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Proofs

Since 2017-2018, this course is shorter: you can see extra material in
courses notes (and in slides of year 2016).

Detailed proofs of main results are not shown in class anymore, but are
still part of the course:

You are supposed to read, understand them.

and be able to reproduce them.

Formalization of System F is a basic. You must master it.

Some of the metatheory is done in Coq, for your help or curiosity,
—but not (yet) mandatory.
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What are types? ▷⋅

– Types are:
“a concise, formal description of the behavior of a program fragment.”

– Types must be sound:
programs must behave as prescribed by their types.

– Hence, types must be checked and ill-typed programs must be rejected.
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What are they useful for? ▷⋅

– Types serve as machine-checked documentation.

– Data types help structure programs.

– Types provide a safety guarantee.

– Types can be used to drive compiler optimizations.

– Types encourage separate compilation, modularity, and abstraction.

6 357 ◁



STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-preserving compilation ▷⋅

Types make sense in low-level programming languages as well—even
assembly languages can be statically typed! [Morrisett et al., 1999]

In a type-preserving compiler, every intermediate language is typed, and
every compilation phase maps typed programs to typed programs.

Preserving types provides insight into a transformation, helps debug it,
and paves the way to a semantics preservation proof [Chlipala, 2007].

Interestingly enough, lower-level programming languages often require
richer type systems than their high-level counterparts.
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Typed or untyped? ▷⋅

Reynolds [1985] nicely sums up a long and rather acrimonious debate:

“One side claims that untyped languages preclude compile-time error
checking and are succinct to the point of unintelligibility, while the other
side claims that typed languages preclude a variety of powerful
programming techniques and are verbose to the point of unintelligibility.”

The issues are safety, expressiveness, and type inference.
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Typed, Sir! with better types. ▷⋅

In fact, Reynolds settles the debate:

“From the theorist’s point of view, both sides are right, and their
arguments are the motivation for seeking type systems that are more
flexible and succinct than those of existing typed languages.”

Today, the question is more whether

● to stay with rather simple polymorphic types (e.g. ML or System F),

● use more sophisticated types (dependent types, afine types,
capabililties and ownership, effects, logical assertions, etc.), or

● even towards full program proofs!

The community is still split between programming with dependent types
to capture fine invariants, or programming with simpler types and
developing program proofs on the side that these invariants hold
—with often a preference for the latter.
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Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Polymorphism

Polymorphic λ-calculus

Type soundness

Type erasing semantics
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Why λ-calculus?

In this course, the underlying programming language is the λ-calculus.

The λ-calculus supports natural encodings of many programming
languages [Landin, 1965], and as such provides a suitable setting for
studying type systems.

Following Church’s thesis, any Turing-complete language can be used to
encode any programming language. However, these encodings might not
be natural or simple enough to help us in understanding their typing
discipline.

Using λ-calculus, most of our results can also be applied to other
languages (Java, assembly language, etc.).
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Simply typed λ-calculus

Why?

● used to introduce the main ideas, in a simple setting

● we will then move to System F

● still used in some theoretical studies

● is the language of kinds for Fω

Types are:
τ ∶∶= α ∣ τ → τ ∣ . . .

Terms are:
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ . . .

The dots are place holders for future extensions of the language.
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Binders, α-conversion, and substitutions

λx ∶τ.M binds variable x in M .

We write fv(M) for the set of free (term) variables of M :

fv(x)
△
== {x}

fv(λx ∶τ.M)
△
== fv(M) ∖ {x}

fv(M1 M2)
△
== fv(M1) ∪ fv(M2)

We write x#M for x ∉ fv(M).

Terms are considered equal up to renaming of bound variables:

● λx1 ∶τ1. λx2 ∶τ2. x1 x2 and λy ∶τ1. λx ∶τ2. y x are really the same term!

● λx ∶τ. λx ∶τ.M is equal to λy ∶τ. λx ∶τ.M when y ∉ fv(M).

Substitution:

[x ↦ N]M is the capture avoiding substitution of N for x in M .
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Dynamic semantics

We use a small-step operational semantics.

We choose a call-by-value variant. When adding references, exceptions,
or other forms of side effects, this choice matters.

Otherwise, most of the type-theoretic machinery applies to call-by-name
or call-by-need just as well.
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Weak v.s. full reduction (parenthesis)

Calculi are often presented with a full reduction semantics, i.e. where
reduction may occur in any context. The reduction is then
non-deterministic (there are many possible reduction paths) but the
calculus remains deterministic, since reduction is confluent.

Programming languages use weak reduction strategies, i.e. reduction is
never performed under λ-abstractions, for efficiency of reduction, to have
a deterministic semantics in the presence of side effects—and a
well-defined cost model.

Still, type systems are usually also sound for full reduction strategies
(with some care in the presence of side effects or empty types).

Type soundness for full reduction is a stronger result.

It implies that potential errors may not be hidden under λ-abstractions

(this is usually true—it is true for λ-calculus and System F—but not
implied by type soundness for a weak reduction strategy.)
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Dynamic semantics

In the pure, explicitly-typed call-by-value λ-calculus, the values are the
functions:

V ∶∶= λx ∶τ.M ∣ . . .
The reduction relation M1 Ð→M2 is inductively defined:

βv(λx ∶τ.M) V Ð→ [x ↦ V ]M
Context

M Ð→M ′

E[M]Ð→ E[M ′]
Evaluation contexts are defined as follows:

E ∶∶= []M ∣ V [] ∣ . . .
We only need evaluation contexts of depth one, using repeated
applications of Rule Context.

An evaluation context of arbitrary depth can be defined as:

Ē ∶∶= [] ∣ E[Ē]
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Static semantics

Technically, the type system is a 3-place predicate, whose instances are
called typing judgments, written:

Γ ⊢M ∶ τ

where Γ is a typing context.
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Typing context

A typing context (also called a type environment) Γ binds program
variables to types.

We write ∅ for the empty context and Γ, x ∶ τ for the extension of Γ with
x ↦ τ .

To avoid confusion, we require x ∉ dom(Γ) when we write Γ, x ∶ τ .

Bound variables in source programs can always be suitably renamed to
avoid name clashes.

A typing context can then be thought of as a finite function from
program variables to their types.

We write dom(Γ) for the set of variables bound by Γ and x ∶ τ ∈ Γ to
mean x ∈ dom(Γ) and Γ(x) = τ .
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Static semantics

Typing judgments are defined inductively by the following set of
inferences rules:

Var

Γ ⊢ x ∶ Γ(x)
Abs

Γ, x ∶ τ1 ⊢M ∶ τ2
Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢M2 ∶ τ1

Γ ⊢ M1 M2 ∶ τ2

Notice that the specification is extremely simple.

In the simply-typed λ-calculus, the definition is syntax-directed.
This is not true of all type systems.
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Example

The following is a valid typing derivation:

App

Var
Γ ⊢ f ∶ τ → τ ′

Var
Γ ⊢ x1 ∶ τ

Γ ⊢ f x1 ∶ τ
′

Γ ⊢ f ∶ τ → τ ′
Var

Γ ⊢ x2 ∶ τ
Var

Γ ⊢ f x2 ∶ τ
′ App

f ∶ τ → τ ′, x1 ∶ τ, x2 ∶ τ ⊢ (f x1, f x2) ∶ τ
′ × τ ′

Pair

∅ ⊢ λf ∶ τ → τ ′. λx1 ∶ τ. λx2 ∶ τ. (f x1, f x2) ∶ (τ → τ ′) → τ → τ → (τ ′ × τ ′)
Abs

Γ stands for (f ∶ τ → τ ′, x1 ∶ τ, x2 ∶ τ). Rule Pair is introduced later on.

Observe that:

– this is in fact, the only typing derivation (in the empty environment).

– this derivation is valid for any choice of τ and τ ′

(which in our setting are part of the source term)

Conversely, every derivation for this term must have this shape, actually
be exactly this one, up to the name of variables.
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Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning.
It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume Γ ⊢M ∶ τ .

– If M is a variable x, then x ∈ dom(Γ) and Γ(x) = τ .
– If M is M1 M2 then Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2 for some type τ2.

– If M is λx ∶τ2.M1, then τ is of the form τ2 → τ1 and Γ, x ∶ τ2 ⊢ M1 ∶ τ1.

The inversion lemma is a basic property that is used in many places when
reasoning by induction on terms. Although trivial in our simple setting,
stating it explicitly avoids informal reasoning in proofs.

In more general settings, this may be a difficult lemma that requires
reorganizing typing derivations.
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Uniqueness of typing derivations

Since typing rules are syntax-directed, the shape of the derivation tree is
fully determined by the shape of the term.

In our simple setting, each term has actually a unique type.
Hence, typing derivations are unique, up to the typing context.
The proof, by induction on the structure of terms, is straightforward.

Explicitly-typed terms can thus be used to describe and manipulate
typing derivations (up to the typing context) in a precise and concise way.

This enables reasoning by induction on terms instead of on typing
derivations, which is often lighter.

Lacking this convenience, typing derivations must otherwise be described
in the meta-language of mathematics.
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Explicitly v.s. implicitly typed?

Our presentation of simply-typed λ-calculus is explicitly typed (we also
say in church-style), as parameters of abstractions are annotated with
their types.

Simply-typed λ-calculus can also be implicitly typed (we also say in
curry-style) when parameters of abstractions are left unannotated, as in
the pure λ-calculus.

Of course, the existence of syntax-directed typing rules depends on the
amount of type information present in source terms and can be easily
lost if some type information is left implicit.

In particular, typing rules for terms in curry-style are not syntax-directed.
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Type erasure

We may translate explicitly-typed expressions into implicitly-typed ones
by dropping type annotations. This is called type erasure.

We write ⌈M⌉ for the type erasure of M , which is defined by structural
induction on M :

⌈x⌉ △
== x

⌈λx ∶ τ .M⌉ △
== λx. ⌈M⌉

⌈M1 M2⌉ △
== ⌈M1⌉ ⌈M2⌉
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Type reconstruction

Conversely, can we convert implicitly-typed expressions back into
explicitly-typed ones, that is, can we reconstruct the missing type
information?

This is equivalent to finding a typing derivation for implicitly-typed
terms. It is called type reconstruction (or type inference).
(See the course on type reconstruction.)
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Type reconstruction . . . may be partial

Annotating programs with types can lead to redundancy.

Types can even become extremely cumbersome when they have to be
explicitly and repeatedly provided. In some pathological cases, type
information may grow in square of the size of the underlying untyped
expression.

This creates a need for a certain degree of type reconstruction (also called
type inference), even when the language is meant to be explicitly typed,
where the source program may contain some but not all type information.

Full type reconstruction is undecidable for expressive type systems.

Some type annotations are required or type reconstruction is incomplete.
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Untyped semantics

Observe that although the reduction carries types at runtime,
types do not actually contribute to the reduction.

Intuitively, the semantics of terms is the same as that of their type
erasures. We say that the semantics is untyped or type-erasing.

But how can we say that the semantics of typed and untyped terms
coincide when these terms do not live in the same world?

By showing that the reductions in the two languages can be put into
close correspondence.
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Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

If M1 Ð→M2 then ⌈M1⌉Ð→ ⌈M2⌉.
M1 M2

a1 a2

β

⌈⌉ ⌈⌉
βConversely, a reduction step after type erasure could

also have been performed on the term before type erasure.

Lemma (Inverse simulation)

If ⌈M⌉ Ð→ a then there exists M ′ such that
M Ð→M ′ and ⌈M ′⌉ = a.

M1 M2

a1 a2

⌈⌉
β

β

⌈⌉

What we have established is a bisimulation between explicitly-typed
terms and implicitly-typed ones.

In general, there may be reduction steps on source terms that involved
only types and have no counter-part (and disappear) on compiled terms.

28 357 ◁



STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Untyped semantics

It is an important property for a language to have an untyped semantics.

It then has an implicitly-typed presentation.

The metatheoretical study is often easier with explicitly-typed terms, in
particular when proving syntactic properties.

Properties of the implicitly-typed presentation can often be indirectly
proved via an explicitly-typed presentation of the language.

This is the path we choose in this course.

(Once we have shown that implicit and explicit presentations coincide,
we can choose whichever view is more convenient.)
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Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Polymorphism

Polymorphic λ-calculus

Type soundness

Type erasing semantics
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Stating type soundness

What is a formal statement of the slogan

“Well-typed expressions do not go wrong”

By definition, a closed term M is well-typed if it admits some type τ in
the empty environment.

By definition, a closed, irreducible term is either a value or stuck.
Thus, a closed term can only:

● diverge,

● converge to a value, or

● go wrong by reducing to a stuck term.

Type soundness: the last case is not possible for well-typed terms.
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Stating type soundness

The slogan now has a formal meaning:

Theorem (Type soundness)

Well-typed expressions do not go wrong.

Proof.
By Subject Reduction and Progress.

Note We only give the proof schema here, as the same proof will carried
again, in with more details in the (more complex) case of System F.
—See the course notes for detailed proofs.
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Establishing type soundness

We use the syntactic proof method of Wright and Felleisen [1994].
Type soundness follows from two properties:

Theorem (Subject reduction)

Reduction preserves types: if M1 Ð→M2 then for any type τ such that
∅ ⊢M1 ∶ τ , we also have ∅ ⊢M2 ∶ τ .

Theorem (Progress)

A (closed) well-typed term is either a value or reducible:
if ∅ ⊢M ∶ τ then there exists M ′ such that M Ð→M ′, or M is a value.

Equivalently, we may say: closed, well-typed, irreducible terms are values.
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Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Polymorphism

Polymorphic λ-calculus

Type soundness

Type erasing semantics
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Adding a unit

The simply-typed λ-calculus is modified as follows. Values and
expressions are extended with a nullary constructor () (read “unit”):

M ∶∶= . . . ∣ () V ∶∶= . . . ∣ ()
No new reduction rule is introduced.

Types are extended with a new constant unit and a new typing rule:

τ ∶∶= . . . ∣ unit Unit

Γ ⊢ () ∶ unit
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Pairs

The simply-typed λ-calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ (M,M) ∣ proji M
E ∶∶= . . . ∣ ([],M) ∣ (V, []) ∣ proji []
V ∶∶= . . . ∣ (V,V )
i ∈ {1,2}

A new reduction rule is introduced:

proji (V1, V2)Ð→ Vi
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Pairs

Types are extended:
τ ∶∶= . . . ∣ τ × τ

Two new typing rules are introduced:

Pair

Γ ⊢M1 ∶ τ1 Γ ⊢M2 ∶ τ2

Γ ⊢ (M1,M2) ∶ τ1 × τ2
Proj

Γ ⊢M ∶ τ1 × τ2
Γ ⊢ proji M ∶ τi
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Sums

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ inji M ∣ caseM of V 8 V
E ∶∶= . . . ∣ inji [] ∣ case [] of V 8 V
V ∶∶= . . . ∣ inji V

A new reduction rule is introduced:

case inji V of V1 8 V2 Ð→ Vi V
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Sums

Types are extended:
τ ∶∶= . . . ∣ τ + τ

Two new typing rules are introduced:

Inj

Γ ⊢M ∶ τi
Γ ⊢ inji M ∶ τ1 + τ2

Case

Γ ⊢M ∶ τ1 + τ2
Γ ⊢ V1 ∶ τ1 → τ Γ ⊢ V2 ∶ τ2 → τ

Γ ⊢ caseM of V1 8 V2 ∶ τ
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Sums with unique types

Notice that a property of simply-typed λ-calculus is lost: expressions do
not have unique types anymore, i.e. the type of an expression is no
longer determined by the expression.

Uniqueness of types can be recovered by using a type annotation in
injections:

V ∶∶= . . . ∣ inji V as τ

and modifying the typing rules and reduction rules accordingly.

Exercise
Describe an extension with the option type.
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Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

● a new type constructor, to classify values of a new shape;

● new expressions, to construct and destruct values of a new shape.

● new typing rules for new forms of expressions;

● new reduction rules, to specify how values of the new shape can be
destructed;

● new evaluation contexts—but just to propagate reduction under the
new constructors.

Subject reduction is preserved because types are preserved by the new
reduction rules.

Progress is preserved because the type system ensures that the new
destructors can only be applied to values such that at least one of the
new reduction rules applies.
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Modularity of extensions

These extensions are independent: they can be added to the λ-calculus
alone or mixed altogether.

Indeed, no assumption about other extensions (the “. . .”) is ever made,
except for the classification lemma which requires, informally, that values
of other shapes have types of other shapes.

This is indeed the case in the extensions we have presented: the unit has
the Unit type, pairs have product types, sums have sum types.

In fact, these extensions could have been presented as several instances of
a more general extension of the λ-calculus with constants, for which type
soundness can be established uniformly under reasonable assumptions
relating the given typing rules and reduction rules for constants.

See the treatment of data types in System F in the following section.
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Recursive functions

The simply-typed λ-calculus is modified as follows.

Values and expressions are extended:

M ∶∶= . . . ∣ µf ∶τ. λx.M
V ∶∶= . . . ∣ µf ∶τ. λx.M

A new reduction rule is introduced:

(µf ∶τ. λx.M) V Ð→ [f ↦ µf ∶τ. λx.M][x ↦ V ]M
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Recursive functions

Types are not extended. We already have function types.

What does this imply as a corollary?

— Types will not distinguish functions from recursive functions.

A new typing rule is introduced:

FixAbs

Γ, f ∶ τ1 → τ2 ⊢ λx ∶τ1.M ∶ τ1 → τ2

Γ ⊢ µf ∶τ1 → τ2. λx.M ∶ τ1 → τ2

In the premise, the type τ1 → τ2 serves both as an assumption and a
goal. This is a typical feature of recursive definitions.
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A derived construct: let

The construct “let x ∶ τ =M1 inM2” can be viewed as syntactic sugar for
the β-redex “(λx ∶τ.M2)M1”.

The latter can be type-checked only by a derivation of the form:

App

Abs
Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ λx ∶τ1.M2 ∶ τ1 → τ2 Γ ⊢M1 ∶ τ1

Γ ⊢ (λx ∶τ1.M2)M1 ∶ τ2

This means that the following derived rule is sound and complete:

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let x ∶ τ1 =M1 inM2 ∶ τ2

The construct “M1;M2” can in turn be viewed as syntactic sugar for
let x ∶ unit =M1 inM2 where x ∉ ftv(M2).
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A derived construct: let or a primitive one?

In the derived form let x ∶ τ1 =M1 inM2 the type of M1 must be
explicitly given, although by uniqueness of types, it is entirely determined
by the expression M1 itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form
let x =M1 inM2 with the following primitive typing rule.

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let x =M1 inM2 ∶ τ2

This seems better—not necessarily, because removing redundant type
annotations is the task of type reconstruction and we should not bother
(too much) about it in the explicitly-typed version of the language.

Minimizing the number of language constructs is at least as important as
avoiding extra type annotations in an explicitly-typed language.
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A derived construct: let rec

The construct “let rec (f ∶ τ) x =M1 inM2” can be viewed as syntactic
sugar for “let f = µf ∶τ. λx.M1 inM2”. The latter can be type-checked
only by a derivation of the form:

LetMono

FixAbs
Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1

Γ ⊢ µf ∶τ → τ1. λx.M1 ∶ τ → τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let f = µf ∶τ → τ2. λx.M1 inM2 ∶ τ2

This means that the following derived rule is sound and complete:

LetRecMono

Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let rec (f ∶ τ → τ1) x =M1 inM2 ∶ τ2
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What is polymorphism?

Polymorphism is the ability for a term to simultaneously admit several
distinct types.
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Why polymorphism?

Polymorphism is indispensable [Reynolds, 1974]: if a function that sorts a
list is independent of the type of the list elements, then it should be
directly applicable to lists of integers, lists of booleans, etc.

In short, it should have polymorphic type:

∀α. (α → α → bool)→ list α → list α

which instantiates to the monomorphic types:

(int → int→ bool)→ list int→ list int(bool→ bool→ bool)→ list bool→ list bool
. . .
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Why polymorphism?

In the absence of polymorphism, the only ways of achieving this effect
would be:

● to manually duplicate the list sorting function at every type (no-no!);

● to use subtyping and claim that the function sorts lists of values of
any type: (⊺ → ⊺→ bool)→ list ⊺→ list ⊺

(The type ⊺ is the type of all values, and the supertype of all types.)

Why isn’t this so good? This leads to loss of information and
subsequently requires introducing an unsafe downcast operation.
This was the approach followed in Java before generics were
introduced in 1.5.
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Polymorphism seems almost free

Polymorphism is already implicitly present in simply-typed λ-calculus.
Indeed, we have checked that the type:

(α1 → α2)→ α1 → α1 → α2 × α2

is a principal type for the term λfxy. (f x, f y).
By saying that this term admits the polymorphic type:

∀α1α2. (α1 → α2)→ α1 → α1 → α2 × α2

we make polymorphism internal to the type system.
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Towards type abstraction

Polymorphism is a step on the road towards type abstraction.

Intuitively, if a function that sorts a list has polymorphic type:

∀α. (α → α → bool)→ list α → list α

then it knows nothing about α—it is parametric in α—so it must
manipulate the list elements abstractly: it can copy them around, pass
them as arguments to the comparison function, but it cannot directly
inspect their structure.

In short, within the code of the list sorting function, the variable α is an
abstract type.
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Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

For instance, the polymorphic type ∀α.α → α has only one inhabitant,
up to βη-equivalence, namely the identity.

Similarly, the type of the list sorting function

∀α. (α → α → bool)→ list α → list α

reveals a “free theorem” about its behavior!

Basically, sorting commutes with (map f), provided f is order-preserving.

(∀x, y, cmp (f x) (f y) = cmp x y) Ô⇒
∀ℓ, sort (map f ℓ) =map f (sort ℓ)

Note that there are many inhabitants of this type, but they all satisfy this
free theorem (including, e.g., a function that sorts in reverse order, or a
function that removes duplicates)
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Parametricity
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Ad hoc versus parametric

The term “polymorphism” dates back to a 1967 paper by
Strachey [2000], where ad hoc polymorphism and parametric
polymorphism were distinguished.

There are two different (and sometimes incompatible) ways of defining
this distinction...
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Ad hoc v.s. parametric polymorphism: first definition

With parametric polymorphism, a term can admit several types, all of
which are instances of a single polymorphic type:

int→ int,
bool→ bool,

. . .

∀α.α → α

With ad hoc polymorphism, a term can admit a collection of unrelated
types:

int→ int→ int,
float→ float→ float,

. . .

but not
∀α.α → α → α
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Ad hoc v.s. parametric polymorphism: second definition

With parametric polymorphism, untyped programs have a well-defined
semantics. (Think of the identity function.) Types are used only to rule
out unsafe programs.

With ad hoc polymorphism, untyped programs do not have a semantics:
the meaning of a term can depend upon its type (e.g. 2 + 2), or, even
worse, upon its type derivation (e.g. λx. show (read x)).
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Ad hoc v.s. parametric polymorphism: type classes

By the first definition, Haskell’s type classes [Hudak et al., 2007] are a
form of (bounded) parametric polymorphism: terms have principal
(qualified) type schemes, such as:

∀α.Num α⇒ α → α → α

Yet, by the second definition, type classes are a form of ad hoc
polymorphism: untyped programs do not have a semantics.

In the case of Haskell type classes, the two views can be reconciled.
(See the course on overloading.)

In this course, we are mostly interested in the simplest form of
parametric polymorphism.
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System F

The System F, (also known as: the polymorphic λ-calculus, the
second-order λ-calculus; F 2) was independently defined by Girard (1972)
and Reynolds [1974].

Compared to the simply-typed λ-calculus, types are extended with
universal quantification:

τ ∶∶= . . . ∣ ∀α.τ
How are the syntax and semantics of terms extended?

There are several variants, depending on whether one adopts an

● implicitly-typed or explicitly-typed (syntactic) presentation of terms

● and a type-passing or a type-erasing semantics.
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Explicitly-typed System F

In the explicitly-typed variant [Reynolds, 1974], there are term-level
constructs for introducing and eliminating the universal quantifier:

Tabs

Γ, α ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α.τ

Tapp

Γ ⊢M ∶ ∀α.τ

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ
Terms are extended accordingly:

M ∶∶= . . . ∣ Λα.M ∣M τ

Type variables are explicitly bound and appear in type environments.

Γ ∶∶= . . . ∣ Γ, α
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Well-formedness of environment

Mandatory: We extend our previous convention to form environments:
Γ, α requires α # Γ, i.e. α is neither in the domain nor in the image of Γ.

Optional: We also require that environments be closed with respect to
type variables, that is, we require ftv(τ) ⊆ dom(Γ) to form Γ, x ∶ τ .

However, a looser style would also be possible.

● Our stricter definition allows fewer judgments, since judgments with
open contexts are not allowed.

● However, these judgments can always be closed by adding a prefix
composed of a sequence of its free type variables to be well-formed.

The stricter presentation is easier to manipulate in proofs;
it is also easier to mechanize.
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Well-formedness of environments and types

Well-formedness of environments, written ⊢ Γ and well-formedness of
types, written Γ ⊢ τ , may also be defined recursively by inference rules:

WfEnv
-Empty

⊢ ∅

WfEnvTvar

⊢ Γ α ∉ dom(Γ)
⊢ Γ, α

WfEnvVar

Γ ⊢ τ x ∉ dom(Γ)
⊢ Γ, x ∶ τ

WfTypeVar

⊢ Γ α ∈ Γ

Γ ⊢ α

WfTypeArrow

Γ ⊢ τ1 Γ ⊢ τ2
Γ ⊢ τ1 → τ2

WfTypeForall

Γ, α ⊢ τ

Γ ⊢ ∀α. τ

Note

Rule WfEnvVar need not the premise ⊢ Γ , which follows from Γ ⊢ τ
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Well-formedness of environments and types

There is a choice whether well-formedness of environments should be
made explicit or left implicit in typing rules.

Explicit well-formedness amounts to adding well-formedness premises to
every rule where the environment or some type that appears in the
conclusion does not appear in any premise.

Var

x ∶ τ ∈ Γ ⊢ Γ

Γ ⊢ x ∶ τ

Tapp

Γ ⊢M ∶ ∀α.τ Γ ⊢ τ ′

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ
Explicit well-formedness is more precise and better suited for mechanized
proofs. Explicit well-formedness is recommended.

However, we choose to leave well-formedness conditions implicit in this
course, as it is a bit verbose and sometimes distracting. (Still, we will
remind implicit well-formedness premises in the definition of typing rules.)
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Type-passing semantics

We need the following reduction for type-level expressions:

(Λα.M) τ Ð→ [α ↦ τ]M (ι)
Then, there is a choice.

Historically, in most presentations of System F, type abstraction stops
the evaluation. It is described by:

V ∶∶= . . . ∣ Λα.M E ∶∶= . . . ∣ [] τ
However, this defines a type-passing semantics!

Indeed, Λα. ((λy ∶ α.y) V ) is then a value while its type erasure(λy. y) ⌈V ⌉ is not—and can be further reduced.
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Type-erasing semantics

We recover a type-erasing semantics if we allow evaluation under type
abstraction:

V ∶∶= . . . ∣ Λα.V E ∶∶= . . . ∣ [] τ ∣ Λα. []
Then, we only need a weaker version of ι-reduction:

(Λα.V ) τ Ð→ [α ↦ τ]V (ι)

We now have:
Λα. ((λy ∶ α.y) V )Ð→ Λα.V

We verify below that this defines a type-erasing semantics, indeed.
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Type-passing versus type-erasing: pros and cons

The type-passing interpretation has a number of disadvantages.

● because it alters the semantics, it does not fit our view that
the untyped semantics should pre-exist and that a type system is
only a predicate that selects a subset of the well-behaved terms.

● it blocks reduction of polymorphic expressions:

if f is list flattening of type ∀α. list (list α) → list α, the monomorphic
function (f int) ○ (f (list int)) reduces to Λx. f (f x), while its more
general polymorphic version Λα. (f α) ○ (f (list α)) is irreducible.

● because it requires both values and types to exist at runtime, it can
lead to a duplication of machinery. Compare type-preserving closure
conversion in type-passing [Minamide et al., 1996] and in
type-erasing [Morrisett et al., 1999] styles.
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Type-passing versus type-erasing: pros and cons

An apparent advantage of the type-passing interpretation is to allow
typecase; however, typecase can be simulated in a type-erasing system by
viewing runtime type descriptions as values [Crary et al., 2002].

The type-erasing semantics

● does not alter the semantics of untyped terms.

● for this very reason, it also coincides with the semantics of ML—and,
more generally, with the semantics of most programming languages.

● It also exhibits difficulties when adding side effects while the
type-passing semantics does not.

In the following, we choose a type-erasing semantics.

Notice that we allow evaluation under a type abstraction as a
consequence of choosing a type-erasing semantics—and not the converse.
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Reconciling type-passing and type-erasing views

If we restrict type abstraction to value-forms (which include values and
variables), that is, we only allow Λα.M when M is a value-form, then
the type-passing and type-erasing semantics coincide.

Indeed, under this restriction, closed type abstractions will always be type
abstractions of values, and evaluation under type abstraction will never
be used, even if allowed.

This restriction is chosen when adding side-effects as a way to preserve
type-soundness.
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Explicitly-typed System F

We study the explicitly-typed presentation of System F first because it is
simpler.

Once, we have verified that the semantics is indeed type-preserving,
many properties can be transferred back to the implicitly-typed version,
and in particular, to its ML subset.

Then, both presentations can be used, interchangeably.
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System F, full definition (on one slide) To remember!

Syntax τ ∶∶= α ∣ τ → τ ∣ ∀α.τ
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ

Typing rules

Var

Γ ⊢ x ∶ Γ(x)
Abs

Γ, x ∶ τ1 ⊢M ∶ τ2
Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

Tabs

Γ, α ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α.τ

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢M2 ∶ τ1

Γ ⊢M1 M2 ∶ τ2

Tapp

Γ ⊢M ∶ ∀α.τ

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ
Semantics

V ∶∶= λx ∶τ.M ∣ Λα.V
E ∶∶= []M ∣ V [] ∣ [] τ ∣ Λα. []
(λx ∶τ.M) V Ð→ [x ↦ V ]M(Λα.V ) τ Ð→ [α ↦ τ]V

Context

M Ð→M ′

E[M] Ð→ E[M ′]
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Encoding data-structures

System F is quite expressive: it enables the encoding of data structures.

For instance, the church encoding of pairs is well-typed:

pair
△
== Λα1.Λα2.λx1 ∶ α1. λx2 ∶ α2.Λβ.λy ∶ α1 → α2 → β. y x1 x2

proji
△
== Λα1.Λα2.λy ∶ ∀β. (α1 → α2 → β)→ β. y αi (λx1 ∶α1. λx2 ∶α2. xi)

⌈pair⌉ △== λx1. λx2. λy. y x1 x2⌈proji⌉ △== λy. y (λx1. λx2. xi)
Sum and inductive types such as Natural numbers, List, etc. can also be
encoded.
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Primitive data-structures as constructors and destructors

Unit, Pairs, Sums, etc. can also be added to System F as primitives.

We can then proceed as for simply-typed λ-calculus.

However, we may take advantage of the expressiveness of System F to
deal with such extensions is a more elegant way: thanks to
polymorphism, we need not add new typing rules for each extension.

We may instead add one typing rule for constants that is parametrized by
an initial typing environment.

This allows sharing the meta-theoretical developments between the
different extensions.

Let us first illustrate an extension of System F with primitive pairs.
(We will then generalize it to arbitrary constructors and destructors.)
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Constructors and destructors Pairs

Types are extended with a type constructor × of arity 2:

τ ∶∶= . . . ∣ τ × τ
Expressions are extended with a constructor (⋅, ⋅) and two destructors
proj1 and proj2 with the respective signatures:

Pair ∶ ∀α1.∀α2. α1 → α2 → α1 × α2

proji ∶ ∀α1.∀α2. α1 ×α2 → αi

which represent an initial environment ∆. We need not add any new
typing rule, but instead type programs in the initial environment ∆.

This allows for the formation of partial applications of constructors and
destructors (all cases but one). Hence, values are extended as follows:

V ∶∶= . . . ∣ Pair ∣ Pair τ ∣ Pair τ τ ∣ Pair τ τ V ∣ Pair τ τ V V∣ proji ∣ proji τ ∣ proji τ τ
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Constructors and destructors Pairs

We add the two following reduction rules:

proji τ1 τ2 (pair τ ′1 τ ′2 V1 V2)Ð→ Vi (δpair)
Comments?

● For well-typed programs, τi and τ
′
i will always be equal, but the

reduction will not check this at runtime.

Instead, one could have defined the rule:

proji τ1 τ2 (pair τ1 τ2 V1 V2)Ð→ Vi (δ′pair)
The two semantics are equivalent on well-typed terms, but differ on
ill-typed terms where δ′pair may block when rule δpair would
progress, ignoring type errors.

Interestingly, with δ′pair, the proof obligation is simpler for subject
reduction but replaced by a stronger proof obligation for progress.
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Constructors and destructors Pairs

We add the two following reduction rules:

proji τ1 τ2 (pair τ ′1 τ ′2 V1 V2)Ð→ Vi (δpair)
Comments?

● This presentation forces the programmer to specify the types of the
components of the pair.

However, since this is an explicitly type presentation, these types are
already known from the arguments of the pair (when present)

This should not be considered as a problem: explicitly-typed
presentations are always verbose. Removing redundant type
annotations is the task of type reconstruction.
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Constructors and destructors General case

Assume given a collection of type constructors G ∈ G, with their arity
arity (G). We assume that types respect the arities of type constructors.

Given G, a type of the form G (τ⃗) is called a G-type.
A type τ is called a datatype if it is a G-type for some type constructor G.

For instance G is {unit, int,bool, ( × ), list , . . .}
Let ∆ be an initial environment binding constants c of arity n (split into
constructors C and destructors d) to closed types of the form:

c ∶ ∀α1. . . .∀αk. τ1 → . . . τn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
arity(c)

→ τ

We require that

● τ be is a datatype whenever c is a constructor (key for progress);

● the arity of destructors be strictly positive
(nullary destructors introduce pathological cases for little benefit).
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Constructors and destructors General case

Expressions are extended with constants: Constants are typed as
variables, but their types are looked up in the initial environment ∆:

M ∶∶= . . . ∣ c
c ∶∶= C ∣ d

Cst

c ∶ τ ∈∆

Γ ⊢ c ∶ τ

Values are extended with partial or full applications of constructors and
partial applications of destructors:

V ∶∶= . . .

∣ C τ1 . . . τp V1 . . . Vq q ≤ arity (C)
∣ d τ1 . . . τp V1 . . . Vq q < arity (d)

For each destructor d of arity n, we assume given a set of δ-rules of the
form

d τ1 . . . τk V1 . . . Vn Ð→M (δd)
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Constructors and destructors Soundness requirements

Of course, we need assumptions to relate typing and reduction of
constants:

Subject-reduction for constants:

● δ-rules preserve typings for well-typed terms

If α⃗ ⊢M1 ∶ τ and M1 Ð→δ M2 then α⃗ ⊢ M2 ∶ τ .

Progress for constants:

● Well-typed full applications of destructors can be reduced

If α⃗ ⊢M1 ∶ τ and M1 is of the form d τ1 . . . τk V1 . . . Varity(d)
then there exists M2 such that M1 Ð→ M2.

Intuitively, progress for constants means that the domain of destructors is
at least as large as specified by their type in ∆.
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Example Unit

Adding units:

● Introduce a type constant unit

● Introduce a constructor () of arity 0 of type unit.

● No primitive and no reduction rule is added.

The assumptions obviously hold in the absence of destructors.

The previous example of pairs also perfectly fits in this framework.
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Example Fixpoint

We introduce a destructor

fix ∶ ∀α.∀β. ((α → β)→ α → β)→ α → β ∈∆

of arity 2, together with the δ-rule

fix τ1 τ2 V1 V2 Ð→ V1 (fix τ1 τ2 V1) V2 (δfix)
It is straightforward to check the assumptions:

● Progress is obvious, since δfix works for any values V1 and V2.

● Subject reduction is also straightforward
(by inspection of the typing derivation)

Assume that Γ ⊢ fix τ1 τ2 V1 V2 ∶ τ . By inversion of typing rules, τ must be
equal to τ2, V1 and V2 must be of types (τ1 → τ2) → τ1 → τ2 and τ1 in the
typing context Γ. We may then easily build a derivation of the judgment
Γ ⊢ V1 (fix τ1 τ2 V1) V2 ∶ τ
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Exercise Lists

1) Formulate the extension of System F with lists as constants.

2) Check that this extension is sound.

Solution

1) We introduce a new unary type constructor list ; two constructors Nil ⋅
and Cons of types ∀α. list α and ∀α.α → list α→ list α; and one
destructor matchlist ⋅ ⋅ ⋅⋅ of type:

∀αβ. list α → β → (α → list α → β)→ β

with the two reduction rules:

matchlist τ1 τ2 (Nil τ) Vn Vc Ð→ Vn
matchlist τ1 τ2 (Cons τ Vh Vt) Vn Vc Ð→ Vc Vh Vt

2) See the case of pairs in the course.
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Type soundness

The structure of the proof is similar to the case of simply-typed
λ-calculus and follows from subject reduction and progress.

Subject reduction uses the following lemmas:

● inversion of typing judgments

● permutation and weakening

● expression substitution

● type substitution (new)

● compositionality
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Inversion of typing judgements

Lemma (Inversion of typing rules)

Assume Γ ⊢M ∶ τ .

● If M is a variable x, then x ∈ dom(Γ) and Γ(x) = τ .
● If M is λx ∶τ0.M1, then τ is of the form τ0 → τ1 and
Γ, x ∶ τ0 ⊢M1 ∶ τ1.

● If M is M1 M2,
then Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2 for some type τ2.

● If M is a constant c, then c ∈ dom(∆) and ∆(x) = τ .
● If M is M1 τ2 then τ is of the form [α ↦ τ2]τ1 and Γ ⊢M1 ∶ ∀α. τ1.

● If M is Λα.M1, then τ is of the form ∀α. τ1 and Γ, α ⊢ M1 ∶ τ1.

The inversion lemma is a basic property that is used in many places when
reasoning by induction on terms. It may not always be as trivial as in our
simple setting: stating it explicitly avoids informal reasoning in proofs.
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Type soundness Weakening

Lemma (Weakening)

Assume Γ ⊢M ∶ τ .

1) If x# Γ and Γ ⊢ τ ′, then Γ, x ∶ τ ′ ⊢M ∶ τ

2) If β # Γ, then Γ, β ⊢ M ∶ τ .

That is, if ⊢ Γ,Γ′, then Γ,Γ′ ⊢ M ∶ τ .

The proof is by induction on M , then by cases on M applying the
inversion lemma.

Cases for value and type abstraction appeal to the permutation lemma:

Lemma (Permutation)

If Γ,Γ1,Γ2,Γ
′ ⊢M ∶ τ and Γ1 # Γ2 then Γ,Γ2,Γ1,Γ

′ ⊢M ∶ τ .
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Type soundness Type substitution

Lemma (Expression substitution, strengthened)

If Γ, x ∶ τ0,Γ
′ ⊢M ∶ τ and Γ ⊢ M0 ∶ τ0 then Γ,Γ′ ⊢ [x ↦M0]M ∶ τ .

The proof is by induction on M .

The case for type and value abstraction requires the strengthened version
with an arbitrary context Γ′. The proof is then straightforward—using
the weakening lemma at variables.
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Type soundness Type substitution

Lemma (Type substitition, strengthened)

If Γ, α,Γ′ ⊢M ∶ τ ′ and Γ ⊢ τ then Γ, [α ↦ τ]Γ′ ⊢ [α ↦ τ]M ∶ [α ↦ τ]τ ′.
The proof is by induction on M .

The interesting cases are for type and value abstraction, which require
the strengthened version with an arbitrary typing context Γ′ on the right.
Then, the proof is straightforward.
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Compositionality

Lemma (Compositionality)

If ∅ ⊢ E[M] ∶ τ , then there exists τ ′ such that ∅ ⊢M ∶ τ ′ and
all M ′ verifying ∅ ⊢M ′

∶ τ ′ also verify ∅ ⊢ E[M ′] ∶ τ .

Remarks

● We need to state compositionality under a context Γ that may at
least contain type variables. We allow program variables as well, as
it does not complicate the proof.

● Extension of Γ by type variables is needed because evaluation
proceeds under type abstractions, hence the evaluation context may
need to bind new type variables.
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Type soundness Subject reduction

Theorem (Subject reduction)

Reduction preserves types: if M1 Ð→M2 then for any context α⃗ and
type τ such that α⃗ ⊢M1 ∶ τ , we also have α⃗ ⊢M2 ∶ τ .

The proof is by induction on M .
Using the previous lemmas it is straightforward.

Interestingly, the case for δ-rules follows from the subject-reduction
assumption for constants (slide 78).
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Type soundness Progress

Progress is restated as follows:

Theorem (Progress, strengthened)

A well-typed, irreducible closed term is a value:
if α⃗ ⊢M ∶ τ and M /Ð→ , then M is some value V .

The theorem must be been stated using a sequence of type variables α⃗
for the typing context instead of the empty environment. A closed term
does not have free program variable, but may have free type variables (in
particular under the value restriction).

The theorem is proved by induction and case analysis on M .

It relies mainly on the classification lemma (given below) and
the progress assumption for destructors (slide 78).
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Type soundness Classification

Beware! We must take care of partial applications of constants

Lemma (Classification)

Assume α⃗ ⊢ V ∶ τ

● If τ is an arrow type, then V is either a function or a partial
application of a constant.

● If τ is a polymorphic type, then V is either a type abstraction of a
value or a partial application of a constant to types.

● If τ is a constructed type, then V is a constructed value.

This must be refined by partitioning constructors into their
associated type-constructor:

If τ is a G-constructed type (e.g. int, τ1 × τ2, or τ list),
then V is a value constructed with a G-constructor
(e.g. an integer n, a pair (V1, V2), a list Nil or Cons(V1, V2))
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Normalization

Theorem
Reduction terminates in pure System F.

This is also true for arbitrary reductions and not just for call-by-value
reduction.

This is a difficult proof, due to Girard [1972]; Girard et al. [1990]).

See the lesson on logical relations.
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Contents
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Implicitly-typed System F

The syntax and dynamic semantics of terms are that of the untyped
λ-calculus. We use letters a, v, and e to range over implicitly-typed
terms, values, and evaluation contexts. We write F and ⌈F ⌉ for the
explicitly-typed and implicit-typed versions of System F.

Definition 1 A closed term a is in ⌈F ⌉ if it is the type erasure of a closed
(with respect to term variables) term M in F .

We rewrite the typing rules to operate directly on unannotated terms by
dropping all type information in terms:

Definition 2 (equivalent) Typing rules for ⌈F ⌉ are those of the
implicitlty-typed simply-typed λ-calculus with two new rules:

if-Tabs

Γ, α ⊢ a ∶ τ

Γ ⊢ a ∶ ∀α.τ

if-Tapp

Γ ⊢ a ∶ ∀α.τ

Γ ⊢ a ∶ [α ↦ τ0]τ
Notice that these rules are not syntax directed.
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Implicitly-typed System F On the side condition α # Γ

Notice that the explicit introduction of variable α in the premise of Rule
Tabs contains an implicit side condition α # Γ due to the global
assumption on the formation of Γ, α:

if-Tabs

Γ, α ⊢ a ∶ τ

Γ ⊢ a ∶ ∀α.τ

if-Tabs-Bis

Γ ⊢ a ∶ τ α # Γ

Γ ⊢ a ∶ ∀α.τ

In implicitly-typed System F, we could also omit type declarations from
the typing environment. (Although, in some extensions of System F, type
variables may carry a kind or a bound and must be explicitly introduced.)

Then, we would need an explicit side-condition as in if-Tabs-Bis:

The side condition is important to avoid unsoundness by violation of the
scoping rules.
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Implicitly-typed System F On the side condition α # Γ

Omitting the side condition leads to unsoundness:

Broken Tabs

Var
x ∶ α1 ⊢ x ∶ α1 α1 ∈ ftv(x ∶ α1)

Tapp
∅, x ∶ α1 ⊢ x ∶ ∀α1.α1

Abs
∅, x ∶ α1 ⊢ x ∶ α2

Tabs-Bis
∅ ⊢ λx.x ∶ α1 → α2

∅ ⊢ λx.x ∶ ∀α1.∀α2.α1 → α2

This is a type derivation for a type cast (Objective Caml’s Obj.magic).
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Implicitly-typed System F On the side condition α # Γ

This is equivalent to using an ill-formed typing environment :

Broken Tabs

Broken Var
α1, α2, x ∶ α1, α1 ⊢ x ∶ α1 α1, α2, x ∶ α1, α1 ill-formed

Tapp
α1, α2, x ∶ α1 ⊢ x ∶ ∀α1.α1

Abs
α1, α2, x ∶ α1 ⊢ x ∶ α2

Tabs
α1, α2 ⊢ λx ∶α1. x ∶ α1 → α2

∅ ⊢ Λα1.Λα2. λα1 ∶x.x ∶ ∀α1.∀α2.α1 → α2
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Implicitly-typed System F On the side condition α # Γ

A good intuition is: a judgment Γ ⊢ a ∶ τ corresponds to the logical
assertion ∀α⃗.(Γ⇒ τ), where α⃗ are the free type variables of the
judgment.

In that view, Tabs-Bis corresponds to the axiom:

∀α.(P ⇒ Q) ≡ P ⇒ (∀α.Q) if α # P
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Type-erasing typechecking

Type systems for implicitly-typed and explicitly-type System F coincide.

Lemma
Γ ⊢ a ∶ τ holds in implicitly-typed System F if and only if there exists an
explicitly-typed expression M whose erasure is a such that Γ ⊢M ∶ τ .

Trivial.

One could write judgements of the form Γ ⊢ a⇒M ∶ τ to mean that the
explicitly typed term M witnesses that the implicitly typed term a has
type τ in the environment Γ.
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An example λfxy. (f x, f y)

Here is a version of the term λfxy. (f x, f y) that carries explicit type
abstractions and annotations:

Λα1.Λα2. λf ∶ α1 → α2. λx ∶ α1. λy ∶ α1. (f x, f y)
This term admits the polymorphic type:

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

Quite unsurprising, right? Perhaps more surprising is the fact that this
untyped term can be decorated in a different way:

Λα1.Λα2. λf ∶ ∀α.α → α.λx ∶ α1. λy ∶ α2. (f α1 x, f α2 y)
This term admits the polymorphic type:

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

This begs the question: ...
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Incomparable types in System F λfxy. (f x, f y)

Which of the two is more general?

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic.

Neither type is an instance of the other, for any reasonable definition of
the word instance, because each one has an inhabitant that does not
admit the other as a type.

Take, for instance,
λf.λx.λy. (f y, f x)

and
λf.λx.λy. (f (f x), f (f y))
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Distrib pair in F ω (parenthesis)

In Fω, one can abstract over type functions (e.g. of kind ⋆→ ⋆) and
write:

ΛF.ΛG.
Λα1.Λα2. λ(f ∶ ∀α.Fα → Gα). λx ∶ Fα1. λy ∶ Fα2. (f α1 x, f α2 y)

call it “dp” of type:

∀F.∀G.∀α1.∀α2.(∀α.Fα → Gα)→ Fα1 → Fα2 → Gα1 ×Gα2

Then

dp (λα.α)(λα.α)
∶ ∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

Λα1.Λα2. dp (λα.α1) (λα.α2) α1 α2

∶ ∀α1.∀α2.(∀α.α1 → α2)→ α1 → α1 → α2 ×α2

102 357 ◁



STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Notions of instance in ⌈F ⌉

It seems plausible that the untyped term λfxy. (f x, f y) does not admit
a type τ0 of which the two previous types are instances.

But, in order to prove this, one must fix what it means for τ2 to be an
instance of τ1—or, equivalently, for τ1 to be more general than τ2.

Several definitions are possible...
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Syntactic notions of instance in ⌈F ⌉

In System F, to be an instance is usually defined by the rule:

Inst-Gen

β⃗ # ∀α⃗.τ

∀α⃗.τ ≤ ∀β⃗.[α⃗ ↦ τ⃗ ]τ
One can show that, if τ1 ≤ τ2, then any term that has type τ1 also has
type τ2; that is, the following rule is admissible:

Sub

Γ ⊢ a ∶ τ1 τ1 ≤ τ2

Γ ⊢ a ∶ τ2

Perhaps surprisingly, the rule is not derivable in our presentation of
System F as the proof of admissibility requires weakening.
(It would be derivable if we had left type variables implicit in contexts.)
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Syntactic notions of instance in F

What is the counter-part of instance in explicitly-typed System F?

Assume Γ ⊢M ∶ τ1 and τ1 ≤ τ2. How can we see M with type τ2?

Well, τ1 and τ2 must be of the form ∀α⃗. τ and ∀β⃗. [α⃗ ↦ τ⃗]τ where
β⃗ # ∀α⃗. τ . W.l.o.g, we may assume that β⃗ # Γ.

We can wrap M with a retyping context, as follows.

Weak.
Γ ⊢M ∶ ∀α⃗. τ β⃗ # Γ (1)

Tapp∗
Γ, β⃗ ⊢ M ∶ ∀α⃗. τ

Tabs∗
Γ, β⃗ ⊢M τ⃗ ∶ [α⃗ ↦ τ⃗]τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Admissible rule:

Sub

β⃗ # ∀α⃗. τ (2)
Γ ⊢M ∶ ∀α⃗. τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ
If condition (2) holds, condition (1) may always be satisfied up to a
renaming of β⃗.
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Retyping contexts in F

In F , subtyping is a judgment Γ ⊢ τ1 ≤ τ2, rather than a binary relation,
where the context Γ keeps track of well-formedness of types. Subtyping
relations can be witnessed by retyping contexts.

Retyping contexts are just wrapping type abstractions and type
applications around expressions, without changing their type erasure.

R ∶∶= [] ∣ Λα.R ∣R τ

(Notice that R are arbitrarily deep, as opposed to evaluation contexts.)

Let us write Γ ⊢ R[τ1] ∶ τ2 iff Γ, x ∶ τ1 ⊢ R[x] ∶ τ2 (where x# R)

If Γ ⊢M ∶ τ1 and Γ ⊢ R[τ1] ∶ τ2, then Γ ⊢ R[M] ∶ τ2,
Then Γ ⊢ τ1 ≤ τ2 iff Γ ⊢ R[τ1] ∶ τ2. for some retyping context R.

In System F, retyping contexts can only change toplevel polymorphism:
they cannot operate under arrow types to weaken the return type or
strengthen the domain of functions.
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Another syntactic notion of instance: Fη

Mitchell [1988] defined Fη , a version of ⌈F ⌉ extended with a richer
instance relation as:

Inst-Gen

β⃗ # ∀α⃗.τ

∀α⃗.τ ≤ ∀β⃗.[α⃗ ↦ τ⃗]τ
Distributivity

∀α. (τ1 → τ2) ≤ (∀α. τ1)→ (∀α. τ2)
Congruence-→

τ2 ≤ τ1 τ ′1 ≤ τ
′
2

τ1 → τ ′1 ≤ τ2 → τ ′2

Congruence-∀

τ1 ≤ τ2

∀α.τ1 ≤ ∀α.τ2

Transitivity

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

In Fη , Rule Sub must be primitive as it is not admissible (but still sound).

Fη can also be defined as the closure of System F under η-equality.

Why is a rich notion of instance potentially interesting?

● More polymorphism.
● More hope of having principal types.
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A definition of principal typings

A typing of an expression M is a pair Γ, τ such that Γ ⊢M ∶ τ .

Ideally, a type system should have principal typings [Wells, 2002]:

Every well-typed term M admits a principal typing – one whose
instances are exactly the typings of M .

Whether this property holds depends on a definition of instance. The
more liberal the instance relation, the more hope there is of having
principal typings.
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A semantic notion of instance

Wells [2002] notes that, once a type system is fixed, a most liberal notion
of instance can be defined, a posteriori, by:

A typing θ1 is more general than a typing θ2 if and only if every
term that admits θ1 admits θ2 as well.

This is the largest reasonable notion of instance: ≤ is defined as the
largest relation such that a subtyping principle (for typings) is admissible.

This definition can be used to prove that a system does not have
principal typings, under any reasonable definition of “instance”.
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Which systems have principal typings?

The simply-typed λ-calculus has principal typings, with respect to a
substitution-based notion of instance. (See course notes on type
inference.)

Wells [2002] shows that neither System F nor Fη have principal typings.

It was shown earlier that Fη’s instance relation is
undecidable [Wells, 1995; Tiuryn and Urzyczyn, 2002] and that type
inference for both System F and Fη is undecidable [Wells, 1999].
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Which systems have principal typings?

There are still a few positive results...

Some systems of intersection types have principal typings [Wells, 2002] –
but they are very complex and have yet to see a practical application.

A weaker property is to have principal types. Given an environment Γ
and an expression M , is there a type τ for M in Γ such that all other
types of M in Γ are instances of τ .

Damas and Milner’s type system (coming up next) does not have
principal typings but it has principal types and decidable type inference.

111 357 ◁



STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Other approaches to type inference in System F

In System F, one can still perform bottom-up type checking, provided
type abstractions and type applications are explicit.

One can perform incomplete forms of type inference, such as local type
inference [Pierce and Turner, 2000; Odersky et al., 2001].

Finally, one can design restrictions or variants of the system that have
decidable type inference. Damas and Milner’s type system is one
example; MLF [Le Botlan and Rémy, 2003] is a more expressive, and
more complex, approach.
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Type soundness for ⌈F ⌉

Subject reduction and progress imply the soundness of the
explicitly-typed System F. What about the implicitly-typed version?

Can we reuse the soundness proof for the explicitly-typed version? Can
we pull back subject reduction and progress from F to ⌈F ⌉?
Progress? Given a well-typed term a ∈ ⌈F ⌉, can we find a term M ∈ F
whose erasure is a and since M is a value or reduces, conclude that a is
a value or reduces?

Subject reduction? Given a well-typed term a1 ∈ ⌈F ⌉ of type τ that
reduces to a2, can we find a term M1 ∈ F whose erasure is a1 and show
that M1 reduces to a term M2 whose erasure is a2 to conclude that the
type of a2 is the same as the type of a1?

In both cases, this reasoning requires a type-erasing semantics.

113 357 ◁



STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics

We claimed earlier that the explicitly-typed System F has an erasing
semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the
reduction of type applications on explicitly-typed terms is dropped on
implicitly-typed terms, hence the two reductions cannot coincide exactly.

The way to formalize this is to split reduction steps into βδ-steps
corresponding to β or δ rules that are preserved by type-erasure, and
ι-steps corresponding to the reduction of type applications that disappear
during type-erasure:

M0 M ′
0

M1

a0 a1
βδ

βδι

∗

. . .

Mj M ′
j Mj+1

aj aj+1
βδ

βδι

∗

. . .

Mn V

an = v /

/
ι

∗
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Type erasing semantics Direct simulation

Type erasure simulates in ⌈F ⌉ the reduction in F upto ι-steps:

Lemma (Direct simulation)

Assume Γ ⊢M1 ∶ τ .
1) If M1 Ð→ι M2, then ⌈M1⌉ = ⌈M2⌉
2) If M1 Ð→βδ M2, then ⌈M1⌉Ð→βδ ⌈M2⌉
Both parts are easy by definition of type erasure.
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Type erasing semantics Inverse simulation

The inverse direction is more delicate to state, since there are usually
many expressions of F whose erasure is a given expression in ⌈F ⌉,
as ⌈⋅⌉ is not injective.
Lemma (Inverse simulation)

Assume Γ ⊢M1 ∶ τ and ⌈M1⌉Ð→ a.
Then, there exists a term M2 such that M1 Ð→∗ιÐ→βδ M2 and ⌈M2⌉ = a.
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Type erasing semantics Assumption on δ-reduction

Of course, the semantics can only be type erasing if δ-rules do not
themselves depend on type information.

We first need δ-reduction to be defined on type erasures.

● We may prove the theorem directly for some concrete examples of
δ-reduction.
However, keeping δ-reduction abstract is preferable to avoid
repeating the same reasoning again and again.

● We assume that it is such that type erasure establishes a
bisimulation for δ-reduction taken alone.
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Type erasing semantics Assumption on δ-reduction

We assume that for any explicitly-typed term M of the form
d τ1. . . τj V1. . . Vk such that Γ ⊢M ∶ τ , the following properties hold:

(1) If M Ð→δ M
′, then ⌈M⌉Ð→δ ⌈M ′⌉.

(2) If ⌈M⌉Ð→δ a, then there exists M ′ such that M Ð→δ M
′ and a is

the type-erasure of M ′.

Remarks

● In most cases, the assumption on δ-reduction is obvious to check.

● In general the δ-reduction on untyped terms is larger than the
projection of δ-reduction on typed terms.

● If we restrict δ-reduction to implicitly-typed terms, then it usually
coincides with the projection of δ-reduction of explicitly-typed terms.
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Type soundness for implicitly-typed System F

We may now easily transpose subject reduction and progress from the
implicitly-typed version to the implicitly-typed version of System F.

Progress Well-typed expressions in ⌈F ⌉ have a well-typed antecedent in
ι-normal form in F , which, by progress in F , either βδ-reduces or is a
value; then, its type erasure βδ-reduces (by direct simulation) or is a
value (by observation).

Subject reduction Assume that Γ ⊢ a1 ∶ τ and a1 Ð→ a2.

● By well-typedness of a1, there exists a term M1 that erases to a1
such that Γ ⊢M1 ∶ τ .

● By inverse simulation in F , there exists M2 such that
M1 Ð→∗ιÐ→βδ M2 and ⌈M2⌉ is a2.

● By subject reduction in F , Γ ⊢M2 ∶ τ , which implies Γ ⊢ a2 ∶ τ .
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Type erasing semantics

The design of advanced typed systems for programming languages is
usually done in explicitly-typed versions, with a type-erasing semantics in
mind, but this is not always checked in details.

While the direct simulation is usually straightforward, the inverse
simulation is often harder. As type systems get more complicated,
reduction at the level of types also gets more complicated.

It is important and not always obvious that type reduction terminates
and is rich enough to never block reductions that could occur in the type
erasure.
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Type erasing semantics On bisimulations

Using bisimulations to show that compilation preserves the semantics
given in small-step style is a classical technique.

For example, this technique is heavily used in the CompCert project to
prove the correctness of a C-compiler to assembly code in Coq, using a
dozen of successive intermediate languages.

It is also used in program proofs by refinement, proving some properties
on a high-level abstract version of a program and using bisimulation to
show that the properties also hold for the real program.
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Proof of inverse simulation

The inverse simulation can first be shown assuming that M1 is ι-normal.

The general case follows, since then M1 ι-reduces to a normal form M ′
1

preserving typings; then, the lemma can be applied to M ′
1 instead of M1.

Notice that this argument relies on the termination of ι-reduction alone.

The termination of ι-reduction is easy for System F , since it strictly
decreases the number of type abstractions. (In Fω, it requires
termination of simply-typed λ-calculus.)

The proof of inverse simulation in the case M is ι-normal is by induction
on the reduction in ⌈F ⌉, using a few helper lemmas, to deal with the fact
that type-erasure is not injective.
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Proof of inverse simulation Helper lemmas

Retyping contexts are just wrapping type abstractions and type
applications around expressions, without changing their type erasure.

R ∶∶= [] ∣ Λα.R ∣R τ

(Notice that R are arbitrarily deep, as opposed to evaluation contexts.)

Lemma

1) A term that erases to ē[a] can be put in the form Ē[M] where ⌈Ē⌉
is ē and ⌈M⌉ is a, and moreover, M does not start with a type
abstraction nor a type application.

2) An evaluation context Ē whose erasure is the empty context is a
retyping context R.

3) If R[M] is in ι-normal form, then R is of the form Λα⃗. [] τ⃗ .
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Proof of inverse simulation Helper lemmas

Lemma (inversion of type erasure)

Assume ⌈M⌉ = a
● If a is x, then M is of the form R[x]
● If a is c, then M is of the form R[c]
● If a is λx.a1, then M is of the form R[λx ∶τ.M1] with ⌈M1⌉ = a1
● If a is a1 a2, then M is of the form R[M1 M2] with ⌈Mi⌉ = ai

The proof is by induction on M .
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Proof of inverse simulation Helper lemmas

Lemma (Inversion of type erasure for well-typed values)
Assume Γ ⊢M ∶ τ and M is ι-normal. If ⌈M⌉ is a value v, then M is a value V .
Moreover,

● If v is λx. a1, then V is Λα⃗. λx ∶τ.M1 with ⌈M1⌉ = a1.
● If v is a partial application c v1 . . . vn

then V is R[c τ⃗ V1 . . . Vn] with ⌈Vi⌉ = vi.
The proof is by induction on M . It uses the inversion of type erasure and
analysis of the typing derivation to restrict the form of retyping contexts.

Corollary
Let M be a well-typed term in ι-normal form whose erasure is a.

● If a is (λx. a1) v,
then M if of the form R[(λx ∶τ.M1) V ], with ⌈M1⌉ = a1 and ⌈V ⌉ = v.

● If a is a full application (d v1 . . . vn),
then M is of the form R[d τ⃗ V1 . . . Vn] and ⌈Vi⌉ is vi.
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Algebraic Datatypes Types Examples

In OCaml:

type ’a list =
| Nil : ’a list
| Cons : ’a ∗ ’a list → ’a list

or

type (’leaf, ’node) tree =
| Leaf : ’leaf → ( ’leaf , ’node) tree
| Node : (’leaf, ’node) tree ∗ ’node ∗ (’leaf, ’node) tree → (’leaf , ’node) tree
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Algebraic Datatypes Types General case

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)
In System F, this amounts to declaring (implicit version for conciseness):

● a new type constructor G,

● n constructors Ci ∶ ∀α⃗. τi → G α⃗

● one destructor dG ∶ ∀α⃗, γ.G α⃗ → (τ1 → γ) . . . (τn → γ)→ γ

● n reduction rules dG (Ci v) v1 . . . vn −↝ vi v

Exercise
Show that this extension verifies the subject reduction and progress
axioms for constants.
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Algebraic Datatypes Types

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)
Notice that

● All constructors build values of the same type G α⃗ and are
surjective (all types can be reached)

● The definition may be recursive, i.e. G may appear in τi

Algebraic datatypes introduce isorecursive types.
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Recursive Types

Product and sum types alone do not allow describing data structures of
unbounded size, such as lists and trees.

Indeed, if the grammar of types is τ ∶∶= unit ∣ τ × τ ∣ τ + τ , then it is clear
that every type describes a finite set of values.

For every k, the type of lists of length at most k is expressible using this
grammar. However, the type of lists of unbounded length is not.

132 357 ◁



Algebraic Data Types Existential types GADTs Typed closure conversion

Equi- versus isorecursive types

The following definition is inherently recursive:

“A list is either empty or a pair of an element and a list.”

We need something like this:

list α ◇ unit +α × list α

But what does ◇ stand for? Is it equality, or some kind of isomorphism?

There are two standard approaches to recursive types:

● equirecursive approach:
a recursive type is equal to its unfolding.

● isorecursive approach:
a recursive type and its unfolding are related via explicit coercions.
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Equirecursive types

In the equirecursive approach, the usual syntax of types:

τ ∶∶= α ∣ F τ⃗ ∣ ∀β. τ
is no longer interpreted inductively. Instead, types are the regular infinite
trees built on top of this grammar.

Finite syntax for recursive types

τ ∶∶= α ∣ µα.(F τ⃗) ∣ µα.(∀β. τ)
We do not allow the seemingly more general form µα.τ , because
µα.α is meaningless, and µα.β or µα.µβ.τ are useless. If we write
µα.τ , it should be understood that τ is contractive, that is, τ is a
type constructor application or a forall introduction.

For instance, the type of lists of elements of type α is:

µβ.(unit + α × β)
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Equirecursive types Equality

Inductive definition [Brandt and Henglein, 1998] show that equality is
the least congruence generated by the following two rules:

Fold/Unfold

µα.τ = [α ↦ µα.τ]τ
Uniqueness

τ1 = [α ↦ τ1]τ τ2 = [α ↦ τ2]τ
τ1 = τ2

In both rules, τ must be contractive.

This axiomatization does not directly lead to an efficient algorithm for
deciding equality, though.

Co-inductive definition

α = α
[α ↦ µα.Fτ⃗ ]τ⃗ = [α ↦ µα.Fτ⃗ ′]τ⃗ ′

µα.Fτ⃗ = µα.Fτ⃗ ′
[α ↦ µα.∀β. τ]τ = [α ↦ µα.∀β. τ ′]τ ′

µα.∀β. τ = µα.∀β. τ ′

Exercise
Show that µα.Aα = µα.AAα and µα.ABα = Aµα.BAα with both inductive
and co-inductive definitions. Can you do it without the Uniqueness rule?

135 357 ◁



Algebraic Data Types Existential types GADTs Typed closure conversion

Equirecursive types Equality

In the absence of quantifiers

Each type in this syntax denotes a unique regular tree, sometimes known
as its infinite unfolding. Conversely, every regular tree can be expressed
in this notation (possibly in more than one way).

If one builds a type-checker on top of this finite syntax, then one must be
able to decide whether two types are equal, that is, have identical infinite
unfoldings.

This can be done efficiently, either via the algorithm for comparing two
DFAs, or better, by unification. (The latter approach is simpler, faster,
and extends to the type inference problem.)

136 357 ◁



Algebraic Data Types Existential types GADTs Typed closure conversion

Equirecursive types Without quantifiers

Proof of µαAAα = µαAAAα

By coinduction
Let u be µαAAα

v be µαAAAα

(1)
Au = Av

u = AAv

Au = v

u = Av

Au = AAv

u = v (1)
By unification

Equivalent classes, using small terms To do:

u ∼ Au1 ∧ u1 ∼ Au ∧ v ∼ Av1 ∧ v1 ∼ Av2 ∧ v2 ∼ Av u ∼ v
u ∼ Au1 ∼ v ∼ Av1 ∧ u1 ∼ Au ∧ v1 ∼ Av2 ∧ v2 ∼ Av u1 ∼ v1
u ∼ v ∼ Av1 ∧ u1 ∼ Au ∼ v1 ∼ Av2 ∧ v2 ∼ Av u ∼ v2∼ ∼ ∼ ∼ ∧ ∼ ∼ ∼137 357 ◁
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Equirecursive types Equality

In the presence of quantifiers

The situation is more subtle because of α-conversion.

A (somewhat involved) canonical form can still be found, so that
checking equality and first-order unification on types can still be done in
O(n logn). See [Gauthier and Pottier, 2004].

Otherwise, without the use of such canonical forms, the best known
algorithm is in O(n2) [Glew, 2002] testing equality of automatons with
binders.
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Equirecursive types With quantifiers

Example of unfolding with canonical forms [Gauthier and Pottier, 2004].

● the letter in gray, is just any name, subject to α-conversion

● the number is the canonical name: it is the number of free variables
under the binder—including recursive occurrences.

∀a1. µℓ.a1 → ∀a2. (a2 → ℓ) (1)
∀a1. µℓ.a1 → ∀b2. (b2 → ℓ) (α)
= ∀a1. a1→ ∀b2. (b2 → µℓ.a1→ ∀b2. (b2 → ℓ)) (µ)
= ∀a1. a1→ ∀b2. (b2 → µℓ.a1→ ∀c2. (c2 → ℓ)) (α)

With the canonical representation,

● Syntactic unfolding (i.e. without any renaming) avoids name
capture and is also a correct semantical unfolding

● It shares free variables and can reuse the same name for the new
bound variables without name capture.
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Equirecursive types Type soundness

In the presence of equirecursive types, structural induction on types is no
longer permitted, but we never used it anyway – in soundness proofs.

We only need it to prove the termination of reduction, which does not
hold any longer.

It remains true that

● F τ⃗1 = F τ⃗2 implies τ⃗1 = τ⃗2 (symbols are injective)—this is used in
the proof of Subject Reduction.

● F1 τ⃗1 = F2 τ⃗2 implies F1 = F2—this was is the proof of Progress.

So, the reasoning that leads to type soundness is unaffected.

Exercise
Prove type soundness for the simply-typed λ-calculus in Coq. Then,
change the syntax of types from Inductive to CoInductive.
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Equirecursive types break termination, indeed!

That is no a surprise, but...

What is the expressiveness of simply-typed λ-calculus with equirecursive
types alone (no other constructs and/or constants)?

All terms of the untyped λ-calculus are typable!

● define the universal type U as rec α.α → α

● we have U = U → U , hence all terms are typable with type U .

Notce that one can emulate recursive types U = U → U by defining two
functions fold and unfold of respective types (U → U)→ U and
U → (U → U) with side effects, such as:

● references, or

● exceptions
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Equirecursive types in OCaml

OCaml has both iso- and) equirecursive types.

● equirecursive types are restricted by default to object or data types.

● unrestricted equirecursive types are available upon explicit request.

Quiz: why so?
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Isorecursive types

The folding/unfolding is witnessed by an explicit coercion.

The uniqueness rule is often omitted
(hence, the equality relation is weaker).

Encoding isorecursive types with ADT

The recursive type µβ.τ can be represented in System F by introducing a
datatype with a unique constructor:

type G α⃗ = Σ(C ∶ ∀α⃗. [β ↦ G α⃗]τ → G α⃗) where α⃗ = ftv(τ) ∖ {β}
The constructor C coerces [β ↦ G α⃗]τ to G α⃗ and the reverse coercion is
the function λx.dG x (λy. y).
Since this datatype has a unique constructor, pattern matching always
succeeds and amounts to the identity. Hence, in ⌈F ⌉, the constructor
could be removed: coercions have no computational content.
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Records

A record can be defined as

type G α⃗ = Πi∈1..n(ℓi ∶ τi) where α⃗ = ⋃i∈1..n ftv(τi)
Exercise
What are the corresponding declarations in System F?

● a new type constructor GΠ,

● 1 constructor CΠ ∶ ∀α⃗. τ1 → . . . τn → G α⃗

● n destructors dℓi ∶ ∀α⃗.G α⃗ → τi

● n reduction rules dℓi(CΠ v1 . . . vn) −↝ vi

Can a record also be used for defining recursive types?
Show type soundness for records.
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Deep pattern matching

In practice, one allows deep pattern matching and wildcards in patterns.

type nat = Z | S of nat
let rec equal n1 n2 = match n1, n2 with
| Z, Z → true
| S m1, S m2 → equal m1 m2
| → false

Then, one should check for exhaustiveness of pattern matching.

Deep pattern matching can be compiled away into shallow patterns—or
directly compiled to efficient code.

See [Le Fessant and Maranget, 2001; Maranget, 2007]
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ADTs Regular

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗)
If all occurrences of G in τi are G α⃗ then, the ADT is regular.

Remark regular ADTs can be encoded in System-F. (More precisely, the
church encodings of regular ADTs are typable in System-F.)
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ADTs Non Regular

Non-regular ADT’s do not have this restriction:

type ’a seq =
| Nil
| Zero of (’a ∗ ’a) seq
| One of ’a ∗ (’a ∗ ’a) seq

They usually need polymorphic recursion to be manipulated.

Non regular ADT are heavily used by Okasaki [1999] for implementing
purely functional data structures.

(They are also typically used with with GADTs.)

Non-regular ADT can be encoded in Fω.
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Existential types Examples

A frozen application returning a value of type (≈ a thunk)

∃α.(α → τ) × α
Type of closures in the environment-passing variant:

Jτ1 → τ2K = ∃α.((α × Jτ1K)→ Jτ2K) × α
A possible encoding of objects:

= ∃ρ. ρ describes the state

µα. α is the concrete type of the closure

Π ( a tuple...{(α × τ1)→ τ ′1; ... that begins with a record...

. . .(α × τn)→ τ ′n } ; ... of method code pointers...

ρ ...and continues with the state) (a tuple of unknown length)
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Existential types

One can extend System F with existential types, in addition to universals:

τ ∶∶= . . . ∣ ∃α.τ
As in the case of universals, there are type-passing and type-erasing
interpretations of the terms and typing rules... and in the latter
interpretation, there are explicit and implicit versions.

Let’s first look at the type-erasing interpretation, with an explicit
notation for introducing and eliminating existential types.
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Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

Anything wrong?The side condition α # τ2 is mandatory here to ensure
well-formedness of the conclusion.

The side condition may also be written Γ ⊢ τ2 which implies α # τ2,
given that the well-formedness of the last premise implies α ∉ dom(Γ).
Note the imperfect duality between universals and existentials:

TAbs

Γ, α ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α. τ

TApp

Γ ⊢M ∶ ∀α. τ

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ
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On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

Γ, α ⊢M ∶ ∃α.τ

Γ, α ⊢ unpackM ∶ τ

Informally, this could mean that, if M has type τ for some unknown α,
then it has type τ , where α is “fresh”...

Why is this broken?

We could immediately universally quantify over α, and conclude that
Γ ⊢ Λα.unpackM ∶ ∀α. τ . This is nonsense!

Replacing the premise Γ, α ⊢M ∶ ∃α.τ by the conjunction Γ ⊢M ∶ ∃α.τ

and α ∈ dom(Γ) would make the rule even more permissive, so it
wouldn’t help.
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On existential elimination

A correct elimination rule must force the existential package to be used
in a way that does not rely on the value of α.

Hence, the elimination rule must have control over the user of the
package – that is, over the term M2.

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α;x ∶ τ1 ⊢ M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

The restriction α # τ2 prevents writing “let α,x = unpackM1 in x”,
which would be equivalent to the unsound “unpackM” of the previous
slide.

The fact that α is bound within M2 forces it to be treated abstractly.

In fact, M2 must be ??? in α.
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On existential elimination

In fact, M2 must be polymorphic in α: the second premise could be:

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ Λα.λx ∶τ1.M2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

or, if N2 stands for Λα.λx ∶τ1.M2:

Γ ⊢M1 ∶ ∃α.τ1 Γ ⊢ N2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 N2 ∶ τ2

One could even view “unpack∃α.τ1” as a family of constants of types:

unpack∃α.τ1 ∶ (∃α.τ1)→ (∀α. (τ1 → τ2))→ τ2 α # τ2

Thus, unpack∃α.τ ∶ ∀β. ((∃α.τ) → (∀α. (τ → β)) → β)
or, better unpack∃α.τ ∶ (∃α.τ) → ∀β. ((∀α. (τ → β)) → β)
β stands for τ2: it is bound prior to α, so it cannot be instantiated to a
type that refers to α, which reflects the side condition α # τ2.
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On existential introduction

Pack

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

Hence, “pack∃α.τ” can be viewed as a family constant of types:

pack∃α.τ ∶ [α ↦ τ ′]τ → ∃α.τ

i.e. of polymorphic types:

pack∃α.τ ∶ ∀α. (τ → ∃α.τ)
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Existentials as constants

In System F, existential types can be presented as a family of constants:

pack∃α.τ ∶ ∀α. (τ → ∃α.τ)
unpack∃α.τ ∶ ∃α. τ → ∀β. ((∀α. (τ → β))→ β)

Read:

● for any α, if you have a τ , then, for some α, you have a τ ;

● if, for some α, you have a τ , then, (for any β,) if you wish to obtain
a β out of it, you must present a function which, for any α, obtains
a β out of a τ .

This is somewhat reminiscent of ordinary first-order logic:
∃x.F is equivalent to, and can be defined as, ¬(∀x.¬F ).
Is there an encoding of existential types into universal types?
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Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

Junpack∃α.τ K ∶ J∃α.τK→ ∀β. ((∀α. (JτK → β))→ β)
= λx ∶J∃α.τK. x

There is little choice, if the translation is to be type-preserving.

What is the computational content of this encoding?

A continuation-passing transform.

This encoding is due to Reynolds [1983],
although it has more ancient roots in logic.
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The semantics of existential types as constants

pack∃α.τ can be treated as a unary constructor, and unpack∃α.τ as a
unary destructor. The δ-reduction rule is:

unpack∃α.τ0 (pack∃α.ττ ′ V ) Ð→ Λβ.λy ∶∀α. τ → β. y τ ′ V

It would be more intuitive, however, to treat unpack∃α.τ0 as a binary
destructor:

unpack∃α.τ0 (pack∃α.τ τ ′ V ) τ1 (Λα.λx ∶τ.M) Ð→ [α ↦ τ ′][x ↦ V ]M
Remark:

● This does not quite fit in our generic framework for constants, which
must receive all type arguments prior to value arguments.

● But our framework could be easily extended.
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The semantics of existential types as primitive

We extend values and evaluation contexts as follows:

V ∶∶= . . . pack τ ′, V as τ
E ∶∶= . . . pack τ ′, [] as τ ∣ let α,x = unpack [] inM

We add the reduction rule:

let α,x = unpack (pack τ ′, V as τ) inM Ð→ [α ↦ τ ′][x ↦ V ]M
Exercise
Show that subject reduction and progress hold.
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The semantics of existential types beware!

The reduction rule for existentials destructs its arguments.

Hence, let α,x = unpackM1 inM2 cannot be reduced unless M1 is itself
a packed expression, which is indeed the case when M1 is a value
(or in head normal form).

This contrasts with let x ∶ τ =M1 inM2 where M1 need not be evaluated
and may be an application (e.g. with call-by-name or strong reduction
strategies).
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The semantics of existential types beware!

Exercise
Find an example that illustrates why the reduction of
let α,x = unpackM1 inM2 could be problematic when M1 is not a value.

Need a hint?

Use a conditional Solution

Let M1 be if M then V1 else V2 where Vi is of the form
pack τi, Vi as ∃α.τ and the two witnesses τ1 and τ2 differ.

There is no common type for the unpacking of the two possible results
V1 and V2. The choice between those two possible results must be made,
by evaluating M1, before unpacking.
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Is pack too verbose?

Exercise
Recall the typing rule for pack:

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

Isn’t the witness type τ ′ annotation superfluous?

● The type τ0 of M is fully determined by M . Given the type ∃α.τ of
the packed value, checking that τ0 is of the form [α ↦ τ ′]τ is the
matching problem for second-order types, which is simple.

● However, the reduction rule need the witness type τ ′. If it were not
available, it would have to be computed during reduction. The
reduction rule would then not be pure rewriting.

The explicitly-typed language need the witness type for simplicity, while
in the surface language, it could be omitted and reconstructed.
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Implicitly-typed existential types

Intuitively, pack and unpack are just type annotations that could be
dropped, leaving a let-binding instead of the unpack form.

Hence, the typing rule for implicitly-typed existential types:

Unpack

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ let x = a1 in a2 ∶ τ2

Pack

Γ ⊢ a ∶ [α ↦ τ ′]τ
Γ ⊢ a ∶ ∃α.τ

Notice, however, that this let-binding is not typechecked as syntactic
sugar for an immediate application!

The semantics of this let-binding is as before:

E ∶∶= . . . ∣ let x = E inM let x = V inM Ð→ [x↦ V ]M
Is the semantics type-erasing?
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Implicitly-typed existential types subtlety

Yes, it is.

But there is a subtlety! What about the call-by-name semantics?

We chose a call-by-value semantics, but so far, as long as there is no
side-effect, we could have chosen a call-by-name semantics (or even
perform reduction under abstraction).

In a call-by-name semantics, the let-bound expression is not reduced prior
to substitution in the body:

let x =M1 inM2 Ð→ [x ↦M1]M2

With existential types, this breaks subject reduction!

Why?
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Implicitly-typed existential types subtlety

Let τ0 be ∃α. (α → α)→ (α → α) and v0 a value of type bool. Let v1
and v2 be two values of type τ0 with incompatible witness types, e.g.
λf.λx.1 + (f (1 + x)) and λf.λx.not (f (not x)).
Let v be the function λb. if b then v1 else v2 of type bool→ τ0.

a1 = let x = v v0 in x (x (λy. y)) Ð→ v v0 (v v0 (λy. y)) = a2

We have ∅ ⊢ a1 ∶ ∃α.α → α while ∅ /⊢ a2 ∶ τ .
What happened? The term a1 is well-typed since v v0 has type τ0, hence
x can be assumed of type (β → β)→ (β → β) for some unknown type β
and λy. y is of type β → β.

However, without the outer existential type v v0 can only be typed with(∀α.α → α)→ ∃α. (α → α), because the value returned by the function
need different witnesses for α. This is demanding too much on its
argument and the outer application is ill-typed.
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Implicitly-typed existential types subtlety

One could wonder whether the syntax should not allow the implicit
introduction of unpacking (instead of requesting a let-binding).

One could argue that if some expression is the expansion of a well-typed
let-binding, then it should also be well-typed:

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ [x ↦ a1]a2 ∶ τ2
Comments?

● This rule does not have a logical flavor...

● It fixes the previous example, but not the general case:
Pick a1 that is not yet a value after one reduction step.
Then, after let-expansion, reduce one of the two occurrences of a1.
The result is no longer of the form [x ↦ a1]a2.
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Implicitly-typed existential types subtlety

Existential types are trickier than they may appear at first.

The subject reduction property breaks if reduction is not restricted to
expressions in head-normal forms.

Unrestricted reduction is still safe because well-typedness may eventually
be recovered by further reduction steps—so that progress will never
break.
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Implicitly-typed existential types encoding

Notice that the CPS encoding of existential types (1) enforces the
evaluation of the packed value (2) before it can be unpacked (3) and
substituted (4):

Junpack a1 (λx.a2)K = Ja1K (λx. Ja2K) (1)
Ð→ (λk. JaK k) (λx. Ja2K) (2)
Ð→ (λx. Ja2K) JaK (3)
Ð→ [x↦ JaK]Ja2K (4)

In the call-by-value setting, λk. JaK k would come from the reduction of
Jpack aK, i.e. is (λk.λx. k x) JaK, so that a is always a value v.

However, a need not be a value. What is essential is that a1 be reduced
to some head normal form λk. JaK k.
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Iso-existential types in ML

What if one wished to extend ML with existential types?

Full type inference for existential types is undecidable, just like type
inference for universals.

However, introducing existential types in ML is easy if one is willing to
rely on user-supplied annotations that indicate where and how to pack
and unpack.
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Iso-existential types in ML

This iso-existential approach was suggested by Läufer and
Odersky [1994].

Iso-existential types are explicitly declared:

D α⃗ ≈ ∃β̄.τ if ftv(τ) ⊆ ᾱ ∪ β̄ and ᾱ # β̄

This introduces two constants, with the following type schemes:

packD ∶ ∀ᾱβ̄. τ →D α⃗

unpackD ∶ ∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

(Compare with basic isorecursive types, where β̄ = ∅.)
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Iso-existential types in ML

One point has been hidden on the previous slide. The “type scheme:”

∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

is in fact not an ML type scheme. How could we address this?

A solution is to make unpackD a (binary) primitive construct again
(rather than a constant), with an ad hoc typing rule:

UnpackD

Γ ⊢ M1 ∶D τ⃗

Γ ⊢M2 ∶ ∀β̄. ([α⃗ ↦ τ⃗]τ → τ2) β̄ # τ⃗ , τ2

Γ ⊢ unpackD M1 M2 ∶ τ2
where D α⃗ ≈ ∃β̄.τ

We have seen a version of this rule in System F earlier; this in an ML
version. The term M2 must be polymorphic, which Gen can prove.
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Iso-existential types in ML (type inference, skip)

Iso-existential types are perfectly compatible with ML type inference.

The constant packD admits an ML type scheme, so it is unproblematic.

The construct unpackD leads to this constraint generation rule (see type
inference):

⟪unpackD M1 M2 ∶ τ2⟫ = ∃ᾱ.( ⟪M1 ∶D α⃗⟫
∀β̄.⟪M2 ∶ τ → τ2⟫ )

where D α⃗ ≈ ∃β̄.τ and, w.l.o.g., ᾱβ̄ #M1,M2, τ2.

A universally quantified constraint appears where polymorphism is
required.
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Iso-existential types in ML

In practice, Läufer and Odersky suggest fusing iso-existential types with
algebraic data types.

This can be done in OCaml using GADTs (see last part of the course).
The syntax for this in OCaml is:

typeD α⃗ = ℓ ∶ τ →D α⃗

where ℓ is a data constructor and β̄ appears free in τ but does not
appear in α⃗. The elimination construct is typed as:

⟪matchM1 with ℓ x →M2 ∶ τ2⟫ = ∃ᾱ.( ⟪M1 ∶ D α⃗⟫
∀β̄.def x ∶ τ in ⟪M2 ∶ τ2⟫ )

where, w.l.o.g., ᾱβ̄ #M1,M2, τ2.
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An example

Define Any ≈ ∃β.β. An attempt to extract the raw content of a package
fails:

⟪unpackAny M1 (λx.x) ∶ τ2⟫ = ⟪M1 ∶ Any⟫ ∧ ∀β.⟪λx.x ∶ β → τ2⟫
⊩ ∀β.β = τ2
≡ false

(Recall that β # τ2.)
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An example

Define
D α ≈ ∃β.(β → α) × β

A client that regards β as abstract succeeds:

⟪unpackD M1 (λ(f, y). f y) ∶ τ⟫
= ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.⟪λ(f, y). f y ∶ ((β → α) × β)→ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.def f ∶ β → α;y ∶ β in ⟪f y ∶ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β. τ = α)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ τ = α)
≡ ⟪M1 ∶D τ⟫
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Existential types calls for universal types!

Exercise We reuse the type D α ≈ ∃β.(β → α) × β of frozen
computations. Assume given a list l with elements of type D τ1.

Assume given a function g of type τ1 → τ2. Transform the list l into a
new list l′ of frozen computations of type D τ2 (without actually running
any computation).

List .map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

Try generalizing this example to a function that receives g and l and
returns l′ : it does not typecheck. . .

let lift g l =
List .map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

In expression let α,x = unpackM1 inM2, occurrences of x in M2 can
only be passed to external functions (free variables) that are polymorphic
so that x does not leak out of its context.
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Limits of iso-encodings

Using datatypes for existential and especially universal types is a simple
solution to make them compatible with ML, but it comes with some
limitations:

● All types must be declared before being used

● Programs become quite verbose, with many constructors that
amount to writting type annotations, but in a more rigid way

● In particular, there is no canonical way of representing them.
For exemple, a thunk of type ∃β(β → int) × β could have been
defined as Thunk (succ, 1) where Thunk is either one of

type int thunk = Thunk : (’b → int) ∗ ’b → int thunk
type ’a thunk = Thunk : (’b → ’a) ∗ ’b → ’a thunk

but the two types are incompatible.

Hence, other primitive solutions have been considered, especially for
universal types.
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Uses of existential types

Mitchell and Plotkin [1988] note that existential types offer a means of
explaining abstract types. For instance, the type:

∃stack.{empty ∶ stack;
push ∶ int × stack→ stack;
pop ∶ stack→ option (int × stack)}

specifies an abstract implementation of integer stacks.

Unfortunately, it was soon noticed that the elimination rule is too
awkward, and that existential types alone do not allow designing module
systems [Harper and Pierce, 2005].

Montagu and Rémy [2009] make existential types more flexible in several
important ways, and argue that they might explain modules after all.

Rossberg, Russo, and Dreyer show that after all, generative modules can
be encoding into System F with existential types [Rossberg et al., 2014].
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Existential types in OCaml

Existential types are available indirectly in OCaml as a degenerate case of
GADT and via abstract types and first-class modules.

Via GADT (iso-existential types)

type ’a d = D : (’b → ’a) ∗ ’b → ’a d
let freeze f x = D (f, x)
let unfreeze (D (f, x)) = f x

Via first-class modules (abstract types)

module type D = sig type b type a val f : b → a val x : b end
let freeze (type u) (type v) f x =

(module struct type b = u type a = v let f = f let x = x end : D)
let unfreeze (type u) (module M : D with type a = u) = M.f M.x
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What are they?

ADTs

Types of constructors are surjective: all types can potentially be reached

type α list =
| Nil : α list
| Const : α ∗ α list → α list

GADTs

This is no more the case with GADTs

type (α, β) eq =
| Eq : (α, α) eq

| Any : (α, β) eq

The Eq constructor may only build values of types of (α, α) eq.
For example, it cannot build values of type (int, string) eq.

The criteria is per constructor: it remains a GADT when another (even
regular) constructor is added.
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Examples Defunctionalization

let add (x, y) = x + y in
let not x = if x then false else true in
let body b =

let step x =

add (x, if not b then 1 else 2)
in step (step 0))

in body true

Introduce a constructor per function

type ( , ) apply =
| Fadd : (int ∗ int, int) apply
| Fnot : (bool, bool) apply
| Fbody : (bool, int) apply
| Fstep : bool → (int, int) apply

Define a single apply function that dispatches all function calls:

let rec apply : type a b. (a, b) apply → a → b = fun f arg →
match f with
| Fadd → let x, y = arg in x + y
| Fnot → let x = arg in if x then false else true
| Fstep b → let x = arg in

apply Fadd (x, if apply Fnot b then 1 else 2)
| Fbody → let b = arg in

apply (Fstep b) (apply (Fstep b) 0)
in apply Fbody true 185 357 ◁
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Examples Typed evaluator

A typed abstract-syntax tree

type expr =
| Int : int → int expr
| Zerop : int expr → bool expr
| If : (bool expr ∗ ’a expr ∗ ’a expr) → ’a expr

let e0 ∶ int expr = (If (Zerop (Int 0), Int 1, Int 2))

A typed evaluator (with no failure)

let rec eval : type a . a expr → a = fun x → match x with
| Int x → x (∗ a = int ∗)
| Zerop x → eval x > 0 (∗ a = bool ∗)
| If (b, e1, e2) → if eval b then eval e1 else eval e2

let b0 = eval e0

Exercise
Define a typed abstract syntax tree for the simply-typed lambda-calculus
and a typed evaluator.
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Examples Generic programming

Example of printing

type ty =
| Tint : int ty
| Tbool : bool ty
| Tlist : ’a ty → (’a list ) ty
| Tpair : ’a ty ∗ ’b ty → (’a ∗ ’b) ty

let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint → string of int x
| Tbool → if x then ”true” else ”false”
| Tlist t → ”[” ˆ String.concat ”; ” (List.map (to string t) x) ˆ ”]”
| Tpair (a, b) →

let u, v = x in ”(” ˆ to string a u ˆ ”, ” ˆ to string b v ˆ ”)”

let s = to string (Tpair (Tlist Tint, Tbool)) ([1; 2; 3], true)
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Examples Encoding sum types

type (α, β) sum = Left of α | Right of β

can be encoded as a product:

type ( , , ) tag = Ltag : (α, α, β) tag | Rtag : (β, α, β) tag
type (α, β) prod = Prod : (γ, α, β) tag ∗ γ → (α, β) prod

let sum of prod (type a b) (p : (a, b) prod) : (a, b) sum =
let Prod (t, v) = p in match t with Ltag → Left v | Rtag → Right v

Prod is a single, hence superfluous constructor: it need not be allocated.

A field common to both cases can be accessed without looking at the tag.

type (α, β) prod = Prod : (γ, α, β) tag ∗ γ ∗ bool → (α, β) prod
let get (type a b) (p : (a, b) prod) : bool =
let Prod (t, v, s) = p in s
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Examples Encoding sum types

Exercise
Specialize the encoding of sum types to the encoding of ’a list
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Other uses of GADTs

GADTs

● May encode data-structure invariants, such as the state of an
automaton, as illustrated by Pottier and Régis-Gianas [2006] for
typechecking LR-parsers.

● They may be used to implement a form of dynamic type
(similarly to the generic printer)

● They may be used to optimize representation (e.g. sum’s encoding)

● GADTs can be used to encode type classes, using a technique
analogous to defunctionalization [Pottier and Gauthier, 2006].
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Reducing GADTs to type equality (and existential types)

All GADTs can be encoded with a single one, encoding type equality:

type (α, β) eq = Eq : (α, α) eq

For instance, generic programming can then be redefined as follows:

type α ty =
| Tint : (α, int) eq → α ty (∗ int ty ∗)
| Tlist : (α, β list) eq ∗ β ty → α ty (∗ α ty → α list ty ∗)
| Tpair : (α, (β ∗ γ)) eq ∗ β ty ∗ γ ty → α ty

This declaration is not a GADT, just an existential type!

▷ We enlarge the domain of each constructor,

▷ But require a proof evidence as an extra argument that a certain
equality holds to restrict the possibkle uses of the constructors.
let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint Eq → string of int x
| Tlist (Eq, l) → ”[” ˆString.concat ”; ” (List.map (to string l) x)ˆ ”]”
| Tpair (Eq,a,b) →

let u, v = x in ”(” ˆ to string a u ˆ ”, ” ˆ to string b v ˆ ”)”

let s = to string (Tpair (Eq, Tlist (Eq, Tint Eq), Tint Eq)) ([1; 2; 3], 0)
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Reducing GADTs to type equality (and existential types)

All GADTs can be encoded with a single one :

type (α, β) eq = Eq : (α, α) eq

For instance, generic programming can be redefined as follows:

type α ty =
| Tint : (α, int) eq → α ty
| Tlist : (α, β list) eq ∗ β ty → α ty
| Tpair : (α, (β ∗ γ)) eq ∗ β ty ∗ γ ty → α ty

This declaration is not a GADT, just an existential type!

let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint Eq → string of int x
| Tlist (Eq, l) → ...
| Tpair (Eq, a, b) → ...

▷ Pattern “Tint Eq” is GADT matching
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Reducing GADTs to type equality (and existential types)

All GADTs can be encoded with a single one :

type (α, β) eq = Eq : (α, α) eq

For instance, generic programming can be redefined as follows:

type α ty =
| Tint : (α, int) eq → α ty
| Tlist : (α, β list) eq ∗ β ty → α ty
| Tpair : (α, (β ∗ γ)) eq ∗ β ty ∗ γ ty → α ty

This declaration is not a GADT, just an existential type!

let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint p → let Eq = p in string of int x
| Tlist (Eq, l) → ...
| Tpair (Eq, a, b) → ...

▷ Pattern “Tint Eq” is GADT matching

▷ let Eq = p in.. introduces the equality a = int in the current branch

193⟨1⟩ 357 ◁



Algebraic Data Types Existential types GADTs Typed closure conversion

Formalisation of GADTs

We can encode GADTs with type equalities

We cannot encode type equalities in System F.

They bring something more, namely local equalities in the typing context.

We write τ1 ∼ τ2 for (τ1, τ2) eq
When typechecking an expression

E[let x ∶ τ1 ∼ τ2 =M0 inM] E[λx ∶ τ1 ∼ τ2.M]
▷ M is typechecked with the asumption that τ1 ∼ τ2, i.e. types τ1 and

τ2 are equivalent, which allows for type conversion within M

▷ but E and M0 are typechecked without this asumption

▷ What is learned by an equation remains local to its static scope,
and does not extend to its surrounding context (or the rest of the
program execution trace).
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Fc (simplified) Add equality coercions to System F

Types

τ ∶∶= . . . ∣ τ1 ∼ τ2
Expressions

M ∶∶= . . . ∣ γ ◁M ∣ γ
Coercions are first-class and
can be applied to terms.

Coercions witness type equivalences:

γ ∶∶= α variable∣ ⟨τ⟩ reflexivity∣ symγ symmetry∣ γ1;γ2 transitivity∣ γ1 → γ2 arrow coercions∣ leftγ left projection∣ right γ right projection∣ ∀α.γ type generalization∣ γ@τ type instantiationTyping rules:

Coerce

Γ ⊢M ∶ τ1
Γ ⊢ γ ∶ τ1 ∼ τ2
Γ ⊢ γ ◁M ∶ τ2

Coercion

Γ ⊩ γ ∶ τ1 ∼ τ2
Γ ⊢ γ ∶ τ1 ∼ τ2

Coabs

Γ, x ∶ τ1 ∼ τ2 ⊢M ∶ τ

Γ ⊢ λx ∶ τ1 ∼ τ2.M ∶ τ1 ∼ τ2 → τ
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Fc (simplified) Typing of coercions

Eq-Hyp

y ∶ τ1 ∼ τ2 ∈ Γ
Γ ⊩ y ∶ τ1 ∼ τ2

Eq-Ref

Γ ⊢ τ

Γ ⊩ ⟨τ⟩ ∶ τ ∼ τ
Eq-Sym

Γ ⊩ γ ∶ τ1 ∼ τ2
Γ ⊩ symγ ∶ τ2 ∼ τ1

Eq-Trans

Γ ⊩ γ1 ∶ τ1 ∼ τ Γ ⊩ γ2 ∶ τ ∼ τ2
Γ ⊩ γ1;γ2 ∶ τ1 ∼ τ2

Eq-Arrow

Γ ⊩ γ1 ∶ τ
′
1
∼ τ1 Γ ⊩ γ2 ∶ τ2 ∼ τ ′2

Γ ⊩ γ1 → γ2 ∶ τ1 → τ2 ∼ τ ′1 → τ ′
2

Eq-Left

Γ ⊩ γ ∶ τ1 → τ2 ∼ τ ′1 → τ ′
2

Γ ⊩ leftγ ∶ τ ′
1
∼ τ1

Eq-Right

Γ ⊩ γ ∶ τ1 → τ2 ∼ τ ′1 → τ ′
2

Γ ⊩ rightγ ∶ τ2 ∼ τ ′2
Eq-All

Γ, α ⊩ γ ∶ τ1 ∼ τ2
Γ ⊩ ∀α.γ ∶ ∀α. τ1 ∼ ∀α. τ2

Eq-Inst

Γ ⊩ γ ∶ ∀α. τ1 ∼ ∀α. τ2 Γ ⊢ τ

Γ ⊩ γ@τ ∶ [α ↦ τ]τ1 ∼ [α ↦ τ]τ2
Only equalities between injective type constructors can be decomposed.
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Semantics

Coercions should be without computational content

▷ they are just type information, and should be erased at runtime

▷ they should not block redexes

▷ in Fc, we may always push them down inside terms, adding new
reduction rules:

(γ ◁ V1) V2 Ð→ rightγ ◁ (V1 (left γ ◁ V2))(γ ◁ V ) τ Ð→ (γ@τ)◁ (V τ)
γ1◁ (γ2 ◁ V ) Ð→ (γ1;γ2)◁ V
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Semantics

Coercions should be without computational content

Except for coercion abstractions that must stop the evaluation

▷ Otherwise, one could attempt to reduce M in λint ∼ bool.M
when M is not (bool◁ 0), which is well-typed in this context.

▷ In call-by-value,

λx ∶ τ1 ∼ τ2.M freezes the evaluation of M ,
M ◁ γ resumes the evaluation of M .

Must always be enforced, even with other strategies

▷ Full reduction at compile time may still be perfomed,
but be aware of stuck programs and treat them as dead branches.
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Type soundness Syntactic proofs

Type soundness

By subject reduction and progress with explicit coercions

Erasing semantics

Important and not so obvious.

γ ◁M erases to M
γ erases to ◇

Slogan that “coercion have 0-bit information”, i.e.
Coercions need not be passed at runtime—-but still block the reduction.
Expressions and typing rules.

Coerce

Γ ⊢M ∶ τ1
Γ ⊢ ◇ ∶ τ1 ∼ τ2
Γ ⊢M ∶ τ2

Coercion

Γ ⊩ τ1 ∼ τ2
Γ ⊢ ◇ ∶ τ1 ∼ τ2

Coabs

Γ, x ∶ τ1 ∼ τ2 ⊢M ∶ τ

Γ ⊢ λx ∶ τ1 ∼ τ2.M ∶ τ1 ∼ τ2 → τ
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Type soundness Syntactic proofs

The introduction of type equality constraints in System F has been
introduced and formalized by Sulzmann et al. [2007].

Scherer and Rémy [2015] show how strong reduction and confluence can
be recovered in the presence of possibly uninhabited coercions.
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Type soundness Semantic proofs

Equality coercions are a small logic of type conversions.

Type conversions may be enriched with more operations.

A very general form of coercions has been introduced by
Cretin and Rémy [2014].

The type soundness proof became too cumbersome to be conducted
syntactically.

Instead a semantic proof is used, interpreting types as sets of terms
(a technique similar to unary logical relations)
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Type checking / inference

With explicit coercions, types are fully determined from expressions.

However, the user prefers to leave applications of Coerce implicit.

Then types becomes ambiguous: when leaving the scope of an equation:
which form should be used, among the equivalent ones?

This must be determined from the context, including the return type,
and calls for extra type annotations:

let rec eval : type a . a expr → a = fun x → match x with
| Int x → x (∗ x : int, but a = int, should we return x : a? ∗)
| Zerop x → eval x > 0
| If (b, e1, e2) → if eval b then eval e1 else eval e2

In ML, type annotations must be used to tell

● the type of the context
● which datatypes must be typed as GADTs.

In Coq, one must use return type annotations on matches.
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Type inference in ML-like languages with GADTs

Simonet and Pottier [2007] gave a presentation of type inference for
GADTs with general typing constraints for ML-like languages.

Pottier and Régis-Gianas [2006] introduced a stratified approach to
better propagate constraints from outisde to inside GADTs contexts.

Vytiniotis et al. [2011] introduced the outside-in approach, used in
Haskell, which restricts type information to flow from outside to inside
GADT contexts.

Garrigue and Rémy [2013] introduced the notion of ambivalent types,
used in OCaml, to restrict type occurrences that must be considered
ambiguous and explicitly specified using type annotations.
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Type-preserving compilation

Compilation is type-preserving when each intermediate language is
explicitly typed, and each compilation phase transforms a typed program
into a typed program in the next intermediate language.

Why preserve types during compilation?

● it can help debug the compiler;

● types can be used to drive optimizations;

● types can be used to produce proof-carrying code;

● proving that types are preserved can be the first step towards
proving that the semantics is preserved [Chlipala, 2007].
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Type-preserving compilation

Type-preserving compilation exhibits an encoding of programming
constructs into programming languages with usually richer type systems.

The encoding may sometimes be used directly as a programming idiom in
the source language.

For example:

● Closure conversion requires an extension of the language with
existential types, which happens to be very useful on their own.

● Closures are themselves a simple form of objects, which can also be
explained with existential types.

● Defunctionalization may be done manually on some particular
programs, e.g. in web applications to monitor the computation.
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Type-preserving compilation

A classic paper by Morrisett et al. [1999] shows how to go from System F
to Typed Assembly Language, while preserving types along the way. Its
main passes are:

● CPS conversion fixes the order of evaluation, names intermediate
computations, and makes all function calls tail calls;

● closure conversion makes environments and closures explicit, and
produces a program where all functions are closed;

● allocation and initialization of tuples is made explicit;

● the calling convention is made explicit, and variables are replaced
with (an unbounded number of) machine registers.
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Translating types

In general, a type-preserving compilation phase involves not only a
translation of terms, mapping M to JMK, but also a translation of types,
mapping τ to JτK, with the property:

Γ ⊢M ∶ τ implies JΓK ⊢ JMK ∶ JτK

The translation of types carries a lot of information: examining it is often
enough to guess what the translation of terms will be.

See the old lecture on type closure conversion.
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Closure conversion

First-class functions may appear in the body of other functions. hence,
their own body may contain free variables that will be bound to values
during the evaluation in the execution environment.

Because they can be returned as values, and thus used outside of their
definition environment, they must store their execution environment in
their value.

A closure is the packaging of the code of a first-class function with its
runtime environment, so that it becomes closed, i.e. independent of the
runtime environment and can be moved and applied in another runtime
environment.

Closures can also be used to represent recursive functions and objects
(in the object-as-record-of-methods paradigm).
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Source and target

In the following,

● the source calculus has unary λ-abstractions, which can have free
variables;

● the target calculus has binary λ-abstractions, which must be closed.

Closure conversion can be easily extended to n-ary functions, or
n-ary functions may be uncurried in a separate, type-preserving
compilation pass.
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Variants of closure conversion

There are at least two variants of closure conversion:

● in the closure-passing variant,
the closure and the environment are a single memory block;

● in the environment-passing variant,
the environment is a separate block, to which the closure points.

The impact of this choice on the translation of terms is minor.

Its impact on the translation of types is more important:
the closure-passing variant requires more type-theoretic machinery.
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Closure-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(clo, x).

let ( , x1, . . . , xn) = clo in JaK in(code , x1, . . . , xn)
Ja1 a2K = let clo = Ja1K in

let code = proj0 clo in
code (clo, Ja2K)

(The variables code and clo must be suitably fresh.)

Important! The layout of the environment must be known only at the
closure allocation site, not at the call site. In particular, proj0 clo need
not know the size of clo.
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Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(env , x).

let (x1, . . . , xn) = env in JaK in(code , (x1, . . . , xn))
Ja1 a2K = let (code , env) = Ja1K in

code (env , Ja2K)
Questions: How can closure conversion be made type-preserving?

The key issue is to find a sensible definition of the type translation.
In particular, what is the translation of a function type, Jτ1 → τ2K?
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Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(env , x).

let (x1, . . . , xn) = env in JaK in(code , (x1, . . . , xn))
Assume Γ ⊢ λx.a ∶ τ1 → τ2.
Assume, w.l.o.g.. dom(Γ) = fv(λx.a) = {x1, . . . , xn}.
Write JΓK for the tuple type x1 ∶ Jτ

′
1K; . . . ;xn ∶ Jτ

′
nK where Γ is

x1 ∶ τ
′
1; . . . ;xn ∶ τ

′
n. We also use JΓK as a type to mean Jτ ′1K × . . . × Jτ ′nK.

We have Γ, x ∶ τ1 ⊢ a ∶ τ2, so in environment JΓK, x ∶ Jτ1K, we have

● env has type JΓK,
● code has type (JΓK × Jτ1K)→ Jτ2K, and
● the entire closure has type ((JΓK × Jτ1K)→ Jτ2K) × JΓK.

Now, what should be the definition of Jτ1 → τ2K?
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Towards a type translation

Can we adopt this as a definition?

Jτ1 → τ2K = ((JΓK × Jτ1K)→ Jτ2K) × JΓK

Naturally not. This definition is mathematically ill-formed: we cannot
use Γ out of the blue.

That is, this definition is not uniform: it depends on Γ, i.e. the size and
layout of the environment.

Do we really need to have a uniform translation of types?
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Towards a type translation

Yes, we do.

We need a uniform translation of types, not just because it is nice to
have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

if . . . then λx.x + y else λx.x

Furthermore, we want function invocations to be translated uniformly,
without knowledge of the size and layout of the closure’s environment.

So, what could be the definition of Jτ1 → τ2K?
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The type translation

The only sensible solution is:

Jτ1 → τ2K = ∃α.((α × Jτ1K)→ Jτ2K) × α
An existential quantification over the type of the environment abstracts
away the differences in size and layout.

Enough information is retained to ensure that the application of the code
to the environment is valid: this is expressed by letting the variable α
occur twice on the right-hand side.
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The type translation

The existential quantification also provides a form of security: the caller
cannot do anything with the environment except pass it as an argument
to the code; in particular, it cannot inspect or modify the environment.

For instance, in the source language, the following coding style
guarantees that x remains even, no matter how f is used:

let f = let x = ref 0 in λ(). x ∶= (x + 2); ! x
After closure conversion, the reference x is reachable via the closure of f .
A malicious, untyped client could write an odd value to x.
However, a well-typed client is unable to do so.

This encoding is not just type-preserving, but also fully abstract: it
preserves (a typed version of) observational
equivalence [Ahmed and Blume, 2008].
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Typed closure conversion

Everything is now set up to prove that, in System F with existential types:

Γ ⊢M ∶ τ implies JΓK ⊢ JMK ∶ JτK
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Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =

λ(env ∶ JΓK, x ∶ Jτ1K).
let (x1, . . . , xn ∶ JΓK) = env in
JMK

in
pack JΓK, (code , (x1, . . . , xn))
as ∃α.((α × Jτ1K)→ Jτ2K) ×α

We find JΓK ⊢ Jλx ∶τ1.MK ∶ Jτ1 → τ2K, as desired.
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Environment-passing closure conversion

Assume Γ ⊢M ∶ τ1 → τ2 and Γ ⊢M1 ∶ τ1.

JM M1K = let α, (code ∶ (α × Jτ1K)→ Jτ2K, env ∶ α) =
unpack JMK in

code (env , JM1K)
We find JΓK ⊢ JM M1K ∶ Jτ2K, as desired.
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Environment-passing closure conversion recursion

Recursive functions can be translated in this way, known as the “fix-code”
variant [Morrisett and Harper, 1998] (leaving out type information):

Jµf.λx.MK = let rec code (env , x) =
let f = pack (code , env) in
let (x1, . . . , xn) = env in
JMK in

pack (code , (x1, . . . , xn))
where {x1, . . . , xn} = fv(µf.λx.M).
The translation of applications is unchanged: recursive and non-recursive
functions have an identical calling convention.

What is the weak point of this variant?

A new closure is allocated at every call.
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Environment-passing closure conversion recursion

Instead, the “fix-pack” variant [Morrisett and Harper, 1998] uses an
extra field in the environment to store a back pointer to the closure:

Jµf.λx.MK = let code (env , x) =
let (f ,x1, . . . , xn) = env in
JMK

in
let rec clo = (code , (clo, x1, . . . , xn)) in
clo

where {x1, . . . , xn} = fv(µf.λx.M).
This requires general, recursively-defined values. Closures are now cyclic
data structures.
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Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =
λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).

let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ Jτ1 → τ2K =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) ×α)

in clo

Problem?

223 357 ◁



Algebraic Data Types Existential types GADTs Typed closure conversion

Environment-passing closure conversion recursion

The recursive function may be polymorphic, but recursive calls are
monomorphic...

We can generalize the encoding afterwards,

JΛβ⃗. µf ∶ τ1 → τ2.λx.MK = Λβ⃗. Jµf ∶ τ1 → τ2.λx.MK

whenever the right-hand side is well-defined.

This allows the indirect compilation of polymorphic recursive functions as
long as the recursion is monomorphic.

Fortunately, the encoding can be straightforwardly adapted to directly
compile polymorphically recursive functions into polymorphic closure.
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Environment-passing closure conversion recursion

Jµf ∶∀β⃗. τ1 → τ2. λx.MK =

let code ∶ ∀β⃗. (Jf ∶ ∀β⃗. τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ J∀β⃗. τ1 → τ2K =

Λβ⃗.pack Jf ∶ ∀β⃗. τ1 → τ2,ΓK, (code β⃗, (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) ×α)

in clo

The encoding is simple.

However, this requires the introduction of recursive non-functional values
“let rec x = v”. While this is a useful construct, it really alters the
operational semantics and requires updating the type soundness proof.
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Closure-passing closure conversion

Jλx.MK = let code = λ(clo, x).
let ( , x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

There are two difficulties:

● a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

● the first field of the closure contains a function that expects the
closure itself as its first argument.

227⟨5⟩ 357 ◁



Algebraic Data Types Existential types GADTs Typed closure conversion

Closure-passing closure conversion

There are two difficulties:

● a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

● the first field of the closure contains a function that expects the
closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

● existential quantification over the tail of a tuple (a.k.a. a row);

● recursive types.
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Tuples, rows, row variables

The standard tuple types that we have used so far are:

τ ∶∶= . . . ∣ Π R – types
R ∶∶= ǫ ∣ (τ ;R) – rows

The notation (τ1 × . . . × τn) was sugar for Π (τ1; . . . ; τn; ǫ).
Let us now introduce row variables and allow quantification over them:

τ ∶∶= . . . ∣ Π R ∣ ∀ρ. τ ∣ ∃ρ.τ – types
R ∶∶= ρ ∣ ǫ ∣ (τ ;R) – rows

This allows reasoning about the first few fields of a tuple whose length is
not known.
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Typing rules for tuples

The typing rules for tuple construction and deconstruction are:

Tuple

∀i. ∈ [1, n] Γ ⊢Mi ∶ τi

Γ ⊢ (M1, . . . ,Mn) ∶ Π (τ1; . . . ; τn; ǫ)
Proj

Γ ⊢M ∶ Π (τ1; . . . ; τi;R)
Γ ⊢ proji M ∶ τi

These rules make sense with or without row variables

Projection does not care about the fields beyond i. Thanks to row
variables, this can be expressed in terms of parametric polymorphism:

proji ∶ ∀α. 1 . . . αiρ. Π (α1; . . . ;αi;ρ) → αi
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About Rows

Rows were invented by Wand and improved by RÃ©my in order to
ascribe precise types to operations on records.

The case of tuples, presented here, is simpler.

Rows are used to describe objects in Objective Caml
[Rémy and Vouillon, 1998].

Rows are explained in depth by Pottier and RÃ©my
[Pottier and Rémy, 2005].
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Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π ( a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Why is it ∃ρ. µα. τ and not µα. ∃ρ. τ

The type of the environment is fixed once for all and does not change at
each recursive call.

Question: Notice that ρ appears only once. Any comments?
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Closure-passing closure conversion

Let Clo(R) abbreviate µα.Π ((α × Jτ1K)→ Jτ2K;R).
Let UClo(R) abbreviate its unfolded version,
Π ((Clo(R) × Jτ1K)→ Jτ2K;R).
We have Jτ1 → τ2K = ∃ρ.Clo(ρ).

Jλx ∶Jτ1K.MK = let code ∶ (Clo(JΓK) × Jτ1K)→ Jτ2K =
λ(clo ∶ Clo(JΓK, x ∶ Jτ1K).
let ( , x1, . . . , xn) ∶ UCloJΓK = unfold clo in
JMK in

pack JΓK, (fold (code , x1, . . . , xn))
as ∃ρ.Clo(ρ)

JM1 M2K = let ρ, clo = unpack JM1K in
let code ∶ (Clo(ρ) × Jτ1K)→ Jτ2K =

proj0 (unfold clo) in
code (clo, JM2K)
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Closure-passing closure conversion recursive functions

In the closure-passing variant, recursive functions can be translated as:

Jµf.λx.MK = let code = λ(clo, x).
let f = clo in
let ( , x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
where {x1, . . . , xn} = fv(µf.λx.M).
No extra field or extra work is required to store or construct a
representation of the free variable f : the closure itself plays this role.

However, this untyped code can only be typechecked when recursion is
monomorphic.

Exercise:

Check well-typedness with monomorphic recursion.
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Closure-passing closure conversion recursive functions

The problem to adapt this encoding to polymorphic recursion is that
recursive occurrences of f are rebuilt from the current invocation of the
closure, i.e. is monomorphic since the closure is invoked after type
specialization.

By contrast, in the environment passing encoding, the environment
contained a polymorphic binding for the recursive calls that was filled
with the closure before its invokation, i.e. with a polymorphic type.

Fortunately, we may slightly change the encoding, using a recursive
closure as in the type-passing version, to allow typechecking in System F.
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Closure-passing closure conversion recursive functions

Let τ be ∀α⃗. τ1 → τ2 and Γf be f ∶ τ,Γ where β⃗ # Γ

Jµf ∶τ . λx.MK = let code =

Λβ⃗. λ(clo ∶ CloJΓfK, x ∶ Jτ1K).
let ( code , f, x1, . . . , xn) ∶ ∀β⃗.UClo(JΓf K) =

unfold clo in
JMK in

let rec clo ∶ ∀β⃗.∃ρ.Clo(ρ) = Λβ⃗.
pack JΓK, (fold (code β⃗, clo, x1, . . . , xn)) as ∃ρ.Clo(ρ)

in clo

Remind that Clo(R) abbreviates µα.Π ((α × Jτ1K)→ Jτ2K;R). Hence, β⃗
are free variables of Clo(R).
Here, a polymorphic recursive function is directly compiled into a
polymorphic recursive closure. Notice that the type of closures is
unchanged so the encoding of applications is also unchanged.
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Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec clo1 = (code1, (clo1, clo2, x1, . . . , xn))

and clo2 = (code2, (clo1, clo2, x1, . . . , xn)) in
clo1, clo2
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Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec env = (clo1, clo2, x1, . . . , xn)

and clo1 = (code1, env)
and clo2 = (code2, env) in

clo1, clo2
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Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

let code i = λ(clo, x).
let ( , f1, f2, x1, . . . , xn) = clo in JMiK

in
let rec clo1 = (code1, clo1, clo2, x1, . . . , xn)
and clo2 = (code2, clo1, clo2, x1, . . . , xn)

in clo1, clo2

Question: Can we share the closures c1 and c2 in case n is large?
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Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

let code1 = λ(clo, x).
let ( code1, code2, f1, f2, x1, . . . , xn) = clo in JM1K in

let code2 = λ(clo, x).
let ( code2, f1, f2, x1, . . . , xn) = clo in JM2K in

let rec clo1 = (code1, code2, clo1, clo2, x1, . . . , xn) and clo2 = clo1.tail
in clo1, clo2

● clo1.tail returns a pointer to the tail (code2, clo1, clo2, x1, . . . , xn)
of clo1 without allocating a new tuple.

● This is only possible with some support from the GC (and
extra-complexity and runtime cost for GC)
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Optimizing representations

Can closure passing and environment passing be mixed?

No because the calling-convention (i.e., the encoding of application)
must be uniform.

However, their is some flexibility in the representation of the closure.
For instance, the following change is completely local:

Jλx.MK = let code = λ(clo, x).
let ( , ( x1, . . . , xn ) ) = clo in JMK in

(code , ( x1, . . . , xn ) )
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

Applications? When many definitions share the same closure, the closure
(or part of it) may be shared.
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Encoding of objects

The closure-passing representation of mutually recursive functions is
similar to the representations of objects in the
object-as-record-of-functions paradigm:

A class definition is an object generator:

class c (x1, . . . xq){
meth m1 =M1

. . .

meth mp =Mp}
Given arguments for parameter x1, . . . x1, it will build recursive methods
m1, . . .mn.
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Encoding of objects

A class can be compiled into an object closure:

letm =
letm1 = λ(m,x1, . . . , xq).M1 in
. . .

letmp = λ(m,x1, . . . , xq).Mp in{m1, . . . ,mp} in
λx1 . . . xq. (m,x1, . . . xq)

Each mi is bound to the code for the corresponding method.
The code of all methods are combined into a record of methods,
which is shared between all objects of the same class.

Calling method mi of an object p is

(proj0 p).mi p

How can we type the encoding?
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Typed encoding of objects

Let τi be the type of Mi, and row R describe the types of (x1, . . . xq).
Let Clo(R) be µα.Π({(mi ∶ α → τi)i∈1..n};R) and UClo(R) its
unfolding.

Fields R are hidden in an existential type ∃ρ. µα.Π({(mi ∶ α → τi)i∈I};ρ):
letm = {

m1 = λ(m,x1, . . . xq ∶ UClo(R)). JM1K
. . .

mp = λ(m,x1, . . . xq ∶ UClo(R)). JMpK} in
λx1. . . . λxq.pack R, fold (m,x1, . . . xq) as ∃ρ. (M,ρ)

Calling a method of an object p of type M is

p#mi
△
== let ρ, z = unpack p in (proj0 unfold z).mi z

An object has a recursive type but it is not a recursive value.
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Typed encoding of objects

Typed encoding of objects were first studied in the 90’s to understand
what objects really are in a type setting.

These encodings are in fact type-preserving compilation of (primitive)
objects.

There are several variations on these encodings. See [Bruce et al., 1999]
for a comparison.

See [Rémy, 1994] for an encoding of objects in (a small extension of) ML
with iso-existentials and universals.

See [Abadi and Cardelli, 1996, 1995] for more details on primitive objects.
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Moral of the story

Type-preserving compilation is rather fun. (Yes, really!)

It forces compiler writers to make the structure of the compiled program
fully explicit, in type-theoretic terms.

In practice, building explicit type derivations, ensuring that they remain
small and can be efficiently typechecked, can be a lot of work.
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Optimizations

Because we have focused on type preservation, we have studied only
naÃ¯ve closure conversion algorithms.

More ambitious versions of closure conversion require program analysis:
see, for instance, Steckler and Wand [1997]. These versions can be made
type-preserving.
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Other challenges

Defunctionalization, an alternative to closure conversion, offers an
interesting challenge, with a simple solution [Pottier and Gauthier, 2006].

Designing an efficient, type-preserving compiler for an object-oriented
language is quite challenging. See, for instance, Chen and Tarditi [2005].
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Polymorphism in System F

Simply-typed λ-calculus

● no polymorphism
● many functions must be duplicated at different types

Via ML toplevel polymorphism

● Already, extremely useful! (avoiding dupplication of code)
● ML has also local let-polymorphism (less critical).
● Still, ML is lacking existential types—compensated by modules
and sometimes lacking higher-rank polymorphism

System F brings much more expressiveness

● Existential types—allows for type abstraction
● First-class universal types
● Allows for encoding of data structures and more programming patterns

Still, limited...
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Limits of System F λfxy. (f x, f y)

Map on pairs, say distrib pair, has the following incompatible types:

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic.

It is missing the ability to describe the types of functions

● that are polymorphic in one parameter
● but whose domain and codomain are otherwise arbitrary

i.e. of the form ∀α. τ[α] → σ[α] for arbitrary one-hole types τ and σ.

We just need to abstract over type functions:

∀ϕ .∀ψ . ∀α1.∀α2. (∀α. ϕ α → ψ α )→ ϕ α1 → ϕ α2 → ψ α1 ×ψ α2
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From System F to System Fω Kinds

Introduce kinds κ for types (with a single kind ∗ to stay with System F)

Well-formedness of types becomes Γ ⊢ τ ∶ ∗ to check kinds:

⊢ Γ α ∶ κ ∈ Γ

Γ ⊢ α ∶ κ

Γ ⊢ τ1 ∶ ∗ Γ ⊢ τ2 ∶ ∗

Γ ⊢ τ1 → τ2 ∶ ∗

Γ, α ∶ κ ⊢ τ ∶ ∗

Γ ⊢ ∀α ∶∶κ . τ ∶ ∗

⊢ ∅
⊢ Γ α ∉ dom(Γ)
⊢ Γ, α ∶ κ

Γ ⊢ τ ∶ ∗ x ∉ dom(Γ)
⊢ Γ, x ∶ τ

Add and check kinds on type abstractions and applications:

Tabs

Γ, α ∶ κ ⊢M ∶ τ

Γ ⊢ Λα ∶∶κ .M ∶ ∀α ∶∶κ . τ

Tapp

Γ ⊢M ∶ ∀α ∶∶κ . τ Γ ⊢ τ ′ ∶ κ

Γ ⊢ M τ ′ ∶ [α ↦ τ ′]τ
So far, this is an equivalent formalization of System F
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From System F to System Fω Type functions

Redefine kinds as κ ∶∶= ∗ ∣ κ⇒ κ

⊢ Γ α ∶ κ ∈ Γ
Γ ⊢ α ∶ κ

Γ ⊢ τ1 ∶ ∗ Γ ⊢ τ2 ∶ ∗

Γ ⊢ τ1 → τ2 ∶ ∗

Γ, α ∶ κ ⊢ τ ∶ ∗

Γ ⊢ ∀α ∶∶ κ. τ ∶ ∗

New types τ ∶∶= . . . ∣ λα ∶∶ κ. τ ∣ τ τ
WfTypeApp

Γ ⊢ τ1 ∶ κ2 ⇒ κ1 Γ ⊢ τ2 ∶ κ2
Γ ⊢ τ1 τ2 ∶ κ1

WfTypeAbs

Γ, α ∶ κ1 ⊢ τ ∶ κ2
Γ ⊢ λα ∶∶ κ1. τ ∶ κ1 ⇒ κ2

Typing of expressions is up to type equivalence:

TConv

Γ ⊢M ∶ τ τ ≡β τ
′

Γ ⊢M ∶ τ ′

Remark

Γ ⊢M ∶ τ Ô⇒ Γ ⊢ τ ∶ ∗
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F ω, static semantics (altogether on one slide)

With implicit kindsSyntax κ ∶∶= ∗ ∣ κ⇒ κ

τ ∶∶= α ∣ τ → τ ∣ ∀α.τ ∣ λα. τ ∣ τ τ
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ

Kinding rules

⊢ ∅

⊢ Γ
α ∉ dom(Γ)

⊢ Γ, α ∶ κ

Γ ⊢ τ ∶ ∗
x ∉ dom(Γ)

⊢ Γ, x ∶ τ

α ∶ κ ∈ Γ

Γ ⊢ α ∶ κ

Γ ⊢ τ1 ∶ ∗ Γ ⊢ τ2 ∶ ∗

Γ ⊢ τ1 → τ2 ∶ ∗

Γ, α ∶ κ ⊢ τ ∶ ∗

Γ ⊢ ∀α. τ ∶ ∗

Γ, α ∶ κ1 ⊢ τ ∶ κ2

Γ ⊢ λα. τ ∶ κ1 ⇒ κ2

Γ ⊢ τ1 ∶ κ2 ⇒ κ1 Γ ⊢ τ2 ∶ κ2

Γ ⊢ τ1 τ2 ∶ κ1

Typing rules

Var

x ∶ τ ∈ Γ

Γ ⊢ x ∶ τ

Abs

Γ, x ∶ τ1 ⊢M ∶ τ2
Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢ M2 ∶ τ1
Γ ⊢M1 M2 ∶ τ2

Tabs

Γ, α∶ κ ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α.τ

Tapp

Γ ⊢M ∶ ∀α.τ Γ ⊢ τ ′ ∶ κ

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ
TEquiv

Γ ⊢ M ∶ τ Γ ⊢ τ ≡β τ
′

Γ ⊢ M ∶ τ ′
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F ω, dynamic semantics

The semantics is unchanged (modulo kind annotations in terms)

V ∶∶= λx ∶τ.M ∣ Λα ∶∶ κ.V
E ∶∶= []M ∣ V [] ∣ [] τ ∣ Λα ∶∶ κ. []
(λx ∶τ.M) V Ð→ [x ↦ V ]M(Λα ∶∶ κ.V ) τ Ð→ [α ↦ τ]V

Context

M Ð→M ′

E[M] Ð→ E[M ′]
No type reduction

● We need not reduce types inside terms.
● Type reduction is needed for type conversion (i.e. for typing) but
such reduction need not be performed on terms.

Kinds are erasable

● Reduction preserves kinds.
● Kinds are just ignored during the reduction (they need not be
reduced). In fact, kinds can be erased prior to reduction.
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Properties

Main properties are preserved. Proofs are similar to those for System F.

Type soundness

● Subject reduction

● Progress

Termination of reduction

(In the absence of construct for recursion.)

Typechecking is decidable

● This requires reduction at the level of types to check type equality

● Can be done by putting types in normal forms using full reduction
(on types only), or just head normal forms.
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Type reduction

Used for typechecking to check type equivalence ≡

Full reduction of the simply typed λ-calculus

(λα. τ) σ Ð→ [α ↦ τ]σ
applicable in any type context.

Type reduction preserve types: this is subject reduction for simply-typed
λ-calculus, but for full reduction (we have only proved it for CBV).

It is a key that reduction terminates.
(Again, we have only proved it for CBV.)
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Expressiveness

More polymorphism

● distrib pair

Abstraction over type operators

● monads

● encoding of existentials

Encodings

● non regular datatypes

● equality
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Distrib pair in F ω (with implicit kinds) λfxy. (f x, f y)

Abstract over (one parameter) type functions (e.g. of kind ⋆→ ⋆)

Λϕ.Λψ.Λα1.Λα2.

λ(f ∶ ∀α.ϕα → ψα). λx ∶ ϕα1. λy ∶ ϕα2. (f α1 x, f α2 y)
call it distrib pair of type:

∀ϕ.∀ψ.∀α1.∀α2.(∀α.ϕα → ψα)→ ϕα1 → ϕα2 → ψα1 ×ψα2

We may recover, in particular, the two types it had in System F:

Λα1.Λα2.distrib pair (λα.α1) (λα.α2) α1 α2

∶ ∀α1.∀α2. (α1 → α2)→ α1 → α1 → α2 ×α2

distrib pair (λα.α) (λα.α)
∶ ∀α1.∀α2. (∀α.α → α)→ α1 → α2 → α1 × α2

Still, the type of distrib pair is not principal. ϕ and ψ could depend on
two variables, i.e. be of kind ∗⇒ ∗⇒ ∗, or many other kinds...
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Abstracting over type operators

Type of monads Given a type operator ϕ, a monad is given by a pair of
two functions of the following type (satisfying certain laws).

M
△
== λϕ.{ ret ∶ ∀α.α → ϕα;

bind ∶ ∀α.∀β.ϕα → (α → ϕβ) → ϕβ }
∶ (∗⇒ ∗)⇒ ∗

(Notice that M is itself of higher kind)

A generic map function: can then be defined:

fmap
△
== λm.

λf.λx.

m.bind x (λx.m.ret (f x))
∶ ∀ϕ.M ϕ→ ∀α.∀β. (α → β)→ ϕα →ϕβ
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Abstracting over type operators

Available in Haskell —without β-reduction

● ϕα is treated as a type App(ϕ,α) where
App ∶ (κ1 ⇒ κ2)⇒ κ1 ⇒ κ2

● No β-reduction at the level of types: ϕα = ψβ ⇐⇒ ϕ = ψ ∧α = β

● Compatible with type inference (first-order unification)

● Since there is no type β-reduction, this does enable Fω.

Encodable in OCaml with modules

● See [Yallop and White, 2014] (and also [Kiselyov])

● As in Haskell, the encoding does not handle type β-reduction

● As a counterpart, this allows for type inference at higher kinds.
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Encoding of existentials Limits of System F

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β

Hence,

Jpack∃α.τ K = Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x
This requires a different code for each type τ

To have a unique code, we need to abstract over the type function λα. τ :

In System Fω, we may defined

(omitting kinds)JpackκK = Λϕ.Λα.
λx ∶ ϕ α.Λβ.λk ∶ ∀α. (ϕ α → β). k α x

Allows abstraction at higher kinds!
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Exploiting kinds

Once we have kind functions, the language of types could be reduced to
λ-calculus with constants (plus the arrow types kept as primitive):

τ = α ∣ λα. τ ∣ τ τ ∣ τ → τ ∣ g
where type constants g ∈ G are given with their kind and syntactic sugar:

× ∶∶ ∗⇒ ∗⇒ ∗

+ ∶∶ ∗⇒ ∗⇒ κ

∀ ∶∶ (κ⇒ ∗)⇒ ∗

∃ ∶∶ (κ⇒ ∗)⇒ ∗

(τ × τ) △
== (×) τ1 τ2(τ + τ) △
== (+) τ1 τ2

∀ϕ. τ
△
== ∀(λϕ. τ)

∃ϕ. τ
△
== ∃(λϕ. τ)
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Church encoding of regular ADT List

type List α =∣ Nil ∶ ∀α.List α∣ Cons ∶ ∀α.α → List α → List α

Church encoding (CPS style) in System F

List
△
== λα.∀β.β → (α → β → β)→ β

Nil
△
== λn.λc.n

Cons
△
== λx.λℓ.λn.λc. c x (ℓ β n c)z

fold
△
== λn.λc.λℓ. ℓ β n c

Actually not ! Be aware of useless over-generalization!
For regular ADTs, all uses of ϕ are ϕα.
Hence, ∀α.∀ϕ. τ[ϕα] is not more general than ∀α.∀β. τ[β]
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Church encoding of non-regular ADTs Okasaki’s Seq

type Seq α =∣ Nil ∶ ∀α.Seq α∣ Zero ∶ ∀α.Seq (α×α)→ Seq α∣ One ∶ ∀α.α → Seq (α×α) → Seq α

Encoded as:

Seq
△
== λα.∀F.Fα → (F (α×α) → Fα) → (α → F (α×α) → Fα) → Fα

Nil
△
== λn.λz.λs.n

Zero
△
== λℓ.λn.λz. λs. z (ℓ n z s)

One
△
== λx.λℓ. λn.λz. λs. s x (ℓ n z s)

fold
△
== λn.λz.λs. λℓ. ℓ n z s

Cannot be simplified! Indeed ϕ is applied to both α and α × α.
Non regular ADTs cannot be encoded in System F.

263⟨3⟩ 357 ◁



Presentation Expressiveness

Church encoding of non-regular ADTs Okasaki’s Seq

type Seq α =∣ Nil ∶ ∀α.Seq α∣ Zero ∶ ∀α.Seq (α×α)→ Seq α∣ One ∶ ∀α.α → Seq (α×α) → Seq α

Encoded as:

Seq
△
== λα.∀F.Fα → (F (α×α) → Fα) → (α → F (α×α) → Fα) → Fα

Nil
△
== λn.λz.λs.n

Zero
△
== λℓ.λn.λz. λs. z (ℓ n z s)

One
△
== λx.λℓ. λn.λz. λs. s x (ℓ n z s)

fold
△
== λn.λz.λs. λℓ. ℓ n z s

Cannot be simplified! Indeed ϕ is applied to both α and α × α.
Non regular ADTs cannot be encoded in System F.

263⟨2⟩ 357 ◁



Presentation Expressiveness

Equality Encoded with GADT

module Eq : EQ = struct
type (’a, ’b) eq = Eq : (’a, ’a) eq

let coerce (type a) (type b) (ab : (a,b) eq) (x : a) : b = let Eq = ab in x

let refl : (’a, ’a) eq = Eq

(∗ all these are propagation are automatic with GADTs ∗)
let symm (type a) (type b) (ab : (a,b) eq) : (b,a) eq = let Eq = ab in ab
let trans (type a) (type b) (type c)

(ab : (a,b) eq) (bc : (b,c) eq) : (a,c) eq = let Eq = ab in bc

let lift (type a) (type b) (ab : (a,b) eq) : (a list, b list ) eq =
let Eq = ab in Eq

end
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Equality Leibnitz equality in F ω

Eq α β ≡ ∀ϕ.ϕα → ϕβ

Eq
△
== λα.λβ.∀ϕ.ϕα → ϕβ

coerce
△
== λp.λx. p x

refl
△
== λx. x

∶ ∀α.∀ϕ.ϕα → ϕα ≡ ∀α.Eq α α

symm
△
== λp. p (refl)
∶ ∀α.∀β.Eq α β → Eq β α ∶ Eq α α → Eq β α

trans
△
== λp.λq. q p

∶ ∀α.∀β.∀γ.Eq α β → Eq β γ → Eq α γ∶ Eq α β → Eq α γ

lift
△
== λp. p (refl)
∶ ∀α.∀β.∀ϕ.Eq α β → Eq (ϕα) (ϕβ) ∶Eq (ϕα)(ϕα)→Eq (ϕα) (ϕβ)
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Eq α β ≡ ∀ϕ.ϕα → ϕβ

Eq
△
== λα.λβ.∀ϕ.ϕα → ϕβ

coerce
△
== λp.λx. p x

refl
△
== λx. x

∶ ∀α.∀ϕ.ϕα → ϕα ≡ ∀α.Eq α α

symm
△
== λp. p (refl)
∶ ∀α.∀β.Eq α β → Eq β α ∶ Eq α α → Eq β α

trans
△
== λp.λq. q p

∶ ∀α.∀β.∀γ.Eq α β → Eq β γ → Eq α γ∶ Eq α β → Eq α γ

lift
△
== λp. p (refl)
∶ ∀α.∀β.∀ϕ.Eq α β → Eq (ϕα) (ϕβ) ∶Eq (ϕα)(ϕα)→Eq (ϕα) (ϕβ)

265⟨4⟩ 357 ◁



Presentation Expressiveness

Equality Leibnitz equality in F ω

We implemented parts of the coercions of System Fc.

● We do not have decomposition of equalities (the inverse of Lift).

● This requires injectivity of the type operator, which is not given.

● Equivalences and liftings must be written explicitly, while they are
implicit with GADTs.

Some GATDs can be encoded, using equality plus existential types.
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A hierarchy of type systems

Kinds have a rank:

● the base kind ∗ is of rank 0

● kinds ∗⇒ ∗ and ∗⇒ ∗⇒ ∗ have rank 1. They are the kinds of type
functions taking type parameters of base kind.

● kind (∗⇒ ∗)⇒ ∗ has rank 2—it is a type function whose
parameter is itself a simple type function (of rank 1).

● more generally, rank (κ1 ⇒ κ2) =max(1 + rank κ1, rank κ2)
This defines a sequence F 0 ⊆ F 1 ⊆ F 2 . . . ⊆ Fω of type systems of
increasing expressiveness, where Fn only uses kinds of rank n, whose
limit is Fω and where System F is F 0.

Note that ranks are often shifted by one, starting with F = F 1

or even by 2, starting with F = F 2.

Most examples in practice (and those we wrote) are in F 1, just above F .
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Extensions

Abstraction over kinds?

∀(ϕ ∶∶ ∗⇒ ∗).∀(ψ ∶∶ ∗⇒ ∗).∀(α1 ∶∶ ∗).∀(α2 ∶∶ ∗).(∀ (α ∶∶ ∗) . ϕα → ψα)→ ϕα1 → ϕα2 → ψα1 ×ψα2

Motivation: distrib pair does not have a principal type.
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F ω with several base kinds

We could have several base kinds, e.g. ∗ and field with type constructors:

filled ∶ ∗⇒ field
empty ∶ field

box ∶ field⇒ ∗

Prevents ill-formed types such as box (α → filled α).
This allows to build values v of type box θ where θ of kind field statically
tells whether v is filled with a value of type τ or empty.

Application:

This is used in OCaml for rows of object types, but kinds are hidden to
the user:

let get (x : < get : ’a; .. >) : ’a = x#get

The dots “ .. ” stands for a variable of another base kind (representing a
row of types).
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System F ω with equirecursive types

Checking equality of equirecursive types in System F is already non
obvious, since unfolding may require alpha-conversion to avoid variable
capture. (See also [Gauthier and Pottier, 2004].)

With higher-order types, it is even trickier, since unfolding at functional
kinds could expose new type redexes.

Besides, the language of types would be the simply type λ-calculus with
a fix-point operator: type reduction would not terminate.

Therefore type equality would be undecidable, as well as type checking.

A solution is to restrict to recursion at the base kind ∗. This allows to
define recursive types but not recursive type functions.

Such an extension has been proven sound and and decidable, but only for
the weak form or equirecursive types (with the unfolding but not the
uniqueness rule)—see [Cai et al., 2016].
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System F ω with equirecursive kinds

Instead, recursion could also occur just at the level of kinds, allowing
kinds to be themselves recursive.

Then, the language of types is the simply type λ-calculus with recursive
types, equivalent to the untyped λ-calculus—every term is typable.
Reduction of types does not terminate and type equality is ill-defined.

A solution proposed by Pottier [2011] is to force recursive kinds to be
productive, reusing an idea from an [Nakano, 2000, 2001] for controlling
recursion on terms, but pushing it one level up. Type equality become
well-defined and semi-decidable.

The extension has been used to show that references in System F can be
translated away in Fω with guarded recursive kinds.
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System F ω For applicative functors

Generative ML modules (without parametric types) can be encoding in
System F with existential types.

● A functor F has a type of the form: ∀α. τ[α] → ∃β. .σ[α,β]
● If X,Y has type τ[ρ], then two successive applications F(X) and F(X)

have types ∃β. [ρ, β] with different abstract types β and cannot
interoperate (on components involving β).

let Y = unpack FX in
let Z = unpack FX in
Y = Z

is ill-typed

However, applicative modules require the use of Fω to keep track of type
equalities! See [Rossberg et al., 2014] and [Rossberg, 2018].

● A functor F has a type of the form: ∃ϕ.∀α. τ[α] → σ[α,ϕα]
or when open ∀α. τ[α] → σ[α,ψρ] for some unknown ψ.

● Then if X has type τ[ρ], two successive applications F(X) and F(X) have
the same type σ[ρ,ϕρ] sharing the abstract type (application) ψρ.

● Hence, the two applications can interoperate,
● Key: ψ is abstract, which makes ψρ abstract and incompatible with ρ,
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System F ω in OCamll

Second-order polymorphism in OCaml

● Via polymorphic methods

let id = object method f : ’a. ’a → ’a = fun x → x end
let y (x : <f : ’a. ’a → ’a>) = x#f x in y id

● Via first-class modules
module type S = sig val f : ’a → ’a end
let id = (module struct let f x = x end : S)
let y (x : (module S)) = let module X = (val x) in X.f x in y id

Higher-order types in OCaml

● In principle, they could be encoded with first-class modules.

● Not currently possible, due to (unnecessary) restrictions.

● Modular explicits, an extension that allows a better integration of
abstraction over first-class modules will remove these limitations and
allow a light-weight encoding of Fω—with boiler-plate glue code.
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System F ω in OCamll

Second-order polymorphism in OCaml

● Via polymorphic methods

let id = object method f : ’a. ’a → ’a = fun x → x end
let y (x : <f : ’a. ’a → ’a>) = x#f x in y id

● Via first-class modules
module type S = sig val f : ’a → ’a end
let id = (module struct let f x = x end : S)
let y (x : (module S)) = let module X = (val x) in X.f x in y id

Higher-order types in OCaml

● In principle, they could be encoded with first-class modules.

● Not currently possible, due to (unnecessary) restrictions.

● Modular explicits, an extension that allows a better integration of
abstraction over first-class modules will remove these limitations and
allow a light-weight encoding of Fω—with boiler-plate glue code.
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System F ω in OCaml . . . with modular explicits

Available at git@github.com:mrmr1993/ocaml.git

module type s = sig type t end
module type op = functor (A:s) → s

let dp {F:op} {G:op} {A:s} {B:s} (f:{C:s} → F(C).t → G(C).t)
(x : F(A).t) (y : F(B).t) : G(A).t ∗ G(B).t = f {A} x, f {B} y

And its two specialized versions:

let dp1 (type a) (type b) (f : {C:s} → C.t → C.t) : a → b → a ∗ b =
let module F(C:s) = C in let module G = F in
let module A = struct type t = a end in
let module B = struct type t = b end in
dp {F} {G} {A} {B} f

let dp2 (type a) (type b) (f : a → b) : a → a → b ∗ b =
let module A = struct type t = a end in
let module B = struct type t = b end in
let module F(C:s) = A in let module G(C:s) = B in
dp {F} {G} {A} {B} (fun {C:s} → f)
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Presentation Expressiveness

System F ω in Scala-3

Higher-order polymorphism a la System Fω is now accessible in Scala-3.

The monad example (with some variation on the signature) is:

trait Monad[F[ ]] {
def pure[A](x: A): F[A]
def flatMap[A, B](fa: F[A])(f: A ⇒ F[B]): F[B]

}

See https://www.baeldung.com/scala/dotty-scala-3

Still, this feature of Scala-3 is not emphrasized

● It was not directly accessible in previous version Scala.

● Scala’s syntax and other complex features of Scala are obfuscating.

275 357 ◁

https://www.baeldung.com/scala/dotty-scala-3


Presentation Expressiveness

What’s next? Dependent types!

Barendregt’s λ-cube

Fω = λω λΠω

F = λ2 λΠ2

λω λΠω

λst λΠ

(1)

(2)

(3)
(1) Term abstraction on Types (example: System F)

(2) Type abstraction on Types (example: Fω)

(3) Type abstraction on Terms (dependent types)
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What are logical relations?

So far, most proofs involving terms have proceeded by induction on the
structure of terms (or, equivalently, typing derivations).

Logical relations are relations between well-typed terms defined
inductively on the structure of types. They allow proofs between terms
by induction on the structure of types.

Unary relations

● Unary relations are predicates on expressions

● They can be used to prove type safety and strong normalization

Binary relations

● Binary relations relates two expressions of related types.

● They can be used to prove equivalence of programs and
non-interference properties.

Logical relations are a common proof method for programming languages.
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type ∀α.α → int ?

▷ the function cannot examine its argument

▷ it always returns the same integer

▷ λx.n,
λx. (λy. y) n,
λx. (λy.n) x.
etc.

▷ they are all βη-equivalent to a term of the form λx.n
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type ∀α.α → int ?

▷ behaves as λx.n

A term a of type ∀α.α → α ?

▷ behaves as λx.x

A term type ∀αβ.α → β → α ?

▷ behaves as λx.λy.x

A term type ∀α.α → α → α ?

▷ behaves either as λx.λy.x or λx.λy. y
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

▷ The length of the result depends only on the length of the argument

▷ All elements of the results are elements of the argument

▷ The choice (i, j) of pairs such that i-th element of the result is the
j-th element of the argument does not depend on the element itself.

▷ the function is preserved by a transformation of its argument that
preserves the shape of the argument

∀f,x, whoami (map f x) =map f (whoami x)
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool)→ list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp (f x) (f y) = cmp x y) Ô⇒
∀ℓ, sort cmp (map f ℓ) = map f (sort cmp ℓ)
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool)→ list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)

Application:

▷ If sort is correct on lists of integers, then it is correct on any list

▷ May be useful to reduce testing.
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool)→ list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)

Note that there are many other inhabitants of this type, but they all
satisfy this free theorem. (e.g., a function that sorts in reverse order, or a
function that removes (or adds) duplicates).
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Parametricity

This phenomenon was studied by Reynolds [1983] and by Wadler [1989;
2007], among others. Wadler’s paper contains the ‘free theorem’ about
the list sorting function.

An account based on an operational semantics is offered by Pitts [2000].

Bernardy et al. [2010] generalize the idea of testing polymorphic
functions to arbitrary polymorphic types and show how testing any
function can be restricted to testing it on (possibly infinitely many)
particular values at some particular types.
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Normalization of simply-typed λ-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.

The simply-typed λ-calculus is also lifted at the level of types in richer
type systems such as Fω; then, the decidability of type-equality depends
on the termination of the reduction at the type level.

The proof of termination for the simply-typed λ-calculus is a simple and
illustrative use of logical relations.

Notice however, that our simply-typed λ-calculus is equipped with a
call-by-value semantics. Proofs of termination are usually done with a
strong evaluation strategy where reduction can occur in any context.
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Normalization

Proving termination of reduction in fragments of the λ-calculus is often a
difficult task because reduction may create new redexes or duplicate
existing ones.

Hence the size of terms may grow (much) larger during reduction. The
difficulty is to find some underlying structure that decreases.

We follow the proof schema of Pierce [2002], which is a modern
presentation in a call-by-value setting of an older proof by
Hindley and Seldin [1986]. The proof method is due to [Tait, 1967].
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Tait’s method

Idea

● build the set Tτ of terminating terms of type τ ;

● show that any term of type τ is in Tτ , by induction on terms.

This hypothesis is however too weak. The difficulty is as usual to find a
strong enough induction hypothesis...

Terms of type τ1 → τ2 should not only terminate but also terminate when
applied to terms in Tτ1 .

The construction of Tτ is thus by induction of τ .
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Normalization

Definition
Let Tτ be defined inductively on τ as follows:

● Tα is the set of closed terms that terminates;

● Tτ2→τ1 is the set of closed terms M1 of type τ2 → τ1 that terminates
and such that M1 M2 is in Tτ1 for any term M2 in Tτ2 .

The set Tτ can be seen as a predicate, i.e. a unary relation. It is called a
logical relation because it is defined inductively on the structure of types.

The following proofs is then schematic of the use of logical relations.
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Normalization

Reduction of terms of type τ preserves membership in Tτ (this is stronger
that stability of Tτ by reduction):

Lemma
If ∅ ⊢M ∶ τ and M Ð→M ′, then M ∈ Tτ iff M ′ ∈ Tτ .

Proof.
The proof is by induction on τ .

Lemma
For any type τ , the reduction of any term in Tτ terminates.

Tautology, by definition of Tτ .
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Normalization

Therefore, it just remains to show that any term of type τ is in Tτ , i.e.:

Lemma
If ∅ ⊢M ∶ τ , then M ∈ Tτ .

The proof is by induction on (the typing derivation of) M .

However, the case for abstraction requires some similar statement, but
for open terms. We need to strengthen the Lemma.

A trick to avoid considering open terms is to require the statement to
hold for all closed instances of an open term:

Lemma (strenghened)

If (xi ∶ τi)i∈I ⊢M ∶ τ , then for any closed values (Vi)i∈I in (Tτi)i∈I ,
the term [(xi ↦ Vi)i∈I]M is in Tτ .
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Normalization

Proof. By structural induction on M .
We write Γ for (xi ∶ τi)i∈I and θ for [(xi ↦ Vi)i∈I]. Assume Γ ⊢M ∶ τ .

The only interesting case is whenM is λx ∶τ1.M2:

By inversion of typing, we know that Γ, x ∶ τ1 ⊢ M2 ∶ τ2 and τ1 → τ2 is τ .

To show θM ∈ Tτ , we must show that it is terminating, which holds as it
is a value, and that its application to any M1 in Tτ1 is in Tτ2 (1).

Let M1 ∈ Tτ1 . By definition M1 Ð→∗ V (2). We then have:

(θM)M1

△
== (θ(λx ∶τ1.M2))M1 by definition of M
= (λx ∶τ1. θM2)M1 choose x # x⃗

Ð→∗(λx ∶τ1. θM2) V by (2)
Ð→ [x ↦ V ](θM2) by (β)
= ([x ↦ V ]θ)(M2) ∈ Tτ2 by induction hypothesis

This establishes (1) since membership in Tτ2 is preserved by reduction.
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Calculus

Take the call-by-value λst with primitive booleans and conditional.

Write B the type of booleans and tt and ff for true and false.

We define VJτK and EJτK the subsets of closed values and closed
expressions of (ground) type τ by induction on types as follows:

VJBK
△
== {tt,ff}

VJτ1 → τ2K
△
== {λx ∶τ1.M ∣ ∀V ∈ VJτ1K, (λx ∶τ1.M) V ∈ EJτ2K}

EJτK △== {M ∣ ∃V ∈ VJτK,M ⇓ V }
We write M ⇓ V for M Ð→∗ V .
The goal is to show that any closed expression of type τ is in EJτK.

Remarks
Although usual with logical relations, well-typedness is actually not
required here and omitted: otherwise, we would have to carry unnecessary
type-preservation proof obligations. VJτK ⊆ EJτK—by definition.
EJτK is closed by inverse reduction—by definition, i.e.
If M Ð→ N and N ∈ EJτK then M ∈ EJτK. 291 357 ◁
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Problem

We wish to show that every closed term of type τ is in EJτK

● Proof by induction on the typing derivation.

● Problem with abstraction: the premise is not closed.

We need to strengthen the hypothesis, i.e. also give a semantics to open
terms.

● The semantics of open terms can be given by abstracting over the
semantics of their free variables.
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Generalize the definition to open terms

We define a semantic judgment for open terms Γ ⊧M ∶ τ so that
Γ ⊢M ∶ τ implies Γ ⊧M ∶ τ and ∅ ⊧M ∶ τ means M ∈ EJτK.

We interpret free term variables of type τ as closed values in VJτK.

We interpret environments Γ as closing substitutions γ, i.e. mappings
from term variables to closed values:

We write γ ∈ GJΓK to mean dom(γ) = dom(Γ) and γ(x) ∈ VJτK for all
x ∶ τ ∈ Γ.

Γ ⊧M ∶ τ
def
⇐⇒ ∀γ ∈ GJΓK, γ(M) ∈ EJτK
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Fundamental Lemma

Theorem (fundamental lemma)
If Γ ⊢M ∶ τ then Γ ⊧M ∶ τ .

Corollary (termination of well-typed terms):
If ∅ ⊢M ∶ τ then M ∈ EJτK.

That is, closed well-typed terms of type τ evaluate to values of type τ .

294 357 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Proof by induction on the typing derivation

Routine cases

Case Γ ⊢ tt ∶ B or Γ ⊢ ff ∶ B: by definition, tt,ff ∈ VJBK and VJBK ⊆ EJBK.

Case Γ ⊢ x ∶ τ : γ ∈ GJΓK, thus γ(x) ∈ VJτK ⊆ EJτK

Case Γ ⊢M1 M2 ∶ τ :

By inversion, Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2.

Let γ ∈ GJΓK. We have γ(M1 M2) = (γM1) (γM2).
By IH, we have Γ ⊧M1 ∶ τ2 → τ and Γ ⊧M2 ∶ τ2.
Thus γM1 ∈ EJτ2 → τK (1) and γM2 ∈ EJτ2K (2).

By (2), there exists V ∈ VJτ2K such that γM2 ⇓ V .
Thus (γM1) (γM2)↝ (γM1) V ∈ EJτK by (1).

Then, (γM1) (γM2) ∈ EJτK, by closure by inverse reduction.

Case Γ ⊢ ifM thenM1 elseM2 ∶ τ : By cases on the evaluation of γM .
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Proof by induction on the typing derivation

The interesting case

Case Γ ⊢ λx ∶τ1.M ∶ τ1 → τ :

Assume γ ∈ GJΓK.
We must show that γ(λx ∶τ1.M) ∈ EJτ1 → τK (1)

That is, λx ∶τ1. γM ∈ VJτ1 → τK (we may assume x ∉ dom(γ) w.l.o.g.)
Let V ∈ VJτ1K, it suffices to show (λx ∶τ1. γM) V ∈ EJτK (2).

We have (λx ∶τ1. γM) V Ð→ (γM)[x ↦ V ] = γ′M
where γ′ is γ[x ↦ V ] ∈ GJΓ, x ∶ τ1K (3)

Since Γ, x ∶ τ1 ⊢M ∶ τ , we have Γ, x ∶ τ1 ⊧M ∶ τ by IH on M . Therefore
by (3), we have γ′M ∈ EJτK. Since EJτK is closed by inverse reduction,
this proves (2) which finishes the proof of (1).
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Variations

We have shown both termination and type soundness, simultaneously.

Termination would not hold if we had a fix point. But type soundness
would still hold.

The proof may be modified by choosing:

EJτK = {M ∶ τ ∣ ∀N,M ⇓ N Ô⇒ (N ∈ VJτK ∨ ∃N ′,N Ð→ N ′)}
Compare with

EJτK = {M ∶ τ ∣ ∃V ∈ VJτK,M ⇓ V }

Exercise
Show type soundness with this semantics.
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(Bibliography)

Mostly following Bob Harper’s course notes Practical foundations for
programming languages [Harper, 2012].

See also

● Types, Abstraction and Parametric Polymorphism [Reynolds, 1983]

● Parametric Polymorphism and Operational Equivalence [Pitts, 2000].

● Theorems for free! [Wadler, 1989].

● Course notes taken by Lau Skorstengaard on Amal Ahmed’s OPLSS
lectures.

We assume a call-by-value operational semantics instead of call-by-name
in [Harper, 2012].
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When are two programs equivalent

M ⇓ N ?

M ⇓ V and N ⇓ V ?

But what if M and N are functions?

Aren’t λx. (x + x) and λx.2 ∗ x equivalent?

Idea two functions are observationally equivalent if when applied to
equivalent arguments, they lead to observationally equivalent results.

Are we general enough?
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Observational equivalence

We can only observe the behavior of full programs, i.e. closed terms of
some computation type, such as B (the only one so far).

If M ∶ B and N ∶ B, then M ≃ N iff there exists V such that M ⇓ V and
N ⇓ V . (Call M ≃ N behavioral equivalence.)

To compare programs at other types, we place them in arbitrary closing
contexts.

Definition (observational equivalence)

Γ ⊢M ≅ N ∶ τ
△
== ∀C ∶ (Γ▷ τ)↝ (∅▷B), C[M] ≃ C[N]

Typing of contexts
C ∶ (Γ▷ τ)↝ (∆▷ σ) ⇐⇒ (∀M, Γ ⊢M ∶ τ Ô⇒ ∆ ⊢ C[M] ∶ σ)

There is an equivalent definition given by a set of typing rules. This is
needed to prove some properties by induction on the typing derivations.

We write M ≅τ N for ∅ ⊢M ≅ N ∶ τ

301 357 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Observational equivalence

Observational equivalence is the coarsiest consistent congruence, where:

≡ is consistent if ∅ ⊢M ≡ N ∶ B implies M ≃ N .

≡ is a congruence if it is an equivalence and is closed by context, i.e.

Γ ⊢M ≡ N ∶ τ ∧ C ∶ (Γ▷τ)↝ (∆▷σ) Ô⇒ ∆ ⊢ C[M] ≡ C[N] ∶ σ
Consistent: by definition, using the empty context.

Congruence: by compositionality of contexts.

Coarsiest: Assume ≡ is a consistent congruence. Assume Γ ⊢M ≡ N ∶ τ

holds and show that Γ ⊢M ≅ N ∶ τ holds (1).
Let C ∶ (Γ▷ τ)↝ (∅▷B) (2). We must show that C[M] ≃ C[N].
This follows by consistency applied to Γ ⊢ C[M] ≡ C[N] ∶ B which
follows by congruence from (1) and (2).
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Problem with Observational Equivalence

Problems

● Observational equivalence is too difficult to test.

● Because of quantification over all contexts (too many for testing).

● But many contexts will do the same experiment.

Solution

We take advantage of types to reduce the number of experiments.

● Defining/testing the equivalence on base types.

● Propagating the definition mechanically at other types.

Logical relations provide the infrastructure for conducting such proofs.
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Logical equivalence for closed terms

Unary logical relations interpret types by predicates on (i.e. sets of)
closed values of that type.

Binary relations interpret types by binary relations on closed values of
that type, i.e. sets of pairs of related values of that type.

That is VJτK ⊆ Val(τ) ×Val(τ).
Then, EJτK is the closure of VJτK by inverse reduction

We have VJτK ⊆ EJτK ⊆ Exp(τ) × Exp(τ).
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Logical equivalence for closed terms

We recursively define two relations VJτK and EJτK between values of
type τ and expressions of type τ by

VJBK
△
== {(tt, tt), (ff ,ff)}

VJτ → σK
△
== {(V1, V2) ∣ V1, V2 ⊢ τ → σ ∧

∀(W1,W2) ∈ VJτK, (V1 W1, V2 W2) ∈ EJσK }
EJτK △

== {(M1,M2) ∣M1,M2 ∶ τ ∧

∃(V1, V2) ∈ VJτK , M1 ⇓ V1 ∧M2 ⇓ V2}
In the following we will leave the typing constraint in gray implicit (as
global condition for sets VJ⋅K and EJ⋅K).

We also write

M1 ∼τ M2 for (M1,M2) ∈ EJτK and
V1 ≈τ V2 for (V1, V2) ∈ VJτK.
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Logical equivalence for closed terms (variant)

In a language with non-termination

We change the definition of EJτK to

EJτK △
== {(M1,M2) ∣M1,M2 ∶ τ ∧

(∀V1, M1 ⇓ V1 Ô⇒ ∃V2, M2 ⇓ V2 ∧ (V1, V2) ∈ VJτK)
∧ (∀V2, M2 ⇓ V2 Ô⇒ ∃V1, M1 ⇓ V1 ∧ (V1, V2) ∈ VJτK)}

Notice

VJτ → σK
△
== {(V1, V2) ∣ V1, V2 ⊢ τ → σ ∧

∀(W1,W2) ∈ VJτK, (V1 W1, V2 W2) ∈ EJσK}
= {((λx ∶τ.M1), (λx ∶τ.M2)) ∣ (λx ∶τ.M1), (λx ∶τ.M2) ⊢ τ → σ ∧

∀(W1,W2) ∈ VJτK, ((λx ∶τ.M1)W1, (λx ∶τ.M2)W2) ∈ EJσK}
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Properties of logical equivalence for closed terms

Closure by reduction

By definition, since reduction is deterministic: Assume M1 ⇓ N1 and
M2 ⇓ N2 and (M1,M2) ∈ EJτK, i.e. there exists (V1, V2) ∈ VJτK (1) such
that Mi ⇓ Vi. Since reduction is deterministic, we must have
Mi ⇓ Ni ⇓ Vi. This, together with (1), implies (N1,M2) ∈ EJτK.
Closure by inverse reduction

Immediate, by construction of EJτK.

Corollaries

● If (M1,M2) ∈ EJτ → σK and (N1,N2) ∈ EJτK, then(M1 N1,M2 N2) ∈ EJσK.

● To prove (M1,M2) ∈ EJτ → σK, it suffices to show(M1 V1,M2 V2) ∈ EJσK for all (V1, V2) ∈ VJτK.
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Properties of logical equivalence for closed terms

Consistency (∼B) ⊆ (≃)
Immediate, by definition of EJBK and VJBK ⊆ (≃).
Lemma

Logical equivalence is symmetric and transitive (at any given type).

Note: Reflexivity is not at all obvious.

Proof

We show it simultaneously for ∼τ and ≈τ by induction on type τ .

309 357 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical equivalence for closed terms

We inductively define M1 ∼τ M2 (read M1 and M2 are logically
equivalent at type τ) on closed terms of (ground) type τ by induction
on τ :

● M1 ∼B M2 iff ∅ ⊢M1,M2 ∶ B and M1 ≃ M2

● M1 ∼τ→σ M2 iff ∅ ⊢M1,M2 ∶ τ → σ and
∀N1,N2, N1 ∼τ N2 Ô⇒ M1 N1 ∼σ M2 N2

Lemma

Logical equivalence is symmetric and transitive (at any given type).

Note

Reflexivity is not at all obvious.
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Properties of logical equivalence for closed terms (proof)

For ∼τ , the proof is immediate by transitivity and symmetry of ≈τ .
For ≈τ , it goes as follows.
Case τ is B for values: the result is immediate.

Case τ is τ → σ:

By IH, symmetry and transitivity hold at types τ and σ.

For symmetry, assume V1 ≈τ→σ V2 (H), we must show V2 ≈τ→σ V1.

Assume W1 ≈τ W2. We must show V2 M1 ∼τ2 V1 W2 (C). We have W2 ≈τ1 W1

by symmetry at type τ . By (H), we have V2 W2 ∼τ2 V1 W1 and (C) follows by
symmetry of ∼ at type σ.

For transitivity, assume V1 ≈τ V2 (H1) and V2 ≈τ V3 (H2). To show V1 ≈τ V3,
we assume W1 ≈τ W3 and show V1 W1 ∼σ V3 W3 (C).
By (H1), we have V1 W1 ∼τ2 V2 W3 (C1).

By symmetry and transitivity of ≈τ , we get W3 ≈τ W3. (not reflexivity!)

By (H2), we have V2 W3 ∼σ V3 W3 (C2).
(C) follows by transitivity of ∼σ (C1) and (C2).
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Logical equivalence for open terms

When Γ ⊢M1 ∶ τ and Γ ⊢M2 ∶ τ , we wish to define a judgment
Γ ⊢M1 ∼ M2 ∶ τ to mean that the open terms M1 and M2 are equivalent
at type τ .

The solution is to interpret program variables of dom(Γ) by pairs of
related values and typing contexts Γ by a set of bisubstitutions γ
mapping variable type assignments to pairs of related values.

GJ∅K
△
== {∅}

GJΓ, x ∶ τK △
== {γ,x ↦ (V1, V2) ∣ γ ∈ GJΓK ∧ (V1, V2) ∈ VJτK}

Given a bisubstitution γ, we write γi for the substitution that maps x to
Vi whenever γ maps x to (V1, V2).
Definition

Γ ⊢M1 ∼ M2 ∶ τ ⇐⇒ ∀γ ∈ GJΓK, (γ1M1, γ2M2) ∈ EJτK
We also write ⊢M1 ∼M2 ∶ τ or M1 ∼τ M2 for ∅ ⊢M1 ∼M2 ∶ τ .
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Properties of logical equivalence for open terms

Immediate properties

Open logical equivalence is symmetric and transitive.

(Proof is immediate by the definition and the symmetry and transitivity
of closed logical equivalence.)
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Fundamental lemma of logical equivalence

Theorem (Reflexivity) (also called the fundamental lemma))

If Γ ⊢M ∶ τ , then Γ ⊢M ∼M ∶ τ .

Proof By induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

C-True

Γ ⊢ tt ∼ tt ∶ bool C-False

Γ ⊢ ff ∼ ff ∶ bool
C-Var

x ∶ τ ∈ Γ
Γ ⊢ x ∼ x ∶ τ

C-Abs

Γ, x ∶ τ ⊢M1 ∼ M2 ∶ σ

Γ ⊢ λx ∶τ.M1 ∼ λx ∶τ.M2 ∶ τ → σ

C-App

Γ ⊢M1 ∼ M2 ∶ τ → σ Γ ⊢ N1 ∼ N2 ∶ τ

Γ ⊢M1 N1 ∼ M2 N2 ∶ σ

C-If

Γ ⊢M1 ∼ M2 ∶ B Γ ⊢ N1 ∼ N2 ∶ τ Γ ⊢ N ′
1
∼ N ′

2
∶ τ

Γ ⊢ ifM1 then N1 else N
′
1
∼ ifM2 then N2 else N

′
2
∶ τ
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Proof of compatibility lemmas

Each case can be shown independently.

Rule C-Abs: Assume Γ, x ∶ τ ⊢M1 ∼ M2 ∶ σ (1). We show
Γ ⊢ λx ∶τ.M1 ∼ λx ∶τ.M2 ∶ τ → σ. Let γ ∈ GJγK. We show(γ1(λx ∶τ.M1), γ2(λx ∶τ.M2)) ∈ VJτ → σK. Let (V1, V2) be in VJτK. It suffices
to show that (γ1(λx ∶τ.M1) V1, γ2(λx ∶τ.M2) V2) ∈ EJσK (2).

Let γ′ be γ,x↦ (V1, V2). We have γ′ ∈ GJΓ, x ∶ τK. Thus, from (1), we have(γ′
1
M1, γ

′
2
M2) ∈ EJσK, which proves (2), since EJσK is closed by inverse

reduction and γ1(λx ∶τ.M1) V1 ⇓ γ′iMi.

Rule C-App (and C-If): By induction hypothesis and the fact that substitution
distribute over applications (and conditional).

We must show Γ ⊢M1 N1 ∼ M2 M2 ∶ σ (1). Let γ ∈ GJΓK. From the premises

Γ ⊢M1 ∼ M2 ∶ τ → σ and Γ ⊢N1 ∼ N2 ∶ τ , we have (γ1M1, γ2M2) ∈ EJτ → σK and

(γ1N1, γ2N2) ∈ EJτK. Therefore (γ1M1 γ1N1, γ2M2 γ2N2) ∈ EJσK. That is

(γ1(M1 N1), γ2(M2 N2)) ∈ EJσK, which proves (1).

Rule C-True, C-False, and C-Var: are immediate
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Proof of compatibility lemmas (cont.)

Rule C-If: We show Γ ⊢ ifM1 then N1 else N
′
1
∼ ifM2 then N2 else N

′
2
∶ τ .

Assume γ ∈ GJγK.
We show (γ1(ifM1 then N1 else N

′
1
), γ2(ifM2 then N2 else N

′
2
)) ∈ EJτK, That

is (if γ1M1 then γ1N1 else γ1N
′
1
, if γ2M2 then γ2N2 else γ2N

′
2
) ∈ EJτK (1).

From the premise Γ ⊢M1 ∼ M2 ∶ B, we have (γ1M1, γ2M2) ∈ EJBK. Therefore
M1 ⇓ V and M2 ⇓ V where V is either tt or ff:

● Case V is tt:. Then, (if γiMi then γiNi else γiN
′
i) ⇓ γiNi, i.e.

γi(ifMi then Ni else N
′
i) ⇓ γiNi. From the premise Γ ⊢ N1 ∼ N2 ∶ τ , we

have (γ1N1, γ2N2) ∈ EJτK and (1) follows by closer by inverse reduction.

● Case V is ff: similar.
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Proof of reflexivity

By induction on the proof of Γ ⊢M ∶ τ . We must show Γ ⊢M ∼M ∶ τ :

All cases immediately follow from compatibility lemmas.

Case M is tt or ff: Immediate by Rule C-True or Rule C-False

Case M is x: Immediate by Rule C-Var.

Case M is M ′ N : By inversion of the typing rule App, induction
hypothesis, and Rule C-App.

Case M is λτ ∶N. : By inversion of the typing rule Abs, induction
hypothesis, and Rule C-Abs.
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Properties of logical relations

Corollary (equivalence) Open logical relation is an equivalence relation

Logical equivalence is a congruence
If Γ ⊢M ∼M ′

∶ τ and C ∶ (Γ▷ τ)↝ (∆▷ σ), then
∆ ⊢ C[M] ∼ C[M ′] ∶ σ.
Proof By induction on the proof of C ∶ (Γ▷ τ)↝ (∆▷ σ).
Similar to the proof of reflexivity—but we need a syntactic definition of
context-typing derivations (which we have omitted) to be able to reason
by induction on the context-typing derivation.

Soundness of logical equivalence
Logical equivalence implies observational equivalence.
If Γ ⊢M ∼M ′

∶ τ then Γ ⊢M ≅M ′
∶ τ .

Proof: Logical equivalence is a consistent congruence, hence included in
observational equivalence which is the coarsiest such relation.
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Properties of logical equivalence

Completeness of logical equivalence
Observational equivalence of closed terms implies logical equivalence.
That is (≅τ) ⊆ (∼τ).
Proof by induction on τ .

Case B: In the empty context, by consistency ≅B is a subrelation of ≃B
which coincides with ∼B.
Case τ → σ: By congruence of observational equivalence!

By hypothesis, we have M1 ≅τ→σ M2 (1). To show M1 ∼τ→σ M2, we
assume V1 ≈τ V2 (2) and it suffices to show M1 V1 ∼σ M2 V2 (3).

By soundness applied to (2), we have V1 ≅τ V2 from (4). By congruence
with (1), we have M1 V1 ≅σ M2 V2, which implies (3) by IH at type σ.
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Logical equivalence: example of application

Fact: Assume not
△
== λx ∶B. if x then ff else tt

and M
△
== λx ∶B. λy ∶τ. λz ∶τ. if not x then y else z

and M ′ △== λx ∶B. λy ∶τ. λz ∶τ. if x then z else y.

Show that M ≅B→τ→τ→τ M
′.

Proof

It suffices to show M V0 V1 V2 ∼τ M ′ V ′
0
V ′
1
V ′
2
whenever V0 ≈B V ′0 (1)

and V1 ≈τ V ′1 (2) and V2 ≈τ V ′2 (3). By inverse reduction, it suffices to
show: if not V0 then V1 else V2 ∼τ if V ′0 then V ′2 else V ′1 (4).

It follows from (1) that we have only two cases:

Case V0 = V
′
0
= tt: Then not V0 ⇓ ff and thus M ⇓ V2 while M ′ ⇓ V2.

Then (4) follows by inverse reduction and (3).

Case V0 = V
′
0
= ff: is symmetric.
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Observational equivalence

We now extend the notion of logical equivalence to System F.

τ ∶∶= . . . ∣ α ∣ ∀α. τ M ∶∶= . . . ∣ Λα.M ∣M τ

We write typing contexts ∆;Γ where ∆ binds variables and Γ binds
program variables.

Typing of contexts becomes C ∶ (∆;Γ▷ τ)↝ (∆′; Γ′▷ τ ′).
Observational equivalence

We (re)defined ∆;Γ ⊢M ≅M ′
∶ τ as

∀C ∶ (∆;Γ▷ τ)↝ (∅;∅▷B), C[M] ≃ C[M ′]
As before, write M ≅τ N for ∅;∅ ⊢M ≅ N ∶ τ (in particular, τ is closed).
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Logical equivalence

For closed terms (no free program variables)

● We need to give the semantics of polymoprhic types ∀α. τ
● Problem: We cannot do it in terms of the semantics of instances
τ[α ↦ σ] since the semantics is defined by induction on types.

● Solution: we give the semantics of terms with open types—in some
suitable environment that interprets type variables by logical
relations (sets of pairs of related values) of closed types ρ1 and ρ2

Let R(ρ1, ρ2) be the set of relations on values of closed types ρ1 and ρ2,
that is, P(Val(ρ1) ×Val(ρ2)). We optionally restrict to admissible
relations, i.e. which are closed by observational equivalence:

R ∈R(τ1, τ2) Ô⇒
∀(V1, V2) ∈ R, ∀W1,W2, W1 ≅ V1 ∧ W2 ≅ V2 Ô⇒ (W1,W2) ∈ R

The restriction to admissible relations is required for completeness of

logical equivalence with respect to observational equivalence (not for soundness)
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Example of admissible relations

For example, both

R1

△
== {(tt,0), (ff ,1)}

R2

△
== {(tt,0)} ∪ {(ff, n) ∣ n ∈ Z⋆}

are admissible relations in R(B, int).
But

R3

△
== {(tt, λx ∶τ.0), (ff , λx ∶τ.1)}

although in R(B, τ → int), is not admissible.

Indeed, taking M0

△
== λx ∶τ. (λz ∶ int. z) 0. we have M ≅τ→int λx ∶τ.0 but(tt,M) is not in R3.

Note

It is a key that such relations can relate values at different types.
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Interpretation of type environments

Interpretation of type variables

We write η for mappings α↦ (ρ1, ρ2,R) where R ∈R(ρ1, ρ2).
We write η for mappings from type variables to such triples
and ηi (resp. ηR) for the type (resp. relational) substitution that maps α
to ρi (resp. R) whenever η maps α to (ρ1, ρ2,R).
We define

VJαKη
△
== ηR(α)

VJ∀α. τKη
△
== {(V1, V2) ∣ V1 ∶ η1(∀α. τ) ∧ V2 ∶ η2(∀α. τ) ∧

∀ρ1, ρ2,∀R ∈R(ρ1, ρ2), (V1 ρ1, V2 ρ2) ∈ EJτKη,α↦(ρ1,ρ2,R)}
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Logical equivalence for closed terms with open types

We redefine

VJBKη
△
== {(tt, tt), (ff ,ff)}

VJτ → σKη
△
== {(V1, V2) ∣ V1 ⊢ η1(τ → σ) ∧ V2 ⊢ η2(τ → σ) ∧

∀(W1,W2) ∈ VJτKη, (V1 W1, V2 W2) ∈ EJσKη}
EJτKη

△
== {(M1,M2) ∣M1 ∶ η1τ ∧M2 ∶ η2τ ∧

∃(V1, V2) ∈ VJτKη,M1 ⇓ V1 ∧M2 ⇓ V2}
GJ∅Kη

△
== {∅}

GJΓ, x ∶ τKη
△
== {γ,x ↦ (V1, V2) ∣ γ ∈ GJΓKη ∧ (V1, V2) ∈ VJτKη}

and define

DJ∅K
△
== {∅}

DJ∆, αK
△
== {η,α ↦ (ρ1, ρ2,R) ∣ η ∈ DJ∆K ∧R ∈R(ρ1, ρ2)}
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Logical equivalence for open terms

Definition We define ∆;Γ ⊢M ∼M ′
∶ τ as

∧{ ∆;Γ ⊢M,M ′
∶ τ

∀η ∈ DJ∆K, ∀γ ∈ GJΓKη, (η1(γ1M1), η2(γ2M2)) ∈ EJτKη
(Notations are a bit heavy, but intuitions should remain simple.)

Notation

We also write M1 ∼τ M2 for ⊢M1 ∼M2 ∶ τ (i.e. ∅;∅ ⊢M1 ∼M2 ∶ τ).

In this case, τ is a closed type and M1 and M2 are closed terms of
type τ ; hence, this coincides with the previous definition (M1,M2) in
EJτK, which may still be used as a shorthand for EJτK∅.
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Properties

Respect for observational equivalence

If (M1,M2) ∈ EJτK♯η and N1 ≅η1(τ) M1 and N2 ≅η2(τ) M2 then

(N1,N2) ∈ EJτK♯η. Requires admissibility

(We use ♯ to indicate that admissibility is required in the definition of R♯)

Proof. By induction on τ .

Assume (M1,M2) ∈ EJτKη (1) and N1 ≅η1(τ)M1 (2). We show(N1,M2) ∈ EJτKη .
Case τ is ∀α.σ: Assume R ∈R♯(ρ1, ρ2). Let ηα be η,α ↦ (ρ1, ρ2,R).
We have (M1 ρ1,M2 ρ2) ∈ EJσKηα

, from (1).
By congruence from (2), we have N1ρ1 ≅δ(τ)M1 ρ1.
Hence, by induction hypothesis, (M1 ρ1,M2 ρ2) ∈ EJσKηα

, as expected.

Case τ is α: Relies on admissibility.

Other cases: the proof is similar to the case of the simply-typed λ-calculus.
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Properties

Lemma (Closure under observational equivalence)
If ∆;Γ ⊢M1 ∼♯M2 ∶ τ and ∆;Γ ⊢M1 ≅ N1 ∶ τ and ∆;Γ ⊢M2 ≅ N2 ∶ τ ,
then ∆;Γ ⊢ N1 ∼♯ N2 ∶ τ Requires admissibility

Lemma (Compositionality) Key lemma

Assume ∆ ⊢ σ and ∆, α ⊢ τ and η ∈ DJ∆K. Let R be VJσKη. Then,

VJτ[α ↦ σ]Kη = VJτKη,α↦(η1σ, η2σ,R)

Proof by structural induction on τ .
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Parametricity

Theorem (Reflexivity) (also called the fundamental lemma)

If ∆;Γ ⊢M ∶ τ then ∆;Γ ⊢M ∼M ∶ τ .

Notice: Admissibility is not required for the fundamental lemma

Proof by induction on the typing derivation, using compatibility lemmas.

Compatibility lemmas

We redefined the lemmas to work in a typing context of the form ∆,Γ
instead of Γ and add two new lemmas:

C-Tabs

∆, α; Γ ⊢M1 ∼M2 ∶ τ

∆;Γ ⊢ Λα.M1 ∼ Λα.M2 ∶ ∀α. τ

C-Tapp

∆;Γ ⊢M1 ∼M2 ∶ ∀α. τ ∆ ⊢ σ

∆;Γ ⊢M1 σ ∼M2 σ ∶ τ[α ↦ σ]
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Proof of compatibility

Case M is Λα.N : We must show that ∆;Γ ⊢ Λα.N ∼ Λα.N ∶ ∀α. τ .
Assume η ∶ δ↔∆ δ′ and γ ∼Γ γ′ [η ∶ δ↔ δ′].
We must show γ(δ(Λα.N)) ∼∀α. τ γ′(δ(Λα.N)) [η ∶ δ ↔ δ].
Assume σ and σ′ closed and R ∶ σ↔ σ′. We must show

(γ(δ(Λα.N))) σ ∼τ (γ′(δ′(Λα.N))) σ [η0 ∶ δ0 ↔ δ′0]
where η0 = η,α ↦ R and δ0 = δ,α ↦ σ and δ′

0
= δ,α ↦ σ′.

Since

(γ(δ(Λα.N))) σ = (Λα.γ(δ(N))) σ Ð→ γ(δ(N))[α ↦ σ] = γ(δ0(N))
It suffices to show

γ(δ0(N)) ∼τ γ′(δ′0(N)) [η0 ∶ δ0 ↔ δ′0]
which follows by IH from ∆, α; Γ ⊢ N ∶ τ (which we obtain from
∆,Γ ⊢ Λα.N ∶ τ by inversion).
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Proof of compatibility

Case M is N σ:

By inversion of typing ∆,Γ ⊢ N ∶ ∀α. τ0 (1) and τ is ∀α. τ0.
We must show that ∆;Γ ⊢ N σ ∼ N σ ∶ τ0[α ↦ σ].
Assume η ∶ δ↔∆ δ′ and γ ∼Γ γ′ [η ∶ δ↔ δ′]. We must show

γ(δ(N σ)) ∼τ0[α↦σ] γ
′(δ′(N σ)) [η ∶ δ↔ δ′]

i.e. (γ(δ(N))) σ ∼τ0[α↦σ] (γ′(δ′(N))) σ [η ∶ δ↔ δ′]
By compositionality, it suffices to show

(γ(δ(N))) σ ∼τ0 (γ′(δ′(N))) σ [η0 ∶ δ0 ↔ δ′0] (2)
where η0 = η,α ↦ R and δ0 = δ,α ↦ σ and δ′

0
= δ,α ↦ σ′ and

R ∶ δ(s)↔ δ′(s) is defined by R(N0,N
′
0) ⇐⇒ N0 ∼σ N ′0 [η ∶ δ↔ δ′].

This relation is admissible (3). Hence by IH from (1), we have

(γ(δ(N))) ∼∀α. τ0 (γ′(δ′(N))) [η ∶ δ↔ δ′]
which implies (2) by definition of ∼∀α. τ0 . 332 357 ◁
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Properties

Soundness of logical equivalence
Logical equivalence implies implies observational equivalence.
If ∆;Γ ⊢M1 ∼M2 ∶ τ then ∆;Γ ⊢M1 ≅M2 ∶ τ .

Completeness of logical equivalence
Observational equivalence implies logical equivalence with admissibility.
If ∆;Γ ⊢M1 ≅M2 ∶ τ then ∆;Γ ⊢M1 ∼♯M2 ∶ τ .

Note: Admissibility is required for completeness, but not for soundness.

As a particular case, M1 ∼♯τ M2 iff M1 ≅τ M2.
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Properties

Extensionality (Uses but does not depend on admissibility)

M1 ≅τ→σ M2 iff ∀(V ∶ τ),M1 V ≅σ M2 V iff ∀(N ∶ τ),M1 N ≅σ M2 N

M1 ≅∀α. τ M2 iff for all closed type ρ, M1 ρ ≅τ[α↦ρ]M2 ρ.

Proof. Forward direction is immediate as ≅ is a congruence. Backward:

Case Value abstraction: It suffices to show M1 ∼τ→σ M2. That is, assuming
N1 ∼τ N2 (1), we show M1 N1 ∼σ M2 N2 (2). By assumption, we have
M1 N1 ≅σ M2 N1 (3). By the fundamental lemma, we have M2 ∼τ→σ M2.
Hence, from (1), we must have M2 N1 ∼σ M2 N2, We conclude (2) by respect
for observational equivalence with (3).

Case Type abstraction: It suffices to show M1 ∼∀α. τ M2. That is, given
R ∈ R(ρ1, ρ2), we show (M1 ρ1,M2 ρ2) ∈ EJτKα↦(ρ1,ρ2,R) (4).
By assumption, we have M1 ρ1 ≅τ[α↦ρ1] M2 ρ1 (5).
By the fundamental lemma, we have M2 ∼∀α. τ M2.
Hence, we have (M2 ρ1,M2 ρ2) ∈ EJτKα↦(ρ1,ρ2,R)

We conclude (4) by respect for observational equivalence with (5).
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Properties

Identity extension Requires admissibiily
Let θ be a substitution of variables for ground types.
Let R be the restriction of ≅αθ to Val(αθ) × Val(αθ)) and
η ∶ α ↦ (αθ,αθ,R).
Then EJτKη is equal to ≅τθ.
(The proof uses respect for observational equivalence.)
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Applications Inhabitants of ∀α.α → α

Fact If M ∶ ∀α.α → α, then M ≅∀α.α→α id where id
△
== Λα.λx ∶α.x.

Proof By extensionality, it suffices to show that for any ρ and V ∶ ρ we
have M ρ V ≅ρ id ρ V . In fact, by closure by inverse reduction, it suffices
to show M ρ V ≅ρ V (1).

By parametricity, we have M ∼∀α.α→α M (2).

Consider R in R(ρ, ρ) equal to {(V,V )} and η be [α ↦ (ρ, ρ,R)]. By
construction, we have (V,V ) ∈ VJαKη.

Hence, from (2), we have (M ρ V,M ρ V ) ∈ EJαKη, which means that
the pair (M ρ V,M ρ V ) reduces to a pair of values in (the singleton) R.
This implies that M ρ V reduces to V , which in turn, implies (1).
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
M ≅σ W1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ W2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show that for either i = 1 or i = 2, for
any closed type ρ and V1, V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Wi ρ V1 V2, or just
M ρ V1 V2 ≅σ Vi (1).

Let ρ and V1, V2 ∶ ρ be fixed. Consider R equal to {(tt, V1), (ff, V2)} in R(B, ρ)
and η be α ↦ (B, ρ,R). We have (tt, V1) ∈ VJαKη since R(tt, V1) and, similarly,(ff, V2) ∈ VJαKη.

We have (M,M) ∈ EJσK by parametricity. Hence, (M B tt ff,M ρ V1 V2) in
VJαKη , which means that (M B tt ff,M ρ V1 V2) reduces to a pair of values in
R, which implies:

∀ρ,V1, V2, ⋁
⎧⎪⎪⎨⎪⎪⎩
∀ρ,V1, V2, M B tt ff ≅B tt ∧ M ρ V1 V2 ≅ρ V1

∀ρ,V1, V2, M B tt ff ≅B ff ∧ M ρ V1 V2 ≅ρ V2

Since, M B tt ff is independent of ρ, V1, and V2, this actually shows (1).
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Applications Inhabitants of ∀α.α → α → α
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
M ≅σ W1

△
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△
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R(B , ρ) and η be α ↦ (B , ρ,R). We have (tt , V1) ∈ VJαKη since R(tt , V1)
and, similarly, (ff , V2) ∈ VJαKη.

We have (M,M) ∈ EJσK by parametricity. Hence, (M B tt ff ,M ρ V1 V2) in
VJαKη , which means that (M B tt ff ,M ρ V1 V2) reduces to a pair of values
in R, which implies:

∀ρ,V1, V2, ⋁
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∀ρ,V1, V2, M B tt ff ≅B tt ∧ M ρ V1 V2 ≅ρ V1
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
M ≅σ W1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ W2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show that for either i = 1 or i = 2, for
any closed type ρ and V1, V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Wi ρ V1 V2, or just
M ρ V1 V2 ≅σ Vi (1).

Let ρ and V1, V2 ∶ ρ be fixed. Consider R equal to {(0 , V1), (1 , V2)} in
R(N , ρ) and η be α ↦ (N , ρ,R). We have (0 , V1) ∈ VJαKη since R(0 , V1)
and, similarly, (1 , V2) ∈ VJαKη.

We have (M,M) ∈ EJσK by parametricity. Hence, (M N 0 1 ,M ρ V1 V2) in
VJαKη , which means that (M N 0 1 ,M ρ V1 V2) reduces to a pair of values
in R, which implies:

∀ρ,V1, V2, ⋁
⎧⎪⎪⎨⎪⎪⎩
∀ρ,V1, V2, M N 0 1 ≅N 0 ∧ M ρ V1 V2 ≅ρ V1

∀ρ,V1, V2, M N 0 1 ≅N 1 ∧ M ρ V1 V2 ≅ρ V2

Since, M N 0 1 is independent of ρ, V1, and V2, this actually shows (1).
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α. If M ∶ σ, then either
M ≅σ W1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ W2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show that for either i = 1 or i = 2, for
any closed type ρ and V1, V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Wi ρ V1 V2, or just
M ρ V1 V2 ≅σ Vi (1).

Let ρ and V1, V2 ∶ ρ be fixed. Consider R equal to {(W1, V1), (W2, V2)} in
R(σ , ρ) and η be α ↦ (σ , ρ,R). We have (W1, V1) ∈ VJαKη since R(W1, V1)
and, similarly, (W2, V2) ∈ VJαKη.

We have (M,M) ∈ EJσK by parametricity. Hence, (M σ W1W2,M ρ V1 V2) in
VJαKη , which means that (M σ W1W2,M ρ V1 V2) reduces to a pair of values
in R, which implies:

∀ρ,V1, V2, ⋁
⎧⎪⎪⎨⎪⎪⎩
∀ρ,V1, V2, M σ W1W2≅σ W1 ∧ M ρ V1 V2 ≅ρ V1

∀ρ,V1, V2, M σ W1W2≅σ W2 ∧ M ρ V1 V2 ≅ρ V2

Since, M σ W1W2 is independent of ρ, V1, and V2, this actually shows (1).
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Exercise Inhabitants of ∀α.α → α

Redo the proof that all inhabitants of of ∀α.α → α → α are
observationally equivalent to the identity, following the schema that we
used for booleans.
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

That is, the inhabitants of ∀α. (α → α)→ α → α are the Church naturals.

Proof By extensionality, it suffices to show that there exists n such that for any
closed type ρ and closed values V1 ∶ ρ → ρ and V2 ∶ ρ, we have
M ρ V1 V2 ≅ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1
V2 (1), since Nn ρ V1 V2

reduces to V n
1
V2. Let ρ and V1 ∶ ρ → ρ and V2 ∶ ρ be fixed.

Let Z be N0 nat and S be N1 nat. Let R in R(nat, ρ) be{(W1,W2) ∣ ∃k ∈ N,Sk Z ≅nat W1 ∧ V k
1
V2 ≅ρ W2} and η be α ↦ (nat, ρ,R).

We have (Z, V2) ∈ VJαKη since R(Z, V2) (reduce both sides for k = 0).
We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)
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We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)

Indeed, assume (W1,W2) in VJαKη, i.e. R. There exists k such that

W1 ≅nat S
k Z and W2 ≅ρ V

k
1
V2. By congruence SW1 ≅nat S

k+1 Z and

V1 W2 ≅ρ V
k+1
1

V2. Since (Sk+1 Z, V k+1
1

V2) is in EJαKη , so is (SW1, V1 W2) by
closure by observational equivalence.
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let nat be ∀α. (α → α) → α → α. If M ∶ nat, then M ≅nat Nn for

some integer n, where Nn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

Proof By extensionality, it suffices to show that there exists n such that for any
closed type ρ and closed values V1 ∶ ρ → ρ and V2 ∶ ρ, we have
M ρ V1 V2 ≅ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1
V2 (1), since Nn ρ V1 V2

reduces to V n
1
V2. Let ρ and V1 ∶ ρ → ρ and V2 ∶ ρ be fixed.

Let Z be N0 nat and S be N1 nat. Let R in R(nat, ρ) be{(W1,W2) ∣ ∃k ∈ N,Sk Z ≅nat W1 ∧ V k
1
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We have (Z, V2) ∈ VJαKη since R(Z, V2) (reduce both sides for k = 0).
We also have (S, V1) ∈ VJα → αKη. (A key to the proof.)

By parametricity, we have M ∼nat M . Hence, (M nat S Z,M ρ V1 V2) ∈ EJαKη .
Thus, there exists n such that M nat S Z ≅nat Sn Z and M ρ V1 V2 ≅ρ V n

1
V2.

Since, M nat S Z is independent of n, we may conclude (1), provided the Sn Z
are all in different observational equivalence classes (easy to check).
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Applications Inhabitants of ∀α.α → (τ → α → α)→ α

▷⋅ Left as an exercise. . .
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Applications ∀α.α → (τ → α → α)→ α ▷⋅

Fact Let τ be closed and list be ∀α.α → (τ → α → α) → α. Let C be
λH ∶τ. λT ∶ list .Λα.λn ∶α.λc ∶τ → α → α. c H (T α n c) and N be
Λα.λn ∶α.λc ∶τ → α → α.n. If M ∶ list, then M ≅list Nn for some Nn in
Ln where Lk is defined inductively as L0

△
== {N} and

Lk+1
△
== {CWk Nk ∣Wk ∈ Val(τ) ∧Nk ∈ Lk}

Proof By extensionality, it suffices to show that there exists n and Nn ∈ Ln
such that for any closed type ρ and closed values V1 ∶ τ → ρ→ ρ and V2 ∶ ρ, we
have M ρ V1 V2 ∼ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, C Wn (. . . (C W1 N) . . .) (1), since
Nn ρ V1 V2 reduces to C Wn (. . . (C W1 N) . . .) where all Wk are in Val(τ).
Let ρ and V1 ∶ α→ ρ → ρ and V2 ∶ ρ be fixed.

Let R in R(list, ρ) be defined inductively as ⋃ Rn where Rk+1 is{⇓ (C G T,V2 H U) ∣ (G,H) ∈ VJτKη ∧ (T,U) ∈Rk} and R0 is {(N, V1)}.
We have (N, V2) ∈R0 ⊆ VJαKη.

We also have (C, V2) ∈ VJτ → α → αKη. (A key to the proof)

By parametricity, we have M ∼ M . Hence, (M list C N,M ρ V V ) ∈ EJαK .
342⟨4⟩ 357 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications ∀α.α → (τ → α → α)→ α ▷⋅

Fact Let τ be closed and list be ∀α.α → (τ → α → α) → α. Let C be
λH ∶τ. λT ∶ list .Λα.λn ∶α.λc ∶τ → α → α. c H (T α n c) and N be
Λα.λn ∶α.λc ∶τ → α → α.n. If M ∶ list, then M ≅list Nn for some Nn in
Ln where Lk is defined inductively as L0

△
== {N} and

Lk+1
△
== {CWk Nk ∣Wk ∈ Val(τ) ∧Nk ∈ Lk}

Proof By extensionality, it suffices to show that there exists n and Nn ∈ Ln
such that for any closed type ρ and closed values V1 ∶ τ → ρ→ ρ and V2 ∶ ρ, we
have M ρ V1 V2 ∼ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, C Wn (. . . (C W1 N) . . .) (1), since
Nn ρ V1 V2 reduces to C Wn (. . . (C W1 N) . . .) where all Wk are in Val(τ).
Let ρ and V1 ∶ α→ ρ → ρ and V2 ∶ ρ be fixed.

Let R in R(list, ρ) be defined inductively as ⋃ Rn where Rk+1 is{⇓ (C G T,V2 H U) ∣ (G,H) ∈ VJτKη ∧ (T,U) ∈Rk} and R0 is {(N, V1)}.
We have (N, V2) ∈R0 ⊆ VJαKη.

We also have (C, V2) ∈ VJτ → α → αKη. (A key to the proof)

Indeed, assume (G,H) in VJτK and (T,U) in VJαK , i.e. in R for some k.
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Applications ∀α.α → (τ → α → α)→ α ▷⋅

Fact Let τ be closed and list be ∀α.α → (τ → α → α) → α. Let C be
λH ∶τ. λT ∶ list .Λα.λn ∶α.λc ∶τ → α → α. c H (T α n c) and N be
Λα.λn ∶α.λc ∶τ → α → α.n. If M ∶ list, then M ≅list Nn for some Nn in
Ln where Lk is defined inductively as L0

△
== {N} and

Lk+1
△
== {CWk Nk ∣Wk ∈ Val(τ) ∧Nk ∈ Lk}

Proof By extensionality, it suffices to show that there exists n and Nn ∈ Ln
such that for any closed type ρ and closed values V1 ∶ τ → ρ→ ρ and V2 ∶ ρ, we
have M ρ V1 V2 ∼ρ Nn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, C Wn (. . . (C W1 N) . . .) (1), since
Nn ρ V1 V2 reduces to C Wn (. . . (C W1 N) . . .) where all Wk are in Val(τ).
Let ρ and V1 ∶ α→ ρ → ρ and V2 ∶ ρ be fixed.

Let R in R(list, ρ) be defined inductively as ⋃ Rn where Rk+1 is{⇓ (C G T,V2 H U) ∣ (G,H) ∈ VJτKη ∧ (T,U) ∈Rk} and R0 is {(N, V1)}.
We have (N, V2) ∈R0 ⊆ VJαKη.

We also have (C, V2) ∈ VJτ → α → αKη. (A key to the proof)

By parametricity, we have M ∼ M . Hence, (M list C N,M ρ V V ) ∈ EJαK .
342⟨7⟩ 357 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Contents

Introduction

Normalization of λst

Observational equivalence in λst

Logical relations in stlc

Logical relations in F

Applications

Extensions

343 357 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Encodable features Natural numbers

We have shown that all expressions of type nat behave as natural
numbers. Hence, natural numbers are definable.

Still, we could also provide a type nat of natural numbers as primitive.

Then, we may extend

● behavioral equivalence: if M1 ∶ nat and M2 ∶ nat, we have
M1 ≃nat M2 iff there exists n ∶ nat such that M1 ⇓ n and M2 ⇓ n.

● logical equivalence: uad VJnatK
△
== {(n,n) ∣ n ∈ N}

All properties are preserved.
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Encodable features Products

Given closed types τ1 and τ2, we defined

τ1 × τ2
△
== ∀α. (τ1 → τ2 → α)→ α

(M1,M2) △
== Λα.λx ∶τ1 → τ2 → α.x M1 M2

M.i
△
== M (λx1 ∶τ1. λx2 ∶τ2. xi)

Facts

If M ∶ τ1 × τ2, then M ≅τ1×τ2 (M1,M2) for some M1 ∶ τ1 and M2 ∶ τ2.

If M ∶ τ1 × τ2 and M.1 ≅τ1 M1 and M.2 ≅τ2 M2, then M ≅τ1×τ2 (M1,M2)
Primitive pairs

We may instead extend the language with primitive pairs. Then,

VJτ × σKη
△
== {((V1,W1), (V2,W2))∣ (V1, V2) ∈ VJτKη ∧ (W1,W2) ∈ VJσKη}
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Sums

We define:

VJτ + σKη = {(inj1 V1, inj1 V2) ∣ (V1, V2) ∈ VJτKη} ∪

{(inj2 V2, inj2 V2) ∣ (V1, V2) ∈ VJσKη}
Notice that sums, as all datatypes, can also be encoded in System F.
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Primitive Lists

We recursively1 define VJlist τKη as ⋃k Vk where V0 is {(Nil,Nil)} and
Vk+1 is {(Cons H1 T1,Cons H2 T2) ∣ (H1,H2) ∈ VJαKη ∧ (T1, T2) ∈ Vk}.
Let R in R(ρ1, ρ2) be the graph ⟨g⟩ of a function g, i.e. equal to{(x, y) ∣ g x = y} and η be η(τ ↦ ρ1, ρ2,R). Then, we have:

VJlist τKη(y1, y2)
△
== ⋁

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y1 = Nil ∧ y2 = Nil
y1 = Cons H1 T1 ∧

y2 = Cons H2 T2 ∧ gH1 =H2 ∧ (T1, T2) ∈ Vk
△
== map ρ1 ρ2 g y1 ⇓ y2

1This definition is well-founded. We may also use step-indexed relations.
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Applications sort ∶ ∀α. (α → α → bool)→ list α

Fact: Assume sort ∶ ∀α. (α → α → bool)→ list α → list α (1). Then

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)
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Applications sort ∶ ∀α. (α → α → bool)→ list α

Proof: We have sort ∼σ sort where σ is ∀α. (α → α → bool) → list α → list α.

Thus, for all ρ1, ρ2, and admissible relations R in R(ρ1, ρ2),
∀(cp

1
, cp

2
) ∈ VJα → α → BKη,

∀(V1, V2) ∈ VJlist αKη , (sort ρ1 cp1 V1, sort ρ2 cp2 V2) ∈ EJlist αKη)
(1)
(2)

where η is α ↦ (ρ1, ρ2,R).
We may choose R to be ⟨f⟩ for some f .
Then (1), which means

∀(V,V ′) ∈ ⟨f⟩, ∀(W,W ′) ∈ ⟨f⟩, (cp
1
V W, cp

2
V ′ W ′) ∈ VJBK

becomes
∀V,W ∶ ρ1, cp

1
V W ≅B cp

2
(f V ) (f W )

and
VJlist αKη

△
== ⇓ ⟨map ρ1 ρ2 f⟩ ⊆ VJρ1K × VJρ2K

Thus, (3) reads

∀V ∶ list ρ1, V ′ ∶ list ρ2,
⇓ V ′ Ô⇒ sort ρ2 cp2 (map ρ1 ρ2 f V ) ∼list ρ2

map ρ1 ρ2 f (sort ρ1 cp1 V )
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Applications whoami ∶ ∀α. list α → list α

Left as an exercise. . .
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Existential types

We define:

VJ∃α. τKη
△
== {(pack V1, ρ1 as ∃α. τ,pack V2, ρ2 as ∃α. τ) ∣

∃ρ1, ρ2,R ∈R(ρ1, ρ2), (V1, V2) ∈ EJτKη,α↦(ρ1,ρ2,R)}
Compare with

VJ∀α. τKη = {(Λα.M1,Λα.M2) ∣
∀ρ1, ρ2,R ∈R(ρ1, ρ2),((Λα.M1) ρ1, (Λα.M2) ρ2) ∈ EJτKη,α↦(ρ1,ρ2,R)}
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Existential types Example

Consider V1
△
== (not, tt), and V2 △== (succ,0) and σ △

== (α → α) × α.
Let R ∈R(bool,nat) be {(tt,2n), (ff ,2n + 1) ∣ n ∈ N} and η be
α ↦ (bool,nat,R).
We have (V1, V2) ∈ VJσKη.

Hence, (pack V1,bool as ∃α. σ, pack V2,nat as ∃α. σ) ∈ VJ∃α. σK.

Proof of ((not, tt), (succ,0)) ∈ VJ(α → α) × αKη (1)

We have (tt,0) ∈ VJαKη, since (tt,0) ∈ R.
We also have (not, succ) ∈ VJα → αKη, which proves (1).

Indeed, assume (W1,W2) ∈ VJαKη. Then (W1,W2) is either of the form

● (tt,2n) and (notW1, succW2) reduces to (ff,2n + 1), or
● (ff,2n + 1) and (notW1, succW2) reduces to (tt,2n + 2).

In both cases, (notW1, succW2) reduces to a pair in R.
Hence, (notW1, succW2) ∈ EJαKη.
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Representation independence

A client of an existential type ∃α. τ should not see the difference between
two implementations N1 and N2 of ∃α. τ with witness types ρ1 and ρ2.

A client M has type ∀α. τ → σ with α ∉ fv(σ); it must use the argument
parametrically, and the result is independent of the witness type.

Assume that ρ1 and ρ2 are two closed representation types and R is in
R(ρ1, ρ2). Let η be α ↦ (ρ1, ρ2,R).
Suppose that N1 ∶ τ[α ↦ ρ1] and N2 ∶ τ[α ↦ ρ2] are two equivalent
implementations of the operations, i.e. such that (N1,N2) ∈ EJτKη.
A client M satisfies (M,M) ∈ EJ∀α. τ → σKη. Thus(M ρ1 N1,M ρ2 N2) is in EJσK (as α is not free in σ).

That is, M ρ1 N1 ≅σ M ρ2 N2: the behavior with the implementation N1

with representation type ρ1 is indistinguishable from the behavior with
implementation N2 with representation type ρ2.
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How do we deal with recursive types?

Assume that we allow equi-recursive types.

τ ∶∶= . . . ∣ µα.τ
A naive definition would be

VJµα.τKη = VJ[α ↦ µα.τ]τKη
But this is ill-founded.

The solution is to use indexed-logical relations.

We use a sequence of decreasing relations indexed by integers (fuel),
which is consumed during unfolding of recursive types.
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Step-indexed logical relations (a taste)

We define a sequence VkJτKη indexed by natural numbers n ∈ N that
relates values of type τ up to n reduction steps. Omitting typing clauses:

VkJBKη = {(tt, tt), (ff ,ff)}
VkJτ → σKη = {(V1, V2) ∣ ∀j < k,∀(W1,W2) ∈ VjJτKη,(V1 W1, V2 W2) ∈ EjJσKη}
VkJαKη = ηR(α).k

VkJ∀α. τKη = {(V1, V2) ∣ ∀ρ1, ρ2,R ∈Rk(ρ1, ρ2),∀j < k,(V1 ρ1, V2 ρ2) ∈ VjJτKη,α↦(ρ1,ρ2,R)}
VkJµα.τKη = Vk−1J[α↦ µα.τ]τKη
EkJτKη = {(M1,M2) ∣ ∀j < k,M1 ⇓j V1

Ô⇒ ∃V2,M2 ⇓ V2 ∧ (V1, V2) ∈ Vk−jJτKη}
By ⇓j means reduces in j-steps.
Rj(ρ1, ρ2) is composed of sequences of decreasing relations between
closed values of closed types ρ1 and ρ2 of length (at least) j.
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Step-indexed logical relations (a taste)

The relation is asymmetric.

If ∆;Γ ⊢M1,M2 ∶ τ we define ∆;Γ ⊢M1 ≾M2 ∶ τ as

∀η ∈Rk
∆(δ1, δ2),∀(γ1, γ2) ∈ GkJΓK, (γ1(δ1(M1)), γ2(δ2(M2)) ∈ EkJτKη

and

∆;Γ ⊢M1 ∼ M2 ∶ τ
△
== ⋀

⎧⎪⎪⎨⎪⎪⎩
∆;Γ ⊢M1 ≾M2 ∶ τ

∆;Γ ⊢M2 ≾M1 ∶ τ

Notations and proofs get a bit involved...

Notations may be simplified by introducing a later guard ▷ to capture
incrementation of the index and avoid the explicit manipulation of
integers (but the meaning remains the same).
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Logical relations for F ω ?

Logical relations can be generalized to work for Fω, indeed.

There is a slight complication though in the interpretation of type
functions.

This is of the scope of this course, but one may, for instance, read
[Atkey, 2012].
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