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Plan of the course

Metatheory of System F

ADTs, Existential types, GATDs

References, Value restriction, Side effects

Logical relations

Overloading



Messages

Last lesson on Friday, November 22

Partial exams on Friday, November 29

● Only course notes and handwritten notes are allowed.

● No electronic devices of any kind.

Internships, commin soon (if interested, come and talk to me.)
(motivated by the upcoming redesign of the OCaml typechecker)

Constraint-based type inference for advanced extensions of ML, revisiting
the treatment of some OCaml specific features:

● type sharing (abbreviations, object types, polymorphic types);

● propagation type annotations or previously inferred types;

● revisit first-class polymorphism.
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Referential transparency

What is it?
An expression is referentially transparent or pure if it can be replaced
with its corresponding value without changing the program behavior.
Applying a pure funtion to the same arguments returns the same result.
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Referential transparency

What is it?
An expression is referentially transparent or pure if it can be replaced
with its corresponding value without changing the program behavior.
Applying a pure funtion to the same arguments returns the same result.

Why is it useful?

Allows to reason about programs as a rewrite system, which may help

● prove the correction,

● perform code optimization.

● typically, it allows for: memoization, common expression elimination,
lazy evaluation, . . .

● with code parallelization, optimistic evaluation, transactions, . . .

6⟨4⟩ 70 ◁
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Referential transparency counter examples

Examples of impure constructs

?
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● Date and random primitives, etc.

Termination?
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Referential transparency counter examples

Examples of impure constructs

● Exceptions, References, reading/printing functions.

● Interaction with the file system.

● Date and random primitives, etc.

Termination?
According to the definition, the status of termination is unclear. (As they
never return, they cannot actually be replaced by the result of their
evaluation—except in Haskell that uses an explicit bottom value �.)
Non-termination is usually considered impure: it breaks equational
reasoning and most program transformations, as other impure constructs.

In practice, high-complexity is not so different from non-termimation. . .

Effects
Any source of impurity is usually called an effect.

7⟨3⟩ 70 ◁
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Referential transparency Summary

Effects are unavoidable
Any programming language must have some impure aspects to
communicate with the operating system.
Side effects may sometimes be encapsulated, e.g. a module with side
effetcs may sometimes have a pure interface.

Mitigation of effects

So the questions are more whether:

● a large core of the language is pure/effect free (e.g. Haskell, Coq,
Core System F) or effectful (most other languages); and/or

● side effects can be tracked, e.g. by the type system.
(Haskell, Koka, Rust, Mezzo, or algebraic effects)
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The semantics of effects

Programs with effects cannot be described as a pure rewrite system.

● The semantics must be changed.

● Some of the properties will be lost

We shall see:

● Exceptions, which require a small change to the semantics
● References, which:

● require a major change to the semantics
● do not fit well with polymorphism—which needs to be restricted in

the presence of effects.

● Values, or a larger class of non-expansive expressions, whose
evaluation is effect free play a key role in the presence of effects.

In the presence of effects, deterministic, call-by-value semantics is always
a huge source of simplification when not a requirement.
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Exceptions Semantics

Exceptions are a mechanism for changing the normal order of evaluation
usually, but not necessarily, in case something abnormal occurred.

When an exception is raised, the evaluation does not continue as usual:
Shortcutting normal evaluation rules, the exception is propagated up into
the evaluation context until some handler is found at which the
evaluation resumes with the exceptional value received; if no handler is
found, the exception had reached the toplevel and the result of the
evaluation is the exception instead of a value.

We extend the language with

?

11⟨1⟩ 70 ◁



Intro Exceptions References in λst References in F

Exceptions Semantics

Exceptions are a mechanism for changing the normal order of evaluation
usually, but not necessarily, in case something abnormal occurred.

When an exception is raised, the evaluation does not continue as usual:
Shortcutting normal evaluation rules, the exception is propagated up into
the evaluation context until some handler is found at which the
evaluation resumes with the exceptional value received; if no handler is
found, the exception had reached the toplevel and the result of the
evaluation is the exception instead of a value.

We extend the language with a constructor form to raise an exception
and a destructor form to catch an exception; we also extend the
evaluation contexts:

M ∶∶= . . . ∣ raiseM ∣ tryM withM

E ∶∶= . . . ∣ raise [] ∣ try [] withM
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Exceptions Semantics

We do not treat raise V as a value, . . .

Why?
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Exceptions Semantics

We do not treat raise V as a value, since it stops the normal order of
evaluation.
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Exceptions Semantics

We do not treat raise V as a value, since it stops the normal order of
evaluation. Instead, reduction rules propagate and handle exceptions:

Raise

F [raise V ] Ð→ raise V

Handle-Val

try V withM Ð→ V

Handle-Raise

try raise V withM Ð→M V
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Exceptions Semantics

We do not treat raise V as a value, since it stops the normal order of
evaluation. Instead, reduction rules propagate and handle exceptions:

Raise

F [raise V ]Ð→ raise V

Handle-Val

try V withM Ð→ V

Handle-Raise

try raise V withM Ð→M V

Rule Raise uses an evaluation context F which stands for any E other
than try [] withM , so that it propagates an exception up the evaluation
contexts, but not through a handler.

The case of the handler is treated by two specific rules:

● Rule Handle-Raise passes an exceptional value to its handler;

● Rule Handle-Val removes the handler around a value.
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Exceptions Example

For example, assuming that K is λx.λy. y and M Ð→ V , we have the
following reduction:

try K (raiseM) with λx.x
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Exceptions Example

For example, assuming that K is λx.λy. y and M Ð→ V , we have the
following reduction:

try K (raiseM) with λx.x by Context

Ð→ try K (raise V ) with λx.x
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For example, assuming that K is λx.λy. y and M Ð→ V , we have the
following reduction:

try K (raiseM) with λx.x by Context

Ð→ try K (raise V ) with λx.x by Raise

Ð→ try raise V with λx.x
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Exceptions Example

For example, assuming that K is λx.λy. y and M Ð→ V , we have the
following reduction:

try K (raiseM) with λx.x by Context

Ð→ try K (raise V ) with λx.x by Raise

Ð→ try raise V with λx.x by Handle-Raise

Ð→ (λx.x) V
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Exceptions Example

For example, assuming that K is λx.λy. y and M Ð→ V , we have the
following reduction:

try K (raiseM) with λx.x by Context

Ð→ try K (raise V ) with λx.x by Raise

Ð→ try raise V with λx.x by Handle-Raise

Ð→ (λx.x) V by βv

Ð→ V

In particular, we do not have the following step,

tryK (raise V ) with λx.x by βv

Ð→/ try λy. y with λx.x Ð→ λy. y

since raise V is not a value, so the first β-reduction step is not allowed.
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Exceptions Typing rules

We assume given a fixed type τexn for exceptional values.

Raise

Γ ⊢M ∶ τexn

Γ ⊢ raiseM ∶ τ

Try

Γ ⊢M1 ∶ τ Γ ⊢M2 ∶ τexn → τ

Γ ⊢ try M1 withM2 ∶ τ

There are some subtleties:

● Raise turns an expression of type τexn into an exception.

● Consistently, the handler has type τexn → τ , since it receives the
exception value of type exn as argument;

● An exceptional value of type exn may be raised in M1 and used in
M2 without any visible flow at the type level.
Hence, raise ⋅ and try ⋅ with ⋅ must agree on the type exn.

● Both premises of Rule Try must return values of the same type τ .

● raiseM can have any type, as the current computation is aborted.
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Exceptions The type of exception

What should we choose for τexn?

?
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Exceptions The type of exception

What should we choose for τexn? Well, any type:

● Choosing unit, exceptions will not carry any information.

● Choosing int, exceptions can report some error code.

● Choosing string, exceptions can report error messages.
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Exceptions The type of exception

What should we choose for τexn? Well, any type:

● Choosing unit, exceptions will not carry any information.

● Choosing int, exceptions can report some error code.

● Choosing string, exceptions can report error messages.

Can you do Better?
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Exceptions The type of exception

What should we choose for τexn? Well, any type:

● Choosing unit, exceptions will not carry any information.

● Choosing int, exceptions can report some error code.

● Choosing string, exceptions can report error messages.

● Using a sum type or better a variant type (tagged sum), with one
case to describe each exceptional situation.

This is the approach followed by ML, which declares a new
extensible type exn for exceptions: this is a sum type, except that all
cases are not declared in advance, but only as needed.
(Extensible datatypes are available in OCaml since version 4.02.)
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Exceptions The type of exception

What should we choose for τexn? Well, any type:

● Choosing unit, exceptions will not carry any information.

● Choosing int, exceptions can report some error code.

● Choosing string, exceptions can report error messages.

● Using a sum type or better a variant type (tagged sum), with one
case to describe each exceptional situation.

This is the approach followed by ML, which declares a new
extensible type exn for exceptions: this is a sum type, except that all
cases are not declared in advance, but only as needed.
(Extensible datatypes are available in OCaml since version 4.02.)

In all cases, the type of exception must be fixed in the whole program.

This is because raise ⋅ and try ⋅ with ⋅ must agree beforehand on the type
of exceptions as this type is not passed around by the typing rules.
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Exceptions Type soundness

How do we state type soundness, since exceptions may be uncaught?
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Exceptions Type soundness

How do we state type soundness, since exceptions may be uncaught?

By saying that this is the only “exception” to progress:

Theorem (Progress)

A well-typed, irreducible term is either a value or an uncaught exception.
if ∅ ⊢M ∶ τ and M /Ð→ , then M is either V or raise V for some
value V .
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Exceptions On uncaught exceptions

An uncaught exception is often a programming error. It may be
surprising that they are not detected by the type system.

Exceptions may be detected using more expressive type systems.
Unfortunately, the existing solutions are often complicated for some
limited benefit, and are still not often used in practice.

The complication comes from the treatment of functions, which have
some latent effect of possibly raising or catching an exception when
applied. To be precise, the analysis must therefore enrich types of
functions with latent effects, which is quite invasive and obfuscating.

Uncaught exceptions must be declared in the language Java.

See Leroy and Pessaux [2000] for a solution in ML.
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Exceptions Small semantic variation

Once raised, exceptions are propagated step-by-step by Rule Raise until
they reach a handler or the toplevel.

We can also describe their semantics by replacing propagation of
exceptions by deep handling of exceptions inside terms.

Replace the three previous reduction rules by:

Handle-Val’

try V withM Ð→ V

Handle-Raise’

try F [raise V ] withM Ð→M V

where F is a sequence of F contexts, i.e. handler-free evaluation context
of arbitrary depth.

This semantics is perhaps more intuitive, closer to what a compiler does,
but the two presentations are equivalent.

In this case, uncaught exceptions are of the form F [raise V ].
19 70 ◁
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Exceptions Interesting syntactic variation

Benton and Kennedy [2001] have argued for merging let and try
constructs into a unique form let x =M1 withM2 inM3.

The expression M1 is evaluated first and

● if it returns a value it is substituted for x in M3, as if we had
evaluated let x =M1 inM3;
● otherwise, i.e., if it raises an exception raise V , then the exception is
handled by M2, as if we had evaluated tryM1 withM2.

This combined form captures a common pattern in programming:

let rec read config in path filename (dir :: dirs) →
let fd = open in (Filename.concat dir filename)
with Sys error → read config filename dirs in
read config from fd fd

Workarounds are inelegant and inefficient. This form is also better suited
for program transformations (see Benton and Kennedy [2001]).

20 70 ◁



Intro Exceptions References in λst References in F

Exceptions Interesting syntactic variation

Encoding the new form let x =M1 withM2 inM3 with “let” and “try” is
not easy:

In particular, it is not equivalent to: try let x =M1 in M3 withM2.

Why?
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Exceptions Interesting syntactic variation

Encoding the new form let x =M1 withM2 inM3 with “let” and “try” is
not easy:

In particular, it is not equivalent to: try let x =M1 in M3 withM2.

The continuation M3 could raise an exception that would then be
handled by M2, which is not intended.

There are several encodings:

Can you find one?
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Exceptions Interesting syntactic variation

Encoding the new form let x =M1 withM2 inM3 with “let” and “try” is
not easy:

In particular, it is not equivalent to: try let x =M1 in M3 withM2.

The continuation M3 could raise an exception that would then be
handled by M2, which is not intended.

There are several encodings:

● Use a sum type to know whether M1 raised an exception:
case (try ValM1 with λy.Exc y) of (Val ∶ λx.M3 8 Exc ∶M2)
● Freeze the continuation M3 while handling the exception:(try let x =M1 in λ().M3 with λy.λ().M2 y) ()

Unfortunately, they are both hardly readable—and inefficient.
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Exceptions Interesting syntactic variation

A similar construct has been added in OCaml version 4.02, allowing
exceptions combined with pattern matching.

The previous example can now be written in OCaml as:

let rec read config in path filename (dir :: dirs) →
match open in (Filename.concat dir filename) with
| fd → read config from fd fd
| exception Sys error → read config filename dirs

22 70 ◁
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Exceptions Termination

Do all well-typed programs terminate in the presence of exceptions?

?
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Exceptions Termination

Do all well-typed programs terminate in the presence of exceptions?

No, because exceptions hide the type of values that they communicate to
the handler, which can be used to emulate recursive types.

?
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Exceptions Termination

Do all well-typed programs terminate in the presence of exceptions?

No, because exceptions hide the type of values that they communicate to
the handler, which can be used to emulate recursive types.

Encode values of type τ0 as lazy values of type unit→ τ0, say τ

Let encode be fun x () -> x and decode be fun x -> x ().
Let dummy be some value of type τ0.

Let type exn be τ → τ , say σ.
Define the inverse coercion functions between types τ → τ and τ :

fold ∶ σ → τ
△
== λf ∶σ.λ(). let = raise f in dummy

unfold ∶ τ → σ
△
== λf ∶τ. try let = f() in λx ∶τ. x with λy ∶τ → τ. y

We then define ω
△
== λx. (unfold x) x so that ω (fold ω) loops.

Or a call-by-value fixpoint of type (σ → σ) → σ that allows recursive
definition of functions of type τ → τ (encoding type τ0 → τ0).
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Exercise

Program factorial with the previous encoding without using recursion
(nor recursive types, nor references)
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Exercise Semantics of let ⋅ = ⋅ with ⋅ in

Describes the dynamic semantics of the let x =M1 withM2 inM3.

?
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Exercise Semantics of let ⋅ = ⋅ with ⋅ in

Describes the dynamic semantics of the let x =M1 withM2 inM3.

Solution
We need a new evaluation context:

E ∶∶= . . . ∣ let x = E withM2 inM3

and the following reduction rules:

?
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Exercise Semantics of let ⋅ = ⋅ with ⋅ in

Describes the dynamic semantics of the let x =M1 withM2 inM3.

Solution
We need a new evaluation context:

E ∶∶= . . . ∣ let x = E withM2 inM3

and the following reduction rules:

Raise

F [raise V ]Ð→ raise V
Handle-Val

let x = V withM2 inM3 Ð→ [x ↦ V ]M3

Handle-Raise

let x = raise V withM2 inM3 Ð→M2 V
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Exercise Try finalize

A finalizer is some code that should always be run, wether the evaluation
ends normally or an exception is being raised.

Write a function try finalize that takes four arguments f , x, g, and y

and returns the application f x with finalizing code g y. i.e. g y should
be called before returning the result of the application of f to x whether
it executed normally or raised an exception.

(You may try first without using binding mixed with exceptions, then
using it, and compare.)
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Exercise (Solution to) Try finalize

Without let ⋅ = ⋅ with ⋅ in ∶

let finalize f x g y =
let result = try f x with exn → g y; raise exn in g y; result

An alternative version that does not duplicate the finalizing code and could be

inlined, but allocates an intermediate result, is:

type ’a result = Val of ’a | Exc of exn
let finalize f x g y =
let result = try Val (f x) with exn → Exc exn in

g y; match result with Val x → x | Exc exn → raise exn

More concisely:

let finalize f x g y =
match f x with
| result → g y; result
| exception exn → g y; raise exn
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Generalizing exceptions Effect handlers

Exceptions allow to abort the current computation to the dynamically
enclosing handler.

Effect handlers are a variant of control operators.

As exceptions, they allow to abort the current computation to the
dynamically enclosing handler, but offer the handler the possibility to
resume the computation where it was aborted.

They are (much) more expressive.

They also allow to model a global state, where a toplevel heap handler is
setup so that allocation, read, and write can be implemented by passing
control to the handler together with the current continuation, i.e.
evaluation context, which may change the heap and then resume or
throw away the continuation.
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Contents

Introduction

Exceptions

References in λst

Polymorphism and references
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References

In the ML vocabulary, a reference cell, also called a reference, is a
dynamically allocated block of memory, which holds a value, and whose
content can change over time.

A reference can be allocated and initialized (ref), written (:=), and
read (!).

Expressions and evaluation contexts are extended:

M ∶∶= . . . ∣ refM ∣M ∶=M ∣ ! M
E ∶∶= . . . ∣ ref [] ∣ [] ∶=M ∣ V ∶= [] ∣ ! []
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References

A reference allocation is not a value. Otherwise, by β, the program:

(λx ∶τ. (x ∶= 1; ! x)) (ref 3)
(which intuitively should yield ? )
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References

A reference allocation is not a value. Otherwise, by β, the program:

(λx ∶τ. (x ∶= 1; ! x)) (ref 3)
(which intuitively should yield 1 ) would reduce to:
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References

A reference allocation is not a value. Otherwise, by β, the program:

(λx ∶τ. (x ∶= 1; ! x)) (ref 3)
(which intuitively should yield 1 ) would reduce to:

(ref 3) ∶= 1; ! (ref 3)
(which yields 3).

How shall we solve this problem?
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References

(ref 3) should first reduce to a value: the address of a fresh cell.

Not just the content of a cell matters, but also its address. Writing
through one copy of the address should affect a future read via another
copy.
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References

We extend the simply-typed λ-calculus calculus with memory locations:

V ∶∶= . . . ∣ ℓ
M ∶∶= . . . ∣ ℓ

A memory location is just an atom (that is, a name). The value found at
a location ℓ is obtained by indirection through a memory (or store).

A memory µ is a finite mapping of locations to closed values.
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References

A configuration is a pair M / µ of a term and a store. The operational
semantics (given next) reduces configurations instead of expressions.

The semantics maintains a no-dangling-pointers invariant: the

locations that appear in M or in the image of µ are in the domain

of µ.

● Initially, the store is empty, and the term contains no locations,
because, by convention, memory locations cannot appear in source
programs. So, the invariant holds.

● If we wish to start reduction with a non-empty store, we must check
that the initial configuration satisfies the no-dangling-pointers
invariant.
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References

Because the semantics now reduces configurations, all existing reduction
rules are augmented with a store, which they do not touch:

(λx ∶τ.M) V / µ Ð→ [x ↦ V ]M / µ
E[M] / µ Ð→ E[M ′] / µ′ if M / µÐ→M ′ / µ′
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References

Because the semantics now reduces configurations, all existing reduction
rules are augmented with a store, which they do not touch:

(λx ∶τ.M) V / µ Ð→ [x ↦ V ]M / µ
E[M] / µ Ð→ E[M ′] / µ′ if M / µÐ→M ′ / µ′
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References

Because the semantics now reduces configurations, all existing reduction
rules are augmented with a store, which they do not touch:

(λx ∶τ.M) V / µ Ð→ [x ↦ V ]M / µ
E[M] / µ Ð→ E[M ′] / µ′ if M / µÐ→M ′ / µ′

Three new reduction rules are added:

ref V / µ Ð→ ℓ / µ[ℓ ↦ V ] if ℓ /∈ dom(µ)
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References

Because the semantics now reduces configurations, all existing reduction
rules are augmented with a store, which they do not touch:

(λx ∶τ.M) V / µ Ð→ [x ↦ V ]M / µ
E[M] / µ Ð→ E[M ′] / µ′ if M / µÐ→M ′ / µ′

Three new reduction rules are added:

ref V / µ Ð→ ℓ / µ[ℓ ↦ V ] if ℓ /∈ dom(µ)
ℓ ∶= V / µ Ð→ () / µ[ℓ ↦ V ]
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References

Because the semantics now reduces configurations, all existing reduction
rules are augmented with a store, which they do not touch:

(λx ∶τ.M) V / µ Ð→ [x ↦ V ]M / µ
E[M] / µ Ð→ E[M ′] / µ′ if M / µÐ→M ′ / µ′

Three new reduction rules are added:

ref V / µ Ð→ ℓ / µ[ℓ ↦ V ] if ℓ /∈ dom(µ)
ℓ ∶= V / µ Ð→ () / µ[ℓ ↦ V ]

! ℓ / µ Ð→ µ(ℓ) / µ
Notice: In the last two rules, the no-dangling-pointers invariant
guarantees ℓ ∈ dom(µ).
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References

The type system is modified as follows. Types are extended:

τ ∶∶= . . . ∣ ref τ
Three new typing rules are introduced:

Ref

Γ ⊢M ∶ τ

Γ ⊢ refM ∶ ref τ

Set

Γ ⊢M1 ∶ ref τ Γ ⊢M2 ∶ τ

Γ ⊢M1 ∶=M2 ∶ unit

Get

Γ ⊢ M ∶ ref τ

Γ ⊢ !M ∶ τ

Is that all we need?
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References

The preceding setup is enough to typecheck source terms, but does not
allow stating or proving type soundness.

Indeed, we have not yet answered these questions:

● What is the type of a memory location ℓ?

● When is a configuration M / µ well-typed?
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References

When does a location ℓ have type ref τ?

?
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References

When does a location ℓ have type ref τ?

A possible answer is, when it points to some value of type τ .
Intuitively, this could be formalized by a typing rule of the form:

µ,∅ ⊢ µ(ℓ) ∶ τ
µ,Γ ⊢ ℓ ∶ ref τ

Comments?

?

38⟨2⟩ 70 ◁



Intro Exceptions References in λst References in F

References

When does a location ℓ have type ref τ?

A possible answer is, when it points to some value of type τ .
Intuitively, this could be formalized by a typing rule of the form:

µ,∅ ⊢ µ(ℓ) ∶ τ
µ,Γ ⊢ ℓ ∶ ref τ

Comments?

● Typing judgments would have the form µ,Γ ⊢M ∶ τ .
However, they would no longer be inductively defined (or else, every
cyclic structure would be ill-typed). Instead, co-induction would be
required.
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References

When does a location ℓ have type ref τ?

A possible answer is, when it points to some value of type τ .
Intuitively, this could be formalized by a typing rule of the form:

µ,∅ ⊢ µ(ℓ) ∶ τ
µ,Γ ⊢ ℓ ∶ ref τ

Comments?

● Typing judgments would have the form µ,Γ ⊢M ∶ τ .
However, they would no longer be inductively defined (or else, every
cyclic structure would be ill-typed). Instead, co-induction would be
required.

● Moreover, if the value µ(ℓ) happens to admit two distinct types τ1
and τ2, then ℓ admits types ref τ1 and ref τ2. So, one can write at
type τ1 and read at type τ2: this rule is unsound!
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References

A simpler and sound approach is to fix the type of a memory location
when it is first allocated. To do so, we use a store typing Σ, a finite
mapping of locations to types.

So, when does a location ℓ have type ref τ? “When Σ says so.”

Loc

Σ,Γ ⊢ ℓ ∶ ref Σ(ℓ)
Comments:

● Typing judgments now have the form Σ,Γ ⊢M ∶ τ .
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References

How do we know that the store typing predicts appropriate types?

?
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References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store

⊢ µ ∶ Σ

Config

⊢M / µ ∶ τ
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References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store

∀ℓ ∈ dom(µ), ⊢ µ(ℓ) ∶ Σ(ℓ)
⊢ µ ∶ Σ

Config

⊢M / µ ∶ τ
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References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store

∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
⊢ µ ∶ Σ

Config

⊢M / µ ∶ τ
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References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store

∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
⊢ µ ∶ Σ

Config

⊢ µ ∶ Σ Σ,∅ ⊢M ∶ τ

⊢M / µ ∶ τ

40⟨5⟩ 70 ◁



Intro Exceptions References in λst References in F

References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store

∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
⊢ µ ∶ Σ

Config

⊢ µ ∶ Σ Σ,∅ ⊢M ∶ τ

⊢M / µ ∶ τ
Comments:

● This is an inductive definition. The store typing Σ serves both as an
assumption (Loc) and a goal (Store). Cyclic stores are not a
problem.
● The store typing is used only in the definition of a “well-typed
configuration” and in the typechecking of locations. Thus, it is not
needed for type-checking source programs, since the store is empty
and the empty-store configuration is always well-typed.
● . . . ?
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References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store

∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
⊢ µ ∶ Σ

Config

⊢ µ ∶ Σ Σ,∅ ⊢M ∶ τ

⊢M / µ ∶ τ
Comments:

● This is an inductive definition. The store typing Σ serves both as an
assumption (Loc) and a goal (Store). Cyclic stores are not a
problem.
● The store typing is used only in the definition of a “well-typed
configuration” and in the typechecking of locations. Thus, it is not
needed for type-checking source programs, since the store is empty
and the empty-store configuration is always well-typed.
● Notice that Σ does not appear in the conclusion of Config.
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Restating type soundness

The type soundness statements are slightly modified in the presence of
the store, since we now reduce configurations:

Theorem (Subject reduction)

Reduction preserves types: if M / µÐ→M ′ / µ′ and ⊢M / µ ∶ τ , then
⊢M ′ / µ′ ∶ τ .
Theorem (Progress)

If M / µ is a well-typed, irreducible configuration, then M is a value.
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Restating subject reduction

Inlining Config, subject reduction can also be restated as:

Theorem (Subject reduction, expanded)

If M / µ Ð→M ′ / µ′ and ⊢ µ ∶ Σ and Σ,∅ ⊢M ∶ τ , then there exists Σ′

such that ⊢ µ′ ∶ Σ′ and Σ′,∅ ⊢ M ′
∶ τ .

This statement is correct, but too weak—its proof by induction will fail
in one case. (Which one?)
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Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M / µ Ð→M ′ / µ′ and ⊢ µ ∶ Σ and Σ,∅ ⊢ E[M] ∶ τ
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Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M / µ Ð→M ′ / µ′ and ⊢ µ ∶ Σ and Σ,∅ ⊢ E[M] ∶ τ
Assuming compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′ and ∀M ′, (Σ,∅ ⊢M ′
∶ τ ′)⇒ (Σ,∅ ⊢ E[M ′] ∶ τ)
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Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M / µ Ð→M ′ / µ′ and ⊢ µ ∶ Σ and Σ,∅ ⊢ E[M] ∶ τ
Assuming compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′ and ∀M ′, (Σ,∅ ⊢M ′
∶ τ ′)⇒ (Σ,∅ ⊢ E[M ′] ∶ τ)

Then, by the induction hypothesis, there exists Σ′ such that:

⊢ µ′ ∶ Σ′ and Σ′,∅ ⊢M ′
∶ τ ′
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Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M / µ Ð→M ′ / µ′ and ⊢ µ ∶ Σ and Σ,∅ ⊢ E[M] ∶ τ
Assuming compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′ and ∀M ′, (Σ,∅ ⊢M ′
∶ τ ′)⇒ (Σ,∅ ⊢ E[M ′] ∶ τ)

Then, by the induction hypothesis, there exists Σ′ such that:

⊢ µ′ ∶ Σ′ and Σ′,∅ ⊢M ′
∶ τ ′

Here, we are stuck. The context E is well-typed under Σ, but the term
M ′ is well-typed under Σ′, so we cannot combine them.

How can we fix this?
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Establishing subject reduction

We are missing a key property: the store typing grows with time.
That is,

?
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Establishing subject reduction

We are missing a key property: the store typing grows with time.
That is, although new memory locations can be allocated, the type of an
existing location does not change.

This is formalized by strengthening the subject reduction statement:

Theorem (Subject reduction, strengthened)

If M / µ Ð→M ′ / µ′ and ⊢ µ ∶ Σ and Σ,∅ ⊢M ∶ τ , then there exists Σ′

such that ⊢ µ′ ∶ Σ′ and Σ′,∅ ⊢ M ′
∶ τ and Σ ⊆ Σ′.

At each reduction step, the new store typing Σ′ extends the previous
store typing Σ.
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Establishing subject reduction

Growing the store typing preserves well-typedness:

Lemma (Stability under memory allocation)

If Σ ⊆ Σ′ and Σ,Γ ⊢M ∶ τ , then Σ′,Γ ⊢M ∶ τ .

(This is a generalization of the weakening lemma.)
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Establishing subject reduction

Stability under memory allocation allows establishing a strengthened
version of compositionality:

Lemma (Compositionality)

Assume Σ,∅ ⊢ E[M] ∶ τ . Then, there exists τ ′ such that:

● Σ,∅ ⊢M ∶ τ ′,

● for every Σ′ such that Σ ⊆ Σ′, for every M ′,
Σ′,∅ ⊢M ′

∶ τ ′ implies Σ′,∅ ⊢ E[M ′] ∶ τ .
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Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

⊢ µ ∶ Σ and Σ,∅ ⊢ E[M] ∶ τ and M / µ Ð→M ′ / µ′
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Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

⊢ µ ∶ Σ and Σ,∅ ⊢ E[M] ∶ τ and M / µ Ð→M ′ / µ′
By compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′

∀Σ′ ,∀M ′, (Σ ⊆ Σ′)⇒ ( Σ′ ,∅ ⊢M ′
∶ τ ′)⇒ ( Σ′ ,∅ ⊢ E[M ′] ∶ τ ′)
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Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

⊢ µ ∶ Σ and Σ,∅ ⊢ E[M] ∶ τ and M / µ Ð→M ′ / µ′
By compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′

∀Σ′ ,∀M ′, (Σ ⊆ Σ′)⇒ ( Σ′ ,∅ ⊢M ′
∶ τ ′)⇒ ( Σ′ ,∅ ⊢ E[M ′] ∶ τ ′)

By the induction hypothesis, there exists Σ′ such that:

⊢ µ′ ∶ Σ′ and Σ′ ,∅ ⊢M ′
∶ τ ′ and Σ ⊆ Σ′

The goal immediately follows.
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On memory deallocation

In ML, memory deallocation is implicit. It must be performed by the
runtime system, possibly with the cooperation of the compiler.

The most common technique is garbage collection. A more ambitious
technique, implemented in the ML Kit, is compile-time region
analysis [Tofte et al., 2004].

References in ML are easy to type-check, thanks in large part to the
no-dangling-pointers property of the semantics.

Making memory deallocation an explicit operation, while preserving type
soundness, is possible, but difficult. This requires reasoning about
aliasing and ownership. See Charguéraud and Pottier [2008] for citations.

See also the Mezzo language [Pottier and Protzenko, 2013] designed
especially for the explicit control of resources.

A similar approach is taken in the language Rust.
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51 70 ◁



Intro Exceptions References in λst References in F

Combining extensions

We have shown how to extend simply-typed λ-calculus, independently,
with:

● polymorphism, and

● references.

Can these two extensions be combined?
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Beware of polymorphic locations!

When adding references, we noted that type soundness relies on the fact
that every reference cell (or memory location) has a fixed type.

Otherwise, if a location had two types ref τ1 and ref τ2, one could store a
value of type τ1 and read back a value of type τ2.

Hence, it should also be unsound if a location could have type ∀α. ref τ
(where α appears in τ) as it could then be specialized to both types
ref ([α ↦ τ1]τ) and ref ([α ↦ τ2]τ).
By contrast, a location ℓ can have type ref (∀α. τ): this says that ℓ
stores values of polymorphic type ∀α. τ , but ℓ, as a value, is viewed with
the monomorphic type ref (∀α. τ).
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A counter example

Still, if naively extended with references, System F allows construction of
polymorphic references, which breaks subject reduction:
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A counter example

Still, if naively extended with references, System F allows construction of
polymorphic references, which breaks subject reduction:

let y ∶ ∀α. ref (α → α) = Λα.ref (α → α) (λz ∶α. z) in(y bool) ∶= (bool → bool) not;
!(int → int) (y int) 1 /∅

∗

Ð→ not 1 / ℓ ↦ not
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A counter example

Still, if naively extended with references, System F allows construction of
polymorphic references, which breaks subject reduction:

let y ∶ ∀α. ref (α → α) = Λα.ref (α → α) (λz ∶α. z) in(y bool) ∶= (bool → bool) not;
!(int → int) (y int) 1 /∅

∗

Ð→ not 1 / ℓ ↦ not

What happens is that the evaluation of the reference:

● creates and returns a location ℓ bound to the identity function
λz ∶α. z of type α → α,

● abstracts α in the result and binds it to y with the polymorphic type
∀α. ref (α → α);
● writes the location at type ref (bool→ bool) and reads it back at
type ref (int→ int).
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Nailing the bug

In the counter-example, the first reduction step uses the following rule
(where V is λx ∶α.x and τ is α → α).

Context

ref τ V /∅Ð→ ℓ / ℓ ↦ V

Λα.ref τ V /∅Ð→ Λα.ℓ / ℓ ↦ V

?
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Nailing the bug

In the counter-example, the first reduction step uses the following rule
(where V is λx ∶α.x and τ is α → α).

Context

ref τ V /∅Ð→ ℓ / ℓ ↦ V

Λα.ref τ V /∅Ð→ Λα.ℓ / ℓ ↦ V

While we have

α ⊢ ref τ V /∅ ∶ ref τ and 2 α ⊢ ℓ / ℓ ↦ V ∶ ref τ

We have

⊢ Λα.ref τ V /∅ ∶ ∀α. ref τ but not ⊢ Λα.ℓ / ℓ↦ V ∶ ∀α. ref τ

Hence, the context case of subject reduction breaks.
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Nailing the bug

The typing derivation of Λα.ℓ requires a store typing Σ of the form ℓ ∶ τ

and a derivation of the form:

Tabs

Σ, α ⊢ ℓ ∶ ref τ

Σ ⊢ Λα.ℓ ∶ ∀α. ref τ

However, the typing context Σ, α is ill-formed as α appears free in Σ.

Instead, a well-formed premise should bind α earlier as in α,Σ ⊢ ℓ ∶ ref τ ,
but then, Rule Tabs cannot be applied.

By contrast, the expression ref τ V is pure, so Σ may be empty:

Tabs

α ⊢ ref τ V ∶ ref τ

∅ ⊢ Λα.ref τ V ∶ ∀α. ref τ

The expression Λα.ℓ is correctly rejected as ill-typed, so Λα.(ref τ V )
should also be rejected.
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Fixing the bug

Mysterious slogan:

One must not abstract over a type variable that might, after
evaluation of the term, enter the store typing.

Indeed, this is what happens in our example. The type variable α which
appears in the type α → α of V is abstracted in front of ref (α → α) V .

When ref (α → α) V reduces, α → α becomes the type of the fresh
location ℓ, which appears in the new store typing.

This is all well and good, but how do we enforce this slogan?
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Fixing the bug

In the context of ML, a number of rather complex historic approaches
have been followed: see Leroy [1992] for a survey.

Then came Wright [1995], who suggested an amazingly simple solution,
known as the value restriction: only value forms can be abstracted over.

TAbs

Γ, α ⊢ u ∶ τ

Γ ⊢ Λα.u ∶ ∀α.τ

Value forms:

u ∶∶= x ∣ V ∣ Λα.u ∣ u τ

The problematic proof case vanishes, as we now never βδ-reduce under
type abstraction—only ι-reduction is allowed.

Subject reduction holds again.
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A good intuition: internalizing configurations

A configuration M / µ is an expression M in a memory µ. The memory
can be viewed as a recursive extensible record.

The configuration M / µ may be viewed as the recursive definition (of
values) let rec m ∶ Σ = µ in [ℓ↦m.ℓ]M where Σ is a store typing for µ.

The store typing rules are coherent with this view.

Allocation of a reference is a reduction of the form

let rec m ∶ Σ = µ in E[ref τ V ]
Ð→ let rec m ∶ Σ, ℓ ∶ τ = µ, ℓ↦ V in E[m.ℓ]

For this transformation to preserve well-typedness, it is clear that the
evaluation context E must not bind any free type variable of τ .

Otherwise, we are violating the scoping rules.
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Clarifying the typing rules

Let us review the typing rules for configurations:

?
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Clarifying the typing rules

Let us review the typing rules for configurations:

Config

Σ,∅ ⊢M ∶ τ ⊢ µ ∶ Σ

⊢M / µ ∶ τ
Store

∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
⊢ µ ∶ Σ
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Clarifying the typing rules

Let us review the typing rules for configurations:

Config

α⃗,Σ,∅ ⊢M ∶ τ α⃗ ⊢ µ ∶ Σ

α⃗ ⊢M / µ ∶ τ
Store

∀ℓ ∈ dom(µ), α⃗,Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
α⃗ ⊢ µ ∶ Σ
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Clarifying the typing rules

Let us review the typing rules for configurations:

Config

α⃗,Σ,∅ ⊢M ∶ τ α⃗ ⊢ µ ∶ Σ

α⃗ ⊢M / µ ∶ τ
Store

∀ℓ ∈ dom(µ), α⃗,Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
α⃗ ⊢ µ ∶ Σ

Remarks:

● Closed configurations are typed in an environment just composed of
type variables α⃗.

● α⃗ may appear in the store during reduction.
Take for example, M equal to ref (α → α) V where V is λx ∶α.x.

● Thus α⃗ will also appear in the store typing and should be placed in
front of the store typing; no β in α⃗ can be generalized.

● New type variables cannot be introduced during reduction.
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Clarifying the typing rules

Judgments are now of the form α⃗,Σ,Γ ⊢ M ∶ τ although we may see
α⃗,Σ,Γ as a whole typing context Γ′.

For locations, we need a new context formation rule:
WfEnvLoc

⊢ Γ Γ ⊢ τ ℓ ∉ dom(Γ)
⊢ Γ, ℓ ∶ τ

This allows locations to appear anywhere. However, in a derivation of a
closed term, the typing context will always be of the form α⃗,Σ,Γ where:

● Σ only binds locations (to arbitrary types) and

● Γ does not bind locations.
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Clarifying the typing rules

The typing rule for memory locations (where Γ is of the form α⃗,Σ,Γ′)

Loc

Γ ⊢ ℓ ∶ ref Γ(ℓ)
In System F, typing rules for references need not be primitive.
We may instead treat them as constants of the following types:

ref ∶ ∀α.α → ref α(!) ∶ ∀α. ref α → α(∶=) ∶ ∀α. ref α → α → unit

Which ones are constructors?
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Clarifying the typing rules

The typing rule for memory locations (where Γ is of the form α⃗,Σ,Γ′)

Loc

Γ ⊢ ℓ ∶ ref Γ(ℓ)
In System F, typing rules for references need not be primitive.
We may instead treat them as constants of the following types:

ref ∶ ∀α.α → ref α(!) ∶ ∀α. ref α → α(∶=) ∶ ∀α. ref α → α → unit

There are all destructors (event ref ) with the obvious arities.

The δ-rules are adapted to carry explicit type parameters:

ref τ V / µ Ð→ ℓ / µ[ℓ ↦ V ] if ℓ /∈ dom(µ)
ℓ ∶= (τ) V / µ Ð→ () / µ[ℓ ↦ V ]

!τ ℓ / µ Ð→ µ(ℓ) / µ
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Stating type soundness

Lemma (Subject reduction for constants)

δ-rules preserve well-typedness of closed configurations.

Theorem (Subject reduction)

Reduction of closed configurations preserves well-typedness.

Lemma (Progress for constants)

A well-typed closed configuration M/µ where M is a full application of
constants ref, (!), or (∶=) to types and values can always be reduced.

Theorem (Progress)

A well-typed irreducible closed configuration M/µ is a value.
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Consequences

The problematic program is now syntactically ill-formed:

let y ∶ ∀α. ref (α → α) = Λα.ref (λz ∶α. z) in(∶=) (bool → bool) (y bool) not;
! (int → int) (y (int)) 1

Indeed, ref (λz ∶α. z) is not a value form, but the application of a unary
destructor to a value, so it cannot be generalized.
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Value restriction limitations

With the value restriction, some pure programs become ill-typed, even
though they were well-typed in the absence of references.

Therefore, this style of introducing references in System F (or in ML)
is not a conservative extension.

Assuming:

map ∶ ∀α.∀β. (α → β)→ list α → list α id ∶ ∀α.α → α

This expression becomes ill-typed:

Λα.map α α (id α)
?
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Value restriction limitations

With the value restriction, some pure programs become ill-typed, even
though they were well-typed in the absence of references.

Therefore, this style of introducing references in System F (or in ML)
is not a conservative extension.

Assuming:

map ∶ ∀α.∀β. (α → β)→ list α → list α id ∶ ∀α.α → α

This expression becomes ill-typed:

Λα.map α α (id α)
A common work-around is to perform a manual η-expansion:

Λα.λy ∶ list α.map α (id α) y
?
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Value restriction limitations

With the value restriction, some pure programs become ill-typed, even
though they were well-typed in the absence of references.

Therefore, this style of introducing references in System F (or in ML)
is not a conservative extension.

Assuming:

map ∶ ∀α.∀β. (α → β)→ list α → list α id ∶ ∀α.α → α

This expression becomes ill-typed:

Λα.map α α (id α)
A common work-around is to perform a manual η-expansion:

Λα.λy ∶ list α.map α (id α) y
Of course, in the presence of side effects, η-expansion is not
semantics-preserving, so this must not be done blindly.
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Value restriction Extensions

Non-expansive expressions

The value restriction can be slightly relaxed by enlarging the class of
value-forms to a syntactic category of so-called non-expansive
terms—terms whose evaluation will definitely not allocate new reference
cells. Non-expansive terms form a strict superset of value-forms.

u ∶∶= x ∣ V ∣ Λα.u ∣ u τ∣ let x = u in u ∣ (λx ∶τ. u) u∣ C u1 . . . uk∣ d u1 . . . uk where either [ k < arity (d)
d is non-expansive.

In particular, pattern matching is a non-expansive destructor! But ref ⋅ is
an expansive one!.

For example, the following expression is non-exapnsive:

Λα.let x = (match y with (Ci x̄i → ui) i∈I)) in u
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Value restriction Extensions

Positive occurrences
Garrigue [2004] relaxes the value restriction in a more subtle way, which
is justified by a subtyping argument.

For instance, let x ∶ ∀α. list α = Λα.(M1 M2) inM may be well-typed
because because α appears only positively in the type of M1 M2.

More generally, given a type context T [α] where α appears only positively

● ∀α.T [α] can be instantiated to T [∀α.α], and
● T [∀α.α] is a subtype of ∀α.T [α]

Hence, a value of type T [α] can be given the monomorphic type
T [∀α.α] by weakening before entering the store to please the value
restriction, but retrieved at type ∀α.T [α], a subtype of T [∀α.α].
OCaml implements this, but restricts it to strictly positive occurrences so
as to keep the principal type property.
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Value restriction Extensions

In fact, the two extensions can be combined: Λα.M need only be
forbidden when

α appears in the type of some exposed expansive subterm at
some negative occurrence,

where exposed subterms are those that do not appear under some
λ-abstraction.

For instance, the expression

let x ∶ ∀α. int × (list α) × (α → α) =
Λα.(ref (1 + 2), (λx ∶α.x) Nil, λx ∶α.x)

inM

may be accepted because α appears only in the type of the
non-expansive exposed expression λx ∶α.x and only positively in the type
of the expansive expression (λx ∶α.x) Nil.
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Conclusions

Experience has shown that the value restriction is tolerable. Even though
it is not conservative, the search for better solutions has been pretty
much abandoned.

There is still on going research for tracing side effects more precisely, in
particular to better circumvent their use.

Actually, there is a regained interest in tracing side effects, with the
introduction of effect handlers.
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Conclusions

In a type-and-effect system [Lucassen and Gifford, 1988;
Talpin and Jouvelot, 1994], or in a type-and-capability
system [Charguéraud and Pottier, 2008], the type system indicates which
expressions may allocate new references, and at which type. This permits
strong updates—updates that may also change the type of references.

There, the value restriction is no longer necessary.

However, if one extends a type-and-capability system with a mechanism
for hiding state, the need for the value restriction re-appears.

Pottier and Protzenko [2012] (and [Protzenko, 2014]) designed a
language, called Mezzo, where mutable state is tracked very precisely,
using permissions, ownership, and afine types.
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