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Chapter 8

Logical Relations

8.1 Introduction

Logical relations are relations between well-typed programs defined inductively on the struc-
ture of types.

There are two kinds of logical relations: unary and binary. Unary relations are predicate
on expressions, while binary relations relates two expressions of the same type.

What they can be used for: unary relations can be used to prove type safety and
strong normalisation; binary relations can be used to prove equivalence of programs and
non-interferance properties.

Logical relations are a common proof method for programming language researchers that
every one ought to know.

8.2 Normalization of simply-typed A-calculus

In general, types also ensure termination of programs—as long as no form of recursion in
types or terms has been added. Even if one wishes to add recursion explicitly later on, it is
an important property of the design that non-termination is originating from the constructs
for recursion only and could not occur without it.

The simply-typed A-calculus is also lifted at the level of types in richer type systems
such as System FY; then, the decidability of type-equality depends on the termination of
the reduction at the type level.

Proving termination of reduction in fragments of the A-calculus is often a difficult task
because reduction may create new redexes or duplicate existing ones. However, the proof of
termination for the simply-typed A-calculus is simple enough and interesting to be presented
here. Notice that our presentation of simply-typed A-calculus is equipped with a call-by-value
semantics, while proofs of termination are usually done with a strong evaluation strategy
where reduction can occur in any context.
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We follow the proof schema of [Piercd (2002), which is a modern presentation in a call-
by-value setting of an older proof by [Hindley and Seldin (1986). The proof method, which
is now a standard one, is due to [Taitl (1967). It consists in first building the set 7, of
terminating closed terms of type 7, and then showing that any term of type 7 is actually in
T+, by induction on terms. Unfortunately, stated as such, this hypothesis is too weak. The
difficulty in such cases is usually to find a strong enough induction hypothesis. The solution
in this case is to require that terms in 77, ., not only terminate but also terminate when
applied to any term in 77,.

Definition 4 Let T, be defined inductively on T as follows: let T, be the set of closed terms
that terminates; let T,,,, be the set of (closed) terms M,y of type 7o - 11 that terminates
and such that My My is in T, for any (closed) term My in T, .

The set 7, can be seen as a predicate, i.e. a unary relation. It is called a (unary) logical
relation because it is defined inductively on the structure of types. The following proof is
then schematic of the use of logical relations.

We state two obvious lemmas to prepare for the main proof. All terms in 7; terminate,
by definition of 7;:

Lemma 37 For any type T, the reduction of any term in T, halts.

Reduction of closed terms of type 7 preserves membership in 7;:

Lemma 38 If @+ M :7 and M — M’, then M € T; iff M' € T;.
(Proof p. 3N

Therefore, it just remains to show that any term of type 7 is in 7;:
Lemma 39 If @+ M : 7, then M € T;.

The proof is by induction on (the typing derivation of) M. However, the case for abstraction
requires some similar statement, but for open terms. We need to strengthen the lemma.
Actually, to avoid considering open terms, we instead require the statement to hold for all
closed instances of an open term:

Lemma 40 (strengthened) If (z;:7;) v M : 7, then for any closed values (V;)*! in
(77, the term [(z; = Vi) M is in T,.

— —
Proof: We write T for (z; : 7;)" and 6 for [(z; = V;)*!]. Assume I'+~ M : 7 (1) and (V;)%!
in (77,)"! (2). We show that M is in T; (3) by structural induction on M.

Case M is x;: Immediate since the conclusion (3) is one of the hypothesese (2).

Case M is My Ms: By inversion of the typing judgment (1), we have I' = M; : 79 - 7 (4) and
'+ My : 715 (5) for some type 75. Therefore, by induction hypothesis applied to (4) and (5),
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we have OM; € T,,-.r and M € T;,. Thus, by definition of 77, we have(0M;) (6Ma2) € Tr;
that is, OM € T.

Case M is A\z:7y. Ms: By inversion of the typing judgment (1), we have I',x : 74 + My : 5 (6)
where 71 — 79 is 7 (7). Since M is a value, it is terminating. Hence, to ensure (3), it suffices
to show that the application of M to any M; in T, is in T, (8). Let M; € T7,. By definition
of 77,, the term M; reduces to some value V, which by subject reduction has type 71, and
so is in 77, (9). We have:

(OM) M, 2 (0(\z:71. My)) M,y by definition of M
= (A\x:7m.0Msy) My choose = # T
—*(A\z:71.0M2) V by (9)
— [z~ V](6M3) by (8)

= ([x > V]0)M;
¢ T, by LH.

In the last step, we may apply the induction hypothesis, since the first hypothesis is (6) and
the second one follows from (2) and (9). In summary, (#M) M; reduces to a term in 7,.

Since T, is closed by reduction, (M) M itself in in 77,, which establishes (8), as expected.
(- —

8.3 Proofs and Solution to Exercises

Proof of Lemma 38

By induction on the structure of the type 7.

Case T 1s a: Then T; is the set of terms that terminates. If M — M’ the termination of
M, i.e. M €7, is equivalent to the termination of M’, i.e. M'e€ T,.

Case T is 1 = To: Then 7T, is the set of terms of type 7 that terminate and also terminate
when applied to any term M; of type 7. Assume g+ M : 7 (1) and M — M’ (2). By
subject reduction, we have @ + M’ : 7. Moreover, from (2), termination of M and termination
of M’ are equivalent. Therefore, it only remains to check that for any term M; of 7;,, M M,
and M’ M are both in 7., or both outside of 7;, (3). Let M; be in T,,. We have @+ M; : 7
and thus @+~ M M : ,. We also have the call-by-value reduction M M; — M' M, Hence,
(3) follows by induction hypothesis.
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