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Plan of the course

Metatheory of System F

ADTs, Existential types, GATDs

Logical relations



Messages

Last lesson Friday, November 22

Partial exams on Friday, November 29
● Only course notes and handwritten notes are allowed.

● No electronic devices of any kind.

● Bring you own paper (preferably double A4 sheet)

Internships — see the course webpage

● Sharing and Unsharing in Hindley Milner

● Propagation of type annotations in Hindley-Milner based
type-systems

● Verifying Chunked Sequences, by F. Pottier (and A. Charguéraud)

● Plus 2 others by Yann Régis Giannas.

(Talk to me if you are interested)
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What are logical relations?

So far, most proofs involving terms have proceeded by induction on the
structure of terms (or, equivalently, typing derivations).

Logical relations are relations between well-typed terms defined
inductively on the structure of types. They allow proofs between terms
by induction on the structure of types.

Unary relations

● Unary relations are predicates on expressions

● They can be used to prove type safety and strong normalization

Binary relations

● Binary relations relates two expressions of related types.

● They can be used to prove equivalence of programs and
non-interference properties.

Logical relations are a common proof method for programming languages.

6 80 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type ∀α.α → int ?

?
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type ∀α.α → int ?

▷ the function cannot examine its argument

so ?
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type ∀α.α → int ?

▷ the function cannot examine its argument

▷ it always return the same integer

for example ?
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

What can do a term of type ∀α.α → int ?

▷ the function cannot examine its argument

▷ it always return the same integer

▷ λx.n,
λx. (λy. y) n,
λx. (λy.n) x.
etc.

What do they all have in common ?
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type ∀α.α → int ?

▷ the function cannot examine its argument

▷ it always return the same integer

▷ λx.n,
λx. (λy. y) n,
λx. (λy.n) x.
etc.

▷ they are all βη-equivalent to a term of the form λx.n
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type ∀α.α → int ?

▷ behaves as λx.n
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type ∀α.α → int ?

▷ behaves as λx.n

A term a of type ∀α.α → α ?

?
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type ∀α.α → int ?

▷ behaves as λx.n

A term a of type ∀α.α → α ?

▷ behaves as λx.x
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type ∀α.α → int ?

▷ behaves as λx.n

A term a of type ∀α.α → α ?

▷ behaves as λx.x

A term type ∀αβ.α → β → α ?

?
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type ∀α.α → int ?

▷ behaves as λx.n

A term a of type ∀α.α → α ?

▷ behaves as λx.x

A term type ∀αβ.α → β → α ?

▷ behaves as λx.λy.x

A term type ∀α.α → α → α ?

?
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Parametricity? Inhabitants of polymorphic types

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

A term of type ∀α.α → int ?

▷ behaves as λx.n

A term a of type ∀α.α → α ?

▷ behaves as λx.x

A term type ∀αβ.α → β → α ?

▷ behaves as λx.λy.x

A term type ∀α.α → α → α ?

▷ behaves either as λx.λy.x or λx.λy. y

7⟨11⟩ 80 ◁
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

?
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

▷ The length of the result depends only on the length of the argument
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

▷ The length of the result depends only on the length of the argument

▷ All elements of the results are elements of the argument
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

▷ The length of the result depends only on the length of the argument

▷ All elements of the results are elements of the argument

▷ The choice (i, j) of pairs such that i-th element of the result is the
j-th element of the argument does not depend on the element itself.
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

▷ The length of the result depends only on the length of the argument

▷ All elements of the results are elements of the argument

▷ The choice (i, j) of pairs such that i-th element of the result is the
j-th element of the argument does not depend on the element itself.

▷ the function is preserved by a transformation of its argument that
preserves the shape of the argument

∀f,x, whoami (map f x) =map f (whoami x)
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool) → list α → list α

?
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool) → list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp (f x) (f y) = cmp x y) Ô⇒
∀ℓ, sort cmp (map f ℓ) = map f (sort cmp ℓ)
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool) → list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool) → list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)

Application:

▷ If sort is correct on lists of integers, then it is correct on any list

▷ May be useful to reduce testing.
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool) → list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)

Note that there are many other inhabitants of this type, but they all
satisfy this free theorem.

Can you give a few?
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Pametricity Theorems for free

Similarly, the type of a polymorphic function may also reveal a “free
theorem” about its behavior!

What properties may we learn from a function

whoami ∶ ∀α. list α → list α

What property may we learn for the list sorting function?

sort ∶ ∀α. (α → α → bool) → list α → list α

If f is order-preserving, then sorting commutes with map f

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)

Note that there are many other inhabitants of this type, but they all
satisfy this free theorem. (e.g., a function that sorts in reverse order, or a
function that removes (or adds) duplicates).
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Parametricity

This phenomenon was studied by Reynolds [1983] and by Wadler [1989;
2007], among others. Wadler’s paper contains the ‘free theorem’ about
the list sorting function.

An account based on an operational semantics is offered by Pitts [2000].

Bernardy et al. [2010] generalize the idea of testing polymorphic
functions to arbitrary polymorphic types and show how testing any
function can be restricted to testing it on (possibly infinitely many)
particular values at some particular types.

9 80 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Contents

Introduction

Normalization of λst

Observational equivalence in λst

Logical relations in stlc

Logical relations in F

Applications

Extensions

10 80 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Normalization of simply-typed λ-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.
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Normalization of simply-typed λ-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.
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Normalization of simply-typed λ-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.

The simply-typed λ-calculus is also lifted at the level of types in richer
type systems such as System Fω; then, the decidability of type-equality
depends on the termination of the reduction at the type level.
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Normalization of simply-typed λ-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.

The simply-typed λ-calculus is also lifted at the level of types in richer
type systems such as System Fω; then, the decidability of type-equality
depends on the termination of the reduction at the type level.

The proof of termination for the simply-typed λ-calculus is a simple and
illustrative use of logical relations.

Notice however, that our simply-typed λ-calculus is equipped with a
call-by-value semantics. Proofs of termination are usually done with a
strong evaluation strategy where reduction can occur in any context.

11⟨4⟩ 80 ◁
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Normalization

Proving termination of reduction in fragments of the λ-calculus is often a
difficult task because reduction may create new redexes or duplicate
existing ones.

Hence the size of terms may grow (much) larger during reduction. The
difficulty is to find some underlying structure that decreases.

We follow the proof schema of Pierce [2002], which is a modern
presentation in a call-by-value setting of an older proof by
Hindley and Seldin [1986]. The proof method is due to [Tait, 1967].

12 80 ◁
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Calculus

Take the call-by-value λst with primitive booleans and conditional.

Write B the type of booleans and tt and ff for true and false.

We define VJτK and EJτK the subsets of closed values and closed
expressions of (ground) type τ by induction on types as follows:

VJBK
△
== {tt,ff}

VJτ1 → τ2K
△
== {λx ∶τ1.M ∣ λx ∶τ1.M ∶ τ1 → τ2

∧ ∀V ∈ VJτ1K, (λx ∶τ1.M) V ∈ EJτ2K}

EJτK
△
== {M ∣M ∶ τ ∧ ∃V ∈ VJτK,M ⇓ V }

We write M ⇓ V for M Ð→∗ V .
The goal is to show that any closed expression of type τ is in EJτK.

Remarks
VJτK ⊆ EJτK—by definition.
EJτK is closed by inverse reduction—by definition, i.e.
If M ∶ τ and M Ð→ N and N ∈ EJτK then M ∈ EJτK.

18 80 ◁
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Problem

We wish to show that every closed term of type τ is in EJτK

● Proof by induction on the typing derivation.

● Problem with abstraction: the premise is not closed.

We need to strengthen the hypothesis, i.e. also give a semantics to open
terms.

● The semantics of open terms can be given by abstracting over the
semantics of their free variables.

19 80 ◁
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Generalize the definition to open terms

We define a semantic judgment for open terms Γ ⊧M ∶ τ so that
Γ ⊢M ∶ τ implies Γ ⊧M ∶ τ and ∅ ⊧M ∶ τ means M ∈ EJτK.

We interpret free term variables of type τ as closed values in VJτK.

We interpret environments Γ as closing substitutions γ, i.e. mappings
from term variables to closed values:

We write γ ∈ GJΓK to mean dom(γ) = dom(Γ) and γ(x) ∈ VJτK for all
x ∶ τ ∈ Γ.

Γ ⊧M ∶ τ
def
⇐⇒ ∀γ ∈ GJΓK, γ(M) ∈ EJτK

20 80 ◁
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Fundamental Lemma

Theorem (fundamental lemma)
If Γ ⊢M ∶ τ then Γ ⊧M ∶ τ .

Corollary (termination of well-typed terms):
If ∅ ⊢M ∶ τ then M ∈ EJτK.

That is, closed well-typed terms of type τ evaluates to values of type τ .

21 80 ◁
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Proof by induction on the typing derivation

Routine cases

Case Γ ⊢ tt ∶ B or Γ ⊢ ff ∶ B: by definition, tt,ff ∈ VJBK and VJBK ⊆ EJBK.

Case Γ ⊢ x ∶ τ : γ ∈ GJΓK, thus γ(x) ∈ VJτK ⊆ EJτK

Case Γ ⊢M1 M2 ∶ τ :

By inversion, Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2.

Let γ ∈ GJΓK. We have γ(M1 M2) = (γM1) (γM2).
By IH, we have Γ ⊧M1 ∶ τ2 → τ and Γ ⊧M2 ∶ τ2.
Thus γM1 ∈ EJτ2 → τK (1) and γM2 ∈ EJτ2K (2).

By (2), there exists V ∈ VJτ2K such that γM2 ⇓ V .
Thus (γM1) (γM2) ↝ (γM1) V ∈ EJτK by (1).

Then, (γM1) (γM2) ∈ EJτK, by closure by inverse reduction.

Case Γ ⊢ ifM then M1 elseM2 ∶ τ : By cases on the evaluation of γM .

22 80 ◁
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Proof by induction on the typing derivation

The interesting case

Case Γ ⊢ λx ∶τ1.M ∶ τ1 → τ :

Assume γ ∈ GJΓK.
We must show that γ(λx ∶τ1.M) ∈ EJτ1 → τK (1)

That is, λx ∶τ1. γM ∈ VJτ1 → τK (we may assume x ∉ dom(γ) w.l.o.g.)

Let V ∈ VJτ1K, it suffices to show (λx ∶τ1. γM) V ∈ EJτK (2).

We have (λx ∶τ1. γM) V Ð→ (γM)[x ↦ V ] = γ′M
where γ′ is γ[x ↦ V ] ∈ GJΓ, x ∶ τ1K (3)

Since Γ, x ∶ τ1 ⊢M ∶ τ , we have Γ, x ∶ τ1 ⊧M ∶ τ by IH. Therefore by (3),
we have γ′M ∈ EJτK. Since EJτK is closed by inverse reduction, this
proves (2) which finishes the proof of (1).
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Variations

We have shown both termination and type soundness, simultaneously.

Termination would not hold if we had a fix point. But type soundness
would still hold.

The proof may be modified by choosing:

EJτK = {M ∶ τ ∣ ∀N,M ⇓ N Ô⇒ N ∈ VJτK ∨ ∃N ′,N Ð→ N ′}

Exercise
Show type soundness with this semantics.
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(Bibliography)

Mostly following Bob Harper’s course notes Practical foundations for
programming languages [Harper, 2012].

See also

● Types, Abstraction and Parametric Polymorphism [Reynolds, 1983]

● Parametric Polymorphism and Operational Equivalence [Pitts, 2000].

● Theorems for free! [Wadler, 1989].

We assume a call-by-name semantics for generality of the presentation,
but all results also apply to a call-by-value semantics.
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When are two programs equivalent

M ⇓ N ?

M ⇓ V and N ⇓ V ?

But what if M and N are functions?

Aren’t λx. (x + x) and λx.2 ∗ x equivalent?

Idea

?
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When are two programs equivalent

M ⇓ N ?

M ⇓ V and N ⇓ V ?

But what if M and N are functions?

Aren’t λx. (x + x) and λx.2 ∗ x equivalent?

Idea two functions are observationally equivalent if when applied to
equivalent arguments, they lead to observationally equivalent results.

Are we general enough?

27⟨2⟩ 80 ◁
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Observational equivalence

We can only observe the behavior of full programs, i.e. closed terms of
some computation type, such as B (the only one so far).

If M ∶ B and N ∶ B, then M ≃ N iff there exists V such that M ⇓ V and
N ⇓ V . (Call M ≃ N behavioral equivalence.)

To compare programs at other types, we

?

28⟨1⟩ 80 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Observational equivalence

We can only observe the behavior of full programs, i.e. closed terms of
some computation type, such as B (the only one so far).

If M ∶ B and N ∶ B, then M ≃ N iff there exists V such that M ⇓ V and
N ⇓ V . (Call M ≃ N behavioral equivalence.)

To compare programs at other types, we place them in arbitrary closing
contexts.

Definition (observational equivalence)

Γ ⊢M ≅ N ∶ τ
△
== ∀C ∶ (Γ▷ τ)↝ (∅▷B), C[M] ≃ C[N]

Typing of contexts
C ∶ (Γ▷ τ)↝ (∆▷ σ) ⇐⇒ (∀M, Γ ⊢M ∶ τ Ô⇒ ∆ ⊢ C[M] ∶ σ)

There is an equivalent definition given by a set of typing rules. This is
needed to prove some properties by induction on the typing derivations.

We write M ≅τ N for ∅ ⊢M ≅ N ∶ τ
28⟨2⟩ 80 ◁
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Observational equivalence

Observational equivalence is the coarsiest consistent congruence, where:

≡ is consistent if ∅ ⊢M ≡ N ∶ B implies M ≃ N .

≡ is a congruence if it is an equivalence and is closed by context, i.e.

Γ ⊢M ≡ N ∶ τ ∧ C ∶ (Γ▷τ)↝ (∆▷σ) Ô⇒ ∆ ⊢ C[M] ≡ C[N] ∶ σ

Consistent: by definition, using the empty context.

Congruence: by compositionality of contexts.

Largest: Assume ≡ is a consistent congruence. Assume Γ ⊢M ≡ N ∶ τ
holds and show that Γ ⊢M ≅ N ∶ τ holds (1).
Let C ∶ (Γ▷ τ)↝ (∅▷B) (2). We must show that C[M] ≃ C[N].
This follows by consistency applied to Γ ⊢ C[M] ≡ C[N] ∶ B which
follows by congruence from (1) and (2).
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Problem with Observational Equivalence

Problems

● Observational equivalence is too difficult to test.

● Because of quantification over all contexts (too many for testing).

● But many contexts will do the same experiment.

Solution

We take advantage of types to reduce the number of experiments.

● Defining/testing the equivalence on base types.

● Propagating the definition mechanically at other types.

Logical relations provide the infrastructure for conducting such proofs.
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Logical equivalence for closed terms

We inductively define M ∼τ M ′ on closed terms of (ground) type τ by
induction on τ :

● M ∼B M ′ iff M ≃M ′

● M ∼τ1→τ2 M
′ iff ∀M1,M

′
1, M1 ∼τ1 M

′
1 Ô⇒ M M1 ∼τ2 M

′M ′
1

Lemma

Logical equivalence is symmetric and transitive (at any given type).

Note

Reflexivity is not obvious at all.
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Logical equivalence for closed terms

Proof by induction on type τ

Case τ is B for values: the result is immediate.

Case τ is τ1 → τ2:. By IH, symmetry and transitivity hold at types τ1 and
τ2.

For symmetry, assume M ∼τ M ′ (H), we must show M ′ ∼τ M . Assume
M1 ∼τ1 M

′
1
. We must show M ′M1 ∼τ2 M M ′

1
(C). We have M ′

1
∼τ1 M1

by symmetry at τ1. By (H), we have M M ′
1 ∼τ2 M

′M1 and (C) follows
by symmetry at type τ2.

For transitivity, assume M ∼τ M ′ (H1) and M ′ ∼τ M ′′ (H2). To show
M ∼τ M ′′, we assume N ∼τ1 N

′′ and show M N ∼τ2 M
′′ N ′′ (C).

By (H1), we have M N ∼τ2 M
′ N ′′ (C1).

By symmetry and transitivity at type τ1, we get N ′′ ∼τ1 N
′′. (Remark)

By (H2), we have M ′ N ′′ ∼τ2 M
′′ N ′′ (C2).

(C) follows by transitivity of (C1) and (C2) at type τ2.
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Properties of logical equivalence

Closure by inverse reduction

Assume that N ∶ τ and M ∼τ M ′.
If N ⇓M and N ′ ⇓M ′ then N ∼τ N ′.

The proof is by induction on τ .
(We show it for a single reduction step, e.g. on the left-hand side)

Case τ is B: By closure of behavioral equivalence ≃ by inverse reduction.

Case τ is τ1 → τ2: To show N ∼τ M ′ we assume M1 ∼τ1 M
′
1
and show

N M1 ∼τ2 M
′M ′

1
(1).

From M ∼τ M ′, we have M M1 ∼τ2 M
′M ′

1
. The conclusion (1) then

follows by IH at type τ2, since we have N M1 Ð→M M1 as a
consequence of the assumption N Ð→M .

Consistency If M ∼B M ′, then M ≃M ′

(Obvious, by definition.)

34 80 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Logical equivalence for open terms

When Γ ⊢M ∶ τ and Γ ⊢M ′ ∶ τ , we wish to define a judgment
Γ ⊢M ∼M ′ ∶ τ to mean that the open terms M and M ′ are equivalent
at type τ .

We write γ ∼Γ γ′ to mean that γ and γ′ are two substitutions of domain
dom(Γ) such that for all x ∶ τ ∈ dom(Γ), we have γ(x) ∼τ γ′(x)

Definition

Γ ⊢M ∼M ′ ∶ τ ⇐⇒ ∀γ, γ′, γ ∼Γ γ′ Ô⇒ γ(M) ∼τ γ′(M ′)

We write M ∼τ N for ∅ ⊢M ∼ N ∶ τ

Immediate properties

Open logical equivalence is symmetric and transitive.

(Proof is immediate by the definition and the symmetry and transitivity
of closed logical equivalence.)
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Fundamental lemma of logical equivalence

Theorem (Reflexivity)

If Γ ⊢M ∶ τ , then Γ ⊢M ∼M ∶ τ .

Proof Assume Γ ⊢M ∶ τ (1) and γ ∼Γ γ′ (2). We must show
γM ∼τ γ′M . The proof is by induction on the typing derivation.

Case M is λx ∶τ1.N and τ is τ1 → τ2 with x # γ, γ′:
We show λx ∶τ1. γN ∼τ1→τ2 λx ∶τ1. γ

′N . Assume M1 ∼τ1 M
′
1
(3).

We must show (λx ∶τ1. γN)M1 ∼τ2 (λx ∶τ1. γ
′N)M ′

1
.

By inverse reduction, it suffices to show
γ(N)[x ↦M1] ∼τ2 γ

′(N)[x ↦M ′
1
], i.e.

γ1(N) ∼τ2 γ
′
1
(N) where γ1 is (γ[x ↦M1]) and γ′

1
is (γ′[x ↦M ′

1
]) (4).

We have γ1 ∼Γ,x∶τ1 γ
′
1
(5) from (2) and (3).

By inversion of typing applied to (1), we have Γ, x ∶ τ1 ⊢ N ∶ τ2.
Thus (4) follows by induction hypothesis applied with (5).
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Properties of logical equivalence

Proof (continued) Assume Γ ⊢M ∶ τ and γ ∼Γ γ′. We must show
γ(M) ∼τ γ′(M). The proof is by induction on the typing derivation.

Case M is tt or ff and τ is B: Since M is closed it suffices to show
M ∼B M which holds by reflexivity of ∼B, i.e. of behavioral
equivalence ≃.

Case M is M1 M2: By induction hypothesis and the fact that
substitution distributes over term application.

Case M is x: Immediate.
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Properties of logical equivalence

Proof (continued)

Case M is if N then N1 elseN2: By induction applied to Γ ⊢ N ∶ B, we
have Γ ⊢ N ∼ N ∶ B. Thus γN ∼B γ′N . By consistency, we have
γN ≃ γ′N . We then reason by cases on the evaluation of γN .

If γN ⇓ tt then so does γ′N ; then γM ⇓ γN1 and γ′M ⇓ γ′N1. We have
Γ ⊢ N1 ∶ τ by inversion of typing. By IH, we have γN1 ∼τ γ′N1. By
inverse reduction, we get γM ∼τ γ′M .

Otherwise, γN ⇓ ff, and we proceed symmetrically.
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Properties of logical relations

Corollary (equivalence) Open logical relation is an equivalence relation

Corollary (Termination) If M ∶ B then the evaluation of M terminates.

Proof: M ∶ B implies M ∼B M which implies M ≃M , and, in turn,
implies that M evaluates to either tt or ff.
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Properties of logical equivalence

Logical equivalence is a congruence
If Γ ⊢M ∼M ′ ∶ τ and C ∶ (Γ▷ τ)↝ (∆▷ σ), then
∆ ⊢ C[M] ∼ C[M ′] ∶ σ.

Proof By induction on the proof of C ∶ (Γ▷ τ)↝ (∆▷ σ).
Similar to the proof of reflexivity. (We need a definition of context typing
derivations by a set of typing rules to be able to reason by induction on
the typing derivation.)

Corollary Logical equivalence implies observational equivalence.
If Γ ⊢M ∼M ′ ∶ τ then Γ ⊢M ≅M ′ ∶ τ .

Proof: Logical equivalence is a consistent congruence, hence included in
observational equivalence which is the coarsest such relation.
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Properties of logical equivalence

Lemma
Observational equivalence of closed terms implies logical equivalence.
If M ≅τ M ′ then M ′ ∼τ M ′.

Proof by induction on τ .

Case τ is B: In the empty context, we have M ≃B M ′, hence M ∼B M ′.

Case τ is τ1 → τ2: By congruence of observational equivalence. To show
M ∼τ M ′, we assume M1 ∼τ1 M

′
1 (1) and show M M1 ∼τ2 M

′M1. By
IH, it suffices to show M M1 ≅τ2 M

′ M1. This follows by congruence,
from the hypothesis M ≅τ M ′ and M1 ≅τ1 M

′
1 which follows from (1) by

the previous lemma.
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Properties of logical equivalence

Corollary (Value arguments)

To show M ∼τ1→τ2 M
′, it suffices to show that M V ∼τ2 M

′ V ′ for all
values V and V ′ such that V ∼τ1 V

′.

Proof

Assume N ∼τ1 N
′.

There exists V and V ′ such that N ⇓ V and N ′ ⇓ V ′.
It suffices to show that M V ∼τ2 M

′ V ′ (H) implies M N ∼τ2 M
′ N ′ (1).

We have N ∼τ1 V from N ⇓ V and closure by inverse reduction.
Then M N ∼τ2 M V follows by congruence of ∼τ2
Similarly, we have M ′ N ′ ∼τ2 M

′ V ′.

The conclusion (1) follows by transitivity of ∼τ2 with (H).
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Logical equivalence: application

Assume not
△
== λx ∶B. if x then ff else tt

and M
△
== λx ∶B. λy ∶τ. λz ∶τ. if not x then y else z

and M ′ △== λx ∶B. λy ∶τ. λz ∶τ. if x then z else y

Show that M ≅B→τ→τ→τ M
′ (C).

?
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Logical equivalence: application

Assume not
△
== λx ∶B. if x then ff else tt

and M
△
== λx ∶B. λy ∶τ. λz ∶τ. if not x then y else z

and M ′ △== λx ∶B. λy ∶τ. λz ∶τ. if x then z else y

Show that M ≅B→τ→τ→τ M
′ (C).

It suffices to show M V0 V1 V2 ∼τ M ′ V ′0 V ′1 V ′2 whenever V0 ∼B V ′0 and
V1 ∼τ V ′1 and V2 ∼τ V ′2 .

?
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Logical equivalence: application

Assume not
△
== λx ∶B. if x then ff else tt

and M
△
== λx ∶B. λy ∶τ. λz ∶τ. if not x then y else z

and M ′ △== λx ∶B. λy ∶τ. λz ∶τ. if x then z else y

Show that M ≅B→τ→τ→τ M
′ (C).

It suffices to show M V0 V1 V2 ∼τ M ′ V ′0 V ′1 V ′2 whenever V0 ∼B V ′0 and
V1 ∼τ V ′1 and V2 ∼τ V ′2 .

By inverse reduction, it suffices to show

if not V0 then V1 else V2 ∼τ if V ′0 then V ′2 else V ′1

?
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Logical equivalence: application

Assume not
△
== λx ∶B. if x then ff else tt

and M
△
== λx ∶B. λy ∶τ. λz ∶τ. if not x then y else z

and M ′ △== λx ∶B. λy ∶τ. λz ∶τ. if x then z else y

Show that M ≅B→τ→τ→τ M
′ (C).

It suffices to show M V0 V1 V2 ∼τ M ′ V ′0 V ′1 V ′2 whenever V0 ∼B V ′0 and
V1 ∼τ V ′1 and V2 ∼τ V ′2 .

By inverse reduction, it suffices to show

if not V0 then V1 else V2 ∼τ if V ′0 then V ′2 else V ′1

By cases on V0.

Case V0 is tt: Then not V0 ⇓ ff and thus M ⇓ V2 while M ′ ⇓ V2. Then
(C) follows by inverse reduction and V2 ∼τ V ′2 .

Case V0 is ff: is symmetric.
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Observational equivalence

We now extend the notion of logical equivalence to System F.

τ ∶∶= . . . ∣ α ∣ ∀α. τ M ∶∶= . . . ∣ Λα.M ∣M τ

We write typing contexts ∆;Γ where ∆ binds variables and Γ binds
program variables.

Typing of contexts becomes C ∶ (∆;Γ▷ τ)↝ (∆′; Γ′▷ τ ′).

Observational equivalence

We defined ∆;Γ ⊢M ≅M ′ ∶ τ as

∀C ∶ (∆;Γ▷ τ)↝ (∅;∅▷B), C[M] ≃ C[M ′]

As before, write M ≅τ N for ∅;∅ ⊢M ≅ N ∶ τ (in particular, τ is closed).
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Logical equivalence

For closed terms (no free program variables)

● We need to give the semantics of polymoprhic types ∀α. τ

● Problem: We cannot do it in terms of the semantics of instances
τ[α ↦ σ] since the semantics is defined by induction on types.

● Solution: we give the semantics of terms with open types—in some
suitable environment that interprets type variables by logical
relations.

For simple types, we defined logical relations and observed that

● they respect observational equivalence

● they are closed by inverse reduction

We require that relations used to interpret type variables satisfy those
properties.
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Logical equivalence

Definition A relation R between closed expressions of closed types ρ and
ρ′ is admissible, and we write R ∶ ρ↔ ρ′, if:

● It respects observational equivalence: If R(M,M ′) and N ≅ρ M and
N ′ ≅ρ′ M ′, then R(N,N ′).
● It is closed under inverse reduction: If R(M,M ′) and N ⇓ M and
N ′ ⇓ M ′, then R(N,N ′).

Given a sequence of type variables ∆, let δ and δ′ be maps from
dom(∆) to closed types and let η be a map from dom(∆) that sends
each type variable α to an admissible relation between values of closed
types δ(α) and δ′(α). We write η ∶ δ↔∆ δ′ for such a relation, but often
leave ∆ implicit.
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Example of admissible relations

Take

∆
△
== α δ

△
== α ↦ B δ′

△
== α ↦ Z

Then R ∶ δ ↔α δ′ may be the closure by inverse reduction (written ◇)

◇{(tt,0)} ∪ {(ff, n) ∣ n ∈ Z⋆}

where integers may be used to simulate booleans.

Allows to relate values at different types.
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Logical equivalence for closed terms with open types

Assume η ∶ δ↔∆ δ′ and M ∶ δ(τ) and M ′ ∶ δ′(τ).

We defined M ∼τ M ′ [η ∶ δ↔ δ′] by induction on τ as follows:

M ∼B M ′ [η ∶ δ↔ δ′] iff M ≃M ′

M ∼τ1→τ2 M
′ [η ∶ δ↔ δ′] iff for all N ∼τ1 N

′ [η ∶ δ↔ δ′],
M N ∼τ2 M

′ N ′ [η ∶ δ↔ δ′]

M ∼α M ′ [η ∶ δ↔ δ′] iff η(α)(M,M ′)

M ∼∀α. τ M ′ [η ∶ δ↔ δ′] iff for all ρ, ρ′,R ∶ ρ↔ ρ′,

M ρ ∼τ M ′ ρ′

[(η,α ↦ R) ∶ (δ,α ↦ ρ)↔ (δ′, α ↦ ρ′)]
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Logical equivalence for open terms

Definition If ∆;Γ ⊢M,M ′ ∶ τ we define ∆;Γ ⊢M ∼M ′ ∶ τ as

∀η ∶ δ↔∆ δ′, ∀γ ∼Γ γ′ [η ∶ δ↔ δ′], γ(δ(M)) ∼τ γ′(δ′(M ′)) [η ∶ δ ↔ δ′]

where γ ∼Γ γ′ [η ∶ δ↔ δ′] △== ⋀
⎧⎪⎪
⎨
⎪⎪⎩

dom(γ) = dom(γ′) = dom(Γ)
∀x ∶ τ ∈ dom(Γ), γ(x) ∼τ γ′(x) [η ∶ δ↔ δ′]

(Notations are a bit heavy, but intuitions should remain simple.)

Notice We write M ∼τ M ′ for ∅;∅ ⊢M ∼M ′ ∶ τ . In particular, τ is a
closed type and M and M ′ are closed terms of type τ . By definition, this
means M ∼τ M ′ [∅ ∶ ∅ ↔ ∅], which also coincide with the previous
definition of logical relation for closed terms.
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Properties

Closure under inverse reduction

If M ∼τ M ′ [η ∶ δ ↔ δ′] and N ⇓M and N ′ ⇓M ′ (and N ∶ δ(τ) and
N ′ ∶ δ′(τ)), then N ∼τ N ′ [η ∶ δ↔ δ′].

Proof by induction on τ .

Similar to the monomorphic case, except for:

Case τ is ∀α.σ:

To show N ∼τ M ′ [η ∶ δ↔ δ′],
i.e. by definition, ∀ρ, ρ′,R ∶ ρ↔ ρ′, M ρ ∼τ M ′ ρ′ [(η,α ↦ R)],
we assume R ∶ ρ↔ ρ′ and show N ρ ∼σ M ′ ρ′ [η,α ↦ R].
Since N ρÐ→ M ρ,
by induction hypothesis it suffices to show M ρ ∼σ M ′ ρ′ [η,α ↦ R],
which follows from M ∼τ M ′ [η ∶ δ↔ δ′].
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Properties

Respect for observational equivalence

If M ∼τ M ′ [η ∶ δ ↔ δ′] and N ≅δ(τ) M and N ′ ≅δ′(τ) M
′

then N ∼τ N ′ [η ∶ δ ↔ δ′].

Proof by induction on τ .

Assume M ∼τ M ′ [η ∶ δ↔ δ′] (1) and N ≅δ(τ)M (2). We show
N ∼τ M ′ [η ∶ δ↔ δ′].

Case τ is ∀α.σ:

We assume R ∶ ρ↔ ρ′ and show N ρ ∼σ M ′ ρ′ [η,α ↦ R].
Since N ρ ≅δ(τ) M ρ (by (2) as ≅ is a congruence),
by induction hypothesis it suffices to show M ρ ∼σ M ′ ρ′ [η,α ↦ R],
which follows from (1).
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Properties

Corollary The relation M ∼τ M ′ [η ∶ δ↔ δ′] is an admissible relation
between expressions of closed types δ(τ) and δ′(τ).

(Useful, as we may take ∼τ for the default relation.)

53 80 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Properties

Lemma (respect for observational equivalence)
If ∆;Γ ⊢M ∼M ′ ∶ τ and ∆;Γ ⊢M ≅ N ∶ τ and ∆;Γ ⊢M ′ ≅ N ′ ∶ τ , then
∆;Γ ⊢ N ∼ N ′ ∶ τ

Lemma (Compositionality)

M ∼τ[α↦σ]M
′ [η ∶ δ↔ δ′] iff

M ∼τ M
′ [(η,α ↦ R) ∶ (δ,α ↦ δ(σ))↔ (δ′, α ↦ δ′(σ))]

where R ∶ δ(σ)↔ δ′(σ) is defined by

R(N,N ′) ⇐⇒ N ∼σ N ′ [η ∶ δ↔ δ′]

Proof by structural induction on τ .
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Parametricity

Theorem (reflexivity) If ∆;Γ ⊢M ∶ τ then ∆;Γ ⊢M ∼M ∶ τ .
(Also called parametricity or the fundamental theorem.)

Proof by induction on the typing derivation.
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Properties

Theorem
Logical equivalence and observational equivalence coincide.
i.e. ∆;Γ ⊢M ∼ M ′ ∶ τ iff ∆;Γ ⊢M ≅M ′ ∶ τ .

As a particular case, M ∼τ M ′ iff M ≅τ M ′.
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Properties

Extensionality
M ≅τ1→τ2 M

′ iff for all M1 ∶ τ1, M M1 ≅τ2 M
′M1.

M ≅∀α. τ M ′ iff for all closed type ρ, M ρ ≅τ[α↦ρ]M
′ ρ.

Proof. Forward direction is immediate as ≅ is a congruence.

Case Value abstraction: It suffices to show M ∼τ1→τ2 M
′. That is, given

M1 ∼τ1 M
′
1 (1), we show M M1 ∼τ2 M

′ M ′
1 (2). By assumption, we have

M M1 ≅τ2 M
′ M1 (3). By the fundamental lemma, we have M ′ ∼τ1→τ2 M

′.
Hence, from (1), we get M ′ M1 ∼τ2 M

′ M ′
1
,

We conclude (2) by respect for observational equivalence with (3).

Case Type abstraction: It suffices to show M ∼∀α. τ M ′. That is, given
R ∶ ρ↔ ρ′ we show M ρ ∼τ M ′ ρ′ [(α ↦ R) ∶ (α↦ ρ)↔ (α ↦ ρ′)] (4).
By assumption, we have M ρ ≅τ[α↦ρ]M

′ ρ (5).
By the fundamental lemma, we have M ′ ∼∀α. τ M ′.
Hence, we have M ′ ρ ∼τ M ′ ρ′ [(α ↦ R) ∶ (α↦ ρ)↔ (α ↦ ρ′)].
We conclude (4) by respect for observational equivalence with (5).
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Properties

Identity extension
Let η ∶ δ ↔ δ where η(α) is observational equivalence at type δ(α) for all
α ∈ dom(δ). Then M ∼τ M ′ [η ∶ δ ↔ δ] iff M ≅δ(τ) M

′.
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Tools

Value arguments with open types

M ∼τ1→τ2 M
′ [η] iff

∀V,V ′, (V ∼τ1 V
′ [η] Ô⇒ M V ∼τ2 M

′ V ′ [η])

The implication follows from the definition.
The reverse is the value arguments lemma extended to open terms.
Hence, we could have used this as a definition.

Admissibility

A relation R is admissible iff it is the closure of a relation on values that
is compatible with observational equivalence.
We may consider sets of ♢τ↔τ ′ R, admissible by construction, of the form

{(N,N ′) ∣ ∃(M,M ′) ∈ R, N ≅τ M ∧M
′ ≅τ ′ N

′}
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Applications Inhabitants of ∀α.α → α

Fact If M ∶ ∀α.α → α, then M ≅∀α.α→α id where id
△
== Λα.λx ∶α.x.

Proof By extensionality, it suffices to show that for any ρ and N ∶ ρ we
have M ρ N ≅ρ id ρ N . In fact, by closure by inverse reduction, it
suffices to show M ρ N ≅ρ N or, equivalently, M ρ N ∼ρ N (1).

By parametricity, we have M ∼∀α.α→α M (2).

Consider R equal to ♢ρ↔ρ (N,N) and η be α ↦ R ∶ ρ↔ ρ.
R is admissible by construction.
(Reminder: R(P,P ′) iff P ≅ρ N ∧N ≅ρ P ′.)

Since R(N,N), we have N ∼α N [η] by definition.
Hence, from (2), we have M ρ N ∼α M ρ N [η],
i.e. R(M ρ N,M ρ N), which implies (1) by definition of R.
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α → α. If M ∶ σ, then either

M ≅σ M1
△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ M2

△
== Λα.λx1 ∶α.λx2 ∶α. x2

Proof By extensionality, it suffices to show that
for either i = 1 or i = 2, for any closed type ρ and N1,N2 ∶ ρ, we have
M ρ N1 N2 ≅ρ Mi ρ N1 N2, or, by closure by inverse reduction and replacing
observational by logical equivalence that M ρ N1 N2 ≅σ Ni (1).

?
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Applications Inhabitants of ∀α.α → α → α
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That is, the inhabitants of ∀α. (α → α)→ α → α are the Church naturals.

65⟨3⟩ 80 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let σ be ∀α. (α → α)→ α → α. If M ∶ σ, then M ≅σ Mn for some

integer n, where Mn
△
== Λα.λf ∶α → α.λx ∶α.fn x.

Proof

?

65⟨4⟩ 80 ◁



Introduction Normalization Observational equivalence Logical rel in λst Logical rel. in F Applications Extensions

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let σ be ∀α. (α → α)→ α → α. If M ∶ σ, then M ≅σ Mn for some

integer n, where Mn
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Proof By extensionality, and value arguments, it suffices to show that there
exists n such for any closed type ρ and closed values V1 ∶ ρ→ ρ and V2 ∶ ρ, we
have M ρ V1 V2 ≅ρ Mn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1
V2, (1).
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Let V1 ∶ ρ→ ρ and V2 ∶ ρ be fixed.
Let η be α ↦ R where R ∶ N↔ ρ is defined as ♢

N↔ρ{(k, V
k
1 V2) ∣ k ∈ N}.

We have 0 ∼α V2 [η] since R(0, V2) (reduce the right-hand side for k = 0).

We also have succ ∼α→α V1 [η]. Indeed,
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′ ≅ρ V1 (V k
1
V2) ⇓ V k+1

1
V2. Hence

R(succ N,V1 N
′), that is succ N ∼α V1 N

′ [η].
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i.e. R(M N succ 0,M ρ V1 V2) which means that there exists n such that
M N succ 0 ∼σ n and M ρ V1 V2 ∼ρ V n
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1
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Since, M N succ 0 is independent of ρ, V1, and V2, and all n are in different
equivalence classes at the base type N, we may conclude (1).
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have M ρ V1 V2 ≅ρ Mn ρ V1 V2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ V1 V2 ∼ρ V n

1
V2, (1).

Let V1 ∶ ρ→ ρ and V2 ∶ ρ be fixed. Let Z and S be M0 nat and M1 nat.
Let η be α ↦ R where R ∶ nat↔ ρ defined as ♢Rnat↔ρ{(S

k Z, V k
1 V2) ∣ k ∈ N}.

We have Z ∼α V2 [η] since R(Z, V2) (reduce both sides for k = 0).

We also have S ∼α→α V1 [η].

Indeed,

?
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1

V2.
Therefore R(SN,V1 N

′), i.e. S N ∼α V1 N
′ [η].
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By parametricity, we have M ∼nat M .

?
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i.e. R(M nat S Z,M ρ V1 V2) which means that there exists n such that
M nat S Z ∼nat S

n Z and M ρ V1 V2 ∼ρ V n
1

V2.

Since, M nat S Z is independent of n, we may conclude (1), provided the Sn Z
are all in different equivalence classes.
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Applications sort ∶ ∀α. (α → α → bool) → list α

Property Assume sort ∶ ∀α. (α → α → bool)→ list α → list α (2). Then

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)
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Applications sort ∶ ∀α. (α → α → bool) → list α

Proof We have sort ∼σ sort where σ is ∀α. (α → α → bool) → list α → list α.

By definition, for all ρ1, ρ2, and all admissible relations R ∶ δ1↔ δ2, where δi is
α ↦ ρi for all cp1, cp2,

∀cp1, cp2, cp1∼α→α→B cp2 [η] Ô⇒
∀V1, V2, (V1 ∼list α V2 [η] Ô⇒ sort ρ1 cp1 V1 ∼list α sort ρ2 cp2 V2 [η])

(3)
(4)

We may restrict R(N1,N2), i.e. N1 ∼α N2 to N2 = g N1 for some function g.
Then N1 ∼list α N2 [η] iff N2 =map g N1. Thus, (4) becomes

∀V1 ∶ list ρ, sort ρ2 cp2 (map g V1) =map g (sort ρ1 cp1 V1)

While (3) means

∀V1, V
′
1
, V2, V

′
2
, V1 ∼α V2 [η] ∧ V ′1 ∼α V ′

2
[η] Ô⇒ cp

1
V1 V

′
1
∼B cp

2
V2 V

′
2
[η]

i.e.
∀V,W ∶ ρ, cp

1
V W ≃B cp

2
(g V ) (g W )
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Encodable features Natural numbers

We have shown that all expressions of type nat behave as natural
numbers. Hence, natural numbers are definable.

Still, we could also provide a type nat of natural numbers as primitive.

Then, if M ∶ nat and M ′ ∶ nat, we have M ≃nat M ′ iff there exists V ∶ nat
such that M ⇓ V and M ′ ⇓ V .

Then logical equivalence is defined as M ∼nat M ′ [η] iff M ≃nat M ′

All properties are preserved.
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Encodable features Products

Given closed types τ1 and τ2, we defined

τ1 × τ2
△
== ∀α. (τ1 → τ2 → α)→ α

(M1,M2)
△
== Λα.λx ∶τ1 → τ2 → α.x M1 M2

M.i
△
== M (λx1 ∶τ1. λx2 ∶τ2. xi)

Facts

If M ∶ τ1 × τ2, then M ≅τ1×τ2 (M1,M2) for some M1 ∶ τ1 and M2 ∶ τ2.

If M ∶ τ1 × τ2 and M.1 ≅τ1 M1 and M.2 ≅τ2 M2, then M ≅τ1×τ2 (M1,M2)

Primitive pairs

We may instead extend the language with primitive pairs.
Then, we define:

M ∼τ1×τ2 M
′ [η ∶ δ ↔ δ′] ⇐⇒ ∀i ∈ {1,2}, M.i ∼τi M

′.i [η ∶ δ↔ δ′]
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Representation independence

A client of an existential type ∃α. τ should not see the difference between
two implementations N1 and N2 of ∃α. τ with witness types σ1 and σ2.

A client M has type ∀α. τ → τ ′ with α ∉ fv(τ ′); it must use the argument
parametrically, and the result is independent of the witness type.

Assume that σ1 and σ2 are two closed representation types and
R ∶ σ1 ↔ σ2 is an admissible relation between them.

Suppose that N1 ∶ τ[α ↦ σ1] and N2 ∶ τ[α ↦ σ2] are two equivalent
implementations of the operations, i.e. such that N1 ∼τ N2 [η ∶ δ1 ↔ δ2]
where η ∶ α ↦ R and δ1 ∶ α↦ σ1 and δ2 ∶ α ↦ σ2.

A client M satisfies M ∼∀α. τ→τ ′ M [η ∶ δ ↔ δ′] and, in fact,
M ∼∀α. τ→τ ′ M since α does not appear free in τ ′.

Thus M σ1 N1 ≅τ ′ M σ2 N2. That is, the behavior with the
implementation N1 with representation type σ1 is indistinguishable from
the behavior with implementation N2 with representation type σ2.
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Existential types

Definition?
pack N1, ρ1 as ∃α. τ ∼∃α. τ pack N2, ρ2 as ∃α. τ [η ∶ δ1 ↔ δ2]
iff there exist R ∶ ρ1 ↔ ρ2,

N1 ∼τ N2 [(η,α ↦ R) ∶ (δ1, α ↦ ρ1)↔ (δ2, α ↦ ρ2)]

This definition is correct but incomplete as it only relates terms of
existential types in head normal forms.
We may extend it to a relation between arbitrary terms by anti-reduction
closure.
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Alternative definition

Instead of defining the relation on terms, we may define the relation on
values and lift it to a relation on terms by anti-reduction closure.

tt ≈B tt [η] ∧ ff ≈B ff [η]
λx ∶τ.M1 ≈τ→τ ′ λx ∶τ.M2 [η]
⇐⇒ ∀V1, V2, V1 ≈τ V2 [η] Ô⇒ (λx ∶τ.M1) V1 ∼τ2 (λx ∶τ

′.M2) V2 [η]
V1 ≈α V2 [η]
⇐⇒ η(α)(V1, V2)

Λα.V1 ≈∀α. τ Λα.V2 [η]
⇐⇒ ∀ρ1, ρ2,R ∶ ρ1 ↔ ρ2, (Λα.V1) ρ1 ∼τ (Λα.V2) ρ2 [η,α ↦ R]

pack V1, ρ1 as ∃α. τ ≈∃α. τ pack V2, ρ2 as ∃α. τ [η]
⇐⇒ ∃R ∶ ρ1 ↔ ρ2, V1 ≈η,ρ↦R V2 [η,α ↦ R]

M1 ∼τ M2 [η] ⇐⇒ ∃V1, V2,M1 ⇓ V1 ∧M2 ⇓ V2 ∧ V1 ≈τ V2 [η]

where R ∶ ρ1 ↔ ρ2 means a relation between values of type τ1 and τ2.
(We may require compatibility with observational equivalence on values.)
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Alternative definition (variant)

VJBKη = {(tt, tt), (ff ,ff)}

VJτ → τ ′Kη = {(λx ∶τ.M1, λx ∶τ.M2) ∣ ∀(V1, V2) ∈ VJτKη,

((λx ∶τ.M1) V1, (λx ∶τ.M2) V2) ∈ EJτ ′Kη}

VJαKη = η(α)

VJ∀α. τKη = {(Λα.V1,Λα.V2) ∣ ∀ρ1, ρ2,R ∶ ρ1 ↔ ρ2,

((Λα.V1) ρ1, (Λα.V2) ρ2 ∈ EJτKη,α↦R}

VJ∃α. τKη = {(pack V1, ρ1 as ∃α. τ,pack V2, ρ2 as ∃α. τ)
∣ ∃R ∶ ρ1 ↔ ρ2, (V1, V2) ∈ VJτKη,α↦R}

EJτKη = {(M1,M2) ∣ ∃(V1, V2) ∈ VJτKη,M1 ⇓ V1 ∧M2 ⇓ V2}
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Existential types Example

Consider V1

△
== (not, tt), and V2

△
== (succ,0) and σ

△
== (α → α) × α.

Let R ∶ bool↔ nat be {(tt,2n), (ff ,2n + 1) ∣ n ∈ N} and η be α ↦ R.

We have (V1, V2) ∈ VJσKη.

Hence, (pack V1,bool as ∃α. σ, pack V2,nat as ∃α. σ) ∈ VJ∃α. σK.

Proof of ((not, tt), (succ,0)) ∈ VJ(α → α) × αKη (1)

?
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Hence, (pack V1,bool as ∃α. σ, pack V2,nat as ∃α. σ) ∈ VJ∃α. σK.

Proof of ((not, tt), (succ,0)) ∈ VJ(α → α) × αKη (1)

We have (tt,0) ∈ VJαKη, since (tt,0) ∈ R.
We also have (not, succ) ∈ VJα → αKη which proves (1).

?
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Existential types Example

Consider V1

△
== (not, tt), and V2

△
== (succ,0) and σ

△
== (α → α) × α.

Let R ∶ bool↔ nat be {(tt,2n), (ff ,2n + 1) ∣ n ∈ N} and η be α ↦ R.

We have (V1, V2) ∈ VJσKη.

Hence, (pack V1,bool as ∃α. σ, pack V2,nat as ∃α. σ) ∈ VJ∃α. σK.

Proof of ((not, tt), (succ,0)) ∈ VJ(α → α) × αKη (1)

We have (tt,0) ∈ VJαKη, since (tt,0) ∈ R.
We also have (not, succ) ∈ VJα → αKη which proves (1).

Indeed, assume (W1,W2) ∈ VJαKη. Then (W1,W2) is either of the form

● (tt,2n) and (not W1, succ W2) reduces to (ff,2n + 1), or
● (ff,2n + 1) and (not W1, succ W2) reduces to (tt,2n + 2).

In both cases, (not W1, succ W2) reduces to a pair in R.
Hence, (not W1, succW2) ∈ EJαKη.
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Extensions to products and sums

VJτ × τ ′Kη = {(V1, V2) ∣ V1 ∈ VJτKη ∧ V2 ∈ VJτ ′Kη}

VJτ + τ ′Kη = {(inj1 V1, inj1 V2) ∣ (V1, V2) ∈ VJτKη} ∪
{(inj2 V2, inj2 V2) ∣ (V1, V2) ∈ VJτ ′Kη}
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How do we deal with recursive types?

Assume that we allow equi-recursive types.

τ ∶∶= . . . ∣ µα.τ

A naive definition would be

VJµα.τKη = VJ[α ↦ µα.τ]τKη

But this is ill-founded.

The solution is to use indexed-logical relations.

We use a sequence of decreasing relations indexed by integers (fuel),
which is consumed during unfolding of recursive types.
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Step-indexed logical relations (a taste)

We define a sequence VkJτKη indexed by natural numbers n ∈ N that
relates values of type τ up to n reduction steps.

VkJBKη = {(tt, tt), (ff ,ff)}
VkJτ → τ ′Kη = {(λx ∶τ.M1, λx ∶τ.M2) ∣ ∀j < k,∀(N1,N2) ∈ VjJτKη,

((λx ∶τ.M1) N1, (λx ∶τ.M2) N2) ∈ EjJτ ′Kη}
VkJαKη = η(α).k

VkJ∀α. τKη = {(Λα1.V1,Λα2.V2) ∣ ∀ρ1, ρ2,R ∈ Rk(ρ1, ρ2),
∀j < k, ((Λα.V1) ρ1, (Λα.V2) ρ2) ∈ VjJτKη,ρ↦R}

VkJµα.τKη = Vk−1J[α ↦ µα.τ]τKη

EkJτKη = {(M1,M2) ∣ ∀j < k,M1 ⇓j V1

Ô⇒ ∃V2,M2 ⇓ V2 ∧ (V1, V2) ∈ Vk−jJτKη}

By ⇓j means reduces in j-steps
Rj(ρ1, ρ2) is a sequence of decreasing relations between closed values of
closed types ρ1 and ρ2 of length (at least) j.
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Step-indexed logical relations (a taste)

The relation is asymmetric.

If ∆;Γ ⊢M1,M2 ∶ τ we define ∆;Γ ⊢M1 ≾M2 ∶ τ as

∀η ∈ Rk
∆(δ1, δ2),∀(γ1, γ2) ∈ GkJΓK, (γ1(δ1(M1)), γ2(δ2(M2)) ∈ EkJτKη

and

∆;Γ ⊢M1 ∼M2 ∶ τ
△
== ⋀

⎧⎪⎪
⎨
⎪⎪⎩

∆;Γ ⊢M1 ≾M2 ∶ τ

∆;Γ ⊢M2 ≾M1 ∶ τ

There are some subtleties...
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