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Algebraic Datatypes Types Examples

In OCaml:

type ’a list =
| Nil : ’a list
| Cons : ’a ∗ ’a list → ’a list

or

type (’leaf, ’node) tree =
| Leaf : ’leaf → ( ’leaf , ’node) tree
| Node : (’leaf, ’node) tree ∗ ’node ∗ (’leaf, ’node) tree → (’leaf , ’node) tree
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Algebraic Datatypes Types General case

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)

In System F, this amounts to declaring (implicit version for conciseness):

● a new type constructor G,

● n constructors Ci ∶ ∀α⃗. τi → G α⃗

● one destructor dG ∶ ∀α⃗, γ.G α⃗ → (τ1 → γ) . . . (τn → γ) → γ

● n reduction rules dG (Ci v) v1 . . . vn −↝ vi v

Exercise
Show that this extension verifies the subject reduction and progress
axioms for constants.
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Algebraic Datatypes Types

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)

Notice that

● All constructors build values of the same type G α⃗ and are
surjective (all types can be reached)

● The definition may be recursive, i.e. G may appear in τi

Algebraic datatypes introduce iso-recursive types.
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Recursive Types

Product and sum types alone do not allow describing data structures of
unbounded size, such as lists and trees.

Indeed, if the grammar of types is τ ∶∶= unit ∣ τ × τ ∣ τ + τ , then it is clear
that every type describes a finite set of values.

For every k, the type of lists of length at most k is expressible using this
grammar. However, the type of lists of unbounded length is not.
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Equi- versus iso-recursive types

The following definition is inherently recursive:

“A list is either empty or a pair of an element and a list.” We
need something like this:

list α ◇ unit +α × list α

But what does ◇ stand for? Is it equality, or some kind of isomorphism?
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Equi- versus iso-recursive types

There are two standard approaches to recursive types, dubbed the
equi-recursive and iso-recursive approaches.

In the equi-recursive approach, a recursive type is equal to its unfolding.

In the iso-recursive approach, a recursive type and its unfolding are
related via explicit coercions.
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Equi-recursive types

In the equi-recursive approach, the usual syntax of types:

τ ∶∶= α ∣ F τ⃗ ∣ ∀β. τ

is no longer interpreted inductively. Instead, types are the regular infinite
trees built on top of this grammar.
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Finite syntax for equi-recursive types

If desired, it is possible to use finite syntax for recursive types:

τ ∶∶= α ∣ µα.(F τ⃗) ∣ µα.(∀β. τ)

We do not allow the seemingly more general µα.τ , because µα.α is
meaningless, and µα.β or µα.µβ.τ are useless. If we write µα.τ , it
should be understood that τ is contractive, that is, τ is a type
constructor application or a forall introduction.

For instance, the type of lists of elements of type α is:

µβ.(unit + α × β)
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Finite syntax for equi-recursive types

In the absence of quantifiers

Each type in this syntax denotes a unique regular tree, sometimes known
as its infinite unfolding. Conversely, every regular tree can be expressed
in this notation (possibly in more than one way).

If one builds a type-checker on top of this finite syntax, then one must be
able to decide whether two types are equal, that is, have identical infinite
unfoldings.

This can be done efficiently, either via the algorithm for comparing two
DFAs, or by unification. (The latter approach is simpler, faster, and
extends to the type inference problem.)

In the presence of quantifiers The situation is more subtle because of
α-conversion. A canonical form can still be found, so that checking
equality and first-order unification on types can still be done in
O(n logn). See [Gauthier and Pottier, 2004].
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Finite syntax for equi-recursive types

One can also prove [Brandt and Henglein, 1998] that equality is the least
congruence generated by the following two rules:

Fold/Unfold

µα.τ = [α ↦ µα.τ]τ
Uniqueness

τ1 = [α ↦ τ1]τ τ2 = [α ↦ τ2]τ
τ1 = τ2

In both rules, τ must be contractive.

This axiomatization does not directly lead to an efficient algorithm for
deciding equality, though.

There is also a simple co-inductive definition:

α = α
[α ↦ µα.Fτ⃗ ]τ⃗ = [α ↦ µα.Fτ⃗ ′]τ⃗ ′

µα.Fτ⃗ = µα.Fτ⃗ ′
[α ↦ µα.∀β. τ]τ = [α ↦ µα.∀β. τ ′]τ ′

µα.∀β. τ = µα.∀β. τ ′
Exercise
Show that µα.Aα = µα.AAα and µα.ABα = Aµα.BAα with both inductive
and co-inductive definitions. Can you do it without the Uniqueness rule?
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Type soundness for equi-recursive types

In the presence of equi-recursive types, structural induction on types is no
longer permitted, but we never used it anyway – in soundness proofs.

We only need it to prove the termination of reduction, which does not
hold any longer.

It remains true that F τ⃗1 = F τ⃗2 implies τ⃗1 = τ⃗2—this was used in the
proof of Subject Reduction.

It remains true that F1 τ⃗1 = F2 τ⃗2 implies F1 = F2—this was used the
proof of Progress.

So, the reasoning that leads to type soundness is unaffected.

(Exercise: prove type soundness for the simply-typed λ-calculus in Coq.
Then, change the syntax of types from Inductive to CoInductive.)
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Iso-recursive types

With iso-recursive types, the folding/unfolding is witnessed by an explicit
coercion (e.g. as above).

The uniqueness rule is usually not present (hence, the equality relation is
weaker).

Encoding iso-recursive types with ADT

The recursive type µβ.τ can be represented in System F by introducing a
datatype with a unique constructor:

type G α⃗ = Σ(C ∶ ∀α⃗. [β ↦ G α⃗]τ → G α⃗) where α⃗ = ftv(τ) ∖ {β}
The constructor C coerces [β ↦ G α⃗]τ to G α⃗ and the reverse coercion is
the function λx.dG x (λy. y).
Since this datatype has a unique constructor, pattern matching always
succeeds and amounts to the identity. Hence, in ⌈F ⌉, the constructor
could be removed: coercions have no computational content.
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Records

A record can be defined as

type G α⃗ = Πi∈1..n(ℓi ∶ τi) where α⃗ = ⋃i∈1..n ftv(τi)
Exercise
What are the corresponding declarations in System F?

● a new type constructor GΠ,

● 1 constructor CΠ ∶ ∀α⃗. τ1 → . . . τn → G α⃗

● n destructors dℓi ∶ ∀α⃗.G α⃗ → τi

● n reduction rules dℓi(CΠ v1 . . . vn) −↝ vi

Can a record also be used for defining recursive types?
Show type soundness for records.
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Deep pattern matching

In practice, one allows deep pattern matching and wildcards in patterns.

type nat = Z | S of nat
let rec equal n1 n2 = match n1, n2 with
| Z, Z → true
| S m1, S m2 → equal m1 m2
| → false

Then, one should check for exhaustiveness of pattern matching.

Deep pattern matching can be compiled away into shallow patterns—or
directly compiled to efficient code.

See [Le Fessant and Maranget, 2001; Maranget, 2007]
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Regular ADTs

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗)
If all occurrences of G in τi are G α⃗ then, the ADT is regular.

Non-regular ADT’s do not have this restriction.

They usually need polymorphic recursion to be manipulated.

Non regular ADT are heavily used by Okasaki [1999] for implementing
purely functional data structures
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Existential types Examples

A frozen application returning a value of type (≈ a thunk)

∃α.(α → τ) × α

Type of closures in the environment-passing variant:

Jτ1 → τ2K = ∃α.((α × Jτ1K)→ Jτ2K) × α

A possible encoding of objects:

= ∃ρ. ρ describes the state

µα. α is the concrete type of the closure

Π ( a tuple...{(α × τ1)→ τ ′
1
; ... that begins with a record...

. . .(α × τn)→ τ ′n } ; ... of method code pointers...

ρ ...and continues with the state) (a tuple of unknown length)
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Existential types

One can extend System F with existential types, in addition to universals:

τ ∶∶= . . . ∣ ∃α.τ
As in the case of universals, there are type-passing and type-erasing
interpretations of the terms and typing rules... and in the latter
interpretation, there are explicit and implicit versions.

Let’s first look at the type-erasing interpretation, with an explicit
notation for introducing and eliminating existential types.
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Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ ⊢ M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

Anything wrong?The side condition α # τ2 is mandatory here to ensure
well-formedness of the conclusion.

The side condition may also be written Γ ⊢ τ2 which implies α # τ2,
given that the well-formedness of the last premise implies α ∉ dom(Γ).
Note the imperfect duality between universals and existentials:

TAbs

Γ, α ⊢ M ∶ τ

Γ ⊢ Λα.M ∶ ∀α. τ

TApp

Γ ⊢ M ∶ ∀α. τ

Γ ⊢ M τ ′ ∶ [α ↦ τ ′]τ
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On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

Γ, α ⊢ M ∶ ∃α.τ

Γ, α ⊢ unpackM ∶ τ

Informally, this could mean that, if M has type τ for some unknown α,
then it has type τ , where α is “fresh”...

Why is this broken?

We could immediately universally quantify over α, and conclude that
Γ ⊢ Λα.unpackM ∶ ∀α. τ . This is nonsense!

Replacing the premise Γ, α ⊢ M ∶ ∃α.τ by the conjunction Γ ⊢ M ∶ ∃α.τ
and α ∈ dom(Γ) would make the rule even more permissive, so it
wouldn’t help.
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On existential elimination

A correct elimination rule must force the existential package to be used
in a way that does not rely on the value of α.

Hence, the elimination rule must have control over the user of the
package – that is, over the term M2.

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α;x ∶ τ1 ⊢ M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

The restriction α # τ2 prevents writing “let α,x = unpackM1 in x”,
which would be equivalent to the unsound “unpack M” of the previous
slide.

The fact that α is bound within M2 forces it to be treated abstractly.

In fact, M2 must be ??? in α.
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On existential elimination

In fact, M2 must be polymorphic in α: the second premise could be:

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ Λα.λx ∶τ1.M2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

or, if N2 stands for Λα.λx ∶τ1.M2:

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ N2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 N2 ∶ τ2

One could even view “unpack∃α.τ1” as a constant with all these types:

unpack∃α.τ1 ∶ (∃α.τ1)→ (∀α. (τ1 → τ2))→ τ2 α # τ2

Thus, unpack∃α.τ ∶ ∀β. ((∃α.τ) → (∀α. (τ → β)) → β)
or, better unpack∃α.τ ∶ (∃α.τ) → ∀β. ((∀α. (τ → β)) → β)
β stands for τ2: it is bound prior to α, so it cannot be instantiated to a
type that refers to α, which reflects the side condition α # τ2.
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On existential introduction

Pack

Γ ⊢ M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

If desired, “pack∃α.τ” could also be viewed as a constant with all the
types:

pack∃α.τ ∶ [α ↦ τ ′]τ → ∃α.τ

i.e. with polymorphic type:

pack∃α.τ ∶ ∀α. (τ → ∃α.τ)
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Existentials as constants

In System F, existential types can also be presented as constants

pack∃α.τ ∶ ∀α. (τ → ∃α.τ)
unpack∃α.τ ∶ ∃α. τ → ∀β. ((∀α. (τ → β))→ β)

Read:

● for any α, if you have a τ , then, for some α, you have a τ ;

● if, for some α, you have a τ , then, (for any β,) if you wish to obtain
a β out of it, you must present a function which, for any α, obtains
a β out of a τ .

This is somewhat reminiscent of ordinary first-order logic:
∃x.F is equivalent to, and can be defined as, ¬(∀x.¬F ).
Is there an encoding of existential types into universal types?
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Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

Junpack∃α.τ K ∶ J∃α.τK → ∀β. ((∀α. (JτK → β))→ β)
= λx ∶J∃α.τK. x

There is little choice, if the translation is to be type-preserving.

What is the computational content of this encoding?

A continuation-passing transform.

This encoding is due to Reynolds [1983],
although it has more ancient roots in logic.
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The semantics of existential types as constants

pack∃α.τ can be treated as a unary constructor, and unpack∃α.τ as a
unary destructor. The δ-reduction rule is:

unpack∃α.τ0 (pack∃α.ττ ′ V ) Ð→ Λβ.λy ∶∀α. τ → β. y τ ′ V

It would be more intuitive, however, to treat unpack∃α.τ0 as a binary
destructor:

unpack∃α.τ0 (pack∃α.ττ ′ V ) τ1 (Λα.λx ∶τ.M) Ð→ [α ↦ τ ′][x ↦ V ]M
Remark:

● This does not quite fit in our generic framework for constants, which
must receive all type arguments prior to value arguments.

● But our framework could be easily extended.
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The semantics of existential types as primitive

We extend values and evaluation contexts as follows:

V ∶∶= . . . pack τ ′, V as τ
E ∶∶= . . . pack τ ′, [] as τ ∣ let α,x = unpack [] inM

We add the reduction rule:

let α,x = unpack (pack τ ′, V as τ) in M Ð→ [α ↦ τ ′][x ↦ V ]M
Exercise
Show that subject reduction and progress hold.
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The semantics of existential types beware!

The reduction rule for existentials destructs its arguments.

Hence, let α,x = unpackM1 inM2 cannot be reduced unless M1 is itself
a packed expression, which is indeed the case when M1 is a value
(or in head normal form).

This contrasts with let x ∶ τ =M1 inM2 where M1 need not be evaluated
and may be an application (e.g. with call-by-name or strong reduction
strategies).
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The semantics of existential types beware!

Exercise
Find an example that illustrates why the reduction of
let α,x = unpackM1 inM2 could be problematic when M1 is not a value.

Need a hint?

Use a conditional Solution

Let M1 be if M then V1 else V2 where Vi is of the form
pack τi, Vi as ∃α.τ and the two witnesses τ1 and τ2 differ.

There is no common type for the unpacking of the two possible results
V1 and V2. The choice between those two possible results must be made,
by evaluating M1, before unpacking.
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Is pack too verbose?

Exercise
Recall the typing rule for pack:

Γ ⊢ M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

Isn’t the witness type τ ′ annotation superfluous?

● The type τ0 of M is fully determined by M . Given the type ∃α.τ of
the packed value, checking that τ0 is of the form [α ↦ τ ′]τ is the
matching problem for second-order types, which is simple.

● However, the reduction rule need the witness type τ ′. If it were not
available, it would have to be computed during reduction. The
reduction rule would then not be pure rewriting.

The explicitly-typed language need the witness type for simplicity, while
in the surface language, it could be omitted and reconstructed.
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Implicitly-typed existential types

Intuitively, pack and unpack are just type annotations that could be
dropped, leaving a let-binding instead of the unpack form.

Hence, the typing rule for implicitly-typed existential types:

Unpack

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ let x = a1 in a2 ∶ τ2

Pack

Γ ⊢ a ∶ [α ↦ τ ′]τ
Γ ⊢ a ∶ ∃α.τ

Notice, however, that this let-binding is not typechecked as syntactic
sugar for an immediate application!

The semantics of this let-binding is as before:

E ∶∶= . . . ∣ let x = E inM let x = V inM Ð→ [x↦ V ]M
Is the semantics type-erasing?
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Implicitly-typed existential types subtlety

Yes, it is.

But there is a subtlety! What about the call-by-name semantics?

We chose a call-by-value semantics, but so far, as long as there is no
side-effect, we could have chosen a call-by-name semantics (or even
perform reduction under abstraction).

In a call-by-name semantics, the let-bound expression is not reduced prior
to substitution in the body:

let x =M1 inM2 Ð→ [x ↦M1]M2

With existential types, this breaks subject reduction!

Why?
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Implicitly-typed existential types subtlety

Let τ0 be ∃α. (α → α)→ (α → α) and v0 a value of type bool. Let v1
and v2 be two values of type τ0 with incompatible witness types, e.g.
λf.λx.1 + (f (1 + x)) and λf.λx.not (f (not x)).
Let v be the function λb. if b then v1 else v2 of type bool→ τ0.

a1 = let x = v v0 in x (x (λy. y)) Ð→ v v0 (v v0 (λy. y)) = a2

We have ∅ ⊢ a1 ∶ ∃α.α → α while ∅ /⊢ a2 ∶ τ .

What happened? The term a1 is well-typed since v v0 has type τ0, hence
x can be assumed of type (β → β)→ (β → β) for some unknown type β

and λy. y is of type β → β.

However, without the outer existential type v v0 can only be typed with(∀α.α → α)→ ∃α. (α → α), because the value returned by the function
need different witnesses for α. This is demanding too much on its
argument and the outer application is ill-typed.
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Implicitly-typed existential types subtlety

One could wonder whether the syntax should not allow the implicit
introduction of unpacking (instead of requesting a let-binding).

One could argue that if some expression is the expansion of a well-typed
let-binding, then it should also be well-typed:

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ [x ↦ a1]a2 ∶ τ2
Comments?

● This rule does not have a logical flavor...

● It fixes the previous example, but not the general case:
Pick a1 that is not yet a value after one reduction step.
Then, after let-expansion, reduce one of the two occurrences of a1.
The result is no longer of the form [x ↦ a1]a2.
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Implicitly-typed existential types subtlety

Existential types are trickier than they may appear at first.

The subject reduction property breaks if reduction is not restricted to
expressions in head-normal forms.

Unrestricted reduction is still safe because well-typedness may eventually
be recovered by further reduction steps—so that progress will never
break.
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Implicitly-typed existential types encoding

Notice that the CPS encoding of existential types (1) enforces the
evaluation of the packed value (2) before it can be unpacked (3) and
substituted (4):

Junpack a1 (λx.a2)K = Ja1K (λx. Ja2K) (1)
Ð→ (λk. JaK k) (λx. Ja2K) (2)
Ð→ (λx. Ja2K) JaK (3)
Ð→ [x↦ JaK]Ja2K (4)

In the call-by-value setting, λk. JaK k would come from the reduction of
Jpack aK, i.e. is (λk.λx. k x) JaK, so that a is always a value v.

However, a need not be a value. What is essential is that a1 be reduced
to some head normal form λk. JaK k.
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Iso-existential types in ML

What if one wished to extend ML with existential types?

Full type inference for existential types is undecidable, just like type
inference for universals.

However, introducing existential types in ML is easy if one is willing to
rely on user-supplied annotations that indicate where to pack and unpack.
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Iso-existential types in ML

This iso-existential approach was suggested by Läufer and
Odersky [1994].

Iso-existential types are explicitly declared:

D α⃗ ≈ ∃β̄.τ if ftv(τ) ⊆ ᾱ ∪ β̄ and ᾱ # β̄

This introduces two constants, with the following type schemes:

packD ∶ ∀ᾱβ̄. τ →D α⃗

unpackD ∶ ∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

(Compare with basic iso-recursive types, where β̄ = ∅.)
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Iso-existential types in ML

One point has been hidden on the previous slide. The “type scheme:”

∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

is in fact not an ML type scheme. How could we address this?

A solution is to make unpackD a (binary) primitive construct again
(rather than a constant), with an ad hoc typing rule:

UnpackD

Γ ⊢ M1 ∶D τ⃗

Γ ⊢ M2 ∶ ∀β̄. ([α⃗ ↦ τ⃗]τ → τ2) β̄ # τ⃗ , τ2

Γ ⊢ unpackD M1 M2 ∶ τ2
where D α⃗ ≈ ∃β̄.τ

We have seen a version of this rule in System F earlier; this in an ML
version. The term M2 must be polymorphic, which Gen can prove.
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Iso-existential types in ML

Iso-existential types are perfectly compatible with ML type inference.

The constant packD admits an ML type scheme, so it is unproblematic.

The construct unpackD leads to this constraint generation rule (see type
inference):

⟪unpackD M1 M2 ∶ τ2⟫ = ∃ᾱ.( ⟪M1 ∶D α⃗⟫
∀β̄.⟪M2 ∶ τ → τ2⟫ )

where D α⃗ ≈ ∃β̄.τ and, w.l.o.g., ᾱβ̄ # M1,M2, τ2.

A universally quantified constraint appears where polymorphism is
required.
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Iso-existential types in ML

In practice, Läufer and Odersky suggest fusing iso-existential types with
algebraic data types.

This can be done in OCaml using GADTs (see last part of the course).
The syntax for this in OCaml is:

typeD α⃗ = ℓ ∶ τ →D α⃗

where ℓ is a data constructor and β̄ appears free in τ but does not
appear in α⃗. The elimination construct is typed as:

⟪matchM1 with ℓ x →M2 ∶ τ2⟫ = ∃ᾱ.( ⟪M1 ∶ D α⃗⟫
∀β̄.def x ∶ τ in ⟪M2 ∶ τ2⟫ )

where, w.l.o.g., ᾱβ̄ #M1,M2, τ2.
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An example

Define Any ≈ ∃β.β. An attempt to extract the raw content of a package
fails:

⟪unpackAny M1 (λx.x) ∶ τ2⟫ = ⟪M1 ∶ Any⟫ ∧ ∀β.⟪λx.x ∶ β → τ2⟫
⊩ ∀β.β = τ2
≡ false

(Recall that β # τ2.)
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An example

Define
D α ≈ ∃β.(β → α) × β

A client that regards β as abstract succeeds:

⟪unpackD M1 (λ(f, y). f y) ∶ τ⟫
= ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.⟪λ(f, y). f y ∶ ((β → α) × β)→ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.def f ∶ β → α;y ∶ β in ⟪f y ∶ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β. τ = α)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ τ = α)
≡ ⟪M1 ∶D τ⟫
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Existential types calls for universal types!

Exercise We reuse the type D α ≈ ∃β.(β → α) × β of frozen
computations. Assume given a list l with elements of type D τ1.

Assume given a function g of type τ1 → τ2. Transform the list l into a
new list l′ of frozen computations of type D τ2 (without actually running
any computation).

List .map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

Try generalizing this example to a function that receives g and l and
returns l′ : it does not typecheck. . .

let lift g l =
List .map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

In expression let α,x = unpackM1 inM2, occurrences of x in M2 can
only be passed to external functions (free variables) that are polymorphic
so that x does not leak out of its context.
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Limits of iso-encodings

Using datatypes for existential and especially universal types is a simple
solution to make them compatible with ML, but it comes with some
limitations:

● All types must be declared before being used

● Programs become quite verbose, with many constructors that
amount to writting type annotations, but in a more rigid way

● In particular, there is no canonical way of representing them.
For exemple, a thunk of type ∃β(β → int) × β could have been
defined as Thunk (succ, 1) where Thunk is either one of

type int thunk = Thunk : (’b → int) ∗ ’b → int thunk
type ’a thunk = Thunk : (’b → ’a) ∗ ’b → ’a thunk

but the two types are incompatible.

Hence, other primitive solutions have been considered, especially for
universal types.
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Uses of existential types

Mitchell and Plotkin [1988] note that existential types offer a means of
explaining abstract types. For instance, the type:

∃stack.{empty ∶ stack;
push ∶ int × stack→ stack;
pop ∶ stack→ option (int × stack)}

specifies an abstract implementation of integer stacks.

Unfortunately, it was soon noticed that the elimination rule is too
awkward, and that existential types alone do not allow designing module
systems [Harper and Pierce, 2005].

Montagu and Rémy [2009] make existential types more flexible in several
important ways, and argue that they might explain modules after all.
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Existential types in OCaml

Existential types are available indirectly in OCaml as a degenerate case of
GADT and via abstract types and first-class modules.

Via GADT (iso-existential types)

type ’a d = D : (’b → ’a) ∗ ’b → ’a d
let freeze f x = D (f, x)
let run (D (f, x)) = f x

Via first-class modules (abstract types)

module type D = sig type b type a val f : b → a val x : b end
let freeze (type u) (type v) f x =

(module struct type b = u type a = v let f = f let x = x end : D)
let unfreeze (type u) (module M : D with type a = u) = M.f M.x
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Contents

Algebraic Data Types

Equi- and iso-recursive types

Existential types

Implicitly-type existential types passing

Iso-existential types

Generalized Algebraic Datatypes

94 113 ◁



An introduction to GADTs



Algebraic Data Types Existential types GADTs

Examples Defunctionalization

let add (x, y) = x + y in

let not x = if x then false else true in

let body b =
let step x =
add (x, if not b then 1 else 2)

in step (step 0))
in body true

Introduce a constructor per call site

type (’a, ’b) apply =
| Fadd : (int ∗ int, int) apply
| Fnot : (bool, bool) apply
| Fstep : int → (int, int) apply
| Fbody : (bool, int) apply

Key point the typechecker refines the types a and b in each branch

let rec apply : type a b. (a, b) apply → a → b = fun f arg →
match f with (∗ a b ∗)
| Fadd → let x, y = arg in x + y (∗ int ∗ int int ∗)
| Fnot → let x = arg in if x then false else true (∗ bool bool ∗)
| Fstep y → let x = arg in apply Fadd (x, y) (∗ int int ∗)
| Fbody → let b = arg in (∗ bool int ∗)

let step = Fstep (if not b then 1 else 2)
in apply step (apply step 0)

in apply Fbody true
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Example Typed evaluator

A typed abstract syntax tree

type ’a expr =
| Int : int → int expr
| Zerop : int expr → bool expr
| If : (bool expr ∗ ’a expr ∗ ’a expr) → ’a expr

let e0 ∶ int expr = (If (Zerop (Int 0), Int 1, Int 2))

A typed evaluator (with no failure)

let rec eval : type a . a expr → a = fun x → match x with
| Int x → x
| Zerop x → eval x > 0
| If (b, e1, e2) → if eval b then eval e1 else eval e2

let b0 = eval e0

Exercise
Define a typed abstract syntax tree for the simply-typed lambda-calculus
and a typed evaluator.

97 113 ◁



Algebraic Data Types Existential types GADTs

Example Encoding sum types

type (’a, ’b) sum = Left of ’a | Right of ’b

can be encoded as a product:

type (’t, ’a, ’b) tag = Ltag : (’a, ’a, ’b) tag | Rtag : (’b, ’a, ’b) tag
type (’a, ’b) prod = Prod : (’t, ’a, ’b) tag ∗ ’t → (’a, ’b) prod

let sum of prod (type a b) (p : (a, b) prod) : (a, b) sum =
let Prod (t, v) = p in match t with Ltag → Left v | Rtag → Right v

Prod is a single constructor and need not be allocated.

A field common to both cases can be accessed without looking at the tag.

type (’a, ’b) prod = Prod : (’t, ’a, ’b) tag ∗ ’t ∗ bool → (’a, ’b) prod
let get (type a b) (p : (a, b) prod) : bool =
let Prod (t, v, s) = p in s

Exercise
Can we have a flat representation if ’a is int * int and ’b is bool?
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Example Encoding sum types

Exercise
Specialize the encoding of sum types to the encoding of ’a list
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Example Generic programming

type ’a ty =
| Tint : int ty
| Tbool : bool ty
| Tlist : ’a ty → (’a list ) ty
| Tpair : ’a ty ∗ ’b ty → (’a ∗ ’b) ty

let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint → string of int x
| Tbool → if x then ”true” else ”false”
| Tlist t → ”[” ˆ String.concat ”; ” (List.map (to string t) x) ˆ ”]”
| Tpair (a, b) →

let u, v = x in ”(” ˆ to string a u ˆ ”, ” ˆ to string b v ˆ ”)”

let s = to string (Tpair (Tlist Tint, Tbool)) ([1; 2; 3], true)
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Other uses of GADTs

GADTs

● May encode data structures invariants, such as the state of an
automaton, as illustrated by Pottier and Régis-Gianas [2006] for
typechecking LR-parsers.

● They may be used to implement a form of dynamic type (version
inspired by the generic printer)

● GADTs can be used to encode type classes, using a technique
analogous to defunctionalization [Pottier and Gauthier, 2006].
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Reducing GADTs to type equality

All GADTs can be encoded with a single one:

type (’a, ’b) eq = Eq : (’a, ’a) eq

For instance, generic programming can be redefined as follows:

type ’a ty =
| Tint : (’a, int) eq → ’a ty
| Tlist : (’a, ’b list ) eq ∗ ’b ty → ’a ty
| Tpair : (’a, (’b ∗ ’c)) eq ∗ ’b ty ∗ ’c ty → ’a ty

This declaration is not a GADT, just an existential type!

let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint Eq → string of int x
| Tlist (Eq, t) → ”[” ˆ String.concat ”; ” (List.map (to string t) x) ˆ ”]”
| Tpair (Eq, a, b) →

let u, v = x in ”(” ˆ to string a u ˆ ”, ” ˆ to string b v ˆ ”)”

let s = to string (Tpair (Eq, Tlist (Eq, Tint Eq), Tint Eq)) ([1; 2; 3], 0)
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Reducing GADTs to type equality

All GADTs can be encoded with a single one:

type (’a, ’b) eq = Eq : (’a, ’a) eq

For instance, generic programming can be redefined as follows:

type ’a ty =
| Tint : (’a, int) eq → ’a ty
| Tlist : (’a, ’b list ) eq ∗ ’b ty → ’a ty
| Tpair : (’a, (’b ∗ ’c)) eq ∗ ’b ty ∗ ’c ty → ’a ty

This declaration is not a GADT, just an existential type!

let rec to string : type a. a ty → a → string = fun t x → match t with

| Tint Eq → string of int x

| Tlist (Eq, t) → ...
| Tpair (Eq, a, b) → ...

▷ Pattern “Tint Eq” is GADT matching

104⟨1⟩ 113 ◁



Algebraic Data Types Existential types GADTs

Reducing GADTs to type equality

All GADTs can be encoded with a single one:

type (’a, ’b) eq = Eq : (’a, ’a) eq

For instance, generic programming can be redefined as follows:

type ’a ty =
| Tint : (’a, int) eq → ’a ty
| Tlist : (’a, ’b list ) eq ∗ ’b ty → ’a ty
| Tpair : (’a, (’b ∗ ’c)) eq ∗ ’b ty ∗ ’c ty → ’a ty

This declaration is not a GADT, just an existential type!

let rec to string : type a. a ty → a → string = fun t x → match t with

| Tint p → let p = Eq in string of int x

| Tlist (Eq, t) → ...
| Tpair (Eq, a, b) → ...

▷ Pattern “Tint Eq” is GADT matching
▷ let p = Eq in.. introduces the equality a = int in the current branch
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Formalisation of GADTs

We can encode GADTs with type equalities

We cannot encode type equalities in System F.

They bring something more, namely local equalities in the typing context.

We write τ1 ∼ τ2 for (τ1, τ2) eq
When typechecking an expression

E[let x ∶ τ1 ∼ τ2 =M0 inM] E[λx ∶ τ1 ∼ τ2.M]
▷ M is typechecked with the asumption that τ1 ∼ τ2, i.e. types τ1 and

τ2 are equivalent, which allows for type conversion within M

▷ but E and M0 are typechecked without this asumption

▷ What is learned by an equation remains local to its static scope,
and does not extend to its surrounding context (or the rest of the
program execution trace).
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Fc (simplified) Add equality coercions to System F

Types

τ ∶∶= . . . ∣ τ1 ∼ τ2
Expressions

M ∶∶= . . . ∣ γ ◁M ∣ γ
Coercions are first-class and
can be applied to terms.

Coercions witness type equivalences:

γ ∶∶= α variable∣ ⟨τ⟩ reflexivity∣ symγ symmetry∣ γ1;γ2 transitivity∣ γ1 → γ2 arrow coercions∣ leftγ left projection∣ right γ right projection∣ ∀α.γ type generalization∣ γ@τ type instantiation
Typing rules

Coerce

Γ ⊢ M ∶ τ1 Γ ⊩ γ ∶ τ1 ∼ τ2

Γ ⊢ γ ◁M ∶ τ2

Coercion

Γ ⊩ γ ∶ τ1 ∼ τ2

Γ ⊢ γ ∶ τ1 ∼ τ2

Coabs

Γ, x ∶ τ1 ∼ τ2 ⊢ M ∶ τ

Γ ⊢ λx ∶ τ1 ∼ τ2.M ∶ τ
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Fc (simplified) Conversion

Eq-Hyp

y ∶ τ1 ∼ τ2 ∈ Γ
Γ ⊩ y ∶ τ1 ∼ τ2

Eq-Ref

Γ ⊢ τ

Γ ⊩ ⟨τ⟩ ∶ τ ∼ τ
Eq-Sym

Γ ⊩ γ ∶ τ1 ∼ τ2
Γ ⊩ symγ ∶ τ2 ∼ τ1

Eq-Trans

Γ ⊩ γ1 ∶ τ1 ∼ τ Γ ⊩ γ2 ∶ τ ∼ τ2
Γ ⊩ γ1;γ2 ∶ τ1 ∼ τ2

Eq-Arrow

Γ ⊩ γ1 ∶ τ ′1 ∼ τ1 Γ ⊩ γ2 ∶ τ2 ∼ τ ′2
Γ ⊩ γ1 → γ2 ∶ τ1 → τ2 ∼ τ

′

1
→ τ ′

2

Eq-Left

Γ ⊩ γ ∶ τ1 → τ2 ∼ τ
′

1
→ τ ′

2

Γ ⊩ left γ ∶ τ ′
1
∼ τ1

Eq-Right

Γ ⊩ γ ∶ τ1 → τ2 ∼ τ
′

1
→ τ ′

2

Γ ⊩ rightγ ∶ τ2 ∼ τ ′2
Eq-All

Γ, α ⊩ γ ∶ τ1 ∼ τ2
Γ ⊩ ∀α.γ ∶ ∀α. τ1 ∼ ∀α. τ2

Eq-Inst

Γ ⊩ γ ∶ ∀α. τ1 ∼ ∀α. τ2 Γ ⊢ τ

Γ ⊩ γ@τ ∶ [α ↦ τ]τ1 ∼ [α ↦ τ]τ2
107 113 ◁



Algebraic Data Types Existential types GADTs

Semantics

Coercions should be without computational content
▷ they are just type information, and should be erased at runtime

▷ they should not block redexes

▷ in Fc, we may always push them down inside terms:

(γ ◁ V1) V2 Ð→ rightγ ◁ (V1 (left γ ◁ V2))(γ ◁ V ) τ Ð→ (γ@τ)◁ (V τ)
γ1◁ (γ2 ◁ V ) Ð→ (γ1;γ2)◁ V
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Semantics

Coercions should be without computational content

Except for coercion abstractions that must stop the evaluation

▷ Otherwise, one could attempt to reduce M in λint ∼ bool.M
when M is not (bool◁ 0), which is well-typed in this context.

▷ In call-by-value,

λx ∶ τ1 ∼ τ2.M freezes the evaluation of M ,
M ◁ γ resumes the evaluation of M .

Must always be enforced, even with other strategies

▷ Full reduction at compile time may still be perfomed,
but be aware of stuck programs and treat them as dead branches.
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Type soundness Syntactic proofs

Type soundness

By subject reduction and progress with explicit coercions

Erasing semantics

Important and non obvious.

γ ◁M erases to M

γ erases to ◇

Slogan that “coercion have 0-bit information”, i.e.
Coercions need not be passed at runtime—-but still block the reduction.
Expressions and typing rules

Coerce

Γ ⊢ M ∶ τ1 Γ ⊩ τ1 ∼ τ2

Γ ⊢ M ∶ τ2

Coercion

Γ ⊩ τ1 ∼ τ2

Γ ⊢ ◇ ∶ τ1 ∼ τ2

Coabs

Γ, x ∶ τ1 ∼ τ2 ⊢ M ∶ τ

Γ ⊢ λx ∶ τ1 ∼ τ2.M ∶ τ
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Type soundness Syntactic proofs

The introduction of type equality constraints in System F has been
introduced and formalized by Sulzmann et al. [2007].

Scherer and Rémy [2015] show how strong reduction and confluence can
be recovered in the present of possibly uninhabited coercions.
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Type soundness Semantic proofs

Equality coercions are a small logic of type conversions.

This may be enriched with more operations.

A very general form of coercions has been introduced by
Cretin and Rémy [2014].

The soundness proof became too cumbersome to be conducted
syntactically.

Instead a semantic proof is used, interpreting types as sets of terms (a
technique similar to unary logical relations)
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Type checking / inference

With explicit coercions, types are fully determined from expressions.

However, the user prefers to leave applications of Coerce implicit.

Then types becomes ambiguous: when leaving the scope of an equation:
which form should be used, among the equivalent ones?

This must be determined from the context, including the return type,
and calls for extra type annotations:

let rec eval : type a . a expr → a = fun x → match x with
| Int x → x (∗ x : int , but a = int, should we return x : a? ∗)
| Zerop x → eval x > 0
| If (b, e1, e2) → if eval b then eval e1 else eval e2

In ML, type annotations must be used to tell

● the type of the context
● which datatypes must be typed as GADTs.

In Coq, one must use the return type annotion on matches.
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Type inference in ML-like languages with GADTs

Simonet and Pottier [2007] gave a presentation of type inference for
GADTs with general typing constraints for ML-like languages.

Pottier and Régis-Gianas [2006] introduced a stratified approach to
better propagate constraints from outisde to inside GADTs contexts.

Vytiniotis et al. [2011] introduced the outside-in approach, used in
Haskell, which restricts type information to flow from outside to inside
GADT contexts.

Garrigue and Rémy [2013] introduced the notion of ambivalent types,
used in OCaml, to restrict type occurrences that must be considered
ambiguous and explicitly specified using type annotations.
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▷ Didier Rémy. Programming objects with ML-ART: An extension to ML
with abstract and record types. In International Symposium on
Theoretical Aspects of Computer Software (TACS), pages 321–346.
Springer, April 1994.

119 113 ◁

http://cristal.inria.fr/~fpottier/publis/pottier-regis-gianas-popl06.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-regis-gianas-typed-lr.pdf
http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.ps.gz


Bibliography

Bibliography VII
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