MPRI 2.4, Functional programming and type systems
Metatheory of System F

Didier Rémy

October 13, 2021

4

lrezia —

Plan of the course

Metatheory of System F

ADTs, Recursive types, Existential types, GATDs

Going higher order with F“!

Logical relations

Logical relations and parametricity

Introduction

Normalization of A
Observational equivalence in Ay
Logical relations in stlc

Logical relations in F
Applications

Extensions

83

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

What are logical relations?

So far, most proofs involving terms have proceeded by induction on the
structure of terms (or, equivalently, typing derivations).

Logical relations are relations between well-typed terms defined
inductively on the structure of types. They allow proofs between terms
by induction on the structure of types.

Unary relations

® Unary relations are predicates on expressions

® They can be used to prove type safety and strong normalization
Binary relations

® Binary relations relates two expressions of related types.

® They can be used to prove equivalence of programs and
non-interference properties.

Logical relations are a common proof method for programming languages.
5 8 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type Ya.«a — int ?

?

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type Ya.«a — int ?

D> the function cannot examine its argument

so ?

Introduction Normalization =~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type Va.a — int ?
D> the function cannot examine its argument

> it always returns the same integer

for example ?

Introduction Normalization =~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type Ya.«a — int ?
D> the function cannot examine its argument
> it always returns the same integer

> Azr.n,
Az. (A\y.y) n,
Ax. (Ay.n) .
etc.

What do they all have in common 7

64y 83 <

Introduction Normalization =~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type Ya.«a — int ?
D> the function cannot examine its argument
> it always returns the same integer

> Azr.n,
Az. (A\y.y) n,
Ax. (Ay.n) .
etc.

> they are all Bn-equivalent to a term of the form Ax.n

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type Va.a — int ?

> behaves as \x.n

66y 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type Va.a — int ?

> behaves as \x.n

A term a of type Va.av > o 7

67y 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type Va.a — int ?

> behaves as \x.n

A term a of type Va.av > o 7

> behaves as \z.z

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type Va.a — int ?

> behaves as \x.n

A term a of type Va.av > o 7

> behaves as \z.z

A term type VafB.a > B>« ?

6(9) 83

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type Va.a — int ?

> behaves as \x.n

A term a of type Va.av > o 7

> behaves as \z.z

A term type VafB.a > B>« ?
> behaves as Az. A\y. x

A term type Va.a - a - «a ?

6(10) 83

<]

Introduction Normalization =~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type Va.a — int ?

> behaves as \x.n

A term a of type Va.av > o 7

> behaves as \z.z

A term type VafB.a > B>« ?
> behaves as Az. A\y. x

A term type Va.a - a - «a ?

D> behaves either as Az. A\y.x or Az. A\y.y

6(11) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami : Va.list o — list o

?

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function
whoami : Va.lista — list«

> The length of the result depends only on the length of the argument

Introduction Normalization =~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function
whoami : Va.lista — list o

> The length of the result depends only on the length of the argument

> All elements of the results are elements of the argument

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function
whoami : Va.lista — list«
> The length of the result depends only on the length of the argument

> All elements of the results are elements of the argument

> The choice (i,) of pairs such that i-th element of the result is the
j-th element of the argument does not depend on the element itself.

7(4) 83

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a ‘“free
theorem” about its behavior!

What properties may we learn from a function
whoami : Va.lista — list o
> The length of the result depends only on the length of the argument

> All elements of the results are elements of the argument

> The choice (i,) of pairs such that i-th element of the result is the
j-th element of the argument does not depend on the element itself.

> the function is preserved by a transformation of its argument that
preserves the shape of the argument

Vf,x, whoami (map fx)=map f (whoami x)

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function
whoami : Va.lista — list«
What property may we learn for the list sorting function?

sort : Ya.(a - o > bool) — list v > list «

?

7(6) 83

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function
whoami : Va.lista — list«
What property may we learn for the list sorting function?
sort : Ya.(a - o > bool) — list v > list «
If f is order-preserving, then sorting commutes with map f

(Vz,y, cmp (fz) (fy)=cmp zy) =
Ve, sort cmp (map f £) = map f (sort cmp ()

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function
whoami : Va.lista — list«
What property may we learn for the list sorting function?
sort : Ya.(a - o > bool) — list v > list «
If f is order-preserving, then sorting commutes with map f

(Vz,y, cmpy (f z) (fy)=cmp, zy) =
Ve, sort cmp, (map f £) = map f (sort cmp; £)

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function
whoami : Va.lista — list«
What property may we learn for the list sorting function?
sort : Ya.(a - o > bool) — list v > list «
If f is order-preserving, then sorting commutes with map f

(Vz,y, cmpy (f z) (fy)=cmp, zy) =
Ve, sort cmp, (map f £) = map f (sort cmp; £)

Application:
> If sort is correct on lists of integers, then it is correct on any list

> May be useful to reduce testing.
79 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function
whoami : Va.lista — list«
What property may we learn for the list sorting function?
sort : Ya.(a - o > bool) — list v > list «
If f is order-preserving, then sorting commutes with map f

(Vz,y, cmpy (f z) (fy)=cmp, zy) =
Ve, sort cmp, (map f £) = map f (sort cmp; £)

Note that there are many other inhabitants of this type, but they all
satisfy this free theorem.

Can you give a few?

710y 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function
whoami : Va.lista — list«
What property may we learn for the list sorting function?
sort : Ya.(a - o > bool) — list v > list «
If f is order-preserving, then sorting commutes with map f

(Vz,y, cmpy (f z) (fy)=cmp, zy) =
Ve, sort cmp, (map f £) = map f (sort cmp; £)

Note that there are many other inhabitants of this type, but they all
satisfy this free theorem. (e.g., a function that sorts in reverse order, or a
function that removes (or adds) duplicates).

71y 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity

This phenomenon was studied by Reynolds [1983] and by Wadler [1989;
2007], among others. Wadler's paper contains the ‘free theorem’ about
the list sorting function.

An account based on an operational semantics is offered by Pitts [2000].

Bernardy et al. [2010] generalize the idea of testing polymorphic
functions to arbitrary polymorphic types and show how testing any
function can be restricted to testing it on (possibly infinitely many)
particular values at some particular types.

Introduction

Normalization of Ay
Observational equivalence in Ay
Logical relations in stlc

Logical relations in F
Applications

Extensions

83

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Normalization of simply-typed A-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

w0y 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Normalization of simply-typed A-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.

w02 838 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Normalization of simply-typed A-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.

The simply-typed A-calculus is also lifted at the level of types in richer
type systems such as F'“; then, the decidability of type-equality depends
on the termination of the reduction at the type level.

@) 838 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Normalization of simply-typed A-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.

The simply-typed A-calculus is also lifted at the level of types in richer
type systems such as F'“; then, the decidability of type-equality depends
on the termination of the reduction at the type level.

The proof of termination for the simply-typed A-calculus is a simple and
illustrative use of logical relations.

Notice however, that our simply-typed A-calculus is equipped with a
call-by-value semantics. Proofs of termination are usually done with a

strong evaluation strategy where reduction can occur in any context.
10(4) 83

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Normalization

Proving termination of reduction in fragments of the A-calculus is often a
difficult task because reduction may create new redexes or duplicate
existing ones.

Hence the size of terms may grow (much) larger during reduction. The
difficulty is to find some underlying structure that decreases.

We follow the proof schema of Pierce [2002], which is a modern
presentation in a call-by-value setting of an older proof by
Hindley and Seldin [1986]. The proof method is due to [Tait, 1967].

11 83

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Calculus

Take the call-by-value Az with primitive booleans and conditional.
Write B the type of booleans and tt and ff for true and false.

We define V[7] and £[7] the subsets of closed values and closed
expressions of (ground) type 7 by induction on types as follows:

V[B] = {tt, ff}
V[— 1] 2 {Ae:m. M | Az:m. M 1 > 7o
AYV eV[r], (Az:m. M)V e &[]}
Elr] E{M | M:7AIVeV[r],M | V}
We write M || V for M —* V.
The goal is to show that any closed expression of type 7 is in E[7].

Remarks
Although usual with logical relations, well-typedness is actually not
required here and omitted: otherwise, we would have to carry

unnecessary type-preservation proof obligations.
iy 838 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Calculus

Take the call-by-value Az with primitive booleans and conditional.
Write B the type of booleans and tt and ff for true and false.

We define V[7] and £[7] the subsets of closed values and closed
expressions of (ground) type 7 by induction on types as follows:

V[B] = {tt,ff}
V[r - n] = {Az:m. M| VV eV[r], Qz:m. M)V e&[r]}

Elr] ={M |3V eV[r],M | V}

We write M || V for M —* V.

The goal is to show that any closed expression of type 7 is in E[7].

Remarks

V(7] c E[r]—Dby definition.

&[] is closed by inverse reduction—by definition, i.e.

If M — N and N € &[7] then M € E[r].

e 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Problem

We wish to show that every closed term of type 7 is in E[7]

® Proof by induction on the typing derivation.

® Problem with abstraction: the premise is not closed.

We need to strengthen the hypothesis, i.e. also give a semantics to open
terms.

® The semantics of open terms can be given by abstracting over the
semantics of their free variables.

i 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Generalize the definition to open terms

We define a semantic judgment for open terms I' = M : 7 so that
' M:7impliesT'e M:7and @& M : 7 means M € E[7].

We interpret free term variables of type 7 as closed values in V[7].

We interpret environments I' as closing substitutions 7y, i.e. mappings
from term variables to closed values:

We write v € G[I'] to mean dom(v) = dom(T") and ~(z) € V[r] for all
r:Tel. o
DeM:7 < VyeG[l], v(M)e&[r]

v 8 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Fundamental Lemma

Theorem (fundamental lemma)
fT'-M:7thenD'= M:T.

Corollary (termination of well-typed terms):
If @+ M :7 then M € E[7].

That is, closed well-typed terms of type 7 evaluate to values of type 7.

20 88 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Proof by induction on the typing derivation

Routine cases

Case I'+tt: B or I' + ff : B: by definition, tt, ff ¢ V[B] and V[B] c £[B].
Case '+ :7: veG[I], thus y(x) € V[7] € €[]

Case ' My My : T:

By inversion, ' - My : 19 - 7 and ' - My : 7o.

Let v € G[I']. We have (M1 M) = (yM7) (v Ma).
By IH, we have ' E My : 79— 7 and I' & My : 7.
Thus yM; € E[2 — 7] (1) and yM; € E[12] (2).

By (2), there exists V' € V[2] such that vMy || V.
Thus (yMy) (M) ~ (vMy) V € E]7] by (1).

Then, (yMy) (yMz) € E[7], by closure by inverse reduction.
Case I' + if M then M else Ms : 7: By cases on the evaluation of vM.

21 83

<]

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Proof by induction on the typing derivation

The interesting case
Case'- X . M 1 > T

Assume v € G[I'].
We must show that y(Az:7. M) e E[m - 7] (1)

That is, Ax:71.yM € V[r; - 7] (we may assume z ¢ dom(y) w.l.o.g.)
Let V e V[m], it suffices to show (Az:1.vM) V € E[7] (2).

We have (A\z:1.yM) V — (YM)[z — V] ="M
where 7" is y[z » V] e G,z : 7] (3)
Since I'x:m - M :7, we have 'z : 7y = M : 7 by IH on M. Therefore

by (3), we have /M € E[r]. Since E[7] is closed by inverse reduction,
this proves (2) which finishes the proof of (1).

» s <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Variations

We have shown both termination and type soundness, simultaneously.

Termination would not hold if we had a fix point. But type soundness
would still hold.

The proof may be modified by choosing:
Elr] ={M:7|YN,M | N = (NeV[r] v IN',N — N')}
Compare with

Elr] ={M : 7|3V eV[r],M | V}

Exercise
Show type soundness with this semantics.

3 8 <

@ Introduction

@ Normalization of Ay

@ Observational equivalence in Ay
@ Logical relations in stlc

@ Logical relations in F

@ Applications

@ Extensions

2 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

(Bibliography)

Mostly following Bob Harper's course notes Practical foundations for
programming languages [Harper, 2012].

See also

Types, Abstraction and Parametric Polymorphism [Reynolds, 1983]
® Parametric Polymorphism and Operational Equivalence [Pitts, 2000].
Theorems for free! [Wadler, 1989].

® Course notes taken by Lau Skorstengaard on Amal Ahmed’'s OPLSS
lectures.

We assume a call-by-value operational semantics instead of call-by-name
in [Harper, 2012].

25 83

https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

When are two programs equivalent

M|N?
M|Vand N | V?
But what if M and N are functions?

Aren't Az.(z+x) and Az.2xx equivalent?
Idea

?

26(1) 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

When are two programs equivalent

M|N?
M|Vand N | V?
But what if M and N are functions?

Aren't Az.(z+x) and Az.2xx equivalent?

Idea two functions are observationally equivalent if when applied to
equivalent arguments, they lead to observationally equivalent results.

Are we general enough?

2%(2) 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Observational equivalence

We can only observe the behavior of full programs, i.e. closed terms of
some computation type, such as B (the only one so far).

If M :B and N :B, then M ~ N iff there exists V such that M || V' and
N || V. (Call M ~ N behavioral equivalence.)

To compare programs at other types, we

?

a1y 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Observational equivalence

We can only observe the behavior of full programs, i.e. closed terms of
some computation type, such as B (the only one so far).

If M :B and N :B, then M ~ N iff there exists V such that M || V' and
N || V. (Call M ~ N behavioral equivalence.)

To compare programs at other types, we place them in arbitrary closing
contexts.

Definition (observational equivalence)
I'-M=N:7 = VC: (D' >7)~ (2 >B), C[M]=~C[N]
Typing of contexts
C:Tpr)~(Apo) < (VM, T+-M:7 = ArC[M]:0)
There is an equivalent definition given by a set of typing rules. This is

needed to prove some properties by induction on the typing derivations.

We write M =, N for g+~ M2 N:1
72y 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Observational equivalence

Observational equivalence is the coarsiest consistent congruence, where:

= is consistent if @+ M = N : B implies M ~ N.

= is a congruence if it is an equivalence and is closed by context, i.e.
'FM=N:7AC:(T>7)~(A>o) = ArC[M]=C[N]:0
Consistent: by definition, using the empty context.

Congruence: by compositionality of contexts.

Coarsiest: Assume = is a consistent congruence. Assume I'- M =N : 7
holds and show that I' - M =~ N : 7 holds (1).

Let C: (' >7) ~ (2 >B) (2). We must show that C[M] ~ C[N].
This follows by consistency applied to I' = C[M] = C[N] : B which
follows by congruence from (1) and (2).

28 83

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Problem with Observational Equivalence

Problems

® Observational equivalence is too difficult to test.
* Because of quantification over all contexts (too many for testing).

® But many contexts will do the same experiment.

Solution

We take advantage of types to reduce the number of experiments.

* Defining/testing the equivalence on base types.

® Propagating the definition mechanically at other types.

Logical relations provide the infrastructure for conducting such proofs.

20 8 <

@ Introduction

@ Normalization of Ay

@ Observational equivalence in Ay
@ Logical relations in stlc

@ Logical relations in F

@ Applications

@ Extensions

30 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Logical equivalence for closed terms

Unary logical relations interpret types by predicates on (i.e. sets of)
closed values of that type.

Binary relations interpret types by binary relations on closed values of
that type, i.e. sets of pairs of related values of that type.

That is V[7] c Val(7) x Val(7).
Then, &[] is the closure of V[7] by inverse reduction

We have V[7] ¢ £[7] < Exp(7) x Exp(T).

31 83

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Logical equivalence for closed terms

We recursively define two relations V[7] and £[7] between values of
type 7 and expressions of type 7 by

V[B] = {(tt,tt), (ff,ff)}

V[r - o] {(Vi,W) | Vi,VorT—>0nA
VW1, Wa) € V[r], (Vi Wi,V Wa) e E[o] }

Elr] = {(My, M) | My, My:7 A
3(Vi,Va) e V[r] , My | Vi A Mo | Va}

In the following we will leave the typing constraint in gray implicit (as
global condition for sets V[-] and E[-]).

We also write

M1 ~r M2 for (Ml,MQ) € 5[[7’]] and
Vi~ Voo for (Vi, Vo) e V[7].
(1) 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Logical equivalence for closed terms

We recursively define two relations V[7] and £[7] between values of
type 7 and expressions of type 7 by

V[B] = {(tt,tt), (ff,ff)}

V[r - o] {(Vi,W) | Vi,VorT—>0nA
VW1, Wa) € V[r], (Vi Wi,V Wa) e E[o] }

Elr] = {(My, M) | My, My:7 A
U (M, M) e V[r] }

In the following we will leave the typing constraint in gray implicit (as
global condition for sets V[-] and E[-]).

We also write

M1 ~r M2 for (Ml,MQ) € 5[[7’]] and
Vi mge Voo for (Vi, Vo) e V[7].
3202) 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Logical equivalence for closed terms (variant)

In a language with non-termination
We change the definition of £[7] to
Elr] & {(My, Mp) | My, M 7
(VVi, My | Vi = 3Va, My || Vo n(V3, V) € V]1])
A(VVa, My | Vo = 3Vi, My Vi A (VA VR) EV[[T]])}

Notice

I

VT - o] {(Vi, W) | Vi, Vo7 =0n

V(Wi Wa) e V[r], (Vi Wi,V Wa) € E[o]}
{((Az:7. My),(Ax:7. M) | (Aw:7. My), (Az:m. My) =7 = o A
V(Wl,Wg) € V[[’Tﬂ, (()\{E’T Ml) W1,()\{EI’7'. Mg) Wg) € g[[dﬂ}

33 8 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties of logical equivalence for closed terms

Closure by reduction

By definition, since reduction is deterministic: Assume M; | N and

Ms | Ny and (M, My) € E[7], i.e. there exists (V1,V2) € V[7] (1) such
that M; || V;. Since reduction is deterministic, we must have

M; || N; || V. This, together with (1), implies (N1, Ms) € E[7].

Closure by inverse reduction
Immediate, by construction of £[7].

Corollaries

o If (M1, Ms) € &[T — o] and (N1, Na) € E[7], then
(My Ny, My N») € E]o].

® To prove (M, Ms) € E[T — o], it suffices to show
(M Vi, My Vo) € E]a] for all (Vi,Va) e V[7].

3 s <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties of logical equivalence for closed terms

Consistency (~g) € (»)

Immediate, by definition of £[B] and V[B] ¢ (=).

Lemma

Logical equivalence is symmetric and transitive (at any given type).
Note: Reflexivity is not at all obvious.

Proof

We show it simultaneously for ~. and =, by induction on type 7.

33 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties of logical equivalence for closed terms (proof)

For ~., the proof is immediate by transitivity and symmetry of ~..

For ~,, it goes as follows.

Case 7 is B for values: the result is immediate.

Case T is T — o:

By IH, symmetry and transitivity hold at types 7 and o.

For symmetry, assume Vi ~,_, Vo (H), we must show V5 ~,_, V1.

Assume W1 ~, Wy, We must show Vo My ~., V4 Wa (C). We have Wy ~,, W,

by symmetry at type 7. By (H), we have Vo Wy ~, —Vl W1 and (C) follows by
symmetry of ~ at type o.

For transitivity, assume V; ~; V5 (H1) and V, ~; V3 (H2). To show V; ~; V3,
we assume Wy ~, W3 and show V3 Wy ~, V53 W3 (C).

By (H1), we have Vi Wi ~,, Vi W3 (C1).

By symmetry and transitivity of ~., we get W3 ~, Ws. (not reflexivity!)
By (H2), we have V, W5 ~, V3 W3 (C2).

(C) follows by transitivity of ~, (C1) and (C2).
37 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Logical equivalence for open terms

When I'- My : 7 and I' = M5 : 7, we wish to define a judgment
I'~ My ~ M : 7 to mean that the open terms M and M> are equivalent
at type 7.

The solution is to interpret program variables of dom(I') by pairs of
related values and typing contexts I' by a set of bisubstitutions ~
mapping variable type assignments to pairs of related values.
gle] = {o}
gt,z: 7] = {y,a~ (V1,V2) | veG[I] A (V1,V2) e V[r]}
Given a bisubstitution ~, we write ~; for the substitution that maps = to
V; whenever v maps = to (V1,V5).

> e

Definition
LMy~ My:7 < VyeG[l'], (mMi,v2Ms)e&[r]

We also write = My ~ My : 7 or My ~, My for @+~ My ~ My : 7.
38 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties of logical equivalence for open terms

Immediate properties
Open logical equivalence is symmetric and transitive.

(Proof is immediate by the definition and the symmetry and transitivity
of closed logical equivalence.)

39 83

Introduction Normalization

Observational equivalence Logical rel in Ag¢

Logical rel. in F Applications

Fundamental lemma of logical equivalence

Theorem (Reflexivity)

(also called the fundamental lemma))

IfT-M:7,thenT'- M ~ M : 7.

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

C-TRUE
T+ tt: bool

C-ABs
Tx:t-M;:0o

I'Xe:m.My:7—>0

C-Ir
Fl—Ml : B

C-VARr

C-FALSE rirel

T+ ff : bool _—
I'ax:71

C-Arp
I'-My:7—>o0 I'eNy:T

I'-M; N;:o

'-Ny:7 I+ Nj:T

[+ if My then Ny else Ny : 7

40(1) 83

Extensions

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Fundamental lemma of logical equivalence

Theorem (Reflexivity) (also called the fundamental lemma))
IfT-M:7,thenT'- M ~ M : 7.

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

C-VARr
C-TRUE C-FALSE zirel
I' +tt: bool T~ ff: bool
I'ax:71
C-ABs C-Arp
'e:t+-M;:0 I'-Mi:7—>0 I'eNy:T
T'-Xe:r. My:7—0 I'-M;{ Ny:0o
C-Ir
I'-M,:B P-Np:7 [+ Nj:T

"+ if My then Ny else Ny : 7 w0 55 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Fundamental lemma of logical equivalence

Theorem (Reflexivity) (also called the fundamental lemma))
IfT-M:7,thenT'- M ~ M : 7.

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

C-VARr
C-TRUE C-FALSE zirel
'+ tt : bool '+ ff : bool _
I'2 T
C-ABs C-Aprp
x:7+ My o ' M; T >0 I'-MN; I T
'+~ Ae:r. My T >0 I'-M N; 1o
C-Ir
I+ M, :B -N; i [+ Ny i

"+ if M then Ny else Ny w8 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Fundamental lemma of logical equivalence

Theorem (Reflexivity) (also called the fundamental lemma))
IfT-M:7,thenT'- M ~ M : 7.

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

C-VARr
C-TRUE C-FALSE zirel
I'+tt ~ tt: bool I'+ ff ~ f : bool _
I'rz~a:7
C-ABs C-Arp
e:t-My~ Ms:o I'e-Mi~My:T—>o0 I'e-Ny~Noy:r
TXe:ir. My~ dvir. Mo T >0 I'-M{ Ny~ My Ny:o
C-Ir

I'-M;~Ms>:B ' Ny~ No:r FI—N{NA\'Q:T
"+ if M then Ny else Ny ~ if M, then Ny else N): 7

a4y 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Fundamental lemma of logical equivalence

Theorem (Reflexivity) (also called the fundamental lemma))
IfT-M:7,thenT'- M ~ M : 7.

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

C-VARr
C-TRUE C-FALSE zirel
I'+tt~ tt: bool I'+ ff ~ ff : bool _
I'rz~x:7
C-ABs C-Aprp
e:t-My~Ms:0 I'e-Mi~My:T—>o0 I'-Ny~Ny:7
T-Xe:ir. My~ v:ir.My:m >0 I'-M;{ Ny~MyNy:0o
C-Ir

FI—M1~MQIB FI—N1~NQIT FI—N{NNQIZT
"+ if M then Ny else Ny ~ if My then Ny else N : 7

sy 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Fundamental lemma of logical equivalence

Theorem (Reflexivity) (also called the fundamental lemma))
IfT-M:7,thenT'- M ~ M : 7.

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

C-VARr
C-TRUE C-FALSE zirel
I'+tt~ tt: bool I'+ ff ~ ff : bool _
I'rz~ax:7
C-ABs C-Arp
e:t-My~Ms:0 I'e-Mi~My:T—>o0 I'-Ny~Ny:7
T-Xe:ir. My~ dv:ir. My :m >0 I'-M{ Ny~MyNy:0o
C-Ir

I'-M;~DMs5:B I'-Ny~No:T [+~ N{~Ny:T
"+ if M; then Ny else Ny ~ if My then Ny else N : 7

sy 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Proof of compatibility lemmas

Each case can be shown independently.

Rule C-ABs: Assume I',z: 7+ My ~ My : o (1). We show

L Az:m. My ~ Ax:7.Ma : 7 —> 0. Let v € G[y]. We show

(m(Az:7. My),vo(Ax:T. M2)) € V[T — o] . Let (V4,V2) be in V[7]. It suffices
to show that (y1(Az:7. M7) Vi,v2(Ax:7. M2) V2) € E]0] (2).

Let 7' be v,z — (V1,V2). We have 4" € G[I',x : 7]. Thus, from (1), we have
(v1 My, v5M3) € E[o], which proves (2), since E]o] is closed by inverse
reduction and 1 (Az:7. M1) Vi || v/ M.

Rule C-ApP (and C-IF): By induction hypothesis and the fact that substitution
distribute over applications (and conditional).

We must show I" = My Ny ~ Mz My : 0 (1). Let v e G[I']. From the premises
['~Mi~My:7—0and ' - Ni ~ Na:7, we have (71 M1,v2M2) € E[T — o] and
(71 N1,v2N2) € E[7]. Therefore (y1 M1 41 N1, v2 Mz v2N2) € E[o]. That is

(71 (M1 N1),v2(M2 N2)) € E]o], which proves (1).

Rule C-TRUE, C-FALSE, and C-VAR: are immediate

a8 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Proof of compatibility lemmas (cont.)

Rule C-Tr: We show T+ if M; then Ny else N ~ if My then Ny else NJ : 7.

Assume 7y € G[v].

We show (~1 (if M; then Ny else N7), 2 (if Ms then Ny else N3)) € E[r], That
is (if y1 M7 then v1 N7 else v1 N7, if 42 M3 then 4o Ny else 72 N3) € E[7] (1).
From the premise I' = M7 ~ Mo : B, we have (71 My, y2Mz) € E[B]. Therefore
My | V and Ms | V where V is either tt or ff:

® Case V istt:. Then, (if v;M; then ~;N; else v, N}) || v N;, i.e.
~i(if M; then N; else NY) || v;N;. From the premise I' = Ny ~ Ny : 7, we
have (1 N1,72N2) € E[7] and (1) follows by closer by inverse reduction.

o CaseV isff: similar.

42 83

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Proof of reflexivity

By induction on the proof of I' - M : 7. We must show I' - M ~ M : 7:

All cases immediately follow from compatibility lemmas.

Case M is tt or ff: Immediate by Rule C-TRUE or Rule C-FALSE
Case M is x: Immediate by Rule C-VAR.

Case M is M" N: By inversion of the typing rule App, induction
hypothesis, and Rule C-App.

Case M is At:N.: By inversion of the typing rule ABs, induction
hypothesis, and Rule C-ABs.

43 83

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties of logical relations

Corollary (equivalence) Open logical relation is an equivalence relation

Logical equivalence is a congruence
fT+M~M:7and C: (L >7)~ (A D>o), then
A+C[M]~C[M']:0.

Proof By induction on the proof of C: (I' >7) ~ (A > o).

Similar to the proof of reflexivity—but we need a syntactic definition of
context-typing derivations (which we have omitted) to be able to reason
by induction on the context-typing derivation.

Soundness of logical equivalence
Logical equivalence implies observational equivalence.
D -M~M:7thenT'-M=M:T.

Proof: Logical equivalence is a consistent congruence, hence included in
observational equivalence which is the coarsiest such relation.

w83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties of logical equivalence

Completeness of logical equivalence
Observational equivalence of closed terms implies logical equivalence.
That is (2;) S (~7).

Proof by induction on 7.

Case B: In the empty context, by consistency g is a subrelation of ~g
which coincides with ~g.

Case T — o0: By congruence of observational equivalence!

By hypothesis, we have M; =, My (1). To show M; ~._, M, we
assume V; ~; V5 (2) and it suffices to show My Vi ~, My Vs (3).

By soundness applied to (2), we have V; 2, V5 from (4). By congruence
with (1), we have M; Vi =, My Vi, which implies (3) by IH at type o.

45 83

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢y Logical rel. in F

Logical equivalence: example of application

Fact: Assume not = \z:B.if z then ff else tt
and M = \z:B. \y:7. \z:7.if not x then y else =
and M’ 2 \z:B. \y:7. \z:7.if = then z else y.

Show that M ~g_,,r.r M'.

?

Applications

Extensions

46(1) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Logical equivalence: example of application

Fact: Assume not = \z:B.if z then ff else tt
and M = \z:B. \y:7. \z:7.if not x then y else =
and M’ 2 \z:B. \y:7. \z:7.if = then z else y.

Show that M ~g_,,r.r M'.
Proof

It suffices to show M Vi Vi Vo~ M' Vi V] Vi whenever Vg ~g Vj (1)
and V; ~; V{ (2) and V3 ~; V4 (3).

?

46(2) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Logical equivalence: example of application

Fact: Assume not = \z:B.if z then ff else tt
and M = \z:B. \y:7. \z:7.if not x then y else =
and M’ 2 \z:B. \y:7. \z:7.if = then z else y.

Show that M ~g_,,r.r M'.
Proof

It suffices to show M Vi Vi Vo~ M' Vi V] Vi whenever Vg ~g Vj (1)
and Vi ~, V{ (2) and V5 », VJ (8). By inverse reduction, it suffices to
show: if not Vj then V; else Vo ~, if V{ then Vi else V] (4).

?

46(3) 83

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Logical equivalence: example of application

Fact: Assume not = \z:B.if z then ff else tt
and M = \z:B. \y:7. \z:7.if not x then y else =
and M’ 2 \z:B. \y:7. \z:7.if = then z else y.

Show that M ~g_,,r.r M'.
Proof

It suffices to show M Vi Vi Vo~ M' Vi V] Vi whenever Vg ~g Vj (1)
and Vi ~, V{ (2) and V5 », VJ (8). By inverse reduction, it suffices to
show: if not Vj then V; else Vo ~, if V{ then Vi else V] (4).

It follows from (1) that we have only two cases:

Case Vy = V| = tt: Then not Vj || ff and thus M || Vo while M’ || V5.
Then (4) follows by inverse reduction and (3).

Case Vjy = Vjj = ff: is symmetric.

46(4) 83

Introduction

Normalization of A
Observational equivalence in Ay
Logical relations in stlc

Logical relations in F
Applications

Extensions

47

83

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Observational equivalence

We now extend the notion of logical equivalence to System F.
Ti=... |a|Va.T M:=...|Aa.M|MT

We write typing contexts A;I" where A binds variables and I" binds
program variables.

Typing of contexts becomes C : (A;T >7) ~ (AT > 77).
Observational equivalence
We (re)defined A;T'+ M = M': 7 as
VC: (AT 1)~ (2;0 >B), C[M]~C[M']
As before, write M =, N for @;@+ M = N : 7 (in particular, 7 is closed).

8 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Logical equivalence

For closed terms (no free program variables)

® We need to give the semantics of polymoprhic types Ya. 71

® Problem: We cannot do it in terms of the semantics of instances
T[a — o] since the semantics is defined by induction on types.

® Solution: we give the semantics of terms with open types—in some
suitable environment that interprets type variables by logical
relations (sets of pairs of related values) of closed types p; and po

Let R(p1,p2) be the set of relations on values of closed types p; and po,
that is, P(Val(p1) x Val(p2)). We optionally restrict to admissible
relations, i.e. which are closed by observational equivalence:
ReR(m,m2) =
V(Vi,Vo) e R, YW, Wo, Wi 2 Vi A Wy 2 Vo = (W, Ws)eR
The restriction to admissible relations is required for completeness of

logical equivalence with respect to observational equivalence (not for soundness)
9 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢

Example of admissible relations

For example, both

Ry = {(tt,0), (ff, 1)}
Ro 2 {(tt,0)} U {(ff,n) |neZ*}

are admissible relations in R (B, int).
But

Rs = {(tt, A\z:7.0), (ff, \z:7.1)}
although in R(B, 7 — int), is not admissible.

Why?

Logical rel. in F

Applications Extensions

50(1) 83

<]

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Example of admissible relations

For example, both

Ry = {(tt,0), (ff, 1)}
Ro 2 {(tt,0)} U {(ff,n) |neZ*}

are admissible relations in R (B, int).

But
Rs 2 {(tt, Az:7.0), (ff, Az:7. 1)}
although in R(B, 7 — int), is not admissible.

Indeed, taking My = Az:7. (Az:int.z) 0. we have M 2 Az:7.0 but
(tt, M) is not in Rs.

s02) 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Example of admissible relations

For example, both

Ry = {(tt,0), (ff, 1)}
Ro 2 {(tt,0)} U {(ff,n) |neZ*}

are admissible relations in R (B, int).

But
Rs 2 {(tt, Az:7.0), (ff, Az:7. 1)}
although in R(B, 7 — int), is not admissible.

Note

It is a key that such relations can relate values at different types.

s03) 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Interpretation of type environments

Interpretation of type variables
We write 1 for mappings a — (p1, p2, R) where R € R(p1, p2).

We write 17 for mappings from type variables to such triples
and n; (resp. ng) for the type (resp. relational) substitution that maps «
to p; (resp. R) whenever n maps « to (p1, p2, R).

We define
V[[a]]n = TIR(Oé)
VIVa.7], = {(Vi, Vo) | Vi (Vo 7) AV i (Ve 1) A

Vp1,p2, VR € R(p1,p2), (Vi p1,V2 p2) € E[T] 0 ams(pr,pe,R)

51 83

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Logical equivalence for closed terms with open types

We redefine

VI[Bly = {(tt,tt), (ff,ff)}
Vir—oly = {(V1,V2) | Virm(r—0o)aVorn(r = o)A
YW1, Wa) e V[7ly, (Vi W1,V Wa) € E[o]n}
Elrly = {(My, M) | My =1 A Mo 107 A
I(V1,V2) € V[rly, My 4 Vi A My || Va}
Glely = {2}
GIT.z:7ly = {y,2 = (V1,V2) | v€GITly A (V1,V2) € VIr]y}
and define
Dle] = {o}
D[A,a] = {n,a~ (p1,p2,R) | ne D[A] A ReR(p1,p2)}

52 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Logical equivalence for open terms

Definition We define A;T'+~ M ~ M’ : 7 as
{ AT =M, M -1
vn e D[A], Yy e G[T]y, (m(niMr1),m2(y2M2)) € E[7],

(Notations are a bit heavy, but intuitions should remain simple.)

Notation
We also write M; ~ My for = My ~ My : 7 (i.e. @; @+ My ~ My :T).

In this case, 7 is a closed type and M; and M, are closed terms of
type 7; hence, this coincides with the previous definition (M7, M) in
E[r], which may still be used as a shorthand for £[7] .

53 83

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties

Respect for observational equivalence

If (Ml,Mg) E(‘f[[TM7 and NV; Zn1(7) My and No Z2(7) M> then
(N1,N3) € 5[[7-]]57. Requires admissibility

(We use ! to indicate that admissibility is required in the definition of R)

Proof. By induction on 7.
Assume (M1, M3) € E[r], (1) and N1 =, () M1 (2). We show
(Nl,MQ) € 5[[Tﬂn.

Case T is Ya.o: Assume R € Ru(pl,pg). Let 14 be n,a ~ (p1,p2, R).
We have (M p1, Ms p2) € E]o]y,., from (1).

By congruence from (2), we have Nip; 25¢y My p1.

Hence, by induction hypothesis, (M p1, My p2) € E[0],.,, as expected.

Case 7 is a:: Relies on admissibility.
Other cases: the proof is similar to the case of the simply-typed A-calculus.

sa1) 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties

Respect for observational equivalence

If (Ml,Mg) E(‘f[[TM7 and NV; Zn1(7) My and No Z2(7) M> then
(N1,N3) € 5[[7-]]57. Requires admissibility

(We use ! to indicate that admissibility is required in the definition of RY)
Proof. By induction on 7.
Corollary

The relation V[[T]]li7 is an admissible relation in R' (1,7, n2T).

Application: we may take this relation when admissibility is required.

54(2) 83

<]

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties

Lemma (Closure under observational equivalence)
If A;T - M, ~ My:7and A;T - M; 2 Ny:7and A;T - My = Nyt 7,
then A; T~ Ny~ Ny o 7 Requires admissibility

Lemma (Compositionality) Key lemma

Assume A+ o and A a7 and n e D[A]. Let R be V[o],. Then,

V[[T[a HO-]]]N = V[[T]]n,aw(ma,mcr,R)

Proof by structural induction on 7.

55 83

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Parametricity

Theorem (Reflexivity) (also called the fundamental lemma)
IfFA;T =M :7 then A;T =M~ M 7.

Notice: Admissibility is not required for the fundamental lemma
Proof by induction on the typing derivation, using compatibility lemmas.
Compatibility lemmas

We redefined the lemmas to work in a typing context of the form A, T’
instead of I' and add two new lemmas:

C-TABS C-Tapp
Ao; =My~ My 7 AT My~ My :Va.r Aro
A;T Ao My~ Aa. My = Vo A;THMyo~Myo:7law o]

56 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties

Soundness of logical equivalence
Logical equivalence implies implies observational equivalence.
If A;T - My~ Ms:7 then A;T - My = My : 7.

Completeness of logical equivalence
Observational equivalence implies logical equivalence with admissibility.
If A;T+ M; = My: 7 then A:T + M ~t My : 7.

Note: Admissibility is required for completeness, but not for soundness.

As a particular case, M; N“T My iff My = Ms.

50 83 <

Introduction Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties
Extensionality (Uses but does not depend on admissibility)
M1 oo M2 iff V(V:T),Ml Vv Z5 M2 Vv iff V(N:T),Ml N =5 M2 N

My 2yq.+ My iff for all closed type p, M7 p =7 Ms p.

arp]

Proof. Forward direction is immediate as 2 is a congruence. Backward:

Case Value abstraction: It suffices to show My ~,_,, Ms. That is, assuming
Ny ~; N2 (1), we show My Ny ~, My No (2). By assumption, we have

M N1 25 Ma Ny (3). By the fundamental lemma, we have My ~,_,, M.
Hence, from (1), we must have My Ny ~, Ms N5, We conclude (2) by respect
for observational equivalence with (3).

Case Type abstraction: It suffices to show M7 ~yqo. » Ms. That is, given
ReR(p1,p2), we show (My p1, Mz p2) € E[T]ams(py,p2,r) (4)-

By assumption, we have M p1 2 (arsp,] M2 p1 (5).

By the fundamental lemma, we have Ms ~vqo. - Mo.

Hence, we have (M2 pl,Mg pg) € EHT]]QH(pl,p2,R)

We conclude (4) by respect for observational equivalence with (5). o o <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Properties

Identity extension Requires admissibiily
Let 6 be a substitution of variables for ground types.

Let R be the restriction of 2,9 to Val(af) x Val(af)) and

n:a~ (af,ad,R).

Then &[], is equal to 2.

(The proof uses respect for observational equivalence.)

61 83

@ Introduction

@ Normalization of Ay

@ Observational equivalence in Ay
@ Logical relations in stlc

@ Logical relations in F

@ Applications

@ Extensions

62 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. o —» «

Fact If M :Va.a — «a, then M 24 aoa id where id 2 Aa. A\z:ov. .

Proof By extensionality, it suffices to show that for any p and V : p we
have M pV =,id p V. In fact, by closure by inverse reduction, it suffices
to show M pV =,V (1).

By parametricity, we have M ~vy, ana M (2).

Consider R in R(p,p) equal to {(V,V)} and 1 be [~ (p,p, R)]. By
construction, we have (V,V) € V[a],.

Hence, from (2), we have (M p V, M p V') € £[a],, which means that
the pair (M p V, M p V') reduces to a pair of values in (the singleton) R.
This implies that M p V reduces to V', which in turn, implies (1).

63 83

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. v > o — «

Fact Let 0 be Va.ao - o — «. If M : o, then either

M=, Wi 2 A Axp:a Apg:ae.zp or M 2y Wa 2 Ao A1 A\og:av. 29
Proof By extensionality, it suffices to show that for either i =1 or i = 2, for
any closed type p and Vi, Vs : p, we have M p Vi Vo =, W; p Vi Va, or just
Mp Vi Vo=, Vi (1).

64(1) 83

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. v > o — «

Fact Let 0 be Va.ao - o — «. If M : o, then either
M=, Wi 2 A Axp:a Apg:ae.zp or M 2y Wa 2 Ao A1 A\og:av. 29

Proof By extensionality, it suffices to show that for either i =1 or i = 2, for
any closed type p and Vi, Vs : p, we have M p Vi Vo =, W; p Vi Va, or just
Mp Vi Vo=, Vi (1).

Let p and V1, V4 : p be fixed. Consider R equal to {(tt, V1), (ff,V2)} in R(B,p)
and be a ~ (B,p, R).

64(2) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. v > o — «

Fact Let 0 be Va.ao - o — «. If M : o, then either
M=, Wi 2 A Axp:a Apg:ae.zp or M 2y Wa 2 Ao A1 A\og:av. 29

Proof By extensionality, it suffices to show that for either i =1 or i = 2, for
any closed type p and Vi, Vs : p, we have M p Vi Vo =, W; p Vi Va, or just

Mp Vi Vo=, Vi (1).

Let p and V1, V4 : p be fixed. Consider R equal to {(tt, V1), (ff,V2)} in R(B,p)
and 1 be o~ (B, p, R). We have (tt, V1) € V[a], since R(tt,V:) and, similarly,
(ff, V2) e V]a],,.

We have (M, M) € E[o] by parametricity.

?

64(3) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. v > o — «

Fact Let 0 be Va.ao - o — «. If M : o, then either
M=, Wi 2 A Axp:a Apg:ae.zp or M 2y Wa 2 Ao A1 A\og:av. 29

Proof By extensionality, it suffices to show that for either i =1 or i = 2, for
any closed type p and Vi, Vs : p, we have M p Vi Vo =, W; p Vi Va, or just
MpViVaz, Vi (1).
Let p and V1, V4 : p be fixed. Consider R equal to {(tt, V1), (ff,V2)} in R(B,p)
and 1 be o~ (B, p, R). We have (tt, V1) € V[a], since R(tt,V:) and, similarly,
(ff, V2) e V]a],,.
We have (M, M) € E[o] by parametricity. Hence, (M B tt ff, M p V1 V3) in
V[a],, which means that (M B tt ff, M p Vi V5) reduces to a pair of values in
R, which implies:

\/ MBttffzgtt A MpVi Vo,)

MBttffzgff A MpVi Voz, Vs

Next ?

64(4) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. v > o — «

Fact Let 0 be Va.ao - o — «. If M : o, then either
M=, Wi 2 A Axp:a Apg:ae.zp or M 2y Wa 2 Ao A1 A\og:av. 29

Proof By extensionality, it suffices to show that for either i =1 or i = 2, for
any closed type p and Vi, Vs : p, we have M p Vi Vo =, W; p Vi Va, or just
MpViVaz, Vi (1).

Let p and V1, V4 : p be fixed. Consider R equal to {(tt, V1), (ff,V2)} in R(B,p)
and 1 be o~ (B, p, R). We have (tt, V1) € V[a], since R(tt,V;) and, similarly,
(F,V3) € V[a],.

We have (M, M) € E[o] by parametricity. Hence, (M B tt ff, M p V1 V3) in
V[a],, which means that (M B tt ff, M p Vi V5) reduces to a pair of values in

R, which implies:
M B tt ff 2 tt MpVy Vo2, Vi
VPaVIaV% \/ ® " P
MBttffzgff A MpVi Vaz, Vs

Since, M B tt ff is independent of p, V1, and Vs, this actually shows (1).

64(5) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. v > o — «

Fact Let 0 be Va.ao - o — «. If M : o, then either
M=, Wi 2 A Axp:a Apg:ae.zp or M 2y Wa 2 Ao A1 A\og:av. 29

Proof By extensionality, it suffices to show that for either i =1 or i = 2, for
any closed type p and Vi, Vs : p, we have M p Vi Vo =, W; p Vi Va, or just
MpViVaz, Vi (1).
Let p and V1, V4 : p be fixed. Consider R equal to {(tt, V1), (ff,V2)} in R(B,p)
and 1 be o~ (B, p, R). We have (tt, V1) € V[a], since R(tt,V;) and, similarly,
(ff, V2) e V]a],,.
We have (M, M) € E[o] by parametricity. Hence, (M B tt ff, M p V1 V3) in
V[a],, which means that (M B tt ff, M p Vi V5) reduces to a pair of values in
R, which implies:

v Vo, Vi, Vo, MBttffegtt A MpVi Vo, Vi

Vo, Vi, Vo, MBttffegff A MpViVaz, Vs

Since, M B tt ff is independent of p, V1, and Vs, this actually shows (1).

64(6) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. v > o — «

Fact Let 0 be Va.ao - o — «. If M : o, then either
M=, Wi 2 A Axp:a Apg:ae.zp or M 2y Wa 2 Ao A1 A\og:av. 29

Proof By extensionality, it suffices to show that for either i =1 or i = 2, for
any closed type p and Vi, Vs : p, we have M p Vi Vo =, W; p Vi Va, or just
MpViVaz, Vi (1).
Let p and V1, V4 : p be fixed. Consider R equal to {(tt, V1), (ff,V2)} in R(B,p)
and 1 be o~ (B, p, R). We have (tt, V1) € V[a], since R(tt,V;) and, similarly,
(ff, V2) e V]a],,.
We have (M, M) € E[o] by parametricity. Hence, (M B tt ff, M p V1 V3) in
V[a],, which means that (M B tt ff, M p Vi V5) reduces to a pair of values in
R, which implies:

\/ MBttffzgtt A MpVi Vo,)

MBttffzgff A MpVi Voz, Vs

Since, M B tt ff is independent of p, V1, and Vs, this actually shows (1).

64(7) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. v > o — «

Fact Let 0 be Va.ao - o — «. If M : o, then either
M=, Wi 2 A Axp:a Apg:ae.zp or M 2y Wa 2 Ao A1 A\og:av. 29

Proof By extensionality, it suffices to show that for either i =1 or i = 2, for
any closed type p and Vi, Vs : p, we have M p Vi Vo =, W; p Vi Va, or just
MpViVaz, Vi (1).
Let p and V1, V4 : p be fixed. Consider R equal to {(tt , V1), (ff ,V2)} in
R(B ,p) and n be a~ (B ,p,R). We have (tt , Vi) € V[a], since R(tt ,V;)
and, similarly, (ff ,V2) € V[a],.
We have (M, M) € E[o] by parametricity. Hence, (M B tt ff ,M p V4 V2) in
V[a],, which means that (M B tt ff ,M pV; V5) reduces to a pair of values
in R, which implies:

\/MB tt ff =B tt /\Mlevgngl

MB tt ff =g ft A MpViVaz, Vs

Since, M B tt ff is independent of p, V1, and Va, this actually shows (1).

64(8) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. v > o — «

Fact Let 0 be Va.ao - o — «. If M : o, then either
M=, Wi 2 A Axp:a Apg:ae.zp or M 2y Wa 2 Ao A1 A\og:av. 29

Proof By extensionality, it suffices to show that for either i =1 or i = 2, for
any closed type p and Vi, Vs : p, we have M p Vi Vo =, W; p Vi Va, or just
MpViVaz, Vi (1).
Let p and V1, V4 : p be fixed. Consider R equal to {(0 ,V1),(1 ,V32)} in
R(N ,p) and n be a~ (N ,p,R). We have (0 ,V;) € V[a], since R(0 ,V;)
and, similarly, (1 ,V2) € V[a],.
We have (M, M) € E[o] by parametricity. Hence, (MN 0 1 ,M pV; Va2)in
V[a],, which means that (M N 0 1 ,M pV; V5) reduces to a pair of values
in R, which implies:

\/MNO]_ENO /\Mlevgngl

MN 0 1 xy 1 A MpViVaz, Vs

Since, M N 0 1 s independent of p, V1, and Va, this actually shows (1).

64(9) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. v > o — «

Fact Let 0 be Va.ao - o — «. If M : o, then either
M=, Wi 2 A Axp:a Apg:ae.zp or M 2y Wa 2 Ao A1 A\og:av. 29

Proof By extensionality, it suffices to show that for either i =1 or i = 2, for
any closed type p and Vi, Vs : p, we have M p Vi Vo =, W; p Vi Va, or just
MpViVaz, Vi (1).
Let p and V31, V5 : p be fixed. Consider R equal to {(Wr, V1), (Wa, V2)} in
R(o ,p) and n be ar (o ,p,R). We have (W1, V1) € V[a], since R(Wh, V1)
and, similarly, (Wa, V2) € V[o],.
We have (M, M) € E[o] by parametricity. Hence, (M o WiWa, M p V4 Va) in
V]a],, which means that (M o Wi Wy, M p Vi V) reduces to a pair of values
in R, which implies:

\/ M o W1W2§g' Wl/\ MleI/szVl

M o W1W2§g' WQ/\ Mp‘/l‘/ggp‘/g

Since, M o W1 W is independent of p, V1, and Va, this actually shows (1).

64(10) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Va. v > o — «

Fact Let 0 be Va.ao - o — «. If M : o, then either
M=, Wi 2 A Axp:a Apg:ae.zp or M 2y Wa 2 Ao A1 A\og:av. 29

Proof By extensionality, it suffices to show that for either i =1 or i = 2, for
any closed type p and Vi, Vs : p, we have M p Vi Vo =, W; p Vi Va, or just
MpViVaz, Vi (1).
Let p and V1, V4 : p be fixed. Consider R equal to {(tt , V1), (ff ,V2)} in
R(B ,p) and n be a~ (B ,p,R). We have (tt , Vi) € V[a], since R(tt ,V;)
and, similarly, (ff ,V2) € V[a],.
We have (M, M) € E[o] by parametricity. Hence, (M B tt ff ,M p V4 V2) in
V[a],, which means that (M B tt ff ,M pV; V5) reduces to a pair of values
in R, which implies:

\/MB tt ff =B tt /\Mlevgngl

MB tt ff =g ft A MpViVaz, Vs

Since, M B tt ff is independent of p, V1, and Va, this actually shows (1).

64(11) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Exercise Inhabitants of Va. a — «

Redo the proof that all inhabitants of of Va.ao - a — « are
observationally equivalent to the identity, following the schema that we
used for booleans.

65 83 <

66(1) 83 <]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Ya. (@ > a) - a » «

Fact Let nat be Va. (o ») - a —» a. If M : nat, then M .+ N,, for
some integer n, where N,, 2 Aa. \f:a — a. A\z:a. f7 .

?

66(2) 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Ya. (@ > a) - a » «

Fact Let nat be Va. (o ») - a —» a. If M : nat, then M .+ N,, for
some integer n, where N, = Aa. A\ f:ov » . \z:av. f™ .

That is, the inhabitants of Va. (o =) = a — « are the Church naturals.

66(3) 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Ya. (@ > a) - a » «

Fact Let nat be Va. (o ») - a —» a. If M : nat, then M .+ N,, for
some integer n, where N,, 2 Aa. \f:a — a. A\z:a. f7 .

Proof

?

66(4) 83 <

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Ya. (@ > a) - a » «

Fact Let nat be Va. (o ») - a —» a. If M : nat, then M .+ N,, for
some integer n, where N, = Aa. A\ f:ov » . \z:av. f™ .

Proof By extensionality, it suffices to show that there exists n such that for any
closed type p and closed values V; : p = p and V5 : p, we have

M p Vi Vo=, Ny pVi Va, or, by closure by inverse reduction and replacing
observational by logical equivalence, M p Vi V5 ~, Vi* V5 (1), since N,, p V1 V3
reduces to V" V5.

66(5) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Ya. (@ > a) - a » «

Fact Let nat be Va. (o ») - a —» a. If M : nat, then M .+ N,, for
some integer n, where N, = Aa. A\ f:ov » . \z:av. f™ .

Proof By extensionality, it suffices to show that there exists n such that for any
closed type p and closed values V; : p = p and V5 : p, we have

M p Vi Vo=, Ny pVi Va, or, by closure by inverse reduction and replacing
observational by logical equivalence, M p Vi V5 ~, Vi* V5 (1), since N,, p V1 V3
reduces to Vi Va. Let p and Vi : p — p and V4 : p be fixed.

Let Z be Ny nat and S be Nj nat. Let R in R(nat, p) be
{(W1,W2) | Ik €N, S* Z2pe Wi AV Vo 2, Wy} and 1) be a v (nat, p, R).

We have (Z,V3) € V[a], since R(Z,V3) (reduce both sides for k& = 0).
We also have (S5,V1) € V[a - a,.

66(6) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Ya. (@ > a) - a » «

Fact Let nat be Va. (o ») - a —» a. If M : nat, then M .+ N,, for
some integer n, where N, = Aa. A\ f:ov » . \z:av. f™ .

Proof By extensionality, it suffices to show that there exists n such that for any
closed type p and closed values V; : p = p and V5 : p, we have

M p Vi Vo=, Ny pVi Va, or, by closure by inverse reduction and replacing
observational by logical equivalence, M p Vi V5 ~, Vi* V5 (1), since N,, p V1 V3
reduces to Vi Va. Let p and Vi : p — p and V4 : p be fixed.

Let Z be Ny nat and S be Nj nat. Let R in R(nat, p) be
{(W1,W2) | Ik €N, S* Z2pe Wi AV Vo 2, Wy} and 1) be a v (nat, p, R).

We have (Z,V2) € V[a], since R(Z,V3) (reduce both sides for k = 0).
We also have (S,V41) € V[a - af,. (A key to the proof.)

Indeed,

66(7) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Ya. (@ > a) - a » «

Fact Let nat be Va. (o ») - a —» a. If M : nat, then M .+ N,, for
some integer n, where N, = Aa. A\ f:ov » . \z:av. f™ .

Proof By extensionality, it suffices to show that there exists n such that for any
closed type p and closed values V; : p = p and V5 : p, we have

M p Vi Vo=, Ny pVi Va, or, by closure by inverse reduction and replacing
observational by logical equivalence, M p Vi V5 ~, Vi* V5 (1), since N,, p V1 V3
reduces to Vi Va. Let p and Vi : p — p and V4 : p be fixed.

Let Z be Ny nat and S be Nj nat. Let R in R(nat, p) be

{(W1,W2) | Ik €N, S* Z2pe Wi AV Vo 2, Wy} and 1) be a v (nat, p, R).

We have (Z,V2) € V[a], since R(Z,V3) (reduce both sides for k = 0).

We also have (S,V41) € V[a - af,. (A key to the proof.)
Indeed, assume (W1, W3) in V[a],, i.e. R. There exists k such that

Wi 2pat S° Z and Wy =, VI V. By congruence S Wy 2,,; S Z and

Vi Wa 2, V1 V. Since (S¥* Z V1 V) is in E[a],, so is (S W1, Vi Wa) by
closure by observational equivalence.

66(8) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Ya. (@ > a) - a » «

Fact Let nat be Va. (o ») - a —» a. If M : nat, then M .+ N,, for
some integer n, where N, = Aa. A\ f:ov » . \z:av. f™ .

Proof By extensionality, it suffices to show that there exists n such that for any
closed type p and closed values V; : p = p and V5 : p, we have

M p Vi Vo=, Ny pVi Va, or, by closure by inverse reduction and replacing
observational by logical equivalence, M p Vi V5 ~, Vi* V5 (1), since N,, p V1 V3
reduces to Vi Va. Let p and Vi : p — p and V4 : p be fixed.

Let Z be Ny nat and S be Nj nat. Let R in R(nat, p) be
{(W1,W2) | Ik €N, S* Z2pe Wi AV Vo 2, Wy} and 1) be a v (nat, p, R).

We have (Z,V3) € V[a], since R(Z,V3) (reduce both sides for k& = 0).
We also have (S5,V1) € V[a - a,. (A key to the proof.)

?

66(9) 83

<]

Introduction ~ Normalization ~ Observational equivalence Logical rel in Ag¢ Logical rel. in F Applications Extensions

Applications Inhabitants of Ya. (@ > a) - a » «

Fact Let nat be Va. (o ») - a —» a. If M : nat, then M .+ N,, for
some integer n, where N, = A