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Presentation Expressiveness

Polymorphism in System F

Simply-typed λ-calculus

● no polymorphism
● many functions must be duplicated at different types

Via ML toplevel polymorphism

● Already, extremely useful! (avoiding dupplication of code)
● ML has also local let-polymorphism (less critical).
● Still, ML is lacking existential types—compensated by modules
and sometimes lacking higher-rank polymorphism

System F brings much more expressiveness

● Existential types—allows for type abstraction
● First-class universal types
● Allows for encoding of data structures and more programming patterns

Still, limited...
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Limits of System F λfxy. (f x, f y)

Map on pairs, say distrib pair, has the following incompatible types:

∀α1.∀α2.(α1 → α2) → α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic.

It is missing the ability to describe the types of functions

● that are polymorphic in one parameter
● but whose domain and codomain are otherwise arbitrary

i.e. of the form ∀α. τ[α] → σ[α] for arbitrary one-hole types τ and σ.

We just need to abstract over type functions:

∀ϕ .∀ψ . ∀α1.∀α2. (∀α. ϕ α → ψ α )→ ϕ α1 → ϕ α2 → ψ α1 ×ψ α2
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From System F to System Fω Kinds

Introduce kinds κ for types (with a single kind ∗ to stay with System F)

Well-formedness of types becomes Γ ⊢ τ ∶ ∗ to check kinds:

⊢ Γ α ∶ κ ∈ Γ

Γ ⊢ α ∶ κ

Γ ⊢ τ1 ∶ ∗ Γ ⊢ τ2 ∶ ∗

Γ ⊢ τ1 → τ2 ∶ ∗

Γ, α ∶ κ ⊢ τ ∶ ∗

Γ ⊢ ∀α ∶∶κ . τ ∶ ∗

⊢ ∅
⊢ Γ α ∉ dom(Γ)

⊢ Γ, α ∶ κ

Γ ⊢ τ ∶ ∗ x ∉ dom(Γ)

⊢ Γ, x ∶ τ

Add and check kinds on type abstractions and applications:

Tabs

Γ, α ∶ κ ⊢M ∶ τ

Γ ⊢ Λα ∶∶κ .M ∶ ∀α ∶∶κ . τ

Tapp

Γ ⊢M ∶ ∀α ∶∶κ . τ Γ ⊢ τ ′ ∶ κ

Γ ⊢ M τ ′ ∶ [α ↦ τ ′]τ

So far, this is an equivalent formalization of System F
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From System F to System Fω Type functions

Redefine kinds as κ ∶∶= ∗ ∣ κ⇒ κ

⊢ Γ α ∶ κ ∈ Γ

Γ ⊢ α ∶ κ

Γ ⊢ τ1 ∶ ∗ Γ ⊢ τ2 ∶ ∗

Γ ⊢ τ1 → τ2 ∶ ∗

Γ, α ∶ κ ⊢ τ ∶ ∗

Γ ⊢ ∀α ∶∶ κ. τ ∶ ∗

New types τ ∶∶= . . . ∣ λα ∶∶ κ. τ ∣ τ τ

WfTypeApp

Γ ⊢ τ1 ∶ κ2 ⇒ κ1 Γ ⊢ τ2 ∶ κ2

Γ ⊢ τ1 τ2 ∶ κ1

WfTypeAbs

Γ, α ∶ κ1 ⊢ τ ∶ κ2

Γ ⊢ λα ∶∶ κ1. τ ∶ κ1 ⇒ κ2

Typing of expressions is up to type equivalence:

TConv

Γ ⊢M ∶ τ τ ≡β τ
′

Γ ⊢M ∶ τ ′
Remark

Γ ⊢M ∶ τ Ô⇒ Γ ⊢ τ ∶ ∗
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F ω, static semantics (altogether on one slide)

With implicit kindsSyntax κ ∶∶= ∗ ∣ κ⇒ κ

τ ∶∶= α ∣ τ → τ ∣ ∀α.τ ∣ λα. τ ∣ τ τ
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ

Kinding rules

⊢ ∅

⊢ Γ

α ∉ dom(Γ)

⊢ Γ, α ∶ κ

Γ ⊢ τ ∶ ∗
x ∉ dom(Γ)

⊢ Γ, x ∶ τ

α ∶ κ ∈ Γ

Γ ⊢ α ∶ κ

Γ ⊢ τ1 ∶ ∗ Γ ⊢ τ2 ∶ ∗

Γ ⊢ τ1 → τ2 ∶ ∗

Γ, α ∶ κ ⊢ τ ∶ ∗

Γ ⊢ ∀α. τ ∶ ∗

Γ, α ∶ κ1 ⊢ τ ∶ κ2

Γ ⊢ λα. τ ∶ κ1 ⇒ κ2

Γ ⊢ τ1 ∶ κ2 ⇒ κ1 Γ ⊢ τ2 ∶ κ2

Γ ⊢ τ1 τ2 ∶ κ1

Typing rules

Var

x ∶ τ ∈ Γ

Γ ⊢ x ∶ τ

Abs

Γ, x ∶ τ1 ⊢M ∶ τ2

Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢ M2 ∶ τ1

Γ ⊢M1 M2 ∶ τ2

Tabs

Γ, α∶ κ ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α.τ

Tapp

Γ ⊢M ∶ ∀α.τ Γ ⊢ τ ′ ∶ κ

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ

TEquiv

Γ ⊢ M ∶ τ Γ ⊢ τ ≡β τ
′

Γ ⊢ M ∶ τ ′
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F ω, dynamic semantics

The semantics is unchanged (modulo kind annotations in terms)

V ∶∶= λx ∶τ.M ∣ Λα ∶∶ κ.V
E ∶∶= []M ∣ V [] ∣ [] τ ∣ Λα ∶∶ κ. []

(λx ∶τ.M) V Ð→ [x ↦ V ]M
(Λα ∶∶ κ.V ) τ Ð→ [α ↦ τ]V

Context

M Ð→M ′

E[M] Ð→ E[M ′]

No type reduction

● We need not reduce types inside terms.
● Type reduction is needed for type conversion (i.e. for typing) but
such reduction need not be performed on terms.

Kinds are erasable

● Reduction preserves kinds.
● Kinds are just ignored during the reduction (they need not be
reduced). In fact, kinds can be erased prior to reduction.
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Properties

Main properties are preserved. Proofs are similar to those for System F.

Type soundness

● Subject reduction

● Progress

Termination of reduction

(In the absence of construct for recursion.)

Typechecking is decidable

● This requires reduction at the level of types to check type equality

● Can be done by putting types in normal forms using full reduction
(on types only), or just head normal forms.
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Type reduction

Used for typechecking to check type equivalence ≡

Full reduction of the simply typed λ-calculus

(λα. τ) σ Ð→ [α ↦ τ]σ

applicable in any type context.

Type reduction preserve types: this is subject reduction for simply-typed
λ-calculus, but for full reduction (we have only proved it for CBV).

It is a key that reduction terminates.
(Again, we have only proved it for CBV.)
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Expressiveness

More polymorphism

● distrib pair

Abstraction over type operators

● monads

● encoding of existentials

Encodings

● non regular datatypes

● equality
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Distrib pair in F ω (with implicit kinds) λfxy. (f x, f y)

Abstract over (one parameter) type functions (e.g. of kind ⋆ → ⋆)

Λϕ.Λψ.Λα1.Λα2.

λ(f ∶ ∀α.ϕα → ψα). λx ∶ ϕα1. λy ∶ ϕα2. (f α1 x, f α2 y)

call it distrib pair of type:

∀ϕ.∀ψ.∀α1.∀α2.

(∀α.ϕα → ψα)→ ϕα1 → ϕα2 → ψα1 ×ψα2

We may recover, in particular, the two types it had in System F:

Λα1.Λα2.distrib pair (λα.α1) (λα.α2) α1 α2

∶ ∀α1.∀α2. (α1 → α2)→ α1 → α1 → α2 ×α2

distrib pair (λα.α) (λα.α)
∶ ∀α1.∀α2. (∀α.α → α)→ α1 → α2 → α1 × α2

Still, the type of distrib pair is not principal. ϕ and ψ could depend on
two variables, i.e. be of kind ∗ ⇒ ∗ ⇒ ∗, or many other kinds...
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Abstracting over type operators

Type of monads Given a type operator ϕ, a monad is given by a pair of
two functions of the following type (satisfying certain laws).

M
△
== λϕ.

{ ret ∶ ∀α.α → ϕα;
bind ∶ ∀α.∀β.ϕα → (α → ϕβ) → ϕβ }

∶ (∗ ⇒ ∗)⇒ ∗

(Notice that M is itself of higher kind)

A generic map function: can then be defined:

fmap
△
== λm.

λf.λx.

m.bind x (λx.m.ret (f x))
∶ ∀ϕ.M ϕ→ ∀α.∀β. (α → β)→ ϕα →ϕβ

16⟨3⟩ 34 ◁
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Abstracting over type operators

Available in Haskell —without β-reduction

● ϕα is treated as a type App(ϕ,α) where
App ∶ (κ1 ⇒ κ2)⇒ κ1 ⇒ κ2

● No β-reduction at the level of types: ϕα = ψβ ⇐⇒ ϕ = ψ ∧α = β

● Compatible with type inference (first-order unification)

● Since there is no type β-reduction, this does enable Fω.

Encodable in OCaml with modules

● See [Yallop and White, 2014] (and also [Kiselyov])

● As in Haskell, the encoding does not handle type β-reduction

● As a counterpart, this allows for type inference at higher kinds.
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Encoding of existentials Limits of System F

We saw
J∃α. τK = ∀β. (∀α. τ → β)→ β

Hence,

Jpack∃α.τ K = Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

This requires a different code for each type τ

To have a unique code, we need to abstract over the type function λα. τ :

In System Fω, we may defined

(omitting kinds)JpackκK = Λϕ.Λα.
λx ∶ ϕ α.Λβ.λk ∶ ∀α. (ϕ α → β). k α x

Allows abstraction at higher kinds!

18⟨9⟩ 34 ◁
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Exploiting kinds

Once we have kind functions, the language of types could be reduced to
λ-calculus with constants (plus the arrow types kept as primitive):

τ = α ∣ λα. τ ∣ τ τ ∣ τ → τ ∣ g

where type constants g ∈ G are given with their kind and syntactic sugar:

× ∶∶ ∗ ⇒ ∗ ⇒ ∗
+ ∶∶ ∗ ⇒ ∗ ⇒ κ

∀ ∶∶ (κ⇒ ∗)⇒ ∗
∃ ∶∶ (κ⇒ ∗)⇒ ∗

(τ × τ)
△
== (×) τ1 τ2

(τ + τ)
△
== (+) τ1 τ2

∀ϕ. τ
△
== ∀(λϕ. τ)

∃ϕ. τ
△
== ∃(λϕ. τ)
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Church encoding of regular ADT List

type List α =
∣ Nil ∶ ∀α.List α
∣ Cons ∶ ∀α.α → List α → List α

Church encoding (CPS style) in System F

List
△
== λα.∀β.β → (α → β → β)→ β

Nil
△
== λn.λc.n

Cons
△
== λx.λℓ.λn.λc. c x (ℓ β n c)z

fold
△
== λn.λc.λℓ. ℓ β n c

Actually not ! Be aware of useless over-generalization!
For regular ADTs, all uses of ϕ are ϕα.
Hence, ∀α.∀ϕ. τ[ϕα] is not more general than ∀α.∀β. τ[β]

20⟨3⟩ 34 ◁
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Church encoding of non-regular ADTs Okasaki’s Seq

type Seq α =
∣ Nil ∶ ∀α.Seq α
∣ Zero ∶ ∀α.Seq (α×α)→ Seq α
∣ One ∶ ∀α.α → Seq (α×α) → Seq α

Encoded as:

Seq
△
== λα.∀F.Fα → (F (α×α) → Fα) → (α → F (α×α) → Fα) → Fα

Nil
△
== λn.λz.λs.n

Zero
△
== λℓ.λn.λz. λs. z (ℓ n z s)

One
△
== λx.λℓ. λn.λz. λs. s x (ℓ n z s)

fold
△
== λn.λz.λs. λℓ. ℓ n z s

Cannot be simplified! Indeed ϕ is applied to both α and α × α.
Non regular ADTs cannot be encoded in System F.
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Equality Encoded with GADT

module Eq : EQ = struct
type (’a, ’b) eq = Eq : (’a, ’a) eq

let coerce (type a) (type b) (ab : (a,b) eq) (x : a) : b = let Eq = ab in x

let refl : (’a, ’a) eq = Eq

(∗ all these are propagation are automatic with GADTs ∗)
let symm (type a) (type b) (ab : (a,b) eq) : (b,a) eq = let Eq = ab in ab
let trans (type a) (type b) (type c)

(ab : (a,b) eq) (bc : (b,c) eq) : (a,c) eq = let Eq = ab in bc

let lift (type a) (type b) (ab : (a,b) eq) : (a list, b list ) eq =
let Eq = ab in Eq

end
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Equality Leibnitz equality in F ω

Eq α β ≡ ∀ϕ.ϕα → ϕβ

Eq
△
== λα.λβ.∀ϕ.ϕα → ϕβ

coerce
△
== λp.λx. p x

refl
△
== λx. x

∶ ∀α.∀ϕ.ϕα → ϕα ≡ ∀α.Eq α α

symm
△
== λp. p (refl)

∶ ∀α.∀β.Eq α β → Eq β α ∶ Eq α α → Eq β α

trans
△
== λp.λq. q p

∶ ∀α.∀β.∀γ.Eq α β → Eq β γ → Eq α γ∶ Eq α β → Eq α γ

lift
△
== λp. p (refl)

∶ ∀α.∀β.∀ϕ.Eq α β → Eq (ϕα) (ϕβ) ∶Eq (ϕα)(ϕα)→Eq (ϕα) (ϕβ)
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Equality Leibnitz equality in F ω

We implemented parts of the coercions of System Fc.

● We do not have decomposition of equalities (the inverse of Lift).

● This requires injectivity of the type operator, which is not given.

● Equivalences and liftings must be written explicitly, while they are
implicit with GADTs.

Some GATDs can be encoded, using equality plus existential types.

24 34 ◁



Presentation Expressiveness

A hierarchy of type systems

Kinds have a rank:

● the base kind ∗ is of rank 0

● kinds ∗ ⇒ ∗ and ∗ ⇒ ∗ ⇒ ∗ have rank 1. They are the kinds of type
functions taking type parameters of base kind.

● kind (∗ ⇒ ∗)⇒ ∗ has rank 2—it is a type function whose
parameter is itself a simple type function (of rank 1).

● more generally, rank (κ1 ⇒ κ2) =max(1 + rank κ1, rank κ2)

This defines a sequence F 0
⊆ F 1

⊆ F 2 . . . ⊆ Fω of type systems of
increasing expressiveness, where Fn only uses kinds of rank n, whose
limit is Fω and where System F is F 0.

Note that ranks are often shifted by one, starting with F = F 1

or even by 2, starting with F = F 2.

Most examples in practice (and those we wrote) are in F 1, just above F .
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Extensions

Abstraction over kinds?

∀(ϕ ∶∶ ∗ ⇒ ∗).∀(ψ ∶∶ ∗ ⇒ ∗).∀(α1 ∶∶ ∗).∀(α2 ∶∶ ∗).
(∀ (α ∶∶ ∗) . ϕα → ψα)→ ϕα1 → ϕα2 → ψα1 ×ψα2

Motivation: distrib pair does not have a principal type.
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F ω with several base kinds

We could have several base kinds, e.g. ∗ and field with type constructors:

filled ∶ ∗ ⇒ field
empty ∶ field

box ∶ field⇒ ∗

Prevents ill-formed types such as box (α → filled α).

This allows to build values v of type box θ where θ of kind field statically
tells whether v is filled with a value of type τ or empty.

Application:

This is used in OCaml for rows of object types, but kinds are hidden to
the user:

let get (x : < get : ’a; .. >) : ’a = x#get

The dots “ .. ” stands for a variable of another base kind (representing a
row of types).
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System F ω with equirecursive types

Checking equality of equirecursive types in System F is already non
obvious, since unfolding may require alpha-conversion to avoid variable
capture. (See also [Gauthier and Pottier, 2004].)

With higher-order types, it is even trickier, since unfolding at functional
kinds could expose new type redexes.

Besides, the language of types would be the simply type λ-calculus with
a fix-point operator: type reduction would not terminate.

Therefore type equality would be undecidable, as well as type checking.

A solution is to restrict to recursion at the base kind ∗. This allows to
define recursive types but not recursive type functions.

Such an extension has been proven sound and and decidable, but only for
the weak form or equirecursive types (with the unfolding but not the
uniqueness rule)—see [Cai et al., 2016].
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System F ω with equirecursive kinds

Instead, recursion could also occur just at the level of kinds, allowing
kinds to be themselves recursive.

Then, the language of types is the simply type λ-calculus with recursive
types, equivalent to the untyped λ-calculus—every term is typable.
Reduction of types does not terminate and type equality is ill-defined.

A solution proposed by Pottier [2011] is to force recursive kinds to be
productive, reusing an idea from an [Nakano, 2000, 2001] for controlling
recursion on terms, but pushing it one level up. Type equality become
well-defined and semi-decidable.

The extension has been used to show that references in System F can be
translated away in Fω with guarded recursive kinds.
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System F ω For applicative functors

Generative ML modules (without parametric types) can be encoding in
System F with existential types.

● A functor F has a type of the form: ∀α. τ[α] → ∃β. .σ[α,β]
● If X,Y has type τ[ρ], then two successive applications F(X) and F(X)

have types ∃β. [ρ, β] with different abstract types β and cannot
interoperate (on components involving β).

let Y = unpack FX in
let Z = unpack FX in
Y = Z

is ill-typed

However, applicative modules require the use of Fω to keep track of type
equalities! See [Rossberg et al., 2014] and [Rossberg, 2018].

● A functor F has a type of the form: ∃ϕ.∀α. τ[α] → σ[α,ϕα]
or when open ∀α. τ[α] → σ[α,ψρ] for some unknown ψ.

● Then if X has type τ[ρ], two successive applications F(X) and F(X) have
the same type σ[ρ,ϕρ] sharing the abstract type (application) ψρ.

● Hence, the two applications can interoperate,
● Key: ψ is abstract, which makes ψρ abstract and incompatible with ρ,
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System F ω in OCamll

Second-order polymorphism in OCaml

● Via polymorphic methods

let id = object method f : ’a. ’a → ’a = fun x → x end
let y (x : <f : ’a. ’a → ’a>) = x#f x in y id

● Via first-class modules
module type S = sig val f : ’a → ’a end
let id = (module struct let f x = x end : S)
let y (x : (module S)) = let module X = (val x) in X.f x in y id

Higher-order types in OCaml

● In principle, they could be encoded with first-class modules.

● Not currently possible, due to (unnecessary) restrictions.

● Modular explicits, an extension that allows a better integration of
abstraction over first-class modules will remove these limitations and
allow a light-weight encoding of Fω—with boiler-plate glue code.
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System F ω in OCamll

Second-order polymorphism in OCaml

● Via polymorphic methods

let id = object method f : ’a. ’a → ’a = fun x → x end
let y (x : <f : ’a. ’a → ’a>) = x#f x in y id

● Via first-class modules
module type S = sig val f : ’a → ’a end
let id = (module struct let f x = x end : S)
let y (x : (module S)) = let module X = (val x) in X.f x in y id

Higher-order types in OCaml

● In principle, they could be encoded with first-class modules.

● Not currently possible, due to (unnecessary) restrictions.

● Modular explicits, an extension that allows a better integration of
abstraction over first-class modules will remove these limitations and
allow a light-weight encoding of Fω—with boiler-plate glue code.
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System F ω in OCaml . . . with modular explicits

Available at git@github.com:mrmr1993/ocaml.git

module type s = sig type t end
module type op = functor (A:s) → s

let dp {F:op} {G:op} {A:s} {B:s} (f:{C:s} → F(C).t → G(C).t)
(x : F(A).t) (y : F(B).t) : G(A).t ∗ G(B).t = f {A} x, f {B} y

And its two specialized versions:

let dp1 (type a) (type b) (f : {C:s} → C.t → C.t) : a → b → a ∗ b =
let module F(C:s) = C in let module G = F in

let module A = struct type t = a end in

let module B = struct type t = b end in

dp {F} {G} {A} {B} f

let dp2 (type a) (type b) (f : a → b) : a → a → b ∗ b =
let module A = struct type t = a end in

let module B = struct type t = b end in

let module F(C:s) = A in let module G(C:s) = B in

dp {F} {G} {A} {B} (fun {C:s} → f)
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System F ω in Scala-3

Higher-order polymorphism a la System Fω is now accessible in Scala-3.

The monad example (with some variation on the signature) is:

trait Monad[F[ ]] {
def pure[A](x: A): F[A]
def flatMap[A, B](fa: F[A])(f: A ⇒ F[B]): F[B]

}

See https://www.baeldung.com/scala/dotty-scala-3

Still, this feature of Scala-3 is not emphrasized

● It was not directly accessible in previous version Scala.

● Scala’s syntax and other complex features of Scala are obfuscating.
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What’s next? Dependent types!

Barendregt’s λ-cube

Fω = λω λΠω

F = λ2 λΠ2

λω λΠω

λst λΠ

(1)

(2)

(3)
(1) Term abstraction on Types (example: System F)

(2) Type abstraction on Types (example: Fω)

(3) Type abstraction on Terms (dependent types)
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