
MPRI 2.4, Functional programming and type systems
Metatheory of System F

Didier Rémy

September 15, 2017



Plan of the course

Metatheory of System F

ADTs, Existential types, GATDs

Logical relations

Subtyping, Row polymorphism

References, Value restriction, Side effects



Introduction



Functional programming Types

Choosing the meta language of this course. . .

4⟨1⟩ 22 ◁



Functional programming Types

Choosing the meta language of this course. . .

English or French?

4⟨2⟩ 22 ◁



Functional programming Types

Choosing the meta language of this course. . .

English or French?

In any case, questions must be asked in
the language your speak best

(French by default)

4⟨3⟩ 22 ◁



Functional programming Types

Online material

Visit the course page

https://gitlab.inria.fr/fpottier/mpri-2.4-public/blob/master/README.md

Accessible from the official MPRI 2-4 page

https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-4-2

All course material:

• Course notes (will be updated as we progress)

• Calendar of lessons and exams

• Information on the programming task

• All useful information and pointers

5 22 ◁

https://gitlab.inria.fr/fpottier/mpri-2.4-public/blob/master/README.md
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-4-2


Functional programming Types

Outline of the course (has changed!)

4 parts, each composed of 5 lessons.

1 Programming: Under the Hood (mostly untyped)

2 Metatheory of Typed Programming Languages

3 Advanced Aspects of Type Systems

4 Dependently-typed Functional Programming

6⟨1⟩ 22 ◁



Functional programming Types

Outline of the course (has changed!)

4 parts, each composed of 5 lessons.

1 Programming: Under the Hood (mostly untyped)

• From operational semantics. . .
• . . . to interpreters
• Compiling away first-class fonctions
• Compiling away the call stack: the CPS transformation.
• Equational reasoning and program optimizations.

2 Metatheory of Typed Programming Languages

3 Advanced Aspects of Type Systems

4 Dependently-typed Functional Programming

6⟨2⟩ 22 ◁



Functional programming Types

Outline of the course (has changed!)

4 parts, each composed of 5 lessons.

1 Programming: Under the Hood (mostly untyped)

2 Metatheory of Typed Programming Languages

• System F,
• ADTs, Existential types and GADTs
• Logical relations
• Subtyping and row polymorphism
• References, value restriction, Side effects

3 Advanced Aspects of Type Systems

4 Dependently-typed Functional Programming

6⟨3⟩ 22 ◁



Functional programming Types

Outline of the course (has changed!)

4 parts, each composed of 5 lessons.

1 Programming: Under the Hood (mostly untyped)

2 Metatheory of Typed Programming Languages

3 Advanced Aspects of Type Systems

• Exceptions and effect handlers. (Compiled away via CPS.)
• Typechecking exceptions and handlers.
• Type inference. (ML. Bidirectional. Elaboration.)
• Data/control flow analysis.
• Functional correctness. Intro to dependent/refinement types.

4 Dependently-typed Functional Programming

6⟨4⟩ 22 ◁



Functional programming Types

Outline of the course (has changed!)

4 parts, each composed of 5 lessons.

1 Programming: Under the Hood (mostly untyped)

2 Metatheory of Typed Programming Languages

3 Advanced Aspects of Type Systems

4 Dependently-typed Functional Programming

• (Effectful, Dependent, Total, Generic) functional programming
• Open problems in dependent functional programming.

6⟨5⟩ 22 ◁



Functional programming Types

Outline of the course (has changed!)

4 parts, each composed of 5 lessons.

1 Programming: Under the Hood (mostly untyped)

2 Metatheory of Typed Programming Languages

3 Advanced Aspects of Type Systems

4 Dependently-typed Functional Programming

Parts of the course will be mechanized in Coq:

• some knowledge of Coq is not mandatory, but may help:-)

• We won’t ask you to do Coq proofs, but you’ll be free to do so

• At the end of the course, you should be able to read coq statements

6⟨6⟩ 22 ◁



Functional programming Types

Outline of the course (has changed!)

4 parts, each composed of 5 lessons.

1 Programming: Under the Hood (mostly untyped)

2 Metatheory of Typed Programming Languages

3 Advanced Aspects of Type Systems

4 Dependently-typed Functional Programming

Parts of the course will be mechanized in Coq:

• some knowledge of Coq is not mandatory, but may help:-)

• We won’t ask you to do Coq proofs, but you’ll be free to do so

• At the end of the course, you should be able to read coq statements

The course is splitable after the two first parts.

6⟨7⟩ 22 ◁



Functional programming Types

Questions!

Questions are welcome!
Please, ask questions. . .

• during the lesson

• at the end of the lesson

• by email

Didier.Remy@inria.fr
Please, don’t wait until the end of the course to tell me about any
problems you may encounter.

7 22 ◁

mailto:Didier.Remy@inria.fr


You are there to learn
and

I am here to help you!

If you have any difficulties during this course:

• do the exercises, check the corrections, ask me if you can’t do them.

• discuss with me: the earlier the better.

• don’t wait until the exams...



Functional programming Types

Programming task

A programming task will be given by mid-december

• The solution is due by the end of the course.

• It counts for about 1/3 in the final grade (for a full course).
(We may change this a little depending on the difficulty and amount
of work needed for the programming task)

• It is fun! (according to your fellow students from previous years)

• It focuses on one particular topic of the course and usually helps
understand it in detail.

9 22 ◁



Questions?



Functional programming Types

Contents

Functional programming

Types

11 22 ◁



Functional programming Types

What is functional programming?

The term “functional programming” means various things:

– it views functions as ordinary data—which, in particular, can be passed
as arguments to other functions and stored in data structures.

– it loosely or strongly discourages the use of modifiable data,
in favor of effect-free transformations of data.

(In contrast with mainstream object-oriented programming languages)

– encourages abstraction of repetitive patterns as functions
that can be called multiple times so as to avoid code duplication.

12 22 ◁



Functional programming Types

What are functional programming languages?

They are usually:

– typed (Scheme and Erlang are exceptions),
with close connections to logic.

In this course, we focus on typed languages and types play a central role.

– given a precise formal semantics derived from that of the λ-calculus.

Some are strict (ML) and some are lazy (Haskell) [Hughes, 1989].

This difference has a large impact on the language design and on the
programming style, but has usually little impact on typing.

– sequential: their model of evaluation is not concurrent, even if core
languages may then be extended with primitives to support concurrency.

13 22 ◁



Functional programming Types

Contents

Functional programming

Types

14 22 ◁



Functional programming Types

What are types?

– Types are:

“a concise, formal description of the behavior of a program fragment.”

– For instance:

int An integer

int→ bool A function that maps an integer to a
Boolean

(int→ bool) →
(list int→ list int)

A function that maps an integer predicate to
an integer list transformer

– Types must be sound.
That is, programs must behave as prescribed by their types.

– Hence, types must be checked and ill-typed programs must be rejected.

15 22 ◁



Functional programming Types

What are they useful for?

– Types serve as machine-checked documentation.

– Data types help structure programs.

– Types provide a safety guarantee.

“Well-typed expressions do not go wrong.” [Milner, 1978]

(Advanced type systems can also guarantee various forms of security,
resource usage, complexity, . . . )

– Types can be used to drive compiler optimizations.

– Types encourage separate compilation, modularity, and abstraction.

“Type structure is a syntactic discipline for enforcing levels of
abstraction.” [Reynolds, 1983]

Type-checking is compositional. Types can be abstract.
Even seemingly non-abstract types offer a degree of abstraction
(e.g., a function type does not tell how a function is represented)

16 22 ◁



Functional programming Types

Type-preserving compilation

Types make sense in low-level programming languages as well—even
assembly languages can be statically typed! [Morrisett et al., 1999]

In a type-preserving compiler, every intermediate language is typed, and
every compilation phase maps typed programs to typed programs.

Preserving types provides insight into a transformation, helps debug it,
and paves the way to a semantics preservation proof [Chlipala, 2007].

Interestingly enough, lower-level programming languages often require
richer type systems than their high-level counterparts.

17 22 ◁



Functional programming Types

Typed or untyped?

Reynolds [1985] nicely sums up a long and rather acrimonious debate:

“One side claims that untyped languages preclude compile-time
error checking and are succinct to the point of unintelligibility,
while the other side claims that typed languages preclude a
variety of powerful programming techniques and are verbose to
the point of unintelligibility.”

The issues are safety, expressiveness, and type inference.

A sound type system with decidable type-checking (and possibly
decidable type inference) must be conservative.

18 22 ◁



Functional programming Types

Typed, Sir! with better types.

In fact, Reynolds settles the debate:

“From the theorist’s point of view, both sides are right, and
their arguments are the motivation for seeking type systems
that are more flexible and succinct than those of existing typed
languages.”

Today, the question is more whether to stay with rather simple
polymorphic types (e.g. as in ML or System F) or use more sophiscated
types (e.g. dependent types, afine types, capabililties and ownership,
effect types, logical assertions, etc.), or even towards full program proofs!

19 22 ◁



Functional programming Types

Explicit v.s. implicit types?

Annotating programs with types can lead to redundancy.
Types can even become extremely cumbersome when they have to be
explicitly and repeatedly provided.

In some pathological cases, type information may grow in square of the
size of the underlying untyped expression.

This creates a need for a certain degree of type reconstruction (also
called type inference), where the source program may contain some but
not all type information.

In principle, types could be entirely left implicit, even if the language is
typed. A well-typed program is then one that is the type erasure of a
(well-typed) explicitly-typed program.

Full type reconstruction is undecidable for expressive type systems.

Some type annotations are required or type reconstruction is incomplete.
20 22 ◁



Excellent books

Parts of this course are covered in chapters of these books



Functional programming Types

Online material

Written notes v.s. copies of the slides.

Detailed notes from a previous version of the course are available online.

You should rather read the course notes than the slides:

• Contain more details than what I say during the lesson.

• Proofs:
• often omitted or sketchy on the slides (or on the board).
• with full details in course notes, as you should write them.

• Exercises:
• Course notes contain more exercises and solutions to exercises,
• Only a few of them are mentioned on the slides or done in class.

22 22 ◁



Bibliography

Bibliography I

(Most titles have a clickable mark “▷” that links to online versions.)

▷ Adam Chlipala. A certified type-preserving compiler from lambda calculus
to assembly language. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 54–65, June 2007.

▷ John Hughes. Why functional programming matters. Computer Journal,
32(2):98–107, 1989.

▷ Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17(3):348–375, December 1978.

▷ Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F
to typed assembly language. ACM Transactions on Programming
Languages and Systems, 21(3):528–569, May 1999.

▷ John C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing 83, pages 513–523. Elsevier Science, 1983.

23 22 ◁

http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf
http://www.math.chalmers.se/~rjmh/Papers/whyfp.pdf
http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf


Bibliography

Bibliography II

▷ John C. Reynolds. Three approaches to type structure. In International
Joint Conference on Theory and Practice of Software Development
(TAPSOFT), volume 185 of Lecture Notes in Computer Science, pages
97–138. Springer, March 1985.

24 22 ◁

http://dx.doi.org/10.1007/3-540-15198-2_7

	Introduction
	Functional programming
	Types

	Appendix

