
MPRI 2.4, Functional programming and type systems

Metatheory of System F

Didier Rémy

September 29, 2021

Plan of the course

Metatheory of System F

ADTs, Recursive types, Existential types, GATDs

Going higher order with Fω!

Logical relations

Abstract Data types, Existential

types, GADTs

Typed closure conversion

Contents

Application to typed closure conversion

Environment passing

Closure passing

74 115 ◁

Typed closure conversion

Type-preserving compilation

Compilation is type-preserving when each intermediate language is
explicitly typed, and each compilation phase transforms a typed program
into a typed program in the next intermediate language.

Why preserve types during compilation?

● it can help debug the compiler;

● types can be used to drive optimizations;

● types can be used to produce proof-carrying code;

● proving that types are preserved can be the first step towards
proving that the semantics is preserved [Chlipala, 2007].

75 115 ◁

Typed closure conversion

Type-preserving compilation

Type-preserving compilation exhibits an encoding of programming
constructs into programming languages with usually richer type systems.

The encoding may sometimes be used directly as a programming idiom in
the source language.

For example:

● Closure conversion requires an extension of the language with
existential types, which happens to be very useful on their own.

● Closures are themselves a simple form of objects, which can also be
explained with existential types.

● Defunctionalization may be done manually on some particular
programs, e.g. in web applications to monitor the computation.

76 115 ◁

Typed closure conversion

Type-preserving compilation

A classic paper by Morrisett et al. [1999] shows how to go from System F
to Typed Assembly Language, while preserving types along the way. Its
main passes are:

● CPS conversion fixes the order of evaluation, names intermediate
computations, and makes all function calls tail calls;

● closure conversion makes environments and closures explicit, and
produces a program where all functions are closed;

● allocation and initialization of tuples is made explicit;

● the calling convention is made explicit, and variables are replaced
with (an unbounded number of) machine registers.

77 115 ◁

Typed closure conversion

Translating types

In general, a type-preserving compilation phase involves not only a
translation of terms, mapping M to JMK, but also a translation of types,
mapping τ to JτK, with the property:

Γ ⊢M ∶ τ implies JΓK ⊢ JMK ∶ JτK

The translation of types carries a lot of information: examining it is often
enough to guess what the translation of terms will be.

See the old lecture on type closure conversion.

78 115 ◁

Typed closure conversion

Closure conversion

First-class functions may appear in the body of other functions. hence,
their own body may contain free variables that will be bound to values
during the evaluation in the execution environment.

Because they can be returned as values, and thus used outside of their
definition environment, they must store their execution environment in
their value.

A closure is the packaging of the code of a first-class function with its
runtime environment, so that it becomes closed, i.e. independent of the
runtime environment and can be moved and applied in another runtime
environment.

Closures can also be used to represent recursive functions and objects
(in the object-as-record-of-methods paradigm).

79 115 ◁

Typed closure conversion

Source and target

In the following,

● the source calculus has unary λ-abstractions, which can have free
variables;

● the target calculus has binary λ-abstractions, which must be closed.

Closure conversion can be easily extended to n-ary functions, or
n-ary functions may be uncurried in a separate, type-preserving
compilation pass.

80 115 ◁

Typed closure conversion

Variants of closure conversion

There are at least two variants of closure conversion:

● in the closure-passing variant,
the closure and the environment are a single memory block;

● in the environment-passing variant,
the environment is a separate block, to which the closure points.

The impact of this choice on the translation of terms is minor.

Its impact on the translation of types is more important:
the closure-passing variant requires more type-theoretic machinery.

81 115 ◁

Typed closure conversion

Closure-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in JaK in

(code , x1, . . . , xn)

Ja1 a2K = let clo = Ja1K in
let code = proj0 clo in
code (clo, Ja2K)

(The variables code and clo must be suitably fresh.)

Important! The layout of the environment must be known only at the
closure allocation site, not at the call site. In particular, proj0 clo need
not know the size of clo.

82 115 ◁

Typed closure conversion

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(env , x).
let (x1, . . . , xn) = env in JaK in

(code , (x1, . . . , xn))

Ja1 a2K = let (code , env) = Ja1K in

code (env , Ja2K)

Questions: How can closure conversion be made type-preserving?

The key issue is to find a sensible definition of the type translation.
In particular, what is the translation of a function type, Jτ1 → τ2K?

83⟨4⟩ 115 ◁

Typed closure conversion

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(env , x).
let (x1, . . . , xn) = env in JaK in

(code , (x1, . . . , xn))

Assume Γ ⊢ λx.a ∶ τ1 → τ2.
Assume, w.l.o.g.. dom(Γ) = fv(λx.a) = {x1, . . . , xn}.

Write JΓK for the tuple type x1 ∶ Jτ
′

1
K; . . . ;xn ∶ Jτ

′

nK where Γ is
x1 ∶ τ

′

1
; . . . ;xn ∶ τ

′

n. We also use JΓK as a type to mean Jτ ′
1
K × . . . × Jτ ′nK.

We have Γ, x ∶ τ1 ⊢ a ∶ τ2, so in environment JΓK, x ∶ Jτ1K, we have

● env has type JΓK,
● code has type (JΓK × Jτ1K)→ Jτ2K, and
● the entire closure has type ((JΓK × Jτ1K)→ Jτ2K) × JΓK.

Now, what should be the definition of Jτ1 → τ2K?
83⟨4⟩ 115 ◁

Typed closure conversion

Towards a type translation

Can we adopt this as a definition?

Jτ1 → τ2K = ((JΓK × Jτ1K)→ Jτ2K) × JΓK

Naturally not. This definition is mathematically ill-formed: we cannot
use Γ out of the blue.

That is, this definition is not uniform: it depends on Γ, i.e. the size and
layout of the environment.

Do we really need to have a uniform translation of types?

84 115 ◁

Typed closure conversion

Towards a type translation

Yes, we do.

We need a uniform translation of types, not just because it is nice to
have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

if . . . then λx.x + y else λx.x

Furthermore, we want function invocations to be translated uniformly,
without knowledge of the size and layout of the closure’s environment.

So, what could be the definition of Jτ1 → τ2K?

85 115 ◁

Typed closure conversion

The type translation

The only sensible solution is:

Jτ1 → τ2K = ∃α.((α × Jτ1K)→ Jτ2K) × α

An existential quantification over the type of the environment abstracts
away the differences in size and layout.

Enough information is retained to ensure that the application of the code
to the environment is valid: this is expressed by letting the variable α

occur twice on the right-hand side.

86 115 ◁

Typed closure conversion

The type translation

The existential quantification also provides a form of security: the caller
cannot do anything with the environment except pass it as an argument
to the code; in particular, it cannot inspect or modify the environment.

For instance, in the source language, the following coding style
guarantees that x remains even, no matter how f is used:

let f = let x = ref 0 in λ(). x ∶= (x + 2); ! x

After closure conversion, the reference x is reachable via the closure of f .
A malicious, untyped client could write an odd value to x.
However, a well-typed client is unable to do so.

This encoding is not just type-preserving, but also fully abstract: it
preserves (a typed version of) observational
equivalence [Ahmed and Blume, 2008].

87 115 ◁

Typed closure conversion

Application to typed closure conversion

Environment passing

Closure passing

88 115 ◁

Typed closure conversion

Typed closure conversion

Everything is now set up to prove that, in System F with existential types:

Γ ⊢M ∶ τ implies JΓK ⊢ JMK ∶ JτK

89 115 ◁

Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).

Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =
λ(env ∶ JΓK, x ∶ Jτ1K).

let (x1, . . . , xn ∶ JΓK) = env in
JMK

in
pack JΓK, (code , (x1, . . . , xn))
as ∃α.((α × Jτ1K)→ Jτ2K) ×α

We find JΓK ⊢ Jλx ∶τ1.MK ∶ Jτ1 → τ2K, as desired.

90 115 ◁

Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢M ∶ τ1 → τ2 and Γ ⊢M1 ∶ τ1.

JM M1K = let α, (code ∶ (α × Jτ1K)→ Jτ2K, env ∶ α) =
unpack JMK in

code (env , JM1K)

We find JΓK ⊢ JM M1K ∶ Jτ2K, as desired.

91 115 ◁

Typed closure conversion

Environment-passing closure conversion recursion

Recursive functions can be translated in this way, known as the “fix-code”
variant [Morrisett and Harper, 1998] (leaving out type information):

Jµf.λx.MK = let rec code (env , x) =
let f = pack (code , env) in
let (x1, . . . , xn) = env in
JMK in

pack (code , (x1, . . . , xn))

where {x1, . . . , xn} = fv(µf.λx.M).

The translation of applications is unchanged: recursive and non-recursive
functions have an identical calling convention.

What is the weak point of this variant?

A new closure is allocated at every call.

92 115 ◁

Typed closure conversion

Environment-passing closure conversion recursion

Instead, the “fix-pack” variant [Morrisett and Harper, 1998] uses an
extra field in the environment to store a back pointer to the closure:

Jµf.λx.MK = let code (env , x) =
let (f ,x1, . . . , xn) = env in
JMK

in
let rec clo = (code , (clo, x1, . . . , xn)) in
clo

where {x1, . . . , xn} = fv(µf.λx.M).

This requires general, recursively-defined values. Closures are now cyclic
data structures.

93 115 ◁

Typed closure conversion

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ Jτ1 → τ2K =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) ×α)

in clo

Problem?

94 115 ◁

Typed closure conversion

Environment-passing closure conversion recursion

The recursive function may be polymorphic, but recursive calls are
monomorphic...

We can generalize the encoding afterwards,

JΛβ⃗. µf ∶ τ1 → τ2.λx.MK = Λβ⃗. Jµf ∶ τ1 → τ2.λx.MK

whenever the right-hand side is well-defined.

This allows the indirect compilation of polymorphic recursive functions as
long as the recursion is monomorphic.

Fortunately, the encoding can be straightforwardly adapted to directly
compile polymorphically recursive functions into polymorphic closure.

95 115 ◁

Typed closure conversion

Environment-passing closure conversion recursion

Jµf ∶∀β⃗. τ1 → τ2. λx.MK =

let code ∶ ∀β⃗. (Jf ∶ ∀β⃗. τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK, x ∶ Jτ1K).

let (f,x1, . . . , xn) ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ J∀β⃗. τ1 → τ2K =

Λβ⃗.pack Jf ∶ ∀β⃗. τ1 → τ2,ΓK, (code β⃗, (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) ×α)

in clo

The encoding is simple.

However, this requires the introduction of recursive non-functional values
“let rec x = v”. While this is a useful construct, it really alters the
operational semantics and requires updating the type soundness proof.

96 115 ◁

Typed closure conversion

Application to typed closure conversion

Environment passing

Closure passing

97 115 ◁

Typed closure conversion

Closure-passing closure conversion

Jλx.MK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)

JM1 M2K = let clo = JM1K in
let code = proj0 clo in
code (clo, JM2K)

There are two difficulties:

● a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

● the first field of the closure contains a function that expects the
closure itself as its first argument.

98⟨5⟩ 115 ◁

Typed closure conversion

Closure-passing closure conversion

There are two difficulties:

● a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

● the first field of the closure contains a function that expects the
closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

● existential quantification over the tail of a tuple (a.k.a. a row);

● recursive types.

98⟨5⟩ 115 ◁

Typed closure conversion

Tuples, rows, row variables

The standard tuple types that we have used so far are:

τ ∶∶= . . . ∣ Π R – types
R ∶∶= ǫ ∣ (τ ;R) – rows

The notation (τ1 × . . . × τn) was sugar for Π (τ1; . . . ; τn; ǫ).

Let us now introduce row variables and allow quantification over them:

τ ∶∶= . . . ∣ Π R ∣ ∀ρ. τ ∣ ∃ρ.τ – types
R ∶∶= ρ ∣ ǫ ∣ (τ ;R) – rows

This allows reasoning about the first few fields of a tuple whose length is
not known.

99 115 ◁

Typed closure conversion

Typing rules for tuples

The typing rules for tuple construction and deconstruction are:

Tuple

∀i. ∈ [1, n] Γ ⊢Mi ∶ τi

Γ ⊢ (M1, . . . ,Mn) ∶ Π (τ1; . . . ; τn; ǫ)

Proj

Γ ⊢M ∶ Π (τ1; . . . ; τi;R)

Γ ⊢ proji M ∶ τi

These rules make sense with or without row variables

Projection does not care about the fields beyond i. Thanks to row
variables, this can be expressed in terms of parametric polymorphism:

proji ∶ ∀α. 1 . . . αiρ. Π (α1; . . . ;αi;ρ) → αi

100 115 ◁

Typed closure conversion

About Rows

Rows were invented by Wand and improved by RÃ©my in order to
ascribe precise types to operations on records.

The case of tuples, presented here, is simpler.

Rows are used to describe objects in Objective Caml
[Rémy and Vouillon, 1998].

Rows are explained in depth by Pottier and RÃ©my
[Pottier and Rémy, 2005].

101 115 ◁

Typed closure conversion

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...

(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment

)

See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Why is it ∃ρ. µα. τ and not µα. ∃ρ. τ

The type of the environment is fixed once for all and does not change at
each recursive call.

Question: Notice that ρ appears only once. Any comments?
102 115 ◁

Typed closure conversion

Closure-passing closure conversion

Let Clo(R) abbreviate µα.Π ((α × Jτ1K)→ Jτ2K;R).

Let UClo(R) abbreviate its unfolded version,
Π ((Clo(R) × Jτ1K)→ Jτ2K;R).

We have Jτ1 → τ2K = ∃ρ.Clo(ρ).

Jλx ∶Jτ1K.MK = let code ∶ (Clo(JΓK) × Jτ1K)→ Jτ2K =
λ(clo ∶ Clo(JΓK, x ∶ Jτ1K).
let (, x1, . . . , xn) ∶ UCloJΓK = unfold clo in
JMK in

pack JΓK, (fold (code , x1, . . . , xn))
as ∃ρ.Clo(ρ)

JM1 M2K = let ρ, clo = unpack JM1K in
let code ∶ (Clo(ρ) × Jτ1K)→ Jτ2K =

proj0 (unfold clo) in
code (clo, JM2K)

103 115 ◁

Typed closure conversion

Closure-passing closure conversion recursive functions

In the closure-passing variant, recursive functions can be translated as:

Jµf.λx.MK = let code = λ(clo, x).
let f = clo in
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)

where {x1, . . . , xn} = fv(µf.λx.M).

No extra field or extra work is required to store or construct a
representation of the free variable f : the closure itself plays this role.

However, this untyped code can only be typechecked when recursion is
monomorphic.

Exercise:

Check well-typedness with monomorphic recursion.
104 115 ◁

Typed closure conversion

Closure-passing closure conversion recursive functions

The problem to adapt this encoding to polymorphic recursion is that
recursive occurrences of f are rebuilt from the current invocation of the
closure, i.e. is monomorphic since the closure is invoked after type
specialization.

By contrast, in the environment passing encoding, the environment
contained a polymorphic binding for the recursive calls that was filled
with the closure before its invokation, i.e. with a polymorphic type.

Fortunately, we may slightly change the encoding, using a recursive
closure as in the type-passing version, to allow typechecking in System F.

105 115 ◁

Typed closure conversion

Closure-passing closure conversion recursive functions

Let τ be ∀α⃗. τ1 → τ2 and Γf be f ∶ τ,Γ where β⃗ # Γ

Jµf ∶τ . λx.MK = let code =

Λβ⃗. λ(clo ∶ CloJΓfK, x ∶ Jτ1K).

let (code , f, x1, . . . , xn) ∶ ∀β⃗.UClo(JΓf K) =
unfold clo in

JMK in

let rec clo ∶ ∀β⃗.∃ρ.Clo(ρ) = Λβ⃗.

pack JΓK, (fold (code β⃗, clo, x1, . . . , xn)) as ∃ρ.Clo(ρ)
in clo

Remind that Clo(R) abbreviates µα.Π ((α × Jτ1K)→ Jτ2K;R). Hence, β⃗
are free variables of Clo(R).

Here, a polymorphic recursive function is directly compiled into a
polymorphic recursive closure. Notice that the type of closures is
unchanged so the encoding of applications is also unchanged.

106 115 ◁

Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec clo1 = (code1, (clo1, clo2, x1, . . . , xn))

and clo2 = (code2, (clo1, clo2, x1, . . . , xn)) in
clo1, clo2

107⟨4⟩ 115 ◁

Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec env = (clo1, clo2, x1, . . . , xn)

and clo1 = (code1, env)
and clo2 = (code2, env) in

clo1, clo2

107⟨6⟩ 115 ◁

Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

let code i = λ(clo, x).
let (, f1, f2, x1, . . . , xn) = clo in JMiK

in
let rec clo1 = (code1, clo1, clo2, x1, . . . , xn)
and clo2 = (code2, clo1, clo2, x1, . . . , xn)

in clo1, clo2

Question: Can we share the closures c1 and c2 in case n is large?

107⟨7⟩ 115 ◁

Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

let code1 = λ(clo, x).
let (code1, code2, f1, f2, x1, . . . , xn) = clo in JM1K in

let code2 = λ(clo, x).
let (code2, f1, f2, x1, . . . , xn) = clo in JM2K in

let rec clo1 = (code1, code2, clo1, clo2, x1, . . . , xn) and clo2 = clo1.tail
in clo1, clo2

● clo1.tail returns a pointer to the tail (code2, clo1, clo2, x1, . . . , xn)
of clo1 without allocating a new tuple.
● This is only possible with some support from the GC (and
extra-complexity and runtime cost for GC)

107⟨6⟩ 115 ◁

Typed closure conversion

Optimizing representations

Can closure passing and environment passing be mixed?

No because the calling-convention (i.e., the encoding of application)
must be uniform.

However, their is some flexibility in the representation of the closure.
For instance, the following change is completely local:

Jλx.MK = let code = λ(clo, x).

let (, (x1, . . . , xn)) = clo in JMK in

(code , (x1, . . . , xn))

JM1 M2K = let clo = JM1K in
let code = proj0 clo in
code (clo, JM2K)

Applications? When many definitions share the same closure, the closure
(or part of it) may be shared.

108 115 ◁

Typed closure conversion

Encoding of objects

The closure-passing representation of mutually recursive functions is
similar to the representations of objects in the
object-as-record-of-functions paradigm:

A class definition is an object generator:

class c (x1, . . . xq){
meth m1 =M1

. . .

meth mp =Mp

}

Given arguments for parameter x1, . . . x1, it will build recursive methods
m1, . . .mn.

109 115 ◁

Typed closure conversion

Encoding of objects

A class can be compiled into an object closure:

letm =
letm1 = λ(m,x1, . . . , xq).M1 in
. . .

letmp = λ(m,x1, . . . , xq).Mp in
{m1, . . . ,mp} in

λx1 . . . xq. (m,x1, . . . xq)

Each mi is bound to the code for the corresponding method.
The code of all methods are combined into a record of methods,
which is shared between all objects of the same class.

Calling method mi of an object p is

(proj0 p).mi p

How can we type the encoding?

110 115 ◁

Typed closure conversion

Typed encoding of objects

Let τi be the type of Mi, and row R describe the types of (x1, . . . xq).

Let Clo(R) be µα.Π({(mi ∶ α → τi)
i∈1..n};R) and UClo(R) its

unfolding.

Fields R are hidden in an existential type ∃ρ. µα.Π({(mi ∶ α → τi)
i∈I};ρ):

letm = {
m1 = λ(m,x1, . . . xq ∶ UClo(R)). JM1K
. . .

mp = λ(m,x1, . . . xq ∶ UClo(R)). JMpK
} in
λx1. . . . λxq.pack R, fold (m,x1, . . . xq) as ∃ρ. (M,ρ)

Calling a method of an object p of type M is

p#mi
△
== let ρ, z = unpack p in (proj0 unfold z).mi z

An object has a recursive type but it is not a recursive value.

111 115 ◁

Typed closure conversion

Typed encoding of objects

Typed encoding of objects were first studied in the 90’s to understand
what objects really are in a type setting.

These encodings are in fact type-preserving compilation of (primitive)
objects.

There are several variations on these encodings. See [Bruce et al., 1999]
for a comparison.

See [Rémy, 1994] for an encoding of objects in (a small extension of) ML
with iso-existentials and universals.

See [Abadi and Cardelli, 1996, 1995] for more details on primitive objects.

112 115 ◁

Typed closure conversion

Moral of the story

Type-preserving compilation is rather fun. (Yes, really!)

It forces compiler writers to make the structure of the compiled program
fully explicit, in type-theoretic terms.

In practice, building explicit type derivations, ensuring that they remain
small and can be efficiently typechecked, can be a lot of work.

113 115 ◁

Typed closure conversion

Optimizations

Because we have focused on type preservation, we have studied only
naÃ¯ve closure conversion algorithms.

More ambitious versions of closure conversion require program analysis:
see, for instance, Steckler and Wand [1997]. These versions can be made
type-preserving.

114 115 ◁

Typed closure conversion

Other challenges

Defunctionalization, an alternative to closure conversion, offers an
interesting challenge, with a simple solution [Pottier and Gauthier, 2006].

Designing an efficient, type-preserving compiler for an object-oriented
language is quite challenging. See, for instance, Chen and Tarditi [2005].

115 115 ◁

Bibliography

Bibliography I

(Most titles have a clickable mark “▷” that links to online versions.)

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Untyped and
first-order systems. Information and Computation, 125(2):78–102, March
1996.

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Second-order
systems. Science of Computer Programming, 25(2–3):81–116, December
1995.

▷ Amal Ahmed and Matthias Blume. Typed closure conversion preserves
observational equivalence. In ACM International Conference on Functional
Programming (ICFP), pages 157–168, September 2008.

▷ Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type
equality and subtyping. Fundamenta Informaticæ, 33:309–338, 1998.

116 115 ◁

http://research.microsoft.com/Users/luca/Papers/PrimObj1stOrder.pdf
http://research.microsoft.com/Users/luca/Papers/PrimObj2ndOrder.pdf
http://ttic.uchicago.edu/~amal/papers/tccpoe.pdf
ftp://ftp.diku.dk/diku/semantics/papers/D-353.ps.gz

Bibliography

Bibliography II

▷ Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object
encodings. Information and Computation, 155(1/2):108–133, November
1999.

▷ Juan Chen and David Tarditi. A simple typed intermediate language for
object-oriented languages. In ACM Symposium on Principles of Programming
Languages (POPL), pages 38–49, January 2005.

▷ Adam Chlipala. A certified type-preserving compiler from lambda calculus to
assembly language. In ACM Conference on Programming Language Design
and Implementation (PLDI), pages 54–65, June 2007.

Julien Cretin and Didier Rémy. System F with Coercion Constraints. In Logics
In Computer Science (LICS). ACM, July 2014.

Jacques Garrigue and Didier Rémy. Ambivalent Types for Principal Type
Inference with GADTs. In 11th Asian Symposium on Programming
Languages and Systems, Melbourne, Australia, December 2013.

117 115 ◁

http://www.cis.upenn.edu/~bcpierce/papers/compobj.ps
http://research.microsoft.com/pubs/59934/lilc_popl05.pdf
http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf

Bibliography

Bibliography III

▷ Nadji Gauthier and François Pottier. Numbering matters: First-order canonical
forms for second-order recursive types. In Proceedings of the 2004 ACM
SIGPLAN International Conference on Functional Programming (ICFP’04),
pages 150–161, September 2004. doi:
http://doi.acm.org/10.1145/1016850.1016872.

▷ Neal Glew. A theory of second-order trees. In Daniel Le Métayer, editor,
Programming Languages and Systems, 11th European Symposium on
Programming, ESOP 2002, held as Part of the Joint European Conference on
Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12,
2002, Proceedings, volume 2305 of Lecture Notes in Computer Science,
pages 147–161. Springer, 2002. doi: 10.1007/3-σ2540-σ245927-σ28/ 11.

Robert Harper and Benjamin C. Pierce. Design considerations for ML-style
module systems. In Benjamin C. Pierce, editor, Advanced Topics in Types
and Programming Languages, chapter 8, pages 293–345. MIT Press, 2005.

118 115 ◁

http://gallium.inria.fr/~fpottier/publis/gauthier-fpottier-icfp04.ps.gz
https://ecommons.cornell.edu/bitstream/handle/1813/5844/2002-1859.ps

Bibliography

Bibliography IV

▷ Konstantin Läufer and Martin Odersky. Polymorphic type inference and abstract
data types. ACM Transactions on Programming Languages and Systems, 16
(5):1411–1430, September 1994.

Fabrice Le Fessant and Luc Maranget. Optimizing pattern-matching. In
Proceedings of the 2001 International Conference on Functional
Programming. ACM Press, 2001.

Luc Maranget. Warnings for pattern matching. Journal of Functional
Programming, 17, May 2007.

▷ John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.
ACM Transactions on Programming Languages and Systems, 10(3):470–502,
1988.

▷ Benôıt Montagu and Didier Rémy. Modeling abstract types in modules with
open existential types. In ACM Symposium on Principles of Programming
Languages (POPL), pages 63–74, January 2009.

119 115 ◁

http://www.cs.luc.edu/laufer/papers/toplas94.pdf
http://theory.stanford.edu/people/jcm/papers/mitch-plotkin-88.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf

Bibliography

Bibliography V

▷ Greg Morrisett and Robert Harper. Typed closure conversion for
recursively-defined functions (extended abstract). In International Workshop
on Higher Order Operational Techniques in Semantics (HOOTS), volume 10
of Electronic Notes in Theoretical Computer Science. Elsevier Science, 1998.

▷ Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to
typed assembly language. ACM Transactions on Programming Languages
and Systems, 21(3):528–569, May 1999.

▷ Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1999.

▷ François Pottier and Nadji Gauthier. Polymorphic typed defunctionalization and
concretization. Higher-Order and Symbolic Computation, 19:125–162, March
2006.

▷ François Pottier and Yann Régis-Gianas. Stratified type inference for generalized
algebraic data types. In ACM Symposium on Principles of Programming
Languages (POPL), pages 232–244, January 2006.

120 115 ◁

http://www.cs.cornell.edu/home/jgm/papers/hootsclosure.ps
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504
http://cristal.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.ps.gz
http://cristal.inria.fr/~fpottier/publis/pottier-regis-gianas-popl06.pdf

Bibliography

Bibliography VI

▷ François Pottier and Yann Régis-Gianas. Towards efficient, typed LR parsers. In
ACM Workshop on ML, volume 148-2 of Electronic Notes in Theoretical
Computer Science, pages 155–180, March 2006.

▷ François Pottier and Didier Rémy. The essence of ML type inference. In
Benjamin C. Pierce, editor, Advanced Topics in Types and Programming
Languages, chapter 10, pages 389–489. MIT Press, 2005.

▷ Didier Rémy. Programming objects with ML-ART: An extension to ML with
abstract and record types. In International Symposium on Theoretical
Aspects of Computer Software (TACS), pages 321–346. Springer, April 1994.

▷ Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-oriented
extension to ML. Theory and Practice of Object Systems, 4(1):27–50, 1998.

▷ John C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing 83, pages 513–523. Elsevier Science, 1983.

▷ Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing modules. J.
Funct. Program., 24(5):529–607, 2014. doi: 10.1017/S0956796814000264.

121 115 ◁

http://cristal.inria.fr/~fpottier/publis/fpottier-regis-gianas-typed-lr.pdf
http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/objective-ml!tapos98.ps.gz
ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf
https://people.mpi-sws.org/~rossberg/f-ing/f-ing-jfp.pdf

Bibliography

Bibliography VII

▷ Gabriel Scherer and Didier Rémy. Full reduction in the face of absurdity. In
Programming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings, pages 685–709, 2015. doi:
10.1007/978-σ23-σ2662-σ246669-σ28 28.

▷ Vincent Simonet and François Pottier. A constraint-based approach to guarded
algebraic data types. ACM Trans. Program. Lang. Syst., 29(1), January
2007. ISSN 0164-0925. doi: 10.1145/1180475.1180476.

▷ Paul A. Steckler and Mitchell Wand. Lightweight closure conversion. ACM
Transactions on Programming Languages and Systems, 19(1):48–86, 1997.

▷ Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin
Donnelly. System f with type equality coercions. In Proceedings of the 2007
ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation, TLDI ’07, pages 53–66, New York, NY, USA, 2007. ACM.
ISBN 1-59593-393-X. doi: 10.1145/1190315.1190324.

122 115 ◁

http://gallium.inria.fr/~remy/coercions/
http://doi.acm.org/10.1145/1180475.1180476
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/steckler-wand-97.ps
http://doi.acm.org/10.1145/1190315.1190324

Bibliography

Bibliography VIII

▷ Dimitrios Vytiniotis, Simon Peyton jones, Tom Schrijvers, and Martin
Sulzmann. Outsidein(x) modular type inference with local assumptions. J.
Funct. Program., 21(4-5):333–412, September 2011. ISSN 0956-7968. doi:
10.1017/S0956796811000098.

123 115 ◁

http://dx.doi.org/10.1017/S0956796811000098

	chapexgadtAbstract Data types, Existential types, GADTs
	Application to typed closure conversion
	Environment passing
	Closure passing

	Appendix
	Bibliography

