
MPRI 2.4, Functional programming and type systems
Metatheory of System F

Didier Rémy

September 15, 2017

Plan of the course

Metatheory of System F

Metatheory of System F

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

A few messages. . .

Change of schedule: François Pottier will teach his last lesson next week.

English or French? In any case, questions must be asked in the
language your speak best (French by default)

Online material: visit the course page, read the course notes!

https://gitlab.inria.fr/fpottier/mpri-2.4-public/blob/master/README.md

Also accessible from the official MPRI 2-4 page:

https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-4-2

Questions, please! They are welcome during the lesson, at the end of
the lesson, or by email Didier.Remy@inria.fr

Please, don’t wait until the end of the course to tell us any problem you
may encounter!

You are there to learn and we are here to help you!

4 122 ◁

https://gitlab.inria.fr/fpottier/mpri-2.4-public/blob/master/README.md
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-4-2
mailto:Didier.Remy@inria.fr

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Proofs

Since 2017-2018, this course is shorter: you can see extra material in
courses notes (and in year 2016 slides).

Detailed proofs of main results are not shown in class anymore, but are
still part of the course:

You are supposed to read, understand them.

and be able to reproduce them.

5 122 ◁

A few messages. . .

Since last year, we speed less time on the first lessons, and proofs
are not detailed in class, but all details are in the written notes.

If you have any difficulties during this course:

● do the exercises, check the corrections, ask me if you can’t do them.

● discuss with me: the earlier the better.

● don’t wait until the exams...

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

What are types?

– Types are:
“a concise, formal description of the behavior of a program fragment.”

– Types must be sound:
programs must behave as prescribed by their types.

– Hence, types must be checked and ill-typed programs must be rejected.

7 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

What are they useful for?

– Types serve as machine-checked documentation.

– Data types help structure programs.

– Types provide a safety guarantee.

– Types can be used to drive compiler optimizations.

– Types encourage separate compilation, modularity, and abstraction.

8 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-preserving compilation

Types make sense in low-level programming languages as well—even
assembly languages can be statically typed! [Morrisett et al., 1999]

In a type-preserving compiler, every intermediate language is typed, and
every compilation phase maps typed programs to typed programs.

Preserving types provides insight into a transformation, helps debug it,
and paves the way to a semantics preservation proof [Chlipala, 2007].

Interestingly enough, lower-level programming languages often require
richer type systems than their high-level counterparts.

9 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Typed or untyped?

Reynolds [1985] nicely sums up a long and rather acrimonious debate:

“One side claims that untyped languages preclude compile-time
error checking and are succinct to the point of unintelligibility,
while the other side claims that typed languages preclude a vari-
ety of powerful programming techniques and are verbose to the
point of unintelligibility.”

The issues are safety, expressiveness, and type inference.

10 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Typed, Sir! with better types.

In fact, Reynolds settles the debate:

“From the theorist’s point of view, both sides are right, and
their arguments are the motivation for seeking type systems that
are more flexible and succinct than those of existing typed lan-
guages.”

Today, the question is more whether to stay with rather simple
polymorphic types (e.g. as in ML or System F) or use more sophiscated
types (e.g. dependent types, afine types, capabililties and ownership,
effect types, logical assertions, etc.), or even towards full program proofs!

The community is still split between programming with dependent types
to capture fine invariants, or programming with simpler types and
develop program proofs that these invariants hold, with often a
preference for the latter.

11 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Explicit v.s. implicit types?

Annotating programs with types can lead to redundancy.
Types can even become extremely cumbersome when they have to be
explicitly and repeatedly provided. In some pathological cases, type
information may grow in square of the size of the underlying untyped
expression.

This creates a need for a certain degree of type reconstruction (also
called type inference), where the source program may contain some but
not all type information.

In principle, types could be entirely left implicit, even if the language is
typed. A well-typed program is then one that is the type erasure of a
(well-typed) explicitly-typed program.

Full type reconstruction is undecidable for expressive type systems.

Some type annotations are required or type reconstruction is incomplete.

12 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

13 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Why λ-calculus?

In this course, the underlying programming language is the λ-calculus.

The λ-calculus supports natural encodings of many programming
languages [Landin, 1965], and as such provides a suitable setting for
studying type systems.

Following Church’s thesis, any Turing-complete language can be used to
encode any programming language. However, these encodings might not
be natural or simple enough to help us in understanding their typing
discipline.

Using λ-calculus, most of our results can also be applied to other
languages (Java, assembly language, etc.).

14 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Simply typed λ-calculus

● used to introduce the main ideas

● we will them move to System F

● still used in some theoretical studies

● is the language of kinds for System Fω

Types are:
τ ∶∶= α ∣ τ → τ ∣ . . .

Terms are:
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ . . .

The dots are place holders for future extensions of the language.

15 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Binders, α-conversion, and substitutions

λx ∶τ.M binds variable x in M .

We write fv(M) for the set of free (term) variables of M :

fv(x)
△
== {x}

fv(λx ∶τ.M)
△
== fv(M) ∖ {x}

fv(M1 M2)
△
== fv(M1) ∪ fv(M2)

We write x#M for x ∉ fv(M).

Terms are considered equal up to renaming of bound variables:

● λx1 ∶τ1. λx2 ∶τ2. x1 x2 and λy ∶τ1. λx ∶τ2. y x are really the same term!

● λx ∶τ. λx ∶τ.M is equal to λy ∶τ. λx ∶τ.M when y ∉ fv(M).

Substitution:

[x ↦ N]M is the capture avoiding substitution of N for x in M .

16 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Dynamic semantics

We use a small-step operational semantics.

We choose a call-by-value variant. When explaining references,
exceptions, or other forms of side effects, this choice matters.

Otherwise, most of the type-theoretic machinery applies to call-by-name
or call-by-need just as well.

17 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Weak v.s. full reduction (parenthesis)

Calculi are often presented with a full reduction semantics, i.e. where
reduction may occur in any context. The reduction is then
non-deterministic (there are many possible reduction paths) but the
calculus remains deterministic, since reduction is confluent.

Programming languages use weak reduction strategies, i.e. reduction is
never performed under λ-abstractions, for efficiency of reduction, to have
a deterministic semantics in the presence of side effects—and a
well-defined cost model.

Still, type systems are usually also sound for full reduction strategies
(with some care in the presence of side effects or empty types).

Type soundness for full reduction is a stronger result.

It implies that potential errors may not be hidden under λ-abstractions

(this is usually true—it is true for λ-calculus and System F—but not
implied by type soundness for a weak reduction strategy.)

18 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Dynamic semantics

In the pure, call-by-value λ-calculus, the values are the functions:

V ∶∶= λx ∶τ.M ∣ . . .

The reduction relation M1 Ð→M2 is inductively defined:

βv

(λx ∶τ.M) V Ð→ [x ↦ V]M

Context

M Ð→M ′

E[M]Ð→ E[M ′]

Evaluation contexts are defined as follows:

E ∶∶= []M ∣ V [] ∣ . . .

We only need evaluation contexts of depth one, using repeated
applications of Rule Context.

An evaluation context of arbitrary depth can be defined as:

Ē ∶∶= [] ∣ E[Ē]

19 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Static semantics

Technically, the type system is a 3-place predicate, whose instances are
called typing judgments, written:

Γ ⊢M ∶ τ

where Γ is a typing context.

20 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Typing context

A typing context (also called a type environment) Γ binds program
variables to types.

We write ∅ for the empty context and Γ, x ∶ τ for the extension of Γ with
x ↦ τ .

To avoid confusion, we require x ∉ dom(Γ) when we write Γ, x ∶ τ .

Bound variables in source programs can always be suitably renamed to
avoid name clashes.

A typing context can then be thought of as a finite function from
program variables to their types.

We write dom(Γ) for the set of variables bound by Γ and x ∶ τ ∈ Γ to
mean x ∈ dom(Γ) and Γ(x) = τ .

21 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Static semantics

Typing judgments are defined inductively by the following set of
inferences rules:

Var

Γ ⊢ x ∶ Γ(x)

Abs

Γ, x ∶ τ1 ⊢M ∶ τ2

Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢M2 ∶ τ1

Γ ⊢ M1 M2 ∶ τ2

Notice that the specification is extremely simple.

In the simply-typed λ-calculus, the definition is syntax-directed.
This is not true of all type systems.

22 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Example

The following is a valid typing derivation:

App

Var

Γ ⊢ f ∶ τ → τ ′
Var

Γ ⊢ x1 ∶ τ

Γ ⊢ f x1 ∶ τ
′

Γ ⊢ f ∶ τ → τ ′
Var

Γ ⊢ x2 ∶ τ
Var

Γ ⊢ f x2 ∶ τ
′

App

f ∶ τ → τ ′, x1 ∶ τ, x2 ∶ τ ⊢ (f x1, f x2) ∶ τ
′ × τ ′

Pair

∅ ⊢ λf ∶τ → τ ′. λx1 ∶τ. λx2 ∶τ. (f x1, f x2) ∶ (τ → τ ′)→ τ → τ → (τ ′ × τ ′)
Abs

Γ stands for (f ∶ τ → τ ′, x1 ∶ τ, x2 ∶ τ). Rule Pair is introduced later on.

Observe that:

– this is in fact, the only typing derivation (in the empty environment).

– this derivation is valid for any choice of τ and τ ′.

Conversely, every derivation for this term must have this shape, for some
τ and τ ′.

23⟨4⟩ 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning.
It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume Γ ⊢M ∶ τ .

– If M is a variable x, then x ∈ dom(Γ) and Γ(x) = τ .

– If M is M1 M2 then Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2 for some type τ2.

– If M is λx ∶τ2.M1, then τ is of the form τ2 → τ1 and Γ, x ∶ τ2 ⊢ M1 ∶ τ1.

The inversion lemma is a basic property that is used in many places when
reasoning by induction on terms. Although trivial in our simple setting,
stating it explicitly avoids informal reasoning in proofs.

In more general settings, this may be a difficult lemma that requires
reorganizing typing derivations.

24 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Uniqueness of typing derivations

Since typing rules are syntax-directed, the shape of the derivation tree is
fully determined by the shape of the term.

In our simple setting, each term has actually a unique type.
Hence, typing derivations are unique, up to the typing context.
The proof, by induction on the structure of terms, is straightforward.

Explicitly-typed terms can thus be used to describe and manipulate
typing derivations (up to the typing context) in a precise and concise way.

This enables reasoning by induction on terms instead of on typing
derivations, which is often lighter.

Lacking this convenience, typing derivations must otherwise be described
in the meta-language of mathematics.

25 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Explicitly v.s. implicitly typed?

Our presentation of simply-typed λ-calculus is explicitly typed (we also
say in church-style), as parameters of abstractions are annotated with
their types.

Simply-typed λ-calculus can also be implicitly typed (we also say in
curry-style) when parameters of abstractions are left unannotated, as in
the pure λ-calculus.

Of course, the existence of syntax-directed typing rules depends on the
amount of type information present in source terms and can be easily
lost if some type information is left implicit.

In particular, typing rules for terms in curry-style are not syntax-directed.

26 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasure

We may translate explicitly-typed expressions into implicitly-typed ones
by dropping type annotations. This is called type erasure.

We write ⌈M⌉ for the type erasure of M , which is defined by structural
induction on M :

⌈x⌉
△
== x

⌈λx ∶τ.M⌉
△
== λx. ⌈M⌉

⌈M1 M2⌉
△
== ⌈M1⌉ ⌈M2⌉

27 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type reconstruction

Conversely, can we convert implicitly-typed expressions back into
explicitly-typed ones, that is, can we reconstruct the missing type
information?

This is equivalent to finding a typing derivation for implicitly-typed
terms. It is called type reconstruction (or type inference).
(See the course on type reconstruction.)

28 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Untyped semantics

Observe that although the reduction carries types at runtime,
types do not actually contribute to the reduction.

Intuitively, the semantics of terms is the same as that of their type
erasures. We say that the semantics is untyped or type-erasing.

But how can we say that the semantics of typed and untyped terms
coincide when these terms do not live in the same world?

By showing that the reductions in the two languages can be put into
close correspondence.

29 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

If M1 Ð→M2 then ⌈M1⌉Ð→ ⌈M2⌉.

M1 M2

a1 a2

β

⌈⌉ ⌈⌉

βConversely, a reduction step after type erasure could
also have been performed on the term before type erasure.

Lemma (Inverse simulation)

If ⌈M⌉ Ð→ a then there exists M ′ such that
M Ð→M ′ and ⌈M ′⌉ = a.

M1 M2

a1 a2

⌈⌉

β

β

⌈⌉

What we have established is a bisimulation between explicitly-typed
terms and implicitly-typed ones.

In general, there may be reduction steps on source terms that involved
only types and have no counter-part (and disappear) on compiled terms.

30 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Untyped semantics

It is an important property for a language to have an untyped semantics.

It then has an implicitly-typed presentation.

The metatheoretical study is often easier with explicitly-typed terms, in
particular when proving syntactic properties.

Properties of the implicitly-typed presentation can often be indirectly
proved via an explicitly-typed presentation of the language.

This is the path we choose in this course.

(Once we have shown that implicit and explicit presentations coincide,
we can choose whichever view is more convenient.)

31 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

32 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Stating type soundness

What is a formal statement of the slogan

“Well-typed expressions do not go wrong”

By definition, a closed term M is well-typed if it admits some type τ in
the empty environment.

By definition, a closed, irreducible term is either a value or stuck.
Thus, a closed term can only:

● diverge,

● converge to a value, or

● go wrong by reducing to a stuck term.

Type soundness: the last case is not possible for well-typed terms.

33 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Stating type soundness

The slogan now has a formal meaning:

Theorem (Type soundness)

Well-typed expressions do not go wrong.

Proof.
By Subject Reduction and Progress.

34 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Establishing type soundness

We use the syntactic proof method of Wright and Felleisen [1994].
Type soundness follows from two properties:

Theorem (Subject reduction)

Reduction preserves types: if M1 Ð→M2 then for any type τ such that
∅ ⊢M1 ∶ τ , we also have ∅ ⊢M2 ∶ τ .

Theorem (Progress)

A (closed) well-typed term is either a value or reducible:
if ∅ ⊢M ∶ τ then there exists M ′ such that M Ð→M ′, or M is a value.

Equivalently, we may say: closed, well-typed, irreducible terms are values.

35 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

36 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Adding a unit

The simply-typed λ-calculus is modified as follows. Values and
expressions are extended with a nullary constructor () (read “unit”):

M ∶∶= . . . ∣ () V ∶∶= . . . ∣ ()

No new reduction rule is introduced.

Types are extended with a new constant unit and a new typing rule:

τ ∶∶= . . . ∣ unit
Unit

Γ ⊢ () ∶ unit

37 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Pairs

The simply-typed λ-calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ (M,M) ∣ proji M
E ∶∶= . . . ∣ ([],M) ∣ (V, []) ∣ proji []
V ∶∶= . . . ∣ (V,V)
i ∈ {1,2}

A new reduction rule is introduced:

proji (V1, V2)Ð→ Vi

38 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Pairs

Types are extended:
τ ∶∶= . . . ∣ τ × τ

Two new typing rules are introduced:

Pair

Γ ⊢M1 ∶ τ1 Γ ⊢M2 ∶ τ2

Γ ⊢ (M1,M2) ∶ τ1 × τ2

Proj

Γ ⊢M ∶ τ1 × τ2

Γ ⊢ proji M ∶ τi

39 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Sums

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ inji M ∣ caseM of V 8 V

E ∶∶= . . . ∣ inji [] ∣ case [] of V 8 V

V ∶∶= . . . ∣ inji V

A new reduction rule is introduced:

case inji V of V1 8 V2 Ð→ Vi V

40 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Sums

Types are extended:
τ ∶∶= . . . ∣ τ + τ

Two new typing rules are introduced:

Inj

Γ ⊢M ∶ τi

Γ ⊢ inji M ∶ τ1 + τ2

Case

Γ ⊢M ∶ τ1 + τ2
Γ ⊢ V1 ∶ τ1 → τ Γ ⊢ V2 ∶ τ2 → τ

Γ ⊢ caseM of V1 8 V2 ∶ τ

41 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Sums with unique types

Notice that a property of simply-typed λ-calculus is lost: expressions do
not have unique types anymore, i.e. the type of an expression is no
longer determined by the expression.

Uniqueness of types can be recovered by using a type annotation in
injections:

V ∶∶= . . . ∣ inji V as τ

and modifying the typing rules and reduction rules accordingly.

Exercise
Describe an extension with the option type.

42 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

● a new type constructor, to classify values of a new shape;

● new expressions, to construct and destruct values of a new shape.

● new typing rules for new forms of expressions;

● new reduction rules, to specify how values of the new shape can be
destructed;

● new evaluation contexts—but just to propagate reduction under the
new constructors.

Subject reduction is preserved because types are preserved by the new
reduction rules.

Progress is preserved because the type system ensures that the new
destructors can only be applied to values such that at least one of the
new reduction rules applies.

43 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Modularity of extensions

These extensions are independent: they can be added to the λ-calculus
alone or mixed altogether.

Indeed, no assumption about other extensions (the “. . .”) is ever made,
except for the classification lemma which requires, informally, that values
of other shapes have types of other shapes.

This is indeed the case in the extensions we have presented: the unit has
the Unit type, pairs have product types, sums have sum types.

In fact, these extensions could have been presented as several instances of
a more general extension of the λ-calculus with constants, for which type
soundness can be established uniformly under reasonable assumptions
relating the given typing rules and reduction rules for constants.

See the treatment of data types in System F in the next chapter.

44 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Recursive functions

The simply-typed λ-calculus is modified as follows.

Values and expressions are extended:

M ∶∶= . . . ∣ µf ∶τ. λx.M
V ∶∶= . . . ∣ µf ∶τ. λx.M

A new reduction rule is introduced:

(µf ∶τ. λx.M) V Ð→ [f ↦ µf ∶τ. λx.M][x ↦ V]M

45 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Recursive functions

Types are not extended. We already have function types.

What does this imply as a corollary?

— Types will not distinguish functions from recursive functions.

A new typing rule is introduced:

FixAbs

Γ, f ∶ τ1 → τ2 ⊢ λx ∶τ1.M ∶ τ1 → τ2

Γ ⊢ µf ∶τ1 → τ2. λx.M ∶ τ1 → τ2

In the premise, the type τ1 → τ2 serves both as an assumption and a
goal. This is a typical feature of recursive definitions.

46 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

A derived construct: let

The construct “let x ∶ τ =M1 inM2” can be viewed as syntactic sugar for
the β-redex “(λx ∶τ.M2)M1”.

The latter can be type-checked only by a derivation of the form:

App

Abs

Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ λx ∶τ1.M2 ∶ τ1 → τ2 Γ ⊢M1 ∶ τ1

Γ ⊢ (λx ∶τ1.M2)M1 ∶ τ2

This means that the following derived rule is sound and complete:

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let x ∶ τ1 =M1 inM2 ∶ τ2

The construct “M1;M2” can in turn be viewed as syntactic sugar for
let x ∶ unit =M1 inM2 where x ∉ ftv(M2).

47 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

A derived construct: let or a primitive one?

In the derived form let x ∶ τ1 =M1 inM2 the type of M1 must be
explicitly given, although by uniqueness of types, it is entirely determined
by the expression M1 itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form
let x =M1 inM2 with the following primitive typing rule.

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let x =M1 inM2 ∶ τ2

This seems better—not necessarily, because removing redundant type
annotations is the task of type reconstruction and we should not bother
(too much) about it in the explicitly-typed version of the language.

Minimizing the number of language constructs is at least as important as
avoiding extra type annotations in an explicitly-typed language.

48 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

A derived construct: let rec

The construct “let rec (f ∶ τ) x =M1 inM2” can be viewed as syntactic
sugar for “let f = µf ∶τ. λx.M1 inM2”.

The latter can be type-checked only by a derivation of the form:

LetMono

FixAbs

Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1

Γ ⊢ µf ∶τ → τ1. λx.M1 ∶ τ → τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let f = µf ∶τ → τ2. λx.M1 inM2 ∶ τ2

This means that the following derived rule is sound and complete:

LetRecMono

Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let rec (f ∶ τ → τ1) x =M1 inM2 ∶ τ2

49 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

50 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

What is polymorphism?

Polymorphism is the ability for a term to simultaneously admit several
distinct types.

51 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Why polymorphism?

Polymorphism is indispensable [Reynolds, 1974]: if a function that sorts a
list is independent of the type of the list elements, then it should be
directly applicable to lists of integers, lists of booleans, etc.

In short, it should have polymorphic type:

∀α. (α → α → bool)→ list α → list α

which instantiates to the monomorphic types:

(int → int→ bool)→ list int→ list int
(bool→ bool→ bool)→ list bool→ list bool

. . .

52 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Why polymorphism?

In the absence of polymorphism, the only ways of achieving this effect
would be:

● to manually duplicate the list sorting function at every type (no-no!);

● to use subtyping and claim that the function sorts lists of values of
any type:

(⊺ → ⊺→ bool)→ list ⊺→ list ⊺

(The type ⊺ is the type of all values, and the supertype of all types.)

Why isn’t this so good? This leads to loss of information and
subsequently requires introducing an unsafe downcast operation.
This was the approach followed in Java before generics were
introduced in 1.5.

53 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Polymorphism seems almost free

Polymorphism is already implicitly present in simply-typed λ-calculus.
Indeed, we have checked that the type:

(α1 → α2)→ α1 → α1 → α2 × α2

is a principal type for the term λfxy. (f x, f y).

By saying that this term admits the polymorphic type:

∀α1α2. (α1 → α2)→ α1 → α1 → α2 × α2

we make polymorphism internal to the type system.

54 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Towards type abstraction

Polymorphism is a step on the road towards type abstraction.

Intuitively, if a function that sorts a list has polymorphic type:

∀α. (α → α → bool)→ list α → list α

then it knows nothing about α—it is parametric in α—so it must
manipulate the list elements abstractly: it can copy them around, pass
them as arguments to the comparison function, but it cannot directly
inspect their structure.

In short, within the code of the list sorting function, the variable α is an
abstract type.

55 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

For instance, the polymorphic type ∀α.α → α has only one inhabitant,
up to βη-equivalence, namely the identity.

Similarly, the type of the list sorting function

∀α. (α → α → bool)→ list α → list α

reveals a “free theorem” about its behavior!

Basically, sorting commutes with (map f), provided f is order-preserving.

(∀x, y, cmp (f x) (f y) = cmp x y) Ô⇒
∀ℓ, sort (map f ℓ) =map f (sort ℓ)

Note that there are many inhabitants of this type, but they all satisfy this
free theorem (including, e.g., a function that sorts in reverse order, or a
function that removes duplicates)

56 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Ad hoc versus parametric

The term “polymorphism” dates back to a 1967 paper by
Strachey [2000], where ad hoc polymorphism and parametric
polymorphism were distinguished.

There are two different (and sometimes incompatible) ways of defining
this distinction...

57 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Ad hoc versus parametric: first definition

With parametric polymorphism, a term can admit several types, all of
which are instances of a single polymorphic type:

int→ int,
bool→ bool,

. . .

∀α.α → α

With ad hoc polymorphism, a term can admit a collection of unrelated
types:

int→ int→ int,
float→ float→ float,

. . .

but not
∀α.α → α → α

58 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Ad hoc versus parametric: second definition

With parametric polymorphism, untyped programs have a well-defined
semantics. (Think of the identity function.) Types are used only to rule
out unsafe programs.

With ad hoc polymorphism, untyped programs do not have a semantics:
the meaning of a term can depend upon its type (e.g. 2 + 2), or, even
worse, upon its type derivation (e.g. λx. show (read x)).

59 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Ad hoc versus parametric polymorphism: type classes

By the first definition, Haskell’s type classes [Hudak et al., 2007] are a
form of (bounded) parametric polymorphism: terms have principal
(qualified) type schemes, such as:

∀α.Num α⇒ α → α → α

Yet, by the second definition, type classes are a form of ad hoc
polymorphism: untyped programs do not have a semantics.

In the case of Haskell type classes, the two views can be reconciled.

In this course, we are mostly interested in the simplest form of
parametric polymorphism.

60 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

61 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

System F

The System F, (also known as: the polymorphic λ-calculus, the
second-order λ-calculus; F2) was independently defined by Girard (1972)
and Reynolds [1974].

Compared to the simply-typed λ-calculus, types are extended with
universal quantification:

τ ∶∶= . . . ∣ ∀α.τ

How are the syntax and semantics of terms extended?

There are several variants, depending on whether one adopts an

● implicitly-typed or explicitly-typed presentation of terms

● and a type-passing or a type-erasing semantics.

62 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Explicitly-typed System F

In the explicitly-typed variant [Reynolds, 1974], there are term-level
constructs for introducing and eliminating the universal quantifier:

Tabs

Γ, α ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α.τ

Tapp

Γ ⊢M ∶ ∀α.τ

Γ ⊢ M τ ′ ∶ [α ↦ τ ′]τ

Terms are extended accordingly:

M ∶∶= . . . ∣ Λα.M ∣M τ

Type variables are explicitly bound and appear in type environments.

Γ ∶∶= . . . ∣ Γ, α

63 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Well-formedness of environment

Mandatory: We extend our previous convention to form environments:
Γ, α requires α # Γ, i.e. α is neither in the domain nor in the image of Γ.

Optional: We also require that environments be closed with respect to
type variables, that is, we require ftv(τ) ⊆ dom(Γ) to form Γ, x ∶ τ .

However, a looser style would also be possible.

● Our stricter definition allows fewer judgments, since judgments with
open contexts are not allowed.

● However, these judgments can always be closed by adding a prefix
composed of a sequence of its free type variables to be well-formed.

The stricter presentation is easier to manipulate in proofs;
it is also easier to mechanize.

64 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Well-formedness of environments and types

Well-formedness of environments, written ⊢ Γ and well-formedness of
types, written Γ ⊢ τ , may also be defined recursively by inference rules:

WfEnv

-Empty

⊢ ∅

WfEnvVar

⊢ Γ x ∉ dom(Γ) Γ ⊢ τ

⊢ Γ, x ∶ τ

WfEnvTvar

⊢ Γ α ∉ dom(Γ)

⊢ Γ, α

WfTypeVar

⊢ Γ α ∈ Γ

Γ ⊢ α

WfTypeArrow

Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 → τ2

WfTypeForall

Γ, α ⊢ τ

Γ ⊢ ∀α. τ

65 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Well-formedness of environments and types

There is a choice whether well-formedness of environments should be
made explicit or left implicit in typing rules.

Explicit well-formedness amounts to adding well-formedness premises to
every rule where the environment or some type that appears in the
conclusion does not appear in any premise.

Var

x ∶ τ ∈ Γ ⊢ Γ

Γ ⊢ x ∶ τ

Tapp

Γ ⊢M ∶ ∀α.τ Γ ⊢ τ ′

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ

Explicit well-formedness is more precise and better suited for mechanized
proofs. Explicit well-formedness is recommended.

However, we choose to leave well-formedness conditions implicit in this
course, as it is a bit verbose and sometimes distracting. (Still, we will
remind implicit well-formedness premises in the definition of typing rules.)

66 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-passing semantics

We need the following reduction for type-level expressions:

(Λα.M) τ Ð→ [α ↦ τ]M (ι)

Then, there is a choice.

Historically, in most presentations of System F, type abstraction stops
the evaluation. It is described by:

V ∶∶= . . . ∣ Λα.M E ∶∶= . . . ∣ [] τ

However, this defines a type-passing semantics!

Indeed, Λα.((λy ∶ α.y) V) is then a value while its type erasure
(λy. y) ⌈V ⌉ is not—and can be further reduced.

67 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-erasing semantics

We recover a type-erasing semantics if we allow evaluation under type
abstraction:

V ∶∶= . . . ∣ Λα.V E ∶∶= . . . ∣ [] τ ∣ Λα.[]

Then, we only need a weaker version of ι-reduction:

(Λα.V) τ Ð→ [α ↦ τ]V (ι)

We now have:
Λα.((λy ∶ α.y) V)Ð→ Λα.V

We verify below that this defines a type-erasing semantics, indeed.

68 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-passing versus type-erasing: pros and cons

The type-passing interpretation has a number of disadvantages.

● because it alters the semantics, it does not fit our view that
the untyped semantics should pre-exist and that a type system is
only a predicate that selects a subset of the well-behaved terms.

● it blocks reduction of polymorphic expressions: e.g., if f is list
flattening of type ∀α. list (list α)→ list α, the monomorphic
function (f int) ○ (f (list int)) reduces to Λx.f (f x), while its more
general polymorphic version Λα.(f α) ○ (f (list α)) is irreducible.

● because it requires both values and types to exist at runtime, it can
lead to a duplication of machinery. Compare type-preserving closure
conversion in type-passing [Minamide et al., 1996] and in
type-erasing [Morrisett et al., 1999] styles.

69 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-passing versus type-erasing: pros and cons

An apparent advantage of the type-passing interpretation is to allow
typecase; however, typecase can be simulated in a type-erasing system by
viewing runtime type descriptions as values [Crary et al., 2002].

The type-erasing semantics does not alter the semantics of untyped
terms.

It also coincides with the semantics of ML—and, more generally, with the
semantics of most programming languages.

It also exhibits difficulties when adding side effects while the type-passing
semantics does not.

In the following, we choose a type-erasing semantics.

Notice that we allow evaluation under a type abstraction as a
consequence of choosing a type-erasing semantics—and not the converse.

70 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Reconciling type-passing and type-erasing views

If we restrict type abstraction to value-forms (which include values and
variables), that is, we only allow Λα.M when M is a value-form, then
the type-passing and type-erasing semantics coincide.

Indeed, under this restriction, closed type abstractions will always be type
abstractions of values, and evaluation under type abstraction will never
be used, even if allowed.

This restriction will be chosen when adding side-effects as a way to
preserve type-soundness.

71 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Explicitly-typed System F

We study the explicitly-typed presentation of System F first because it is
simpler.

Once, we have verified that the semantics is indeed type-preserving,
many properties can be transferred back to the implicitly-typed version,
and in particular, to its interesting ML subset.

72 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

System F, full definition

Syntax τ ∶∶= α ∣ τ → τ ∣ ∀α.τ
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ

Typing rules

Var

Γ ⊢ x ∶ Γ(x)

Abs

Γ, x ∶ τ1 ⊢M ∶ τ2

Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

Tabs

Γ, α ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α.τ

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢M2 ∶ τ1

Γ ⊢M1 M2 ∶ τ2

Tapp

Γ ⊢M ∶ ∀α.τ

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ
Semantics

V ∶∶= λx ∶τ.M ∣ Λα.V
E ∶∶= []M ∣ V [] ∣ [] τ ∣ Λα.[]

(λx ∶τ.M) V Ð→ [x ↦ V]M
(Λα.V) τ Ð→ [α ↦ τ]V

Context

M Ð→M ′

E[M] Ð→ E[M ′]

73 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Encoding data-structures

System F is quite expressive: it enables the encoding of data structures.

For instance, the church encoding of pairs is well-typed:

pair
△
== Λα1.Λα2.λx1 ∶ α1. λx2 ∶ α2.Λβ.λy ∶ α1 → α2 → β. y x1 x2

proji
△
== Λα1.Λα2.λy ∶ ∀β. (α1 → α2 → β)→ β. y αi (λx1 ∶α1. λx2 ∶α2. xi)

⌈pair⌉
△
== λx1. λx2. λy. y x1 x2

⌈proji⌉
△
== λy. y (λx1. λx2. xi)

Sum and inductive types such as Natural numbers, List, etc. can also be
encoded.

74 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors

Unit, Pairs, Sums, etc. can also be added to System F as primitives.

We can then proceed as for simply-typed λ-calculus.

However, we may take advantage of the expressiveness of System F to
deal with such extensions is a more elegant way: thanks to
polymorphism, we need not add new typing rules for each extension.

We may instead add one typing rule for constants that is parametrized by
an initial typing environment.

This allows sharing the meta-theoretical developments between the
different extensions.

Let us first illustrate an extension of System F with primitive pairs.
(We will then generalize it to arbitrary constructors and destructors.)

75 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors Pairs

Types are extended with a type constructor × of arity 2:

τ ∶∶= . . . ∣ τ × τ

Expressions are extended with a constructor (⋅, ⋅) and two destructors
proj1 and proj2 with the respective signatures:

Pair ∶ ∀α1.∀α2. α1 → α2 → α1 × α2

proji ∶ ∀α1.∀α2. α1 ×α2 → αi

which represent an initial environment ∆. We need not add any new
typing rule, but instead type programs in the initial environment ∆.

This allows for the formation of partial applications of constructors and
destructors (all cases but one). Hence, values are extended as follows:

V ∶∶= . . . ∣ Pair ∣ Pair τ ∣ Pair τ τ ∣ Pair τ τ V ∣ Pair τ τ V V

∣ proji ∣ proji τ ∣ proji τ τ

76 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors Pairs

We add the two following reduction rules:

proji τ1 τ2 (pair τ
′
1
τ ′
2
V1 V2)Ð→ Vi (δpair)

Comments?

● For well-typed programs, τi and τ ′i will always be equal, but the
reduction will not check this at runtime.

Instead, one could have defined the rule:

proji τ1 τ2 (pair τ1 τ2 V1 V2)Ð→ Vi (δ′pair)

The two semantics are equivalent on well-typed terms, but differ on
ill-typed terms where δ′pair may block when rule δpair would
progress, ignoring type errors.

Interestingly, with δ′pair, the proof obligation is simpler for subject
reduction but replaced by a stronger proof obligation for progress.

77⟨3⟩ 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors Pairs

We add the two following reduction rules:

proji τ1 τ2 (pair τ
′
1
τ ′
2
V1 V2)Ð→ Vi (δpair)

Comments?

● This presentation forces the programmer to specify the types of the
components of the pair.

However, since this is an explicitly type presentation, these types are
already known from the arguments of the pair (when present)

This should not be considered as a problem: explicitly-typed
presentations are always verbose. Removing redundant type
annotations is the task of type reconstruction.

77⟨3⟩ 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors General case

Assume given a collection of type constructors G, with their arity
arity (G). We assume that types respect the arities of type constructors.

A type G (τ⃗) is called a G-type.
A datatype is a G-type for some type constructor G.

Let ∆ be an initial environment binding constants c of arity n (split into
constructors C and destructors d) to closed types of the form:

c ∶ ∀α1. . . .∀αk. τ1 → . . . τn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

arity(c)

→ τ

We require that

● τ be is a datatype whenever c is a constructor (for progress);

● n is strictly positive when c is a destructor
(nullary destructors introduce pathological cases for little benefit).

78 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors General case

Expressions are extended with constants: Constants are typed as
variables, but their types are looked up in the initial environment ∆:

M ∶∶= . . . ∣ c
c ∶∶= C ∣ d

Cst

c ∶ τ ∈∆

Γ ⊢ c ∶ τ

Values are extended with partial or full applications of constructors and
partial applications of destructors:

V ∶∶= . . .

∣ C τ1 . . . τp V1 . . . Vq q ≤ arity (C)
∣ d τ1 . . . τp V1 . . . Vq q < arity (d)

For each destructor d of arity n, we assume given a set of δ-rules of the
form

d τ1 . . . τk V1 . . . Vn Ð→M (δd)

79 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Constructors and destructors General case

Of course, we need assumptions to relate typing and reduction of
constants:

Subject-reduction for constants: δ-rules preserve typings for well-typed
terms: If α⃗ ⊢ M1 ∶ τ and M1 Ð→δ M2 then α⃗ ⊢M2 ∶ τ .

Progress for constants: If α⃗ ⊢ M1 ∶ τ and M1 is of the form
d τ1 . . . τk V1 . . . Vn where n = arity (d), then there exists M2 such that
M1 Ð→M2.

Intuitively, progress for constants means that the domain of destructors is
at least as large as specified by their type in ∆.

80 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Example Unit, Pairs

Adding units:

● Introduce a type constant unit

● Introduce a constructor () of arity 0 of type unit.

● No primitive and no reduction rule is added.

The assumptions obviously hold in the absence of destructors.

The previous example of pairs also perfectly fits in this framework.

81 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Example Fixpoint

We introduce a destructor

fix ∶ ∀α.∀β. ((α → β)→ α → β)→ α → β ∈∆

of arity 2, together with the δ-rule

fix τ1 τ2 V1 V2 Ð→ V1 (fix τ1 τ2 V1) V2 (δfix)

It is straightforward to check the assumptions:

● Progress is obvious, since δfix works for any values V1 and V2.

● Subject reduction is also straightforward.
Assume that Γ ⊢ fix τ1 τ2 V1 V2 ∶ τ . By inversion of typing rules, τ
must be equal to τ2, V1 and V2 must be of types
(τ1 → τ2)→ τ1 → τ2 and τ1 in the typing context Γ. We may then
easily build a derivation of the judgment Γ ⊢ V1 (fix τ1 τ2 V1) V2 ∶ τ

82 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Exercise Lists

1) Formulate the extension of System F with lists as constants.

2) Check that this extension is sound.

Solution

1) We introduce a new unary type constructor list ; two constructors Nil ⋅
and Cons of types ∀α. list α and ∀α.α → list α→ list α; and one
destructor matchlist ⋅ ⋅ ⋅⋅ of type:

∀αβ. list α → β → (α → list α → β)→ β

with the two reduction rules:

matchlist τ1 τ2 (Nil τ) Vn Vc Ð→ Vn

matchlist τ1 τ2 (Cons τ Vh Vt) Vn Vc Ð→ Vc Vh Vt

2) See the case of pairs in the course.

83 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

84 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness

The structure of the proof is similar to the case of simply-typed
λ-calculus and follows from subject reduction and progress.

Subject reduction uses the following lemmas:

● inversion of typing judgments

● permutation and weakening

● expression substitution

● type substitution

● compositionality

85 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Inversion of typing judgements

Lemma (Inversion of typing rules)

Assume Γ ⊢M ∶ τ .

● If M is a variable x, then x ∈ dom(Γ) and Γ(x) = τ .

● If M is λx ∶τ0.M1, then τ is of the form τ0 → τ1 and
Γ, x ∶ τ0 ⊢M1 ∶ τ1.

● If M is M1 M2 then Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2 for some type
τ2.

● If M is a constant c, then c ∈ dom(∆) and ∆(x) = τ .

● If M is M1 τ2 then τ is of the form [α ↦ τ2]τ1 and Γ ⊢M1 ∶ ∀α. τ1.

● If M is Λα.M1, then τ is of the form ∀α. τ1 and Γ, α ⊢M1 ∶ τ1.

The inversion lemma is a basic property that is used in many places when
reasoning by induction on terms. It may not always be as trivial as in our
simple setting: stating it explicitly avoids informal reasoning in proofs.

86 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Weakening

Lemma (Weakening)

Assume Γ ⊢M ∶ τ .

1) If x# Γ and Γ ⊢ τ ′, then Γ, x ∶ τ ′ ⊢M ∶ τ)

2) If β # Γ, then Γ, β ⊢ M ∶ τ .

That is, if ⊢ Γ,Γ′, then Γ,Γ′ ⊢ M ∶ τ .

The proof is by induction on M , then by cases on M applying the
inversion lemma.

Cases for value and type abstraction appeal to the permutation lemma:

Lemma (Permutation)

If Γ,Γ1,Γ2,Γ
′
⊢M ∶ τ and Γ1 # Γ2 then Γ,Γ2,Γ1,Γ

′
⊢M ∶ τ .

87 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Type substitution

Lemma (Expression substitution, strengthened)

If Γ, x ∶ τ0,Γ
′
⊢M ∶ τ and Γ ⊢ M0 ∶ τ0 then Γ,Γ′ ⊢ [x ↦M0]M ∶ τ .

The proof is by induction on M .

The case for type and value abstraction requires the strengthened version
with an arbitrary context Γ′. The proof is then straightforward—using
the weakening lemma at variables.

88 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Type substitution

Lemma (Type substitition, strengthened)

If Γ, α,Γ′ ⊢M ∶ τ ′ and Γ ⊢ τ then Γ, [α ↦ τ]Γ′ ⊢ [α ↦ τ]M ∶ [α ↦ τ]τ ′.

The proof is by induction on M .

The interesting cases are for type and value abstraction, which require
the strengthened version with an arbitrary typing context Γ′ on the right.
Then, the proof is straightforward.

89 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Compositionality

Lemma (Compositionality)

If ∅ ⊢ E[M] ∶ τ , then there exists τ ′ such that ∅ ⊢M ∶ τ ′ and
all M ′ verifying ∅ ⊢M ′

∶ τ ′ also verify ∅ ⊢ E[M ′] ∶ τ .

Remarks

● We need to state compositionality under a context Γ that may at
least contain type variables. We allow program variables as well, as
it does not complicate the proof.

● Extension of Γ by type variables is needed because evaluation
proceeds under type abstractions, hence the evaluation context may
bind type variables (in fact 0 or 1).

90 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Subject reduction

Theorem (Subject reduction)

Reduction preserves types: if M1 Ð→M2 then for any context α⃗ and
type τ such that α⃗ ⊢M1 ∶ τ , we also have α⃗ ⊢M2 ∶ τ .

The proof is by induction on M .
Using the previous lemmas it is straightforward.

Interestingly, the case for δ-rules follows from the subject-reduction
assumption for constants.

91 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Progress

Progress is restated as follows:

Theorem (Progress, strengthened)

A well-typed, irreducible closed term is a value:
if α⃗ ⊢M ∶ τ and M /Ð→ , then M is some value V .

The theorem has been strengthened, using a sequence of type variables α⃗
for the typing context instead of the empty environment.

It is then proved by induction and case analysis on M .

It relies mainly on the classification lemma (given below) and the
progress assumption for destructors.

92 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness Classification

Beware! This must take accounts for partial applications of constants

Lemma (Classification)
Assume α⃗ ⊢ V ∶ τ
● If τ is an arrow type, then V is either a function or a partial
application of a constant.

● If τ is a polymorphic type, then V is either a type abstraction of a
value or a partial application of a constant to types.

● If τ is a constructed type, then V is a constructed value.

The last case can be refined by partitioning constructors into their
associated type-constructor: If τ is a G-constructed type (e.g. int,
τ1 × τ2, τ list), then V is a value constructed with a G-constructor (e.g.
an integer n, a pair (V1, V2), a list Nil or Cons(V1, V2))

93 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Normalization

Theorem
Reduction terminates in pure System F.

This is also true for arbitrary reductions and not just for call-by-value
reduction.

This is a difficult proof, due to Girard [1972]; Girard et al. [1990]).

See also the lesson ?? on logical relations.

94 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Contents

Simply-typed λ-calculus

Type soundness for simply-typed λ-calculus

Simple extensions: Pairs, sums, recursive functions

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

95 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Implicitly-typed System F

The syntax and dynamic semantics of terms are that of the untyped
λ-calculus. We use letters a, v, and e to range over implicitly-typed
terms, values, and evaluation contexts. We write F and ⌈F ⌉ for the
explicitly-typed and implicit-typed versions of System F.

Definition 1 A closed term a is in ⌈F ⌉ if it is the type erasure of a closed
(with respect to term variables) term M in F .

We rewrite the typing rules to operate directly on unannotated terms by
dropping all type information in terms:

Definition 2 (equivalent) Typing rules for ⌈F ⌉ are those of the
implicitlty-typed simply-typed λ-calculus with two new rules:

if-Tabs

Γ, α ⊢ a ∶ τ

Γ ⊢ a ∶ ∀α.τ

if-Tapp

Γ ⊢ a ∶ ∀α.τ

Γ ⊢ a ∶ [α ↦ τ0]τ

Notice that these rules are not syntax directed.
96 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Implicitly-typed System F On the side condition α # Γ

Notice that the explicit introduction of variable α in the premise of Rule
Tabs contains an implicit side condition α # Γ due to the global
assumption on the formation of Γ, α:

if-Tabs

Γ, α ⊢ a ∶ τ

Γ ⊢ a ∶ ∀α.τ

if-Tabs-Bis

Γ ⊢ a ∶ τ α # Γ

Γ ⊢ a ∶ ∀α.τ

In implicitly-typed System F, we could also omit type declarations from
the typing environment. (Although, in some extensions of System F, type
variables may carry a kind or a bound and must be explicitly introduced.)

Then, we would need an explicit side-condition as in if-Tabs-Bis:

The side condition is important to avoid unsoundness by violation of the
scoping rules.

97 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Implicitly-typed System F On the side condition α # Γ

Omitting the side condition leads to unsoundness:

Broken Tabs

Var

x ∶ α1 ⊢ x ∶ α1 α1 ∈ ftv(x ∶ α1)

Tapp

∅, x ∶ α1 ⊢ x ∶ ∀α1.α1

Abs

∅, x ∶ α1 ⊢ x ∶ α2

Tabs-Bis

∅ ⊢ λx.x ∶ α1 → α2

∅ ⊢ λx.x ∶ ∀α1.∀α2.α1 → α2

This is a type derivation for a type cast (Objective Caml’s Obj.magic).

98 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Implicitly-typed System F On the side condition α # Γ

This is equivalent to using an ill-formed typing environment :

Broken Tabs

Broken Var

α1, α2, x ∶ α1, α1 ⊢ x ∶ α1 α1, α2, x ∶ α1, α1 ill-formed

Tapp

α1, α2, x ∶ α1 ⊢ x ∶ ∀α1.α1

Abs

α1, α2, x ∶ α1 ⊢ x ∶ α2

Tabs

α1, α2 ⊢ λx ∶α1. x ∶ α1 → α2

∅ ⊢ Λα1.Λα2.λα1 ∶x.x ∶ ∀α1.∀α2.α1 → α2

99 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Implicitly-typed System F On the side condition α # Γ

A good intuition is: a judgment Γ ⊢ a ∶ τ corresponds to the logical
assertion ∀α⃗.(Γ⇒ τ), where α⃗ are the free type variables of the
judgment.

In that view, Tabs-Bis corresponds to the axiom:

∀α.(P ⇒ Q) ≡ P ⇒ (∀α.Q) if α # P

100 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type-erasing typechecking

Type systems for implicitly-typed and explicitly-type System F coincide.

Lemma
Γ ⊢ a ∶ τ holds in implicitly-typed System F if and only if there exists an
explicitly-typed expression M whose erasure is a such that Γ ⊢M ∶ τ .

Trivial.

One could write judgements of the form Γ ⊢ a⇒M ∶ τ to mean that the
explicitly typed term M witnesses that the implicitly typed term a has
type τ in the environment Γ.

101 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

An example λfxy. (f x, f y)

Here is a version of the term λfxy. (f x, f y) that carries explicit type
abstractions and annotations:

Λα1.Λα2.λf ∶ α1 → α2. λx ∶ α1. λy ∶ α1. (f x, f y)

This term admits the polymorphic type:

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

Quite unsurprising, right? Perhaps more surprising is the fact that this
untyped term can be decorated in a different way:

Λα1.Λα2.λf ∶ ∀α.α → α.λx ∶ α1. λy ∶ α2. (f α1 x, f α2 y)

This term admits the polymorphic type:

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

This begs the question: ...

102 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Incomparable types in System F λfxy. (f x, f y)

Which of the two is more general?

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic.

Neither type is an instance of the other, for any reasonable definition of
the word instance, because each one has an inhabitant that does not
admit the other as a type.

Take, for instance,
λf.λx.λy. (f y, f x)

and
λf.λx.λy. (f (f x), f (f y))

103 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Notions of instance in ⌈F ⌉

It seems plausible that the untyped term λfxy. (f x, f y) does not admit
a type τ0 of which the two previous types are instances.

But, in order to prove this, one must fix what it means for τ2 to be an
instance of τ1—or, equivalently, for τ1 to be more general than τ2.

Several definitions are possible...

104 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Syntactic notions of instance in ⌈F ⌉

In System F, to be an instance is usually defined by the rule:

Inst-Gen

β⃗ # ∀α⃗.τ

∀α⃗.τ ≤ ∀β⃗.[α⃗ ↦ τ⃗]τ

One can show that, if τ1 ≤ τ2, then any term that has type τ1 also has
type τ2; that is, the following rule is admissible:

Sub

Γ ⊢ a ∶ τ1 τ1 ≤ τ2

Γ ⊢ a ∶ τ2

Perhaps surprisingly, the rule is not derivable in our presentation of
System F as the proof of admissibility requires weakening.
(It would be derivable if we had left type variables implicit in contexts.)

105 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Syntactic notions of instance in F

What is the counter-part of instance in explicitly-typed System F?

Assume Γ ⊢M ∶ τ1 and τ1 ≤ τ2. How can we see M with type τ2?

Well, τ1 and τ2 must be of the form ∀α⃗. τ and ∀β⃗. [α⃗ ↦ τ⃗]τ where
β⃗ # ∀α⃗. τ . W.l.o.g, we may assume that β⃗ # Γ.

We can wrap M with a retyping context, as follows.

Weak.

Γ ⊢M ∶ ∀α⃗. τ β⃗ # Γ (1)

Tapp
∗

Γ, β⃗ ⊢M ∶ ∀α⃗. τ

Tabs
∗

Γ, β⃗ ⊢M τ⃗ ∶ [α⃗ ↦ τ⃗]τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Admissible rule:

Sub

β⃗ # ∀α⃗. τ (2)
Γ ⊢M ∶ ∀α⃗. τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ

If condition (2) holds, condition (1) may always be satisfied up to a
renaming of β⃗.

106 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Retyping contexts in F

In F , subtyping is a judgment Γ ⊢ τ1 ≤ τ2 to track well-formedness of
types. Subtyping relations can be witnessed by retyping contexts.

Retyping contexts are just wrapping type abstractions and type
applications around expressions, without changing their type erasure.

R ∶∶= [] ∣ Λα.R ∣R τ

(Notice that R are arbitrarily deep, as opposed to evaluation contexts.)

Let us write Γ ⊢ R[τ1] ∶ τ2 iff Γ, x ∶ τ1 ⊢ R[x] ∶ τ2 (where x# R)

If Γ ⊢M ∶ τ1 and Γ ⊢ R[τ1] ∶ τ2, then Γ ⊢ R[M] ∶ τ2,

Then Γ ⊢ τ1 ≤ τ2 iff Γ ⊢ R[τ1] ∶ τ2. for some retyping context R.

In System F, retyping contexts can only change toplevel polymorphism:
they cannot operate under arrow types to weaken the return type or
strengthen the domain of functions.

107 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Another syntactic notion of instance: Fη

Mitchell [1988] defined Fη , a version of ⌈F ⌉ extended with a richer
instance relation as:

Inst-Gen

β⃗ # ∀α⃗.τ

∀α⃗.τ ≤ ∀β⃗.[α⃗ ↦ τ⃗]τ

Distributivity

∀α. (τ1 → τ2) ≤ (∀α. τ1)→ (∀α. τ2)

Congruence-→

τ2 ≤ τ1 τ ′
1
≤ τ ′

2

τ1 → τ ′1 ≤ τ2 → τ ′2

Congruence-∀

τ1 ≤ τ2

∀α.τ1 ≤ ∀α.τ2

Transitivity

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

In Fη , Rule Sub must be primitive as it is not admissible (but still sound).

Fη can also be defined as the closure of System F under η-equality.

Why is a rich notion of instance potentially interesting?

● More polymorphism.
● More hope of having principal types.

108 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

A definition of principal typings

A typing of an expression M is a pair Γ, τ such that Γ ⊢M ∶ τ .

Ideally, a type system should have principal typings [Wells, 2002]:

Every well-typed term M admits a principal typing – one whose
instances are exactly the typings of M .

Whether this property holds depends on a definition of instance. The
more liberal the instance relation, the more hope there is of having
principal typings.

109 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

A semantic notion of instance

Wells [2002] notes that, once a type system is fixed, a most liberal notion
of instance can be defined, a posteriori, by:

A typing θ1 is more general than a typing θ2 if and only if every
term that admits θ1 admits θ2 as well.

This is the largest reasonable notion of instance: ≤ is defined as the
largest relation such that a subtyping principle (for typings) is admissible.

This definition can be used to prove that a system does not have
principal typings, under any reasonable definition of “instance”.

110 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Which systems have principal typings?

The simply-typed λ-calculus has principal typings, with respect to a
substitution-based notion of instance (See lesson on type inference).

Wells [2002] shows that neither System F nor Fη have principal typings.

It was shown earlier that Fη’s instance relation is
undecidable [Wells, 1995; Tiuryn and Urzyczyn, 2002] and that type
inference for both System F and Fη is undecidable [Wells, 1999].

111 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Which systems have principal typings?

There are still a few positive results...

Some systems of intersection types have principal typings [Wells, 2002] –
but they are very complex and have yet to see a practical application.

A weaker property is to have principal types. Given an environment Γ
and an expression M , is there a type τ for M in Γ such that all other
types of M in Γ are instances of τ .

Damas and Milner’s type system (coming up next) does not have
principal typings but it has principal types and decidable type inference.

112 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Other approaches to type inference in System F

In System F, one can still perform bottom-up type checking, provided
type abstractions and type applications are explicit.

One can perform incomplete forms of type inference, such as local type
inference [Pierce and Turner, 2000; Odersky et al., 2001].

Finally, one can design restrictions or variants of the system that have
decidable type inference. Damas and Milner’s type system is one
example; MLF [Le Botlan and Rémy, 2003] is a more expressive, and
more complex, approach.

113 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness for ⌈F ⌉

Subject reduction and progress imply the soundness of the
explicitly-typed System F. What about the implicitly-typed version?

Can we reuse the soundness proof for the explicitly-typed version? Can
we pull back subject reduction and progress from F to ⌈F ⌉?

Progress? Given a well-typed term a ∈ ⌈F ⌉, can we find a term M ∈ F
whose erasure is a and since M is a value or reduces, conclude that a is
a value or reduces?

Subject reduction? Given a well-typed term a1 ∈ ⌈F ⌉ of type τ that
reduces to a2, can we find a term M1 ∈ F whose erasure is a1 and show
that M1 reduces to a term M2 whose erasure is a2 to conclude that the
type of a2 is the type a1?

In both cases, this reasoning requires a type-erasing semantics.

114 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics

We claimed earlier that the explicitly-typed System F has an erasing
semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the
reduction of type applications on explicitly-typed terms is dropped on
implicitly-typed terms, hence the two reductions cannot coincide exactly.

The way to formalize this is to split reduction steps into βδ-steps
corresponding to β or δ rules that are preserved by type-erasure, and
ι-steps corresponding to the reduction of type applications that disappear
during type-erasure:

M0 M ′
0

M1

a0 a1
βδ

βδι

∗

. . .

Mj M ′
j Mj+1

aj aj+1
βδ

βδι

∗

. . .

Mn V

an = v /

/
ι

∗

115 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics Direct simulation

Type erasure simulates in ⌈F ⌉ the reduction in F upto ι-steps:

Lemma (Direct simulation)

Assume Γ ⊢M1 ∶ τ .
1) If M1 Ð→ι M2, then ⌈M1⌉ = ⌈M2⌉
2) If M1 Ð→βδ M2, then ⌈M1⌉Ð→βδ ⌈M2⌉

Both parts are easy by definition of type erasure.

116 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics Inverse simulation

The inverse direction is more delicate to state, since there are usually
many expressions of F whose erasure is a given expression in ⌈F ⌉,
as ⌈⋅⌉ is not injective.

Lemma (Inverse simulation)

Assume Γ ⊢M1 ∶ τ and ⌈M1⌉Ð→ a.
Then, there exists a term M2 such that M1 Ð→

∗
ιÐ→βδ M2 and ⌈M2⌉ = a.

117 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics Assumption on δ-reduction

Of course, the semantics can only be type erasing if δ-rules do not
themselves depend on type information.

We first need δ-reduction to be defined on type erasures.

● We may prove the theorem directly for some concrete examples of
δ-reduction.
However, keeping δ-reduction abstract is preferable to avoid
repeating the same reasoning again and again.

● We assume that it is such that type erasure establishes a
bisimulation for δ-reduction taken alone.

118 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics Assumption on δ-reduction

We assume that for any explicitly-typed term M of the form
d τ1 . . . τj V1 . . . Vk such that Γ ⊢M ∶ τ , the following properties hold:

(1) If M Ð→δ M
′, then ⌈M⌉Ð→δ ⌈M

′⌉.

(2) If ⌈M⌉Ð→δ a, then there exists M ′ such that M Ð→δ M
′ and a is

the type-erasure of M ′.

Remarks

● In most cases, the assumption on δ-reduction is obvious to check.

● In general the δ-reduction on untyped terms is larger than the
projection of δ-reduction on typed terms.

● If we restrict δ-reduction to implicitly-typed terms, then it usually
coincides with the projection of δ-reduction of explicitly-typed terms.

119 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type soundness for implicitly-typed System F

We may now easily transpose subject reduction and progress from the
implicitly-typed version to the implicitly-typed version of System F.

Progress Well-typed expressions in ⌈F ⌉ have a well-typed antecedent in
ι-normal form in F , which, by progress in F , either βδ-reduces or is a
value; then, its type erasure βδ-reduces (by direct simulation) or is a
value (by observation).

Subject reduction Assume that Γ ⊢ a1 ∶ τ and a1 Ð→ a2.

● By well-typedness of a1, there exists a term M1 that erases to a1
such that Γ ⊢M1 ∶ τ .

● By inverse simulation in F , there exists M2 such that
M1 Ð→

∗
ιÐ→βδ M2 and ⌈M2⌉ is a2.

● By subject reduction in F , Γ ⊢M2 ∶ τ , which implies Γ ⊢ a2 ∶ τ .

120 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics

The design of advanced typed systems for programming languages is
usually done in explicitly-typed versions, with a type-erasing semantics in
mind, but this is not always checked in details.

While the direct simulation is usually straightforward, the inverse
simulation is often harder. As the type systems gets more complicated,
reduction at the level of types also gets more complicated.

It is important and not always obvious that type reduction terminates
and is rich enough to never block reductions that could occur in the type
erasure.

121 122 ◁

STLC Soundness Extensions Polymorphism System F Type soundness Type-erasing

Type erasing semantics On bisimulations

Using bisimulations to show that compilation preserves the semantics
given in small-step style is a classical technique.

For example, this technique is heavily used in the CompCert project to
prove the correctness of a C-compiler to assembly code in Coq, using a
dozen of successive intermediate languages.

122 122 ◁

http://compcert.inria.fr/

Bibliography

Bibliography I

(Most titles have a clickable mark “▷” that links to online versions.)

▷ Adam Chlipala. A certified type-preserving compiler from lambda calculus
to assembly language. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 54–65, June 2007.

▷ Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional
polymorphism in type erasure semantics. Journal of Functional
Programming, 12(6):567–600, November 2002.

Jean-Yves Girard. Interprétation fonctionnelle et élimination des
coupures de l’arithmétique d’ordre supérieur. Thèse d’état, Université
Paris 7, June 1972.

▷ Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.
Cambridge University Press, 1990.

123 122 ◁

http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf
http://www-2.cs.cmu.edu/~crary/papers/2002/typepass/typepass.ps
http://www.paultaylor.eu/stable/prot.pdf

Bibliography

Bibliography II

▷ Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A
history of Haskell: being lazy with class. In ACM SIGPLAN Conference
on History of Programming Languages, June 2007.

▷ Peter J. Landin. Correspondence between ALGOL 60 and Church’s
lambda-notation: part I. Communications of the ACM, 8(2):89–101,
1965.

▷ Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power of
system F . In ACM International Conference on Functional
Programming (ICFP), pages 27–38, August 2003.

▷ Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure
conversion. In ACM Symposium on Principles of Programming
Languages (POPL), pages 271–283, January 1996.

▷ John C. Mitchell. Polymorphic type inference and containment.
Information and Computation, 76(2–3):211–249, 1988.

124 122 ◁

http://research.microsoft.com/~simonpj/papers/history-of-haskell/history.pdf
http://doi.acm.org/10.1145/363744.363749
http://cristal.inria.fr/~remy/work/mlf/icfp.pdf
http://www.cs.cornell.edu/Info/People/jgm/papers/closure-summary.ps
http://dx.doi.org/10.1016/0890-5401(88)90009-0

Bibliography

Bibliography III

▷ Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F
to typed assembly language. ACM Transactions on Programming
Languages and Systems, 21(3):528–569, May 1999.

▷ Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local
type inference. In ACM Symposium on Principles of Programming
Languages (POPL), pages 41–53, 2001.

▷ Benjamin C. Pierce and David N. Turner. Local type inference. ACM
Transactions on Programming Languages and Systems, 22(1):1–44,
January 2000.

▷ Andrew M. Pitts. Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science, 10:321–359, 2000.

▷ John C. Reynolds. Towards a theory of type structure. In Colloque sur la
Programmation, volume 19 of Lecture Notes in Computer Science,
pages 408–425. Springer, April 1974.

125 122 ◁

http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://lampwww.epfl.ch/papers/clti-colored.ps.gz
http://doi.acm.org/10.1145/345099.345100
http://www.cl.cam.ac.uk/~amp12/papers/parpoe/parpoe.pdf
http://www.springerlink.com/content/p5801737k78207p7/

Bibliography

Bibliography IV

▷ John C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing 83, pages 513–523. Elsevier Science, 1983.

▷ John C. Reynolds. Three approaches to type structure. In International
Joint Conference on Theory and Practice of Software Development
(TAPSOFT), volume 185 of Lecture Notes in Computer Science, pages
97–138. Springer, March 1985.

▷ Christopher Strachey. Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation, 13(1–2):11–49, April 2000.

▷ Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for
second-order types is undecidable. Information and Computation, 179
(1):1–18, 2002.

▷ Philip Wadler. Theorems for free! In Conference on Functional
Programming Languages and Computer Architecture (FPCA), pages
347–359, September 1989.

126 122 ◁

ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf
http://dx.doi.org/10.1007/3-540-15198-2_7
http://dx.doi.org/10.1023/A:1010000313106
http://dx.doi.org/10.1006/inco.2001.2950
http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz

Bibliography

Bibliography V

▷ Philip Wadler. The Girard-Reynolds isomorphism (second edition).
Theoretical Computer Science, 375(1–3):201–226, May 2007.

▷ J. B. Wells. The essence of principal typings. In International Colloquium
on Automata, Languages and Programming, volume 2380 of Lecture
Notes in Computer Science, pages 913–925. Springer, 2002.

▷ J. B. Wells. The undecidability of Mitchell’s subtyping relation.
Technical Report 95-019, Computer Science Department, Boston
University, December 1995.

▷ J. B. Wells. Typability and type checking in system F are equivalent and
undecidable. Annals of Pure and Applied Logic, 98(1–3):111–156,
1999.

▷ Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, November
1994.

127 122 ◁

http://homepages.inf.ed.ac.uk/wadler/papers/gr2/gr2.pdf
http://www.macs.hw.ac.uk/~jbw/papers/Wells:The-Essence-of-Principal-Typings:ICALP-2002.pdf
http://www.cs.bu.edu/ftp/pub/jbw/types/subtyping-undecidable.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz

	Metatheory of System F
	Simply-typed lambda-calculus
	Type soundness for simply-typed lambda-calculus
	Simple extensions: Pairs, sums, recursive functions
	Why polymorphism?
	Polymorphic lambda-calculus
	Type soundness
	Type erasing semantics

	Appendix
	Bibliography

