Type systems for programming languages

Didier Rémy

Academic year 2014-2015
Version of November 15, 2019

Contents

E% | Strong v.s. weak ;gg;ggjgn_mmmd 15
Call-by-value semantics o 16

2.3 ADSWEIS £0 EXEICISES .+« « v o o 18

21

... 21

3.2 Dvnamic semantics 21
3.3 Tvpesvstem 22

3.4 Tvpe soundness oo 25

[3.4.1 Proof of subject |red1]gL]'Qﬂ 26
3.4.2 Proof of progress. 28
3.5 Simple extensions 30
351 Unitl . ..o 30
B2 Boolead 30
3.0.3 _Paird 31
35; é]]ﬁa .. 32
%&m 32
3.5.6 __Recursive functiond 33
13.5.7 A derived construct: let-bindingd 33

3.6 E%%%f%lgg ... 35
ICH . . 35

4 CONTENTS

|3 71 Laneuage definition oo 39
[3.7.2 Type SOURANESS . o v o o 41

[3.7.3 Tracing effects with iz anad 42
3.74 Memory deallocation 43

...................................... 58
................................. 62

4.4.1 Implicitlv-tvped System H 62
4.4.2 Tyvpe ISEANCA . . . o 64
4.4.3 Tvpe containment in System F,| 66

[15.2

Internalizing confisurations

’ gQuLhm_._’ZI 98

‘5 3.2 Constraintd, 99

CONTENTS 5

:5 3.4 Type reconstructiono 106

|5,4 ['vpe a,nngta,ﬁms] 109

5.5

6.3

6.2.3 Existential vnes in MU . .. [135

in OCaml 136

Typed closure conversionlo o 137

Mini Haskell 149

721 Examplesin MH . . o o o o 149
[7.2.2 The definition of Mini Haskell 150

CONTENTS

R.3 Proofs and Solution to Exercised 173

170 CONTENTS

Chapter 8

Logical Relations

8.1 Introduction

Logical relations are relations between well-typed programs defined inductively on the struc-
ture of types.

There are two kinds of logical relations: unary and binary. Unary relations are predicate
on expressions, while binary relations relates two expressions of the same type.

What they can be used for: unary relations can be used to prove type safety and
strong normalisation; binary relations can be used to prove equivalence of programs and
non-interferance properties.

Logical relations are a common proof method for programming language researchers that
every one ought to know.

8.2 Normalization of simply-typed A-calculus

In general, types also ensure termination of programs—as long as no form of recursion in
types or terms has been added. Even if one wishes to add recursion explicitly later on, it is
an important property of the design that non-termination is originating from the constructs
for recursion only and could not occur without it.

The simply-typed A-calculus is also lifted at the level of types in richer type systems
such as System FY; then, the decidability of type-equality depends on the termination of
the reduction at the type level.

Proving termination of reduction in fragments of the A-calculus is often a difficult task
because reduction may create new redexes or duplicate existing ones. However, the proof of
termination for the simply-typed A-calculus is simple enough and interesting to be presented
here. Notice that our presentation of simply-typed A-calculus is equipped with a call-by-value
semantics, while proofs of termination are usually done with a strong evaluation strategy
where reduction can occur in any context.

171

172 CHAPTER 8. LOGICAL RELATIONS

We follow the proof schema of [Piercd (2002), which is a modern presentation in a call-
by-value setting of an older proof by [Hindley and Seldin (1986). The proof method, which
is now a standard one, is due to [Taitl (1967). It consists in first building the set 7, of
terminating closed terms of type 7, and then showing that any term of type 7 is actually in
T+, by induction on terms. Unfortunately, stated as such, this hypothesis is too weak. The
difficulty in such cases is usually to find a strong enough induction hypothesis. The solution
in this case is to require that terms in 77, ., not only terminate but also terminate when
applied to any term in 77,.

Definition 4 Let T, be defined inductively on T as follows: let T, be the set of closed terms
that terminates; let T,,,, be the set of (closed) terms M,y of type 7o - 11 that terminates
and such that My My is in T, for any (closed) term My in T, .

The set 7, can be seen as a predicate, i.e. a unary relation. It is called a (unary) logical
relation because it is defined inductively on the structure of types. The following proof is
then schematic of the use of logical relations.

We state two obvious lemmas to prepare for the main proof. All terms in 7; terminate,
by definition of 7;:

Lemma 37 For any type T, the reduction of any term in T, halts.

Reduction of closed terms of type 7 preserves membership in 7;:

Lemma 38 If @+ M :7 and M — M’, then M € T; iff M' € T;.
(Proof p. 3N

Therefore, it just remains to show that any term of type 7 is in 7;:
Lemma 39 If @+ M : 7, then M € T;.

The proof is by induction on (the typing derivation of) M. However, the case for abstraction
requires some similar statement, but for open terms. We need to strengthen the lemma.
Actually, to avoid considering open terms, we instead require the statement to hold for all
closed instances of an open term:

Lemma 40 (strengthened) If (z;:7;) v M : 7, then for any closed values (V;)*! in
(77, the term [(z; = Vi) M is in T,.

— —
Proof: We write T for (z; : 7;)" and 6 for [(z; = V;)*!]. Assume I'+~ M : 7 (1) and (V;)%!
in (77,)"! (2). We show that M is in T; (3) by structural induction on M.

Case M is x;: Immediate since the conclusion (3) is one of the hypothesese (2).

Case M is My Ms: By inversion of the typing judgment (1), we have I' = M; : 79 - 7 (4) and
'+ My : 715 (5) for some type 75. Therefore, by induction hypothesis applied to (4) and (5),

8.3. PROOFS AND SOLUTION TO EXERCISES 173

we have OM; € T,,-.r and M € T;,. Thus, by definition of 77, we have(0M;) (6Ma2) € Tr;
that is, OM € T.

Case M is A\z:7y. Ms: By inversion of the typing judgment (1), we have I',x : 74 + My : 5 (6)
where 71 — 79 is 7 (7). Since M is a value, it is terminating. Hence, to ensure (3), it suffices
to show that the application of M to any M; in T, is in T, (8). Let M; € T7,. By definition
of 77,, the term M; reduces to some value V, which by subject reduction has type 71, and
so is in 77, (9). We have:

(OM) M, 2 (0(\z:71. My)) M,y by definition of M
= (A\x:7m.0Msy) My choose = # T
—*(A\z:71.0M2) V by (9)
— [z~ V](6M3) by (8)

= ([x > V]0)M;
¢ T, by LH.

In the last step, we may apply the induction hypothesis, since the first hypothesis is (6) and
the second one follows from (2) and (9). In summary, (#M) M; reduces to a term in 7,.

Since T, is closed by reduction, (M) M itself in in 77,, which establishes (8), as expected.
(- —

8.3 Proofs and Solution to Exercises

Proof of Lemma 38

By induction on the structure of the type 7.

Case T 1s a: Then T; is the set of terms that terminates. If M — M’ the termination of
M, i.e. M €7, is equivalent to the termination of M’, i.e. M'e€ T,.

Case T is 1 = To: Then 7T, is the set of terms of type 7 that terminate and also terminate
when applied to any term M; of type 7. Assume g+ M : 7 (1) and M — M’ (2). By
subject reduction, we have @ + M’ : 7. Moreover, from (2), termination of M and termination
of M’ are equivalent. Therefore, it only remains to check that for any term M; of 7;,, M M,
and M’ M are both in 7., or both outside of 7;, (3). Let M; be in T,,. We have @+ M; : 7
and thus @+~ M M : ,. We also have the call-by-value reduction M M; — M' M, Hence,
(3) follows by induction hypothesis.

174 CHAPTER 8. LOGICAL RELATIONS

Bibliography

D> A tour of scala: Implicit parameters. Part of scala documentation.

D> Martin Abadi and Luca Cardelli. A theory of primitive objects: Untyped and first-order
systems. Information and Computation, 125(2):78-102, March 1996.

D> Martin Abadi and Luca Cardelli. A theory of primitive objects: Second-order systems.
Science of Computer Programming, 25(2-3):81-116, December 1995.

> Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational equiv-
alence. In ACM International Conference on Functional Programming (ICFP), pages
157-168, September 2008.

D> Lennart Augustsson. Implementing Haskell overloading. In FPCA °93: Proceedings of the

conference on Functional programming languages and computer architecture, pages 65—73,
New York, NY, USA, 1993. ACM. ISBN 0-89791-595-X.

D> Nick Benton and Andrew Kennedy. Exceptional syntax journal of functional programming.
J. Funct. Program., 11(4):395-410, 2001.

D> Richard Bird and Lambert Meertens. Nested datatypes. In International Conference on
Mathematics of Program Construction (MPC), volume 1422 of Lecture Notes in Computer
Science, pages 52—67. Springer, 1998.

Nikolaj Skallerud Bjgrner. Minimal typing derivations. In In ACM SIGPLAN Workshop on
ML and its Applications, pages 120126, 1994.

Daniel Bonniot. Typage modulaire des multi-méthodes. PhD thesis, Ecole des Mines de Paris,
November 2005.

D> Daniel Bonniot. Type-checking multi-methods in ML (a modular approach). In Workshop
on Foundations of Object-Oriented Languages (FOOL), January 2002.

D> Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality
and subtyping. Fundamenta Informatice, 33:309-338, 1998.

175

http://doi.acm.org/10.1145/224164.224198
http://research.microsoft.com/Users/luca/Papers/PrimObj1stOrder.pdf
http://research.microsoft.com/Users/luca/Papers/PrimObj2ndOrder.pdf
http://ttic.uchicago.edu/~amal/papers/tccpoe.pdf
http://doi.acm.org/10.1145/165180.165191
http://research.microsoft.com/en-us/um/people/akenn/sml/exceptionalsyntax.pdf
ftp://ftp.kestrel.edu/pub/papers/meertens/nest5.ps
http://cristal.inria.fr/~bonniot/bonniot02.ps
ftp://ftp.diku.dk/diku/semantics/papers/D-353.ps.gz

176 BIBLIOGRAPHY

Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. Infor-
mation and Computation, 155(1/2):108-133, November 1999.

Luca Cardelli. An implementation of fj:. Technical report, DEC Systems Research Center,
1993.

Giuseppe Castagna. Object-Oriented Programming: A Unified Foundation. Progress in
Theoretical Computer Science Series. Birkauser, Boston, 1997.

Henry Cejtin, Matthew Fluet, Suresh Jagannathan, and Stephen Weeks. The MLton com-
piler, 2007.

Arthur Charguéraud and Frangois Pottier. Functional translation of a calculus of capabilities.
In ACM International Conference on Functional Programming (ICFP), pages 213-224,
September 2008.

Juan Chen and David Tarditi. A simple typed intermediate language for object-oriented
languages. In ACM Symposium on Principles of Programming Languages (POPL), pages
3849, January 2005.

Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly

language. In ACM Conference on Programming Language Design and Implementation
(PLDI), pages 54—65, June 2007.

Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type era-
sure semantics. Journal of Functional Programming, 12(6):567-600, November 2002.

Julien Crétin and Didier Rémy. Extending System F with Abstraction over Erasable Co-
ercions. In Proceedings of the 39th ACM Conference on Principles of Programming Lan-
guages, January 2012.

Derek Dreyer, Robert Harper, Manuel M. T. Chakravarty, and Gabriele Keller. Modular
type classes. In POPL ’07: Proceedings of the 3/th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 63-70, New York, NY, USA,
2007. ACM. ISBN 1-59593-575-4.

Joshua Dunfield. Greedy bidirectional polymorphism. In ML ’09: Proceedings of the 2009
ACM SIGPLAN workshop on ML, pages 15-26, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-509-3. doi: http://doi.acm.org/10.1145/1596627.1596631.

Ken-etsu Fujita and Aleksy Schubert. Existential type systems with no types in terms.
In Typed Lambda Calculi and Applications, 9th International Conference, TLCA 2009,
Brasilia, Brazil, July 1-3, 2009. Proceedings, pages 112-126, 2009. doi: 10.1007/
978-3-642-02273-9_10.

http://www.cis.upenn.edu/~bcpierce/papers/compobj.ps
http://mlton.org/
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://research.microsoft.com/pubs/59934/lilc_popl05.pdf
http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf
http://www-2.cs.cmu.edu/~crary/papers/2002/typepass/typepass.ps
http://doi.acm.org/10.1145/1190216.1190229
http://dx.doi.org/10.1007/978-3-642-02273-9_10

BIBLIOGRAPHY 177

Jun Furuse. Extensional polymorphism by flow graph dispatching. In Ohori (2003), pages
376-393. ISBN 3-540-20536-5.

Jun Furuse. Extensional polymorphism by flow graph dispatching. In Asian Symposium on
Programming Languages and Systems (APLAS), volume 2895 of Lecture Notes in Com-
puter Science. Springer, November 2003b.

Jacques Garrigue. Relaxing the value restriction. In Functional and Logic Programming,
volume 2998 of Lecture Notes in Computer Science, pages 196-213. Springer, April 2004.

Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. These d’état, Université Paris 7, June 1972.

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University
Press, 1990.

Dan Grossman. Quantified types in an imperative language. ACM Transactions on Pro-
gramming Languages and Systems, 28(3):429-475, May 2006.

Bob Harper and Mark Lillibridge. ML with callcc is unsound. Message to the TYPES
mailing list, July 1991.

Robert Harper and Benjamin C. Pierce. Design considerations for ML-style module systems.
In Benjamin C. Pierce, editor, Advanced Topics in Types and Programming Languages,
chapter 8, pages 293-345. MIT Press, 2005.

Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on Program-
ming Languages and Systems, 15(2):253-289, April 1993.

J. Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions
of the American Mathematical Society, 146:29-60, 1969.

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and Lambda-Calculus.
Cambridge University Press, 1986.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell: be-
ing lazy with class. In ACM SIGPLAN Conference on History of Programming Languages,
June 2007.

Gérard Huet. Résolution d’équations dans des langages d’ordre 1, 2, ..., w. PhD thesis,
Université Paris 7, September 1976.

John Hughes. Why functional programming matters. Computer Journal, 32(2):98-107, 1989.

http://cristal.inria.fr/~furuse/publications/flowgraph.ps.gz
http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf
http://www.paultaylor.eu/stable/prot.pdf
http://www.cs.washington.edu/homes/djg/papers/qtil.pdf
http://www.cis.upenn.edu/~bcpierce/types/archives/1991/msg00034.html
http://doi.acm.org/10.1145/169701.169692
http://dx.doi.org/10.2307/1995158
http://research.microsoft.com/~simonpj/papers/history-of-haskell/history.pdf
http://www.math.chalmers.se/~rjmh/Papers/whyfp.pdf

178 BIBLIOGRAPHY

Mark P. Jones. Simplifying and improving qualified types. In FPCA ’'95: Proceedings of
the seventh international conference on Functional programming languages and computer

architecture, pages 160-169, New York, NY, USA, 1995a. ACM. ISBN 0-89791-719-7.
Mark P. Jones. Typing Haskell in Haskell. In I'n Haskell Workshop, 1999a.

Mark P. Jones. Qualified types: theory and practice. Cambridge University Press, New York,
NY, USA, 1995b. ISBN 0-521-47253-9.

Mark P. Jones. Typing Haskell in Haskell. In Haskell workshop, October 1999b.

Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of the
design space. In Haskell workshop, 1997.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical
type inference for arbitrary-rank types. Journal of Functional Programming, 17(01):1,
2006.

Stefan Kaes. Type inference in the presence of overloading, subtyping and recursive types. In
LFP ’92: Proceedings of the 1992 ACM conference on LISP and functional programming,
pages 193-204, New York, NY, USA, 1992. ACM. ISBN 0-89791-481-3. doi: http://doi.
acm.org/10.1145/141471.141540.

Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is DEXPTIME-complete.
In Colloquium on Trees in Algebra and Programming, volume 431 of Lecture Notes in
Computer Science, pages 206-220. Springer, May 1990.

Peter J. Landin. Correspondence between ALGOL 60 and Church’s lambda-notation: part
I. Communications of the ACM, 8(2):89-101, 1965.

Konstantin Laufer and Martin Odersky. Polymorphic type inference and abstract data types.
ACM Transactions on Programming Languages and Systems, 16(5):1411-1430, September
1994.

Didier Le Botlan and Didier Rémy. Recasting MLF. Information and Computation, 207(6):
726-785, 2009. ISSN 0890-5401. doi: 10.1016/j.ic.2008.12.006.

Xavier Leroy. Typage polymorphe d’un langage algorithmique. PhD thesis, Université Paris
7, June 1992.

Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with
a proof assistant. In ACM Symposium on Principles of Programming Languages (POPL),
pages 42-54, January 2006.

http://doi.acm.org/10.1145/224164.224198
http://web.cecs.pdx.edu/~mpj/thih/
http://research.microsoft.com/en-us/um/people/simonpj/papers/type-class-design-space/multi.ps.gz
http://www.journals.cambridge.org/abstract_S0956796806006034
http://dx.doi.org/10.1007/3-540-52590-4_50
http://doi.acm.org/10.1145/363744.363749
http://www.cs.luc.edu/laufer/papers/toplas94.pdf
http://dx.doi.org/10.1016/j.ic.2008.12.006
http://cristal.inria.fr/~xleroy/publi/these-doctorat.ps.gz
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf

BIBLIOGRAPHY 179

Xavier Leroy and Francois Pessaux. Type-based analysis of uncaught exceptions. ACM
Trans. Program. Lang. Syst., 22(2):340-377, 2000. ISSN 0164-0925. doi: http://doi.acm.
org/10.1145/349214.349230.

John M. Lucassen and David K. Gifford. Polymorphic effect systems. In ACM Symposium
on Principles of Programming Languages (POPL), pages 47-57, January 1988.

Harry G. Mairson. Deciding ML typability is complete for deterministic exponential time.
In ACM Symposium on Principles of Programming Languages (POPL), pages 382401,
1990.

David McAllester. A logical algorithm for ML type inference. In Rewriting Techniques and
Applications (RTA), volume 2706 of Lecture Notes in Computer Science, pages 436-451.
Springer, June 2003.

Todd D. Millstein and Craig Chambers. Modular statically typed multimethods. In ECOOP
'99: Proceedings of the 15th European Conference on Object-Oriented Programming, pages
279-303, London, UK, 1999. Springer-Verlag. ISBN 3-540-66156-5.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348-375, December 1978.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conversion. In ACM
Symposium on Principles of Programming Languages (POPL), pages 271-283, January
1996.

John C. Mitchell. Polymorphic type inference and containment. Information and Computa-
tion, 76(2-3):211-249, 1988,

John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM
Transactions on Programming Languages and Systems, 10(3):470-502, 1988.

Benoit Montagu and Didier Rémy. Modeling abstract types in modules with open existential
types. In ACM Symposium on Principles of Programming Languages (POPL), pages 63—
74, January 2009.

J. Garrett Morris and Mark P. Jones. Instance chains: type class programming without
overlapping instances. In ICFP ’10: Proceedings of the 15th ACM SIGPLAN international
conference on Functional programming, pages 375-386, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-794-3. doi: http://doi.acm.org/10.1145/1863543.1863596.

Greg Morrisett and Robert Harper. Typed closure conversion for recursively-defined func-
tions (extended abstract). In International Workshop on Higher Order Operational Tech-
niques in Semantics (HOOTS), volume 10 of Electronic Notes in Theoretical Computer
Science. Elsevier Science, 1998.

http://gallium.inria.fr/~xleroy/publi/exceptions-toplas.ps.gz
http://pag.lcs.mit.edu/reading-group/lucassen88effects.pdf
http://doi.acm.org/10.1145/96709.96748
http://www.autoreason.com/rta03.ps
http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://www.cs.cornell.edu/Info/People/jgm/papers/closure-summary.ps
http://dx.doi.org/10.1016/0890-5401(88)90009-0
http://theory.stanford.edu/people/jcm/papers/mitch-plotkin-88.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://www.cs.cornell.edu/home/jgm/papers/hootsclosure.ps

180 BIBLIOGRAPHY

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):528-569,
May 1999.

Alan Mycroft. Polymorphic type schemes and recursive definitions. In International Sympo-
sium on Programming, volume 167 of Lecture Notes in Computer Science, pages 217-228.
Springer, April 1984.

Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael Sperber. Functional
logic overloading. pages 233-244, 2002. doi: http://doi.acm.org/10.1145/565816.503294.

Martin Odersky, Philip Wadler, and Martin Wehr. A second look at overloading. In FPCA
"95: Proceedings of the seventh international conference on Functional programming lan-
guages and computer architecture, pages 135-146, New York, NY, USA, 1995. ACM. ISBN
0-89791-719-7.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with constrained
types. Theory and Practice of Object Systems, 5(1):35-55, 1999.

Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local type inference. In
ACM Symposium on Principles of Programming Languages (POPL), pages 41-53, 2001.

Atsushi Ohori, editor. Programming Languages and Systems, First Asian Symposium,
APLAS 2003, Beijing, China, November 27-29, 2003, Proceedings, volume 2895 of Lecture
Notes in Computer Science, 2003. Springer. ISBN 3-540-20536-5.

Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1999.

Bruno C.d.S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi.
The implicit calculus: a new foundation for generic programming. In Proceedings of the
33rd ACM SIGPLAN conference on Programming Language Design and Implementation,
PLDI ’12, pages 35-44, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1205-9. doi:
10.1145/2254064.2254070.

Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell. Online lecture notes, January 2009.

Simon Peyton Jones and Mark Shields. Lexically-scoped type variables. Manuscript, April
2004.

Simon Peyton Jones and Philip Wadler. Imperative functional programming. In ACM
Symposium on Principles of Programming Languages (POPL), pages 71-84, January 1993.

http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://dx.doi.org/10.1007/3-540-12925-1_41
http://www.informatik.uni-freiburg.de/~neubauer/papers/popl02.ps.gz
http://doi.acm.org/10.1145/224164.224195
http://eprints.kfupm.edu.sa/73647/1/73647.pdf
http://lampwww.epfl.ch/papers/clti-colored.ps.gz
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504
http://doi.acm.org/10.1145/2254064.2254070
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/mark.pdf
http://www.cse.ogi.edu/~mbs/pub/scoped/
http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps.gz

BIBLIOGRAPHY 181

Frank Pfenning. Partial polymorphic type inference and higher-order unification. In LFP
'88: Proceedings of the 1988 ACM conference on LISP and functional programming, pages
153-163, New York, NY, USA, 1988. ACM. ISBN 0-89791-273-X. doi: http://doi.acm.
org/10.1145/62678.62697.

> Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

> Benjamin C. Pierce and David N. Turner. Local type inference. ACM Transactions on
Programming Languages and Systems, 22(1):1-44, January 2000.

> Andrew M. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10:321-359, 2000.

> Francois Pottier. Notes du cours de DEA “Typage et Programmation”, December 2002.
Francois Pottier. A typed store-passing translation for general references. In Proceedings of

the 38th ACM Symposium on Principles of Programming Languages (POPL’11), Austin,
Texas, January 2011. [Supplementary materiall

Francois Pottier. Syntactic soundness proof of a type-and-capability system with hidden
state. Journal of Functional Programming, 23(1):38-144, January 2013.

Francois Pottier. Hindley-Milner elaboration in applicative style. In Proceedings of the
2014 ACM SIGPLAN International Conference on Functional Programming (ICFP’1}),
September 2014.

D> Francgois Pottier and Nadji Gauthier. Polymorphic typed defunctionalization and concretiza-
tion. Higher-Order and Symbolic Computation, 19:125-162, March 2006.

Francois Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. Sub-
mitted for publication, October 2012.

Francois Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’13), pages 173-184, September 2013.

D> Frangois Pottier and Didier Rémy. The essence of ML type inference. In Benjamin C. Pierce,
editor, Advanced Topics in Types and Programming Languages, chapter 10, pages 389-489.
MIT Press, 2005.

D> Francgois Pottier and Didier Rémy. The essence of ML type inference. Draft of an extended
version. Unpublished, September 2003.

http://www.cis.upenn.edu/~bcpierce/tapl/
http://doi.acm.org/10.1145/345099.345100
http://www.cl.cam.ac.uk/~amp12/papers/parpoe/parpoe.pdf
http://cristal.inria.fr/~fpottier/mpri/dea-typage.ps.gz
http://cristal.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.ps.gz
http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf
http://cristal.inria.fr/attapl/preversion.ps.gz

182 BIBLIOGRAPHY

Didier Rémy. Simple, partial type-inference for System F based on type-containment. In
Proceedings of the tenth International Conference on Functional Programming, September
2005.

Didier Rémy. Programming objects with ML-ART: An extension to ML with abstract and
record types. In International Symposium on Theoretical Aspects of Computer Software
(TACS), pages 321-346. Springer, April 1994a.

Didier Rémy. Type inference for records in a natural extension of ML. In Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Programming: Types,
Semantics and Language Design. MIT Press, 1994b.

Didier Rémy and Jérome Vouillon. Objective ML: An effective object-oriented extension to
ML. Theory and Practice of Object Systems, 4(1):27-50, 1998.

Didier Rémy and Boris Yakobowski. Efficient Type Inference for the MLF language: a
graphical and constraints-based approach. In The 15th ACM SIGPLAN International
Conference on Functional Programming (ICFP’08), pages 63-74, Victoria, BC, Canada,
September 2008. doi: http://doi.acm.org/10.1145/1411203.1411216.

John C. Reynolds. Towards a theory of type structure. In Colloque sur la Programmation,
volume 19 of Lecture Notes in Computer Science, pages 408-425. Springer, April 1974.

John C. Reynolds. Types, abstraction and parametric polymorphism. In Information Pro-
cessing 83, pages 513-523. Elsevier Science, 1983.

John C. Reynolds. Three approaches to type structure. In International Joint Conference on
Theory and Practice of Software Development (TAPSOFT), volume 185 of Lecture Notes
wn Computer Science, pages 97-138. Springer, March 1985.

Francois Rouaix. Safe run-time overloading. In Proceedings of the 17th ACM Conference on
Principles of Programming Languages, pages 355-366, 1990. doi: http://doi.acm.org/10.
1145/96709.96746.

Tom Schrijvers, Bruno C. d. S. Oliveira, and Philip Wadler. Cochis: Deterministic and
coherent implicits. Technical report, KU Leuven, May 2017.

Christian Skalka and Frangois Pottier. Syntactic type soundness for HM(X). In Workshop
on Types in Programming (TIP), volume 75 of Electronic Notes in Theoretical Computer
Science, July 2002.

Geoffrey S. Smith. Principal type schemes for functional programs with overloading and
subtyping. In Science of Computer Programming, 1994.

http://gallium.inria.fr/~remy/work/fml/fml-icfp.pdf
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/taoop1.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/objective-ml!tapos98.ps.gz
http://www.springerlink.com/content/p5801737k78207p7/
ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf
http://dx.doi.org/10.1007/3-540-15198-2_7
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW705.pdf
http://cristal.inria.fr/~fpottier/publis/skalka-fpottier-tip-02.ps.gz

BIBLIOGRAPHY 183

Morten Heine Sgrensen and Pawel Urzyczyn. Studies in Logic and the Foundations of Math-
ematics, chapter Lectures on the Curry-Howard Isomorphism. Elselvir Science Inc, 2006.

Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In Sofiene Tahar, Otmame
Ait-Mohamed, and César Munoz, editors, TPHOLs 2008: Theorem Proving in Higher
Order Logics, 21th International Conference, Lecture Notes in Computer Science. Springer,
August 2008.

Paul A. Steckler and Mitchell Wand. Lightweight closure conversion. ACM Transactions on
Programming Languages and Systems, 19(1):48-86, 1997.

Christopher Strachey. Fundamental concepts in programming languages. Higher-Order and
Symbolic Computation, 13(1-2):11-49, April 2000.

Peter J. Stuckey and Martin Sulzmann. A theory of overloading. In ICFP ’02: Proceedings of
the seventh ACM SIGPLAN international conference on Functional programming, pages
167-178, New York, NY, USA, 2002. ACM. ISBN 1-58113-487-8.

W. W. Tait. Intensional interpretations of functionals of finite type i. The Journal of
Symbolic Logic, 32(2):pp. 198-212, 1967. ISSN 00224812.

Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Information and
Computation, 11(2):245-296, 1994.

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215-225, April 1975.

Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for second-order types is unde-
cidable. Information and Computation, 179(1):1-18, 2002.

Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A retrospective on region-
based memory management. Higher-Order and Symbolic Computation, 17(3):245-265,
September 2004.

Andrew Tolmach and Dino P. Oliva. From ML to Ada: Strongly-typed language interop-
erability via source translation. Journal of Functional Programming, 8(4):367-412, July
1998.

Philip Wadler. Theorems for free! In Conference on Functional Programming Languages
and Computer Architecture (FPCA), pages 347-359, September 1989.

Philip Wadler. The Girard-Reynolds isomorphism (second edition). Theoretical Computer
Science, 375(1-3):201-226, May 2007.

http://www.lri.fr/~sozeau/research/publications/First-Class_Type_Classes.pdf
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/steckler-wand-97.ps
http://dx.doi.org/10.1023/A:1010000313106
http://doi.acm.org/10.1145/581478.581495
http://www.jstor.org/stable/2271658
http://www.irisa.fr/prive/talpin/papers/ic94.pdf
http://dx.doi.org/10.1006/inco.2001.2950
http://www.itu.dk/people/birkedal/papers/regmmp.ps.gz
http://dx.doi.org/10.1017/S0956796898003086
http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz
http://homepages.inf.ed.ac.uk/wadler/papers/gr2/gr2.pdf

184 BIBLIOGRAPHY

D> Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In ACM
Symposium on Principles of Programming Languages (POPL), pages 6076, January 1989.

Mitchell Wand. Corrigendum: Complete type inference for simple objects. In Proceedings
of the IEEE Symposium on Logic in Computer Science, 1988.

> J. B. Wells. The essence of principal typings. In International Colloquium on Automata,
Languages and Programming, volume 2380 of Lecture Notes in Computer Science, pages
913-925. Springer, 2002.

> J. B. Wells. The undecidability of Mitchell’s subtyping relation. Technical Report 95-019,
Computer Science Department, Boston University, December 1995.

D> J. B. Wells. Typability and type checking in system F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98(1-3):111-156, 1999.

D> Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation, 8
(4):343-356, December 1995.

D> Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Infor-
mation and Computation, 115(1):38-94, November 1994.

http://homepages.inf.ed.ac.uk/wadler/papers/class/class.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/Wells:The-Essence-of-Principal-Typings:ICALP-2002.pdf
http://www.cs.bu.edu/ftp/pub/jbw/types/subtyping-undecidable.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz

	Logical Relations
	Introduction
	Normalization of simply-typed -calculus
	Proofs and Solution to Exercises

