{\eta, \alpha \leftrightarrow\left(\rho_{1}, \rho_{2}, R\right)}\right\} \\
\mathcal{V}_{k} \llbracket \mu \alpha \cdot \tau \rrbracket_{\eta}= & \left.\mathcal{V}_{k-1} \llbracket \alpha \mapsto \mu \alpha \cdot \tau\right] \tau \rrbracket_{\eta} \\
\mathcal{E}_{k} \llbracket \tau \rrbracket_{\eta}= & \left\{\left(M_{1}, M_{2}\right) \mid \forall j<k, M_{1} \Downarrow_{j} V_{1}\right. \\
& \left.\xlongequal{\Longrightarrow} \exists V_{2}, M_{2} \Downarrow V_{2} \wedge\left(V_{1}, V_{2}\right) \in \mathcal{V}_{k-j} \llbracket \tau \rrbracket_{\eta}\right\}
\end{aligned}
$$

By \Downarrow_{j} means reduces in j-steps.
$\mathcal{R}^{j}\left(\rho_{1}, \rho_{2}\right)$ is composed of sequences of decreasing relations between closed values of closed types ρ_{1} and ρ_{2} of length (at least) j.

Step-indexed logical relations

The relation is asymmetric.
If $\Delta ; \Gamma \vdash M_{1}, M_{2}: \tau$ we define $\Delta ; \Gamma \vdash M_{1} \precsim M_{2}: \tau$ as $\forall \eta \in \mathcal{R}_{\Delta}^{k}\left(\delta_{1}, \delta_{2}\right), \forall\left(\gamma_{1}, \gamma_{2}\right) \in \mathcal{G}_{k} \llbracket \Gamma \rrbracket, \quad\left(\gamma_{1}\left(\delta_{1}\left(M_{1}\right)\right), \gamma_{2}\left(\delta_{2}\left(M_{2}\right)\right) \in \mathcal{E}_{k} \llbracket \tau \rrbracket \eta_{\eta}\right.$ and

$$
\Delta ; \Gamma \vdash M_{1} \sim M_{2}: \tau \triangleq \bigwedge\left\{\begin{array}{l}
\Delta ; \Gamma \vdash M_{1} \precsim M_{2}: \tau \\
\Delta ; \Gamma \vdash M_{2} \precsim M_{1}: \tau
\end{array}\right.
$$

Notations and proofs get a bit involved...
Notations may be simplified by introducing a later guard \triangleright to capture incrementation of the index and avoid the explicit manipulation of integers (but the meaning remains the same).

Logical relations for F^{ω} ?

Logical relations can be generalized to work for F^{ω}, indeed.
There is a slight complication though in the interpretation of type functions.

This is of the scope of this course, but one may, for instance, read [Atkey, 2012].

Bibliography I

(Most titles have a clickable mark " \triangleright " that links to online versions.)
Martín Abadi and Luca Cardelli. A theory of primitive objects: Untyped and first-order systems. Information and Computation, 125(2):78-102, March 1996.

Martín Abadi and Luca Cardelli. A theory of primitive objects: Second-order systems. Science of Computer Programming, 25(2-3):81-116, December 1995.
\triangle Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational equivalence. In ACM International Conference on Functional Programming (ICFP), pages 157-168, September 2008.
\triangleright Robert Atkey. Relational parametricity for higher kinds. In Patrick Cégielski and Arnaud Durand, editors, Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL, volume 16 of Leibniz International Proceedings in Informatics (LIPIcs), pages 46-61, 2012. doi: 10.4230/LIPIcs.CSL.2012.46.

Bibliography II

\triangleright Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing
Polymorphic Properties, pages 125-144. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-11957-6. doi: 10.1007/978- $\sigma_{2} 3-\sigma_{2} 642-\sigma_{2} 11957-\sigma_{2} 6 _8$.
\triangleright Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality and subtyping. Fundamenta Informaticæ, 33:309-338, 1998.

- Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. Information and Computation, 155(1/2):108-133, November 1999.
\triangleright Yufei Cai, Paolo G. Giarrusso, and Klaus Ostermann. System F-omega with equirecursive types for datatype-generic programming. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20-22, 2016, pages 30-43. ACM, 2016. doi: $10.1145 / 2837614.2837660$.

Bibliography III

\triangleright Juan Chen and David Tarditi. A simple typed intermediate language for object-oriented languages. In ACM Symposium on Principles of Programming Languages (POPL), pages 38-49, January 2005.

- Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly language. In ACM Conference on Programming Language Design and Implementation (PLDI), pages 54-65, June 2007.
- Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type erasure semantics. Journal of Functional Programming, 12(6):567-600, November 2002.
Julien Cretin and Didier Rémy. System F with Coercion Constraints. In Logics In Computer Science (LICS). ACM, July 2014.
Jacques Garrigue and Didier Rémy. Ambivalent Types for Principal Type Inference with GADTs. In 11th Asian Symposium on Programming Languages and Systems, Melbourne, Australia, December 2013.

Bibliography IV

Nadji Gauthier and François Pottier. Numbering matters: First-order canonical forms for second-order recursive types. In Proceedings of the 2004 ACM SIGPLAN International Conference on Functional Programming (ICFP'04), pages 150-161, September 2004. doi: http://doi.acm.org/10.1145/1016850.1016872.
Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur. Thèse d'état, Université Paris 7, June 1972.
\triangleright Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University Press, 1990.
Neal Glew. A theory of second-order trees. In Daniel Le Métayer, editor,
Programming Languages and Systems, 11th European Symposium on Programming, ESOP 2002, held as Part of the Joint European Conference on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings, volume 2305 of Lecture Notes in Computer Science, pages 147-161. Springer, 2002. doi: $10.1007 / 3-\sigma_{2} 540-\sigma_{2} 45927-\sigma_{2} 8 \backslash-11$.

Bibliography V

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press, 2012.
Robert Harper and Benjamin C. Pierce. Design considerations for ML-style module systems. In Benjamin C. Pierce, editor, Advanced Topics in Types and Programming Languages, chapter 8, pages 293-345. MIT Press, 2005.
J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and Lambda-Calculus. Cambridge University Press, 1986.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell: being lazy with class. In ACM SIGPLAN Conference on History of Programming Languages, June 2007.
Oleg Kiselyov. Higher-kinded bounded polymorphism. web page.
Peter J. Landin. Correspondence between ALGOL 60 and Church's lambda-notation: part I. Communications of the ACM, 8(2):89-101, 1965.
\triangle Konstantin Läufer and Martin Odersky. Polymorphic type inference and abstract data types. ACM Transactions on Programming Languages and Systems, 16 (5):1411-1430, September 1994.

Bibliography VI

Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power of system F. In ACM International Conference on Functional Programming (ICFP), pages 27-38, August 2003.
Fabrice Le Fessant and Luc Maranget. Optimizing pattern-matching. In Proceedings of the 2001 International Conference on Functional Programming. ACM Press, 2001.
Sophie Malecki. Proofs in system $f \omega$ can be done in system $f \omega 1$. In Dirk van Dalen and Marc Bezem, editors, Computer Science Logic, pages 297-315, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. ISBN 978-3-540-69201-0.

Luc Maranget. Warnings for pattern matching. Journal of Functional Programming, 17, May 2007.
Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conversion. In ACM Symposium on Principles of Programming Languages (POPL), pages 271-283, January 1996.

Bibliography VII

\triangleright John C. Mitchell. Polymorphic type inference and containment. Information and Computation, 76(2-3):211-249, 1988.
\triangleright John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM Transactions on Programming Languages and Systems, 10(3):470-502, 1988.
\triangle Benoît Montagu and Didier Rémy. Modeling abstract types in modules with open existential types. In ACM Symposium on Principles of Programming Languages (POPL), pages 63-74, January 2009.
\triangleright Greg Morrisett and Robert Harper. Typed closure conversion for recursively-defined functions (extended abstract). In International Workshop on Higher Order Operational Techniques in Semantics (HOOTS), volume 10 of Electronic Notes in Theoretical Computer Science. Elsevier Science, 1998.
\triangleright Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly language. ACM Transactions on Programming Languages and Systems, 21(3):528-569, May 1999.

Bibliography VIII

Hiroshi Nakano. A modality for recursion. In IEEE Symposium on Logic in Computer Science (LICS), pages 255-266, June 2000.
Hiroshi Nakano. Fixed-point logic with the approximation modality and its Kripke completeness. In International Symposium on Theoretical Aspects of Computer Software (TACS), volume 2215 of Lecture Notes in Computer Science, pages 165-182. Springer, October 2001.
Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local type inference. In ACM Symposium on Principles of Programming Languages (POPL), pages 41-53, 2001.
Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1999.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
Benjamin C. Pierce and David N. Turner. Local type inference. ACM
Transactions on Programming Languages and Systems, 22(1):1-44, January 2000.

Bibliography IX

\triangleright Andrew M. Pitts. Parametric polymorphism and operational equivalence. Mathematical Structures in Computer Science, 10:321-359, 2000.
François Pottier. A typed store-passing translation for general references. In Proceedings of the 38th ACM Symposium on Principles of Programming Languages (POPL'11), Austin, Texas, January 2011. Supplementary material.
\triangleright François Pottier and Nadji Gauthier. Polymorphic typed defunctionalization and concretization. Higher-Order and Symbolic Computation, 19:125-162, March 2006.
\triangleright François Pottier and Yann Régis-Gianas. Stratified type inference for generalized algebraic data types. In ACM Symposium on Principles of Programming Languages (POPL), pages 232-244, January 2006.
François Pottier and Yann Régis-Gianas. Towards efficient, typed LR parsers. In ACM Workshop on ML, volume 148-2 of Electronic Notes in Theoretical Computer Science, pages 155-180, March 2006.

Bibliography X

\triangle François Pottier and Didier Rémy. The essence of ML type inference. In Benjamin C. Pierce, editor, Advanced Topics in Types and Programming Languages, chapter 10, pages 389-489. MIT Press, 2005.

- Didier Rémy. Programming objects with ML-ART: An extension to ML with abstract and record types. In International Symposium on Theoretical Aspects of Computer Software (TACS), pages 321-346. Springer, April 1994.
Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-oriented extension to ML. Theory and Practice of Object Systems, 4(1):27-50, 1998.
\square John C. Reynolds. Towards a theory of type structure. In Colloque sur la Programmation, volume 19 of Lecture Notes in Computer Science, pages 408-425. Springer, April 1974.
D John C. Reynolds. Types, abstraction and parametric polymorphism. In Information Processing 83, pages 513-523. Elsevier Science, 1983.

Bibliography XI

\triangle John C. Reynolds. Three approaches to type structure. In International Joint Conference on Theory and Practice of Software Development (TAPSOFT), volume 185 of Lecture Notes in Computer Science, pages 97-138. Springer, March 1985.

- Andreas Rossberg. 1ml - core and modules united. J. Funct. Program., 28:e22, 2018. doi: 10.1017/S0956796818000205.
\triangleright Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing modules. J. Funct. Program., 24(5):529-607, 2014. doi: 10.1017/S0956796814000264.
\triangleright Gabriel Scherer and Didier Rémy. Full reduction in the face of absurdity. In Programming Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, pages 685-709, 2015. doi: $10.1007 / 978-\sigma_{2} 3-\sigma_{2} 662-\sigma_{2} 46669-\sigma_{2} 8 _28$.

Bibliography XII

\triangleright Vincent Simonet and François Pottier. A constraint-based approach to guarded algebraic data types. ACM Trans. Program. Lang. Syst., 29(1), January 2007. ISSN 0164-0925. doi: 10.1145/1180475.1180476.

Paul A. Steckler and Mitchell Wand. Lightweight closure conversion. ACM Transactions on Programming Languages and Systems, 19(1):48-86, 1997.
Christopher Strachey. Fundamental concepts in programming languages. Higher-Order and Symbolic Computation, 13(1-2):11-49, April 2000.
Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. System f with type equality coercions. In Proceedings of the 2007 ACM SIGPLAN International Workshop on Types in Languages Design and Implementation, TLDI '07, pages 53-66, New York, NY, USA, 2007. ACM. ISBN 1-59593-393-X. doi: 10.1145/1190315.1190324.
\triangleright W. W. Tait. Intensional interpretations of functionals of finite type i. The Journal of Symbolic Logic, 32(2):pp. 198-212, 1967. ISSN 00224812.
\triangleright Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for second-order types is undecidable. Information and Computation, 179(1):1-18, 2002.

Bibliography XIII

\triangleright Dimitrios Vytiniotis, Simon Peyton jones, Tom Schrijvers, and Martin Sulzmann. Outsidein(x) modular type inference with local assumptions. J. Funct. Program., 21(4-5):333-412, September 2011. ISSN 0956-7968. doi: 10.1017/S0956796811000098.

Philip Wadler. Theorems for free! In Conference on Functional Programming Languages and Computer Architecture (FPCA), pages 347-359, September 1989.

D Philip Wadler. The Girard-Reynolds isomorphism (second edition). Theoretical Computer Science, 375(1-3):201-226, May 2007.
\triangleright J. B. Wells. The essence of principal typings. In International Colloquium on Automata, Languages and Programming, volume 2380 of Lecture Notes in Computer Science, pages 913-925. Springer, 2002.
\triangleright J. B. Wells. The undecidability of Mitchell's subtyping relation. Technical Report 95-019, Computer Science Department, Boston University, December 1995.

Bibliography XIV

\triangleright J. B. Wells. Typability and type checking in system F are equivalent and undecidable. Annals of Pure and Applied Logic, 98(1-3):111-156, 1999.

- Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information and Computation, 115(1):38-94, November 1994.
\triangleright Jeremy Yallop and Leo White. Lightweight higher-kinded polymorphism. In Michael Codish and Eijiro Sumii, editors, Functional and Logic Programming, pages 119-135, Cham, 2014. Springer International Publishing. ISBN 978-3-319-07151-0.

