
MPRI 2.4, Functional programming and type systems

Metatheory of System F

Didier Rémy

October 27, 2017



Plan of the course

Metatheory of System F

ADTs, Existential types, GATDs



Abstract Data types, Existential

types, GADTs



Typed closure conversion Typed closure conversion

Contents

Typed closure conversion

Typed closure conversion

Environment passing

Closure passing

19 111 ◁



Typed closure conversion Typed closure conversion

Type-preserving compilation

Compilation is type-preserving when each intermediate language is
explicitly typed, and each compilation phase transforms a typed program
into a typed program in the next intermediate language.

Why preserve types during compilation?

● it can help debug the compiler;

● types can be used to drive optimizations;

● types can be used to produce proof-carrying code;

● proving that types are preserved can be the first step towards
proving that the semantics is preserved [Chlipala, 2007].

20 111 ◁



Typed closure conversion Typed closure conversion

Type-preserving compilation

Type-preserving compilation exhibits an encoding of programming
constructs into programming languages with usually richer type systems.

The encoding may sometimes be used directly as a programming idiom in
the source language.

For example:

● Closure conversion requires an extension of the language with
existential types, which happens to be very useful on their own.

● Closures are themselves a simple form of objects, which can also be
explained with existential types.

● Defunctionalization may be done manually on some particular
programs, e.g. in web applications to monitor the computation.

21 111 ◁



Typed closure conversion Typed closure conversion

Type-preserving compilation

A classic paper by Morrisett et al. [1999] shows how to go from System F
to Typed Assembly Language, while preserving types along the way. Its
main passes are:

● CPS conversion fixes the order of evaluation, names intermediate
computations, and makes all function calls tail calls;

● closure conversion makes environments and closures explicit, and
produces a program where all functions are closed;

● allocation and initialization of tuples is made explicit;

● the calling convention is made explicit, and variables are replaced
with (an unbounded number of) machine registers.

22 111 ◁



Typed closure conversion Typed closure conversion

Translating types

In general, a type-preserving compilation phase involves not only a
translation of terms, mapping M to JMK, but also a translation of types,
mapping τ to JτK, with the property:

Γ ⊢M ∶ τ implies JΓK ⊢ JMK ∶ JτK

The translation of types carries a lot of information: examining it is often
enough to guess what the translation of terms will be.

See the old lecture on type closure conversion.

23 111 ◁



Typed closure conversion Typed closure conversion

Closure conversion

First-class functions may appear in the body of other functions. hence,
their own body may contain free variables that will be bound to values
during the evaluation in the execution environment.

Because they can be returned as values, and thus used outside of their
definition environment, they must store their execution environment in
their value.

A closure is the packaging of the code of a first-class function with its
runtime environment, so that it becomes closed, i.e. independent of the
runtime environment and can be moved and applied in another runtime
environment.

Closures can also be used to represent recursive functions and objects
(in the object-as-record-of-methods paradigm).

24 111 ◁



Typed closure conversion Typed closure conversion

Source and target

In the following,

● the source calculus has unary λ-abstractions, which can have free
variables;

● the target calculus has binary λ-abstractions, which must be closed.

Closure conversion can be easily extended to n-ary functions, or
n-ary functions may be uncurried in a separate, type-preserving
compilation pass.

25 111 ◁



Typed closure conversion Typed closure conversion

Variants of closure conversion

There are at least two variants of closure conversion:

● in the closure-passing variant,

the closure and the environment are a single memory block;

● in the environment-passing variant,

the environment is a separate block, to which the closure points.

The impact of this choice on the translation of terms is minor.

Its impact on the translation of types is more important:
the closure-passing variant requires more type-theoretic machinery.

26 111 ◁



Typed closure conversion Typed closure conversion

Closure-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(clo, x).
let ( , x1, . . . , xn) = clo in JaK in

(code , x1, . . . , xn)

Ja1 a2K = let clo = Ja1K in
let code = proj0 clo in

code (clo, Ja2K)

(The variables code and clo must be suitably fresh.)

Important! The layout of the environment must be known only at the
closure allocation site, not at the call site. In particular, proj0 clo need
not know the size of clo.

27 111 ◁



Typed closure conversion Typed closure conversion

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(env , x).
let (x1, . . . , xn) = env in JaK in

(code , (x1, . . . , xn))

Ja1 a2K = let (code , env) = Ja1K in

code (env , Ja2K)

Questions: How can closure conversion be made type-preserving?

The key issue is to find a sensible definition of the type translation.
In particular, what is the translation of a function type, Jτ1 → τ2K?

28⟨4⟩ 111 ◁



Typed closure conversion Typed closure conversion

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(env , x).
let (x1, . . . , xn) = env in JaK in

(code , (x1, . . . , xn))

Assume Γ ⊢ λx.a ∶ τ1 → τ2.
Assume, w.l.o.g.. dom(Γ) = fv(λx.a) = {x1, . . . , xn}.

Write JΓK for the tuple type x1 ∶ Jτ
′

1
K; . . . ;xn ∶ Jτ

′

nK where Γ is
x1 ∶ τ

′

1
; . . . ;xn ∶ τ

′

n. We also use JΓK as a type to mean Jτ ′
1
K × . . . × Jτ ′nK.

We have Γ, x ∶ τ1 ⊢ a ∶ τ2, so in environment JΓK, x ∶ Jτ1K, we have

● env has type JΓK,
● code has type (JΓK × Jτ1K)→ Jτ2K, and
● the entire closure has type ((JΓK × Jτ1K)→ Jτ2K) × JΓK.

Now, what should be the definition of Jτ1 → τ2K?
28⟨4⟩ 111 ◁



Typed closure conversion Typed closure conversion

Towards a type translation

Can we adopt this as a definition?

Jτ1 → τ2K = ((JΓK × Jτ1K)→ Jτ2K) × JΓK

Naturally not. This definition is mathematically ill-formed: we cannot
use Γ out of the blue.

Hmm... Do we really need to have a uniform translation of types?

29 111 ◁



Typed closure conversion Typed closure conversion

Towards a type translation

Yes, we do.

We need a uniform translation of types, not just because it is nice to
have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

if . . . then λx.x + y else λx.x

Furthermore, we want function invocations to be translated uniformly,
without knowledge of the size and layout of the closure’s environment.

So, what could be the definition of Jτ1 → τ2K?

30 111 ◁



Typed closure conversion Typed closure conversion

The type translation

The only sensible solution is:

Jτ1 → τ2K = ∃α.((α × Jτ1K)→ Jτ2K) × α

An existential quantification over the type of the environment abstracts
away the differences in size and layout.

Enough information is retained to ensure that the application of the code
to the environment is valid: this is expressed by letting the variable α

occur twice on the right-hand side.

31 111 ◁



Typed closure conversion Typed closure conversion

The type translation

The existential quantification also provides a form of security: the caller
cannot do anything with the environment except pass it as an argument
to the code; in particular, it cannot inspect or modify the environment.

For instance, in the source language, the following coding style
guarantees that x remains even, no matter how f is used:

let f = let x = ref 0 in λ(). x ∶= (x + 2); ! x

After closure conversion, the reference x is reachable via the closure of f .
A malicious, untyped client could write an odd value to x.
However, a well-typed client is unable to do so.

This encoding is not just type-preserving, but also fully abstract: it
preserves (a typed version of) observational
equivalence [Ahmed and Blume, 2008].

32 111 ◁



Typed closure conversion Typed closure conversion

Contents

Typed closure conversion

Typed closure conversion

Environment passing

Closure passing

64 111 ◁



Typed closure conversion Typed closure conversion

Typed closure conversion

Typed closure conversion

Environment passing

Closure passing

65 111 ◁



Typed closure conversion Typed closure conversion

Typed closure conversion

Everything is now set up to prove that, in System F with existential types:

Γ ⊢M ∶ τ implies JΓK ⊢ JMK ∶ JτK

66 111 ◁



Typed closure conversion Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).

Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =
λ(env ∶ JΓK, x ∶ Jτ1K).

let (x1, . . . , xn ∶ JΓK) = env in

JMK
in

pack JΓK, (code , (x1, . . . , xn))
as ∃α.((α × Jτ1K)→ Jτ2K) ×α

We find JΓK ⊢ Jλx ∶τ1.MK ∶ Jτ1 → τ2K, as desired.

67 111 ◁



Typed closure conversion Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢M ∶ τ1 → τ2 and Γ ⊢M1 ∶ τ1.

JM M1K = let α, (code ∶ (α × Jτ1K)→ Jτ2K, env ∶ α) =
unpack JMK in

code (env , JM1K)

We find JΓK ⊢ JM M1K ∶ Jτ2K, as desired.

68 111 ◁



Typed closure conversion Typed closure conversion

Environment-passing closure conversion recursion

Recursive functions can be translated in this way, known as the “fix-code”
variant [Morrisett and Harper, 1998] (leaving out type information):

Jµf.λx.MK = let rec code (env , x) =
let f = pack (code , env) in
let (x1, . . . , xn) = env in

JMK in
pack (code , (x1, . . . , xn))

where {x1, . . . , xn} = fv(µf.λx.M).

The translation of applications is unchanged: recursive and non-recursive
functions have an identical calling convention.

What is the weak point of this variant?

A new closure is allocated at every call.

69 111 ◁



Typed closure conversion Typed closure conversion

Environment-passing closure conversion recursion

Instead, the “fix-pack” variant [Morrisett and Harper, 1998] uses an
extra field in the environment to store a back pointer to the closure:

Jµf.λx.MK = let code (env , x) =
let (f ,x1, . . . , xn) = env in

JMK
in

let rec clo = (code , (clo, x1, . . . , xn)) in
clo

where {x1, . . . , xn} = fv(µf.λx.M).

This requires general, recursively-defined values. Closures are now cyclic

data structures.

70 111 ◁



Typed closure conversion Typed closure conversion

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in

JMK in
let rec clo ∶ Jτ1 → τ2K =

pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) ×α)

in clo

Problem?

71 111 ◁



Typed closure conversion Typed closure conversion

Environment-passing closure conversion recursion

The recursive function may be polymorphic, but recursive calls are
monomorphic...

We can generalize the encoding afterwards,

JΛβ⃗.µf ∶ τ1 → τ2.λx.MK = Λβ⃗.Jµf ∶ τ1 → τ2.λx.MK

whenever the right-hand side is well-defined.

This allows the indirect compilation of polymorphic recursive functions as
long as the recursion is monomorphic.

Fortunately, the encoding can be straightforwardly adapted to directly

compile polymorphically recursive functions into polymorphic closure.

72 111 ◁



Typed closure conversion Typed closure conversion

Environment-passing closure conversion recursion

Jµf ∶∀β⃗. τ1 → τ2. λx.MK =

let code ∶ ∀β⃗. (Jf ∶ ∀β⃗. τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK, x ∶ Jτ1K).

let (f,x1, . . . , xn) ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK = env in

JMK in

let rec clo ∶ J∀β⃗. τ1 → τ2K =

Λβ⃗.pack Jf ∶ ∀β⃗. τ1 → τ2,ΓK, (code β⃗, (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) × α)

in clo

The encoding is simple.

However, this requires the introduction of recursive non-functional values
“let rec x = v”. While this is a useful construct, it really alters the
operational semantics and requires updating the type soundness proof.

73 111 ◁



Typed closure conversion Typed closure conversion

Typed closure conversion

Typed closure conversion

Environment passing

Closure passing

74 111 ◁



Typed closure conversion Typed closure conversion

Closure-passing closure conversion

Jλx.MK = let code = λ(clo, x).
let ( , x1, . . . , xn) = clo in

JMK
in (code , x1, . . . , xn)

JM1 M2K = let clo = JM1K in
let code = proj0 clo in

code (clo, JM2K)

There are two difficulties:

● a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

● the first field of the closure contains a function that expects the
closure itself as its first argument.

75⟨5⟩ 111 ◁



Typed closure conversion Typed closure conversion

Closure-passing closure conversion

There are two difficulties:

● a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

● the first field of the closure contains a function that expects the
closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

● existential quantification over the tail of a tuple (a.k.a. a row);

● recursive types.

75⟨5⟩ 111 ◁



Typed closure conversion Typed closure conversion

Tuples, rows, row variables

The standard tuple types that we have used so far are:

τ ∶∶= . . . ∣ Π R – types
R ∶∶= ǫ ∣ (τ ;R) – rows

The notation (τ1 × . . . × τn) was sugar for Π (τ1; . . . ; τn; ǫ).

Let us now introduce row variables and allow quantification over them:

τ ∶∶= . . . ∣ Π R ∣ ∀ρ. τ ∣ ∃ρ.τ – types
R ∶∶= ρ ∣ ǫ ∣ (τ ;R) – rows

This allows reasoning about the first few fields of a tuple whose length is
not known.

76 111 ◁



Typed closure conversion Typed closure conversion

Typing rules for tuples

The typing rules for tuple construction and deconstruction are:

Tuple

∀i. ∈ [1, n] Γ ⊢Mi ∶ τi

Γ ⊢ (M1, . . . ,Mn) ∶ Π (τ1; . . . ; τn; ǫ)

Proj

Γ ⊢M ∶ Π (τ1; . . . ; τi;R)

Γ ⊢ proji M ∶ τi

These rules make sense with or without row variables

Projection does not care about the fields beyond i. Thanks to row
variables, this can be expressed in terms of parametric polymorphism:

proji ∶ ∀α. 1 . . . αiρ. Π (α1; . . . ;αi;ρ) → αi

77 111 ◁



Typed closure conversion Typed closure conversion

About Rows

Rows were invented by Wand and improved by Rémy in order to ascribe
precise types to operations on records.

The case of tuples, presented here, is simpler.

Rows are used to describe objects in Objective Caml
[Rémy and Vouillon, 1998].

Rows are explained in depth by Pottier and Rémy
[Pottier and Rémy, 2005].

78 111 ◁



Typed closure conversion Typed closure conversion

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π ( a tuple...

(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment

)

See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Why is it ∃ρ. µα. τ and not µα. ∃ρ. τ

The type of the environment is fixed once for all and does not change at

each recursive call.

Question: Notice that ρ appears only once. Any comments?
79 111 ◁



Typed closure conversion Typed closure conversion

Closure-passing closure conversion

Let Clo(R) abbreviate µα.Π ((α × Jτ1K)→ Jτ2K;R).

Let UClo(R) abbreviate its unfolded version,
Π ((Clo(R) × Jτ1K)→ Jτ2K;R).

We have Jτ1 → τ2K = ∃ρ.Clo(ρ).

Jλx ∶Jτ1K.MK = let code ∶ (Clo(JΓK) × Jτ1K)→ Jτ2K =
λ(clo ∶ Clo(JΓK, x ∶ Jτ1K).
let ( , x1, . . . , xn) ∶ UCloJΓK = unfold clo in

JMK in
pack JΓK, (fold (code , x1, . . . , xn))
as ∃ρ.Clo(ρ)

JM1 M2K = let ρ, clo = unpack JM1K in
let code ∶ (Clo(ρ) × Jτ1K)→ Jτ2K =

proj0 (unfold clo) in
code (clo, JM2K)

80 111 ◁



Typed closure conversion Typed closure conversion

Closure-passing closure conversion recursive functions

In the closure-passing variant, recursive functions can be translated as:

Jµf.λx.MK = let code = λ(clo, x).
let f = clo in

let ( , x1, . . . , xn) = clo in

JMK
in (code , x1, . . . , xn)

where {x1, . . . , xn} = fv(µf.λx.M).

No extra field or extra work is required to store or construct a
representation of the free variable f : the closure itself plays this role.

However, this untyped code can only be typechecked when recursion is
monomorphic.

Exercise:

Check well-typedness with monomorphic recursion.
81 111 ◁



Typed closure conversion Typed closure conversion

Closure-passing closure conversion recursive functions

The problem to adapt this encoding to polymorphic recursion is that
recursive occurrences of f are rebuilt from the current invocation of the
closure, i.e. is monomorphic since the closure is invoked after type
specialization.

By contrast, in the environment passing encoding, the environment
contained a polymorphic binding for the recursive calls that was filled
with the closure before its invokation, i.e. with a polymorphic type.

Fortunately, we may slightly change the encoding, using a recursive
closure as in the type-passing version, to allow typechecking in System F.

82 111 ◁



Typed closure conversion Typed closure conversion

Closure-passing closure conversion recursive functions

Let τ be ∀α⃗. τ1 → τ2 and Γf be f ∶ τ,Γ where β⃗ # Γ

Jµf ∶τ . λx.MK = let code =

Λβ⃗.λ(clo ∶ CloJΓfK, x ∶ Jτ1K).

let ( code , f, x1, . . . , xn) ∶ ∀β⃗.UClo(JΓf K) =
unfold clo in

JMK in

let rec clo ∶ ∀β⃗.∃ρ.Clo(ρ) = Λβ⃗.

pack JΓK, (fold (code β⃗, clo, x1, . . . , xn)) as ∃ρ.Clo(ρ)
in clo

Remind that Clo(R) abbreviates µα.Π ((α × Jτ1K)→ Jτ2K;R). Hence, β⃗
are free variables of Clo(R).

Here, a polymorphic recursive function is directly compiled into a
polymorphic recursive closure. Notice that the type of closures is
unchanged so the encoding of applications is also unchanged.

83 111 ◁



Typed closure conversion Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in

JMiK
in

let rec clo1 = (code1, (clo1, clo2, x1, . . . , xn))
and clo2 = (code2, (clo1, clo2, x1, . . . , xn)) in

clo1, clo2

84⟨4⟩ 111 ◁



Typed closure conversion Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in

JMiK
in

let rec env = (clo1, clo2, x1, . . . , xn)
and clo1 = (code1, env)
and clo2 = (code2, env) in

clo1, clo2

84⟨6⟩ 111 ◁



Typed closure conversion Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

let code i = λ(clo, x).
let ( , f1, f2, x1, . . . , xn) = clo in JMiK

in

let rec clo1 = (code1, clo1, clo2, x1, . . . , xn)
and clo2 = (code2, clo1, clo2, x1, . . . , xn)

in clo1, clo2

Question: Can we share the closures c1 and c2 in case n is large?

84⟨7⟩ 111 ◁



Typed closure conversion Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

let code1 = λ(clo, x).
let ( code1, code2, f1, f2, x1, . . . , xn) = clo in JM1K in

let code2 = λ(clo, x).
let ( code2, f1, f2, x1, . . . , xn) = clo in JM2K in

let rec clo1 = (code1, code2, clo1, clo2, x1, . . . , xn) and clo2 = c1.tail
in clo1, clo2

● clo1.tail returns a pointer to the tail (code2, clo1, clo2, x1, . . . , xn)
of clo1 without allocating a new tuple.
● This is only possible with some support from the GC (and
extra-complexity and runtime cost for GC)

84⟨6⟩ 111 ◁



Typed closure conversion Typed closure conversion

Optimizing representations

Can closure passing and environment passing be mixed?

No because the calling-convention (i.e., the encoding of application)
must be uniform.

However, their is some flexibility in the representation of the closure.
For instance, the following change is completely local:

Jλx.MK = let code = λ(clo, x).

let ( , ( x1, . . . , xn ) ) = clo in JMK in

(code , ( x1, . . . , xn ) )

JM1 M2K = let clo = JM1K in
let code = proj0 clo in

code (clo, JM2K)

Applications? When many definitions share the same closure, the closure
(or part of it) may be shared.

85 111 ◁



Typed closure conversion Typed closure conversion

Encoding of objects

The closure-passing representation of mutually recursive functions is
similar to the representations of objects in the
object-as-record-of-functions paradigm:

A class definition is an object generator:

class c (x1, . . . xq){
meth m1 =M1

. . .

meth mp =Mp

}

Given arguments for parameter x1, . . . x1, it will build recursive methods
m1, . . .mn.

86 111 ◁



Typed closure conversion Typed closure conversion

Encoding of objects

A class can be compiled into an object closure:

letm =
letm1 = λ(m,x1, . . . , xq).M1 in

. . .

letmp = λ(m,x1, . . . , xq).Mp in

{m1, . . . ,mp} in

λx1 . . . xq. (m,x1, . . . xq)

Each mi is bound to the code for the corresponding method.
The code of all methods are combined into a record of methods,
which is shared between all objects of the same class.

Calling method mi of an object p is

(proj0 p).mi p

How can we type the encoding?

87 111 ◁



Typed closure conversion Typed closure conversion

Typed encoding of objects

Let τi be the type of Mi, and row R describe the types of (x1, . . . xq).

Let Clo(R) be µα.Π({(mi ∶ α → τi)
i∈1..n};R) and UClo(R) its

unfolding.

Fields R are hidden in an existential type ∃ρ. µα.Π({(mi ∶ α → τi)
i∈I};ρ):

letm = {
m1 = λ(m,x1, . . . xq ∶ UClo(R)). JM1K
. . .

mp = λ(m,x1, . . . xq ∶ UClo(R)). JMpK
} in

λx1. . . . λxq.pack R, fold (m,x1, . . . xq) as ∃ρ. (M,ρ)

Calling a method of an object p of type M is

p#mi
△
== let ρ, z = unpack p in (proj0 unfold z).mi z

An object has a recursive type but it is not a recursive value.

88 111 ◁



Typed closure conversion Typed closure conversion

Typed encoding of objects

Typed encoding of objects were first studied in the 90’s to understand
what objects really are in a type setting.

These encodings are in fact type-preserving compilation of (primitive)
objects.

There are several variations on these encodings. See [Bruce et al., 1999]
for a comparison.

See [Rémy, 1994] for an encoding of objects in (a small extension of) ML
with iso-existentials and universals.

See [Abadi and Cardelli, 1996, 1995] for more details on primitive objects.

89 111 ◁



Typed closure conversion Typed closure conversion

Moral of the story

Type-preserving compilation is rather fun. (Yes, really!)

It forces compiler writers to make the structure of the compiled program
fully explicit, in type-theoretic terms.

In practice, building explicit type derivations, ensuring that they remain
small and can be efficiently typechecked, can be a lot of work.

90 111 ◁



Typed closure conversion Typed closure conversion

Optimizations

Because we have focused on type preservation, we have studied only
näıve closure conversion algorithms.

More ambitious versions of closure conversion require program analysis:
see, for instance, Steckler and Wand [1997]. These versions can be made
type-preserving.

91 111 ◁



Typed closure conversion Typed closure conversion

Other challenges

Defunctionalization, an alternative to closure conversion, offers an
interesting challenge, with a simple solution [Pottier and Gauthier, 2006].

Designing an efficient, type-preserving compiler for an object-oriented

language is quite challenging. See, for instance, Chen and Tarditi [2005].

92 111 ◁


	Abstract Data types, Existential types, GADTs
	Typed closure conversion
	Typed closure conversion
	Environment passing
	Closure passing



