
MPRI 2.4, Functional programming and type systems

Metatheory of System F

Didier Rémy

October 27, 2017

Plan of the course

Metatheory of System F

ADTs, Existential types, GATDs

CS lessons at College de France

Rachid Guerraoui,

Algorithmique répartie

At 10am on fridays, every other week

Xavier Leroy

Programmer = Démontrer: La correspondance de Curry Howard
aujourd’hui.

At 10am on wednesdays, starting November 21st.

3 120 ◁

http://www.college-de-france.fr/site/rachid-guerraoui/p4603043015596790_content.htm
http://www.college-de-france.fr/site/xavier-leroy/course-2018-2019.htm

Internships related to this course

See our course web page

• How to be an Effective Liar: Higher-Order Memoization Algorithms
in Iris, by François Pottier, Inria Paris.

• Effectful programs and their proofs in a dependently-typed setting
by Pierre-Évariste Dagand, CNRS – Inria Paris – LIP6

• More to come . . .

4 120 ◁

https://gitlab.inria.fr/fpottier/mpri-2.4-public/blob/master/README.md

Abstract Data types, Existential

types, GADTs

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Contents

Algebraic Data Types

Equi- and iso-recursive types

Typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

Generalized Algebraic Datatypes

6 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Datatypes Types Examples

In OCaml:

type ’a list =
| Nil : ’a list
| Cons : ’a ∗ ’a list → ’a list

or

type (’leaf, ’node) tree =
| Leaf : ’leaf → (’leaf , ’node) tree
| Node : (’leaf, ’node) tree ∗ ’node ∗ (’leaf, ’node) tree → (’leaf , ’node) tree

7 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Datatypes Types General case

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)

In System F, this amounts to declaring (implicit version for conciseness):

?

8⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Datatypes Types General case

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)

In System F, this amounts to declaring (implicit version for conciseness):

• a new type constructor G,

?

8⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Datatypes Types General case

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)

In System F, this amounts to declaring (implicit version for conciseness):

• a new type constructor G,

• n constructors Ci ∶ ∀α⃗. τi → G α⃗

?

8⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Datatypes Types General case

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)

In System F, this amounts to declaring (implicit version for conciseness):

• a new type constructor G,

• n constructors Ci ∶ ∀α⃗. τi → G α⃗

• one destructor dG ∶ ∀α⃗, γ.G α⃗ → (τ1 → γ) . . . (τn → γ) → γ

?

8⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Datatypes Types General case

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)

In System F, this amounts to declaring (implicit version for conciseness):

• a new type constructor G,

• n constructors Ci ∶ ∀α⃗. τi → G α⃗

• one destructor dG ∶ ∀α⃗, γ.G α⃗ → (τ1 → γ) . . . (τn → γ) → γ

• n reduction rules dG (Ci v) v1 . . . vn −↝ vi v

Exercise

Show that this extension verifies the subject reduction and progress
axioms for constants.

8⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Datatypes Types

General case

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗) where α⃗ = ⋃i∈1..n ftv(τi)

Notice that

• All constructors build values of the same type G α⃗ and are
surjective (all types can be reached)

• The definition may be recursive, i.e. G may appear in τi

Algebraic datatypes introduce iso-recursive types.

9 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Data Types

Equi- and iso-recursive types

Typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

Generalized Algebraic Datatypes

10 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Recursive Types

Product and sum types alone do not allow describing data structures of
unbounded size, such as lists and trees.

Indeed, if the grammar of types is τ ∶∶= unit ∣ τ × τ ∣ τ + τ , then it is clear
that every type describes a finite set of values.

For every k, the type of lists of length at most k is expressible using this
grammar. However, the type of lists of unbounded length is not.

11 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Equi- versus iso-recursive types

The following definition is inherently recursive:

“A list is either empty or a pair of an element and a list.”

We need something like this:

list α ◇ unit +α × list α

But what does ◇ stand for? Is it equality, or some kind of isomorphism?

12 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Equi- versus iso-recursive types

There are two standard approaches to recursive types, dubbed the
equi-recursive and iso-recursive approaches.

In the equi-recursive approach, a recursive type is equal to its unfolding.

In the iso-recursive approach, a recursive type and its unfolding are
related via explicit coercions.

13 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Equi-recursive types

In the equi-recursive approach, the usual syntax of types:

τ ∶∶= α ∣ F τ⃗ ∣ ∀β. τ

is no longer interpreted inductively. Instead, types are the infinite trees
built on top of this grammar.

14 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Finite syntax for equi-recursive types

If desired, it is possible to use finite syntax for recursive types:

τ ∶∶= α ∣ µα.(F τ⃗) ∣ µα.(∀β. τ)

We do not allow the seemingly more general µα.τ , because µα.α is
meaningless, and µα.β or µα.µβ.τ are useless. If we write µα.τ , it
should be understood that τ is contractive, that is, τ is a type
constructor application or a forall introduction.

For instance, the type of lists of elements of type α is:

µβ.(unit + α × β)

15 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Finite syntax for equi-recursive types

In the absence of quantifiers

Each type in this syntax denotes a unique regular tree, sometimes known
as its infinite unfolding. Conversely, every regular tree can be expressed
in this notation (possibly in more than one way).

If one builds a type-checker on top of this finite syntax, then one must be
able to decide whether two types are equal, that is, have identical infinite
unfoldings.

This can be done efficiently, either via the algorithm for comparing two
DFAs, or by unification. (The latter approach is simpler, faster, and
extends to the type inference problem.)

In the presence of quantifiers The situation is more subtle because of
α-conversion. A canonical form can still be found, so that checking
equality and first-order unification on types can still be done in
O(n logn). See [Gauthier and Pottier, 2004].

16 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Finite syntax for equi-recursive types

One can also prove [Brandt and Henglein, 1998] that equality is the least
congruence generated by the following two rules:

Fold/Unfold

µα.τ = [α ↦ µα.τ]τ
Uniqueness

τ1 = [α ↦ τ1]τ τ2 = [α ↦ τ2]τ
τ1 = τ2

In both rules, τ must be contractive.

This axiomatization does not directly lead to an efficient algorithm for
deciding equality, though.

17⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Finite syntax for equi-recursive types

One can also prove [Brandt and Henglein, 1998] that equality is the least
congruence generated by the following two rules:

Fold/Unfold

µα.τ = [α ↦ µα.τ]τ
Uniqueness

τ1 = [α ↦ τ1]τ τ2 = [α ↦ τ2]τ
τ1 = τ2

In both rules, τ must be contractive.

This axiomatization does not directly lead to an efficient algorithm for
deciding equality, though.

There is also a simple co-inductive definition:

α = α
[α ↦ µα.Fτ⃗]τ⃗ = [α ↦ µα.Fτ⃗ ′]τ⃗ ′

µα.Fτ⃗ = µα.Fτ⃗ ′
[α ↦ µα.∀β. τ]τ = [α ↦ µα.∀β. τ ′]τ ′

µα.∀β. τ = µα.∀β. τ ′

17⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Finite syntax for equi-recursive types

One can also prove [Brandt and Henglein, 1998] that equality is the least
congruence generated by the following two rules:

Fold/Unfold

µα.τ = [α ↦ µα.τ]τ
Uniqueness

τ1 = [α ↦ τ1]τ τ2 = [α ↦ τ2]τ
τ1 = τ2

In both rules, τ must be contractive.

This axiomatization does not directly lead to an efficient algorithm for
deciding equality, though.

There is also a simple co-inductive definition:

α = α
[α ↦ µα.Fτ⃗]τ⃗ = [α ↦ µα.Fτ⃗ ′]τ⃗ ′

µα.Fτ⃗ = µα.Fτ⃗ ′
[α ↦ µα.∀β. τ]τ = [α ↦ µα.∀β. τ ′]τ ′

µα.∀β. τ = µα.∀β. τ ′
Exercise
Show that µα.Aα = µα.AAα and µα.ABα = Aµα.BAα with both inductive
and co-inductive definitions. Can you do it without the Uniqueness rule?

17⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Type soundness for equi-recursive types

In the presence of equi-recursive types, structural induction on types is no
longer permitted, but we never used it anyway – in soundness proofs.

?

18⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Type soundness for equi-recursive types

In the presence of equi-recursive types, structural induction on types is no
longer permitted, but we never used it anyway – in soundness proofs.

We only need it to prove the termination of reduction, which does not
hold any longer.

It remains true that F τ⃗1 = F τ⃗2 implies τ⃗1 = τ⃗2—this was used in the
proof of Subject Reduction.

It remains true that F1 τ⃗1 = F2 τ⃗2 implies F1 = F2—this was used the
proof of Progress.

So, the reasoning that leads to type soundness is unaffected.

(Exercise: prove type soundness for the simply-typed λ-calculus in Coq.
Then, change the syntax of types from Inductive to CoInductive.)

18⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Iso-recursive types

With iso-recursive types, the folding/unfolding is witnessed by an explicit
coercion (e.g. as above). The uniqueness rule is usually not present
(hence, the equality relation is weaker).

Encoding iso-recursive types with ADT

The recursive type rec β.τ can be represented in System F by
introducing a datatype with a unique constructor:

?

19⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Iso-recursive types

With iso-recursive types, the folding/unfolding is witnessed by an explicit
coercion (e.g. as above). The uniqueness rule is usually not present
(hence, the equality relation is weaker).

Encoding iso-recursive types with ADT

The recursive type rec β.τ can be represented in System F by
introducing a datatype with a unique constructor:

type G α⃗ = Σ(C ∶ ∀α⃗. [β ↦ G α⃗]τ → G α⃗) where α⃗ = ftv(τ) ∖ {β}
The constructor C coerces [β ↦ G α⃗]τ to G α⃗ and the reverse coercion is
the function λx.dG x (λy. y).
Since this datatype has a unique constructor, pattern matching always
succeeds and amounts to the identity. Hence, in ⌈F ⌉, the constructor
could be removed: coercions have no computational content.

19⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Records

A record can be defined as

type G α⃗ = Πi∈1..n(ℓi ∶ τi) where α⃗ = ⋃i∈1..n ftv(τi)
Exercise

What are the corresponding declarations in System F?

?

20⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Records

A record can be defined as

type G α⃗ = Πi∈1..n(ℓi ∶ τi) where α⃗ = ⋃i∈1..n ftv(τi)
Exercise

What are the corresponding declarations in System F?

• a new type constructor GΠ,

?

20⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Records

A record can be defined as

type G α⃗ = Πi∈1..n(ℓi ∶ τi) where α⃗ = ⋃i∈1..n ftv(τi)
Exercise

What are the corresponding declarations in System F?

• a new type constructor GΠ,

• 1 constructor CΠ ∶ ∀α⃗. τ1 → . . . τn → G α⃗

?

20⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Records

A record can be defined as

type G α⃗ = Πi∈1..n(ℓi ∶ τi) where α⃗ = ⋃i∈1..n ftv(τi)
Exercise

What are the corresponding declarations in System F?

• a new type constructor GΠ,

• 1 constructor CΠ ∶ ∀α⃗. τ1 → . . . τn → G α⃗

• n destructors dℓi ∶ ∀α⃗.G α⃗ → τi

?

20⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Records

A record can be defined as

type G α⃗ = Πi∈1..n(ℓi ∶ τi) where α⃗ = ⋃i∈1..n ftv(τi)
Exercise

What are the corresponding declarations in System F?

• a new type constructor GΠ,

• 1 constructor CΠ ∶ ∀α⃗. τ1 → . . . τn → G α⃗

• n destructors dℓi ∶ ∀α⃗.G α⃗ → τi

• n reduction rules dℓi(CΠ v1 . . . vn) −↝ vi

?

20⟨5⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Records

A record can be defined as

type G α⃗ = Πi∈1..n(ℓi ∶ τi) where α⃗ = ⋃i∈1..n ftv(τi)
Exercise

What are the corresponding declarations in System F?

• a new type constructor GΠ,

• 1 constructor CΠ ∶ ∀α⃗. τ1 → . . . τn → G α⃗

• n destructors dℓi ∶ ∀α⃗.G α⃗ → τi

• n reduction rules dℓi(CΠ v1 . . . vn) −↝ vi

Can a record also be used for defining recursive types?

Show type soundness for records.

20⟨6⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Deep pattern matching

In practice, one allows deep pattern matching and wildcards in patterns.

type nat = Z | S of nat
let rec equal n1 n2 = match n1, n2 with
| Z, Z → true
| S m1, S m2 → equal m1 m2
| → false

Then, one should check for exhaustiveness of pattern matching.

Deep pattern matching can be compiled away into shallow patterns—or
directly compiled to efficient code.

See [Le Fessant and Maranget, 2001; Maranget, 2007]

21 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Regular ADTs

type G α⃗ = Σi∈1..n(Ci ∶ ∀α⃗. τi → G α⃗)
If all occurrences of G in τi are G α⃗ then, the ADT is regular.

Non-regular ADT’s do not have this restriction.

They usually need polymorphic recursion to be manipulated.

22 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Type-preserving compilation

Compilation is type-preserving when each intermediate language is
explicitly typed, and each compilation phase transforms a typed program
into a typed program in the next intermediate language.

Why preserve types during compilation?

• it can help debug the compiler;

• types can be used to drive optimizations;

• types can be used to produce proof-carrying code;

• proving that types are preserved can be the first step towards
proving that the semantics is preserved [Chlipala, 2007].

23 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Type-preserving compilation

Type-preserving compilation exhibits an encoding of programming
constructs into programming languages with usually richer type systems.

The encoding may sometimes be used directly as a programming idiom in
the source language.

For example:

• Closure conversion requires an extension of the language with
existential types, which happens to be very useful on their own.

• Closures are themselves a simple form of objects, which can also be
explained with existential types.

• Defunctionalization may be done manually on some particular
programs, e.g. in web applications to monitor the computation.

24 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Type-preserving compilation

A classic paper by Morrisett et al. [1999] shows how to go from System F
to Typed Assembly Language, while preserving types along the way. Its
main passes are:

• CPS conversion fixes the order of evaluation, names intermediate
computations, and makes all function calls tail calls;

• closure conversion makes environments and closures explicit, and
produces a program where all functions are closed;

• allocation and initialization of tuples is made explicit;

• the calling convention is made explicit, and variables are replaced
with (an unbounded number of) machine registers.

25 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Translating types

In general, a type-preserving compilation phase involves not only a
translation of terms, mapping M to JMK, but also a translation of types,
mapping τ to JτK, with the property:

Γ ⊢ M ∶ τ implies JΓK ⊢ JMK ∶ JτK

The translation of types carries a lot of information: examining it is often
enough to guess what the translation of terms will be.

See the old lecture on type closure conversion.

26 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Contents

Algebraic Data Types

Equi- and iso-recursive types

Typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

Generalized Algebraic Datatypes

27 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure conversion

First-class functions may appear in the body of other functions. hence,
their own body may contain free variables that will be bound to values
during the evaluation in the execution environment.

Because they can be returned as values, and thus used outside of their
definition environment, they must store their execution environment in
their value.

A closure is the packaging of the code of a first-class function with its
runtime environment, so that it becomes closed, i.e. independent of the
runtime environment and can be moved and applied in another runtime
environment.

Closures can also be used to represent recursive functions and objects
(in the object-as-record-of-methods paradigm).

28 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Source and target

In the following,

• the source calculus has unary λ-abstractions, which can have free
variables;

• the target calculus has binary λ-abstractions, which must be closed.

Closure conversion can be easily extended to n-ary functions, or
n-ary functions may be uncurried in a separate, type-preserving
compilation pass.

29 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Variants of closure conversion

There are at least two variants of closure conversion:

• in the closure-passing variant,
the closure and the environment are a single memory block;

• in the environment-passing variant,
the environment is a separate block, to which the closure points.

The impact of this choice on the translation of terms is minor.

Its impact on the translation of types is more important:
the closure-passing variant requires more type-theoretic machinery.

30 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(clo, x).

let (, x1, . . . , xn) = clo in JaK in(code , x1, . . . , xn)
Ja1 a2K = let clo = Ja1K in

let code = proj0 clo in
code (clo, Ja2K)

(The variables code and clo must be suitably fresh.)

31⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(clo, x).

let (, x1, . . . , xn) = clo in JaK in(code , x1, . . . , xn)
Ja1 a2K = let clo = Ja1K in

let code = proj0 clo in
code (clo, Ja2K)

Important! The layout of the environment must be known only at the
closure allocation site, not at the call site. In particular, proj0 clo need
not know the size of clo.

31⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(env , x).

let (x1, . . . , xn) = env in JaK in(code , (x1, . . . , xn))
Ja1 a2K = let (code , env) = Ja1K in

code (env , Ja2K)

32⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(env , x).

let (x1, . . . , xn) = env in JaK in(code , (x1, . . . , xn))
Ja1 a2K = let (code , env) = Ja1K in

code (env , Ja2K)
Questions: How can closure conversion be made type-preserving?

32⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(env , x).

let (x1, . . . , xn) = env in JaK in(code , (x1, . . . , xn))
Ja1 a2K = let (code , env) = Ja1K in

code (env , Ja2K)
Questions: How can closure conversion be made type-preserving?

The key issue is to find a sensible definition of the type translation.
In particular, what is the translation of a function type, Jτ1 → τ2K?

32⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):
Jλx.aK = let code = λ(env , x).

let (x1, . . . , xn) = env in JaK in(code , (x1, . . . , xn))
Assume Γ ⊢ λx.a ∶ τ1 → τ2.
Assume, w.l.o.g.. dom(Γ) = fv(λx.a) = {x1, . . . , xn}.
Write JΓK for the tuple type x1 ∶ Jτ

′

1
K; . . . ;xn ∶ Jτ

′

nK where Γ is
x1 ∶ τ

′

1
; . . . ;xn ∶ τ

′

n. We also use JΓK as a type to mean Jτ ′
1
K × . . . × Jτ ′nK.

We have Γ, x ∶ τ1 ⊢ a ∶ τ2, so in environment JΓK, x ∶ Jτ1K, we have

• env has type JΓK,
• code has type (JΓK × Jτ1K)→ Jτ2K, and
• the entire closure has type ((JΓK × Jτ1K)→ Jτ2K) × JΓK.

Now, what should be the definition of Jτ1 → τ2K?
32⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Towards a type translation

Can we adopt this as a definition?

Jτ1 → τ2K = ((JΓK × Jτ1K)→ Jτ2K) × JΓK

33⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Towards a type translation

Can we adopt this as a definition?

Jτ1 → τ2K = ((JΓK × Jτ1K)→ Jτ2K) × JΓK

Naturally not. This definition is mathematically ill-formed: we cannot
use Γ out of the blue.

Hmm... Do we really need to have a uniform translation of types?

33⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Towards a type translation

Yes, we do.

34⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Towards a type translation

Yes, we do.

We need a uniform translation of types, not just because it is nice to
have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

34⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Towards a type translation

Yes, we do.

We need a uniform translation of types, not just because it is nice to
have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

if . . . then λx.x + y else λx.x

Furthermore, we want function invocations to be translated uniformly,
without knowledge of the size and layout of the closure’s environment.

34⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Towards a type translation

Yes, we do.

We need a uniform translation of types, not just because it is nice to
have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

if . . . then λx.x + y else λx.x

Furthermore, we want function invocations to be translated uniformly,
without knowledge of the size and layout of the closure’s environment.

So, what could be the definition of Jτ1 → τ2K?

34⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

The type translation

The only sensible solution is:

Jτ1 → τ2K = ∃α.((α × Jτ1K)→ Jτ2K) × α

An existential quantification over the type of the environment abstracts
away the differences in size and layout.

Enough information is retained to ensure that the application of the code
to the environment is valid: this is expressed by letting the variable α

occur twice on the right-hand side.

35 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

The type translation

The existential quantification also provides a form of security: the caller
cannot do anything with the environment except pass it as an argument
to the code; in particular, it cannot inspect or modify the environment.

For instance, in the source language, the following coding style
guarantees that x remains even, no matter how f is used:

let f = let x = ref 0 in λ(). x ∶= (x + 2); ! x
After closure conversion, the reference x is reachable via the closure of f .
A malicious, untyped client could write an odd value to x.
However, a well-typed client is unable to do so.

This encoding is not just type-preserving, but also fully abstract: it
preserves (a typed version of) observational
equivalence [Ahmed and Blume, 2008].

36 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Contents

Algebraic Data Types

Equi- and iso-recursive types

Typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

Generalized Algebraic Datatypes

37 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types Examples

A frozen application returning a value of type (≈ a thunk)

∃α.(α → τ) × α

38⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types Examples

A frozen application returning a value of type (≈ a thunk)

∃α.(α → τ) × α

Type of closure in the environment-passing variant:

Jτ1 → τ2K = ∃α.((α × Jτ1K)→ Jτ2K) × α

38⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types Examples

A frozen application returning a value of type (≈ a thunk)

∃α.(α → τ) × α

Type of closure in the environment-passing variant:

Jτ1 → τ2K = ∃α.((α × Jτ1K)→ Jτ2K) × α

A possible encoding of objects:

= ∃ρ. ρ describes the state

µα. α is the concrete type of the closure

Π (a tuple...{(α × τ1)→ τ ′
1
; ... that begins with a record...

. . .(α × τn)→ τ ′n } ; ... of method code pointers...

ρ ...and continues with the state) (a tuple of unknown length)

38⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types

One can extend System F with existential types, in addition to universals:

τ ∶∶= . . . ∣ ∃α.τ
As in the case of universals, there are type-passing and type-erasing
interpretations of the terms and typing rules... and in the latter
interpretation, there are explicit and implicit versions.

Let’s first look at the type-erasing interpretation, with an explicit
notation for introducing and eliminating existential types.

39 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ ⊢ M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

40⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ ⊢ M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

Anything wrong?

40⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ ⊢ M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

The side condition α # τ2 is mandatory here to ensure well-formedness
of the conclusion.

The side condition may also be written Γ ⊢ τ2 which implies α # τ2,
given that the well-formedness of the last premise implies α ∉ dom(Γ).

40⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ ⊢ M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

The side condition α # τ2 is mandatory here to ensure well-formedness
of the conclusion.

The side condition may also be written Γ ⊢ τ2 which implies α # τ2,
given that the well-formedness of the last premise implies α ∉ dom(Γ).
Note the imperfect duality between universals and existentials:

TAbs

Γ, α ⊢ M ∶ τ

Γ ⊢ Λα.M ∶ ∀α. τ

TApp

Γ ⊢ M ∶ ∀α. τ

Γ ⊢ M τ ′ ∶ [α ↦ τ ′]τ
40⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

Γ, α ⊢ M ∶ ∃α.τ

Γ, α ⊢ unpackM ∶ τ

Informally, this could mean that, if M has type τ for some unknown α,
then it has type τ , where α is “fresh”...

Why is this broken?

41⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

Γ, α ⊢ M ∶ ∃α.τ

Γ, α ⊢ unpackM ∶ τ

Informally, this could mean that, if M has type τ for some unknown α,
then it has type τ , where α is “fresh”...

Why is this broken?

We can immediately universally quantify over α, and conclude that
Γ ⊢ Λα.unpackM ∶ ∀α. τ . This is nonsense!

Replacing the premise Γ, α ⊢ M ∶ ∃α.τ by the conjunction Γ ⊢ M ∶ ∃α.τ
and α ∈ dom(Γ) would make the rule even more permissive, so it
wouldn’t help.

41⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

On existential elimination

A correct elimination rule must force the existential package to be used
in a way that does not rely on the value of α.

Hence, the elimination rule must have control over the user of the
package – that is, over the term M2.

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α;x ∶ τ1 ⊢ M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

The restriction α # τ2 prevents writing “let α,x = unpackM1 in x”,
which would be equivalent to the unsound “unpack M” of previous slide.

The fact that α is bound within M2 forces it to be treated abstractly.

In fact, M2 must be ??? in α.

42 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

On existential elimination

In fact, M2 must be polymorphic in α: the rule could be written

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ Λα.λx.M2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

or, if N2 is Λα.λx.M2:

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ N2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 N2 ∶ τ2

43⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

On existential elimination

In fact, M2 must be polymorphic in α: the rule could be written

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ Λα.λx.M2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

or, if N2 is Λα.λx.M2:

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ N2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 N2 ∶ τ2

One could even view “unpack∃α.τ1” as a constant with all these types:

unpack∃α.τ1 ∶ (∃α.τ1)→ (∀α. (τ1 → τ2))→ τ2 α # τ2

43⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

On existential elimination

In fact, M2 must be polymorphic in α: the rule could be written

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ Λα.λx.M2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

or, if N2 is Λα.λx.M2:

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ N2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 N2 ∶ τ2

One could even view “unpack∃α.τ1” as a constant with all these types:

unpack∃α.τ1 ∶ (∃α.τ1)→ (∀α. (τ1 → τ2))→ τ2 α # τ2

Thus, unpack∃α.τ ∶ ∀β. ((∃α.τ) → (∀α. (τ → β)) → β)

43⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

On existential elimination

In fact, M2 must be polymorphic in α: the rule could be written

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ Λα.λx.M2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

or, if N2 is Λα.λx.M2:

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ N2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 N2 ∶ τ2

One could even view “unpack∃α.τ1” as a constant with all these types:

unpack∃α.τ1 ∶ (∃α.τ1)→ (∀α. (τ1 → τ2))→ τ2 α # τ2

Thus, unpack∃α.τ ∶ ∀β. ((∃α.τ) → (∀α. (τ → β)) → β)
or, better unpack∃α.τ ∶ (∃α.τ) → ∀β. ((∀α. (τ → β)) → β)
β stands for τ2: it is bound prior to α, so it cannot be instantiated to a
type that refers to α, which reflects the side condition α # τ2.

43⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

On existential introduction

Pack

Γ ⊢ M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

If desired, “pack∃α.τ” could also be viewed as a constant with all the
types:

pack∃α.τ ∶ [α ↦ τ ′]τ → ∃α.τ

i.e. with polymorphic type:

pack∃α.τ ∶ ∀α. (τ → ∃α.τ)

44 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existentials as constants

In System F, existential types can also be presented as constants

pack∃α.τ ∶ ∀α. (τ → ∃α.τ)
unpack∃α.τ ∶ ∃α. τ → ∀β. ((∀α. (τ → β))→ β)

Read:

• for any α, if you have a τ , then, for some α, you have a τ ;

• if, for some α, you have a τ , then, (for any β,) if you wish to obtain
a β out of it, you must present a function which, for any α, obtains
a β out of a τ .

This is somewhat reminiscent of ordinary first-order logic:
∃x.F is equivalent to, and can be defined as, ¬(∀x.¬F).
Is there an encoding of existential types into universal types?

45 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= ?

Junpack∃α.τ K ∶ J∃α.τK → ∀β. ((∀α. (JτK → β))→ β)
= ?

46⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). ? ∶ β

Junpack∃α.τ K ∶ J∃α.τK → ∀β. ((∀α. (JτK → β))→ β)
= ?

46⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

Junpack∃α.τ K ∶ J∃α.τK → ∀β. ((∀α. (JτK → β))→ β)
= ?

46⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

Junpack∃α.τ K ∶ J∃α.τK → ∀β. ((∀α. (JτK → β))→ β)
= λx ∶J∃α.τK. x

There is little choice, if the translation is to be type-preserving.

What is the computational content of this encoding?

46⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

Junpack∃α.τ K ∶ J∃α.τK → ∀β. ((∀α. (JτK → β))→ β)
= λx ∶J∃α.τK. x

There is little choice, if the translation is to be type-preserving.

What is the computational content of this encoding?

A continuation-passing transform.

This encoding is due to Reynolds [1983],
although it has more ancient roots in logic.

46⟨5⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

The semantics of existential types as constants

pack∃α.τ can be treated as a unary constructor, and unpack∃α.τ as a
unary destructor. The δ-reduction rule is:

unpack∃α.τ0 (pack∃α.ττ ′ V) Ð→ Λβ.λy ∶∀α. τ → β. y τ ′ V

It would be more intuitive, however, to treat unpack∃α.τ0 as a binary
destructor:

unpack∃α.τ0 (pack∃α.ττ ′ V) τ1 (Λα.λx ∶τ.M) Ð→ [α ↦ τ ′][x ↦ V]M
This does not quite fit in our generic framework for constants, which
must receive all type arguments prior to value arguments.

But our framework could be extended.

47 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

The semantics of existential types as primitive

We extend values and evaluation contexts as follows:

V ∶∶= . . . pack τ ′, V as τ
E ∶∶= . . . pack τ ′, [] as τ ∣ let α,x = unpack [] inM

We add the reduction rule:

let α,x = unpack (pack τ ′, V as τ) in M Ð→ [α ↦ τ ′][x ↦ V]M
Exercise

Show that subject reduction and progress hold.

48 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

The semantics of existential types beware!

The reduction rule for existentials destructs its arguments.

Hence, let α,x = unpackM1 inM2 cannot be reduced unless M1 is itself
a packed expression, which is indeed the case when M1 is a value
(or in head normal form).

This contrasts with let x ∶ τ =M1 inM2 where M1 need not be evaluated
and may be an application (e.g. with call-by-name or strong reduction
strategies).

49 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

The semantics of existential types beware!

Exercise

Find an example that illustrates why the reduction of
let α,x = unpackM1 inM2 could be problematic when M1 is not a value.

50⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

The semantics of existential types beware!

Exercise

Find an example that illustrates why the reduction of
let α,x = unpackM1 inM2 could be problematic when M1 is not a value.

Need a hint?

Use a conditional

50⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

The semantics of existential types beware!

Exercise

Find an example that illustrates why the reduction of
let α,x = unpackM1 inM2 could be problematic when M1 is not a value.

Solution

Let M1 be if M then V1 else V2 where Vi is of the form
pack τi, Vi as ∃α.τ and the two witnesses τ1 and τ2 differ.

There is no common type for the unpacking of the two possible results
V1 and V2. The choice between those two possible results must be made,
by evaluating M1, before unpacking.

50⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Is pack too verbose?

Exercise

Recall the typing rule for pack:

Γ ⊢ M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

Isn’t the witness type τ ′ annotation superfluous?

51⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Is pack too verbose?

Exercise

Recall the typing rule for pack:

Γ ⊢ M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

Isn’t the witness type τ ′ annotation superfluous?

• The type τ0 of M is fully determined by M . Given the type ∃α.τ of
the packed value, checking that τ0 is of the form [α ↦ τ ′]τ is the
matching problem for second-order types, which is simple.

• However, the reduction rule need the witness type τ ′. If it were not
available, it would have to be computed during reduction. The
reduction rule would then not be pure rewriting.

The explicitly-typed language need the witness type for simplicity, while
in the surface language, it could be omitted and reconstructed.

51⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Data Types

Equi- and iso-recursive types

Typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

Generalized Algebraic Datatypes

52 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Implicitly-typed existential types

Intuitively, pack and unpack are just type annotations that could be
dropped, leaving a let-binding instead of the unpack form.

Hence, the typing rule for implicitly-typed existential types:

Unpack

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ let x = a1 in a2 ∶ τ2

Pack

Γ ⊢ a ∶ [α ↦ τ ′]τ
Γ ⊢ a ∶ ∃α.τ

Notice, however, that this let-binding is not typechecked as syntactic
sugar for an immediate application!

The semantics of this let-binding is as before:

E ∶∶= . . . ∣ let x = E inM let x = V inM Ð→ [x↦ V]M
Is the semantics type-erasing?

53 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Implicitly-typed existential types subtlety

Yes, it is.

But there is a subtlety!

54⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Implicitly-typed existential types subtlety

Yes, it is.

But there is a subtlety! What about the call-by-name semantics?

54⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Implicitly-typed existential types subtlety

Yes, it is.

But there is a subtlety! What about the call-by-name semantics?

We chose a call-by-value semantics, but so far, as long as there is no
side-effect, we could have chosen a call-by-name semantics (or even
perform reduction under abstraction).

In a call-by-name semantics, the let-bound expression is not reduced prior
to substitution in the body:

let x =M1 inM2 Ð→ [x ↦M1]M2

With existential types, this breaks subject reduction!

Why?

54⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Implicitly-typed existential types subtlety

Let τ0 be ∃α. (α → α)→ (α → α) and v0 a value of type bool. Let v1
and v2 be two values of type τ0 with incompatible witness types, e.g.
λf.λx.1 + (f (1 + x)) and λf.λx.not (f (not x)).
Let v be the function λb. if b then v1 else v2 of type bool→ τ0.

a1 = let x = v v0 in x (x (λy. y)) Ð→ v v0 (v v0 (λy. y)) = a2

We have ∅ ⊢ a1 ∶ ∃α.α → α while ∅ /⊢ a2 ∶ τ .

What happened?

55⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Implicitly-typed existential types subtlety

Let τ0 be ∃α. (α → α)→ (α → α) and v0 a value of type bool. Let v1
and v2 be two values of type τ0 with incompatible witness types, e.g.
λf.λx.1 + (f (1 + x)) and λf.λx.not (f (not x)).
Let v be the function λb. if b then v1 else v2 of type bool→ τ0.

a1 = let x = v v0 in x (x (λy. y)) Ð→ v v0 (v v0 (λy. y)) = a2

We have ∅ ⊢ a1 ∶ ∃α.α → α while ∅ /⊢ a2 ∶ τ .

The term a1 is well-typed since v v0 has type τ0, hence x can be
assumed of type (β → β)→ (β → β) for some unknown type β and λy. y

is of type β → β.

However, without the outer existential type v v0 can only be typed with(∀α.α → α)→ ∃α. (α → α), because the value returned by the function
need different witnesses for α. This is demanding too much on its
argument and the outer application is ill-typed.

55⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Implicitly-typed existential types subtlety

One could wonder whether the syntax should not allow the implicit
introduction of unpacking (instead of requesting a let-binding).

One could argue that if some expression is the expansion of a well-typed
let-binding, then it should also be well-typed:

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ [x ↦ a1]a2 ∶ τ2
Comments?

56⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Implicitly-typed existential types subtlety

One could wonder whether the syntax should not allow the implicit
introduction of unpacking (instead of requesting a let-binding).

One could argue that if some expression is the expansion of a well-typed
let-binding, then it should also be well-typed:

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ [x ↦ a1]a2 ∶ τ2
Comments:

• This rule does not have a logical flavor...

• It fixes the previous example, but not the general case:
Pick a1 that is not yet a value after one reduction step.
Then, after let-expansion, reduce one of the two occurrences of a1.
The result is no longer of the form [x ↦ a1]a2.

56⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Implicitly-typed existential types subtlety

Existential types are trickier than they may appear at first.

The subject reduction property breaks if reduction is not restricted to
expressions in head-normal forms.

Unrestricted reduction is still safe because well-typedness may eventually
be recovered by further reduction steps—so that progress will never
break.

57 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Implicitly-typed existential types encoding

Notice that the CPS encoding of existential types (1) enforces the
evaluation of the packed value (2) before it can be unpacked (3) and
substituted (4):

Junpack a1 (λx.a2)K = Ja1K (λx. Ja2K) (1)
Ð→ (λk. JaK k) (λx. Ja2K) (2)
Ð→ (λx. Ja2K) JaK (3)
Ð→ [x↦ JaK]Ja2K (4)

In the call-by-value setting, λk. JaK k would come from the reduction of
Jpack aK, i.e. is (λk.λx. k x) JaK, so that a is always a value v.

However, a need not be a value. What is essential is that a1 be reduced
to some head normal form λk. JaK k.

58 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Data Types

Equi- and iso-recursive types

Typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

Generalized Algebraic Datatypes

59 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Iso-existential types in ML

What if one wished to extend ML with existential types?

Full type inference for existential types is undecidable, just like type
inference for universals.

However, introducing existential types in ML is easy if one is willing to
rely on user-supplied annotations that indicate where to pack and unpack.

60 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Iso-existential types in ML

This iso-existential approach was suggested by Läufer and
Odersky [1994].

Iso-existential types are explicitly declared:

D α⃗ ≈ ∃β̄.τ if ftv(τ) ⊆ ᾱ ∪ β̄ and ᾱ # β̄

This introduces two constants, with the following type schemes:

packD ∶ ∀ᾱβ̄. τ →D α⃗

unpackD ∶ ∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

(Compare with basic iso-recursive types, where β̄ = ∅.)

61 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Iso-existential types in ML

One point has been hidden on the previous slide. The “type scheme:”

∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

is in fact not an ML type scheme. How could we address this?

62⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Iso-existential types in ML

One point has been hidden on the previous slide. The “type scheme:”

∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

is in fact not an ML type scheme. How could we address this?

A solution is to make unpackD a binary construct again (rather than a
constant), with an ad hoc typing rule:

UnpackD

Γ ⊢ M1 ∶D τ⃗

Γ ⊢ M2 ∶ ∀β̄. ([α⃗ ↦ τ⃗]τ → τ2) β̄ # τ⃗ , τ2

Γ ⊢ unpackD M1 M2 ∶ τ2
where D α⃗ ≈ ∃β̄.τ

We have seen a version of this rule in System F earlier; this in an ML
version. The term M2 must be polymorphic, which Gen can prove.

62⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Iso-existential types in ML

Iso-existential types are perfectly compatible with ML type inference.

The constant packD admits an ML type scheme, so it is unproblematic.

The construct unpackD leads to this constraint generation rule (see type
inference):

⟪unpackD M1 M2 ∶ τ2⟫ = ∃ᾱ.(⟪M1 ∶D α⃗⟫
∀β̄.⟪M2 ∶ τ → τ2⟫)

where D α⃗ ≈ ∃β̄.τ and, w.l.o.g., ᾱβ̄ # M1,M2, τ2.

A universally quantified constraint appears where polymorphism is
required.

63 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Iso-existential types in ML

In practice, Läufer and Odersky suggest fusing iso-existential types with
algebraic data types.

This can be done in OCaml using GADTs (see last part of the course).
The syntax for this in OCaml is:

typeD α⃗ = ℓ ∶ τ →D α⃗

where ℓ is a data constructor and β̄ appears free in τ but does not
appear in α⃗. The elimination construct becomes:

⟪matchM1 with ℓ x →M2 ∶ τ2⟫ = ∃ᾱ.(⟪M1 ∶ D α⃗⟫
∀β̄.def x ∶ τ in ⟪M2 ∶ τ2⟫)

where, w.l.o.g., ᾱβ̄ #M1,M2, τ2.

64 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

An example

Define Any ≈ ∃β.β. An attempt to extract the raw content of a package
fails:

⟪unpackAny M1 (λx.x) ∶ τ2⟫ = ⟪M1 ∶ Any⟫ ∧ ∀β.⟪λx.x ∶ β → τ2⟫
⊩ ∀β.β = τ2
≡ false

(Recall that β # τ2.)

65 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

An example

Define
D α ≈ ∃β.(β → α) × β

A client that regards β as abstract succeeds:

⟪unpackD M1 (λ(f, y). f y) ∶ τ⟫
= ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.⟪λ(f, y). f y ∶ ((β → α) × β)→ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.def f ∶ β → α;y ∶ β in ⟪f y ∶ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β. τ = α)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ τ = α)
≡ ⟪M1 ∶D τ⟫

66 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types calls for universal types!

Exercise We reuse the type D α ≈ ∃β.(β → α) × β of frozen
computations. Assume given a list l with elements of type D τ1.

Assume given a function g of type τ1 → τ2. Transform the list l into a
new list l′ of frozen computations of type D τ2 (without actually running
any computation).

List .map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

Try generalizing this example to a function that receives g and l and
returns l′

?

67⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types calls for universal types!

Exercise We reuse the type D α ≈ ∃β.(β → α) × β of frozen
computations. Assume given a list l with elements of type D τ1.

Assume given a function g of type τ1 → τ2. Transform the list l into a
new list l′ of frozen computations of type D τ2 (without actually running
any computation).

List .map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

Try generalizing this example to a function that receives g and l and
returns l′ : it does not typecheck. . .

let lift g l =
List .map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

?

67⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types calls for universal types!

Exercise We reuse the type D α ≈ ∃β.(β → α) × β of frozen
computations. Assume given a list l with elements of type D τ1.

Assume given a function g of type τ1 → τ2. Transform the list l into a
new list l′ of frozen computations of type D τ2 (without actually running
any computation).

List .map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

Try generalizing this example to a function that receives g and l and
returns l′ : it does not typecheck. . .

let lift g l =
List .map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

In expression let α,x = unpackM1 inM2, occurrences of x in M2 can
only be passed to external functions (free variables) that are polymorphic
so that x does not leak out of its context.

67⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Limits of iso-encodings

Using datatypes for existential and especially universal types is a simple
solution to make them compatible with ML, but it comes with some
limitations:

• All types must be declared before being used

• Programs become quite verbose, with many constructors that
amount to writting type annotations, but in a more rigid way

• I particular, there is no canonical way of representing them.
For exemple, a thunk of type ∃β(β → int) × β could have been
defined as Thunk (succ, 1) where Thunk is either one of

type int thunk = Thunk : (’b → int) ∗ ’b → int thunk
type ’a thunk = Thunk : (’b → ’a) ∗ ’b → ’a thunk

but the two types are inconpatible.

Hence, other primitive solutions have been considered, especially for
universal types.

68 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Uses of existential types

Mitchell and Plotkin [1988] note that existential types offer a means of
explaining abstract types. For instance, the type:

∃stack.{empty ∶ stack;
push ∶ int × stack→ stack;
pop ∶ stack→ option (int × stack)}

specifies an abstract implementation of integer stacks.

Unfortunately, it was soon noticed that the elimination rule is too
awkward, and that existential types alone do not allow designing module
systems [Harper and Pierce, 2005].

Montagu and Rémy [2009] make existential types more flexible in several
important ways, and argue that they might explain modules after all.

69 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Existential types in OCaml

Existential types are available indirectly in OCaml as a degenerate case of
GADT and via abstract types and first-class modules.

Via GADT (iso-existential types)

type ’a d = D : (’b → ’a) ∗ ’b → ’a d
let freeze f x = D (f, x)
let run (D (f, x)) = f x

Via first-class modules (abstract types)

module type D = sig type b type a val f : b → a val x : b end
let freeze (type u) (type v) f x =

(module struct type b = u type a = v let f = f let x = x end : D);;
let unfreeze (type u) (module M : D with type a = u) = M.f M.x

70 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Contents

Algebraic Data Types

Equi- and iso-recursive types

Typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

Generalized Algebraic Datatypes

71 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Data Types

Equi- and iso-recursive types

Typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

Generalized Algebraic Datatypes

72 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Typed closure conversion

Everything is now set up to prove that, in System F with existential types:

Γ ⊢ M ∶ τ implies JΓK ⊢ JMK ∶ JτK

73 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ =

λ(env ∶ , x ∶).
let (x1, . . . , xn ∶) = env in
JMK

in
pack , (code , (x1, . . . , xn))
as

74⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ =

λ(env ∶ JΓK, x ∶ Jτ1K).
let (x1, . . . , xn ∶ JΓK) = env in
JMK

in
pack , (code , (x1, . . . , xn))
as

74⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =

λ(env ∶ JΓK, x ∶ Jτ1K).
let (x1, . . . , xn ∶ JΓK) = env in
JMK

in
pack , (code , (x1, . . . , xn))
as

74⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =

λ(env ∶ JΓK, x ∶ Jτ1K).
let (x1, . . . , xn ∶ JΓK) = env in
JMK

in
pack JΓK, (code , (x1, . . . , xn))
as ∃α.((α × Jτ1K)→ Jτ2K) ×α

74⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =

λ(env ∶ JΓK, x ∶ Jτ1K).
let (x1, . . . , xn ∶ JΓK) = env in
JMK

in
pack JΓK, (code , (x1, . . . , xn))
as ∃α.((α × Jτ1K)→ Jτ2K) ×α

We find JΓK ⊢ Jλx ∶τ1.MK ∶ Jτ1 → τ2K, as desired.

74⟨5⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion

Assume Γ ⊢ M ∶ τ1 → τ2 and Γ ⊢ M1 ∶ τ1.

JM M1K = let α, (code ∶ (α × Jτ1K)→ Jτ2K, env ∶ α) =
unpack JMK in

code (env , JM1K)
We find JΓK ⊢ JM M1K ∶ Jτ2K, as desired.

75 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion recursion

Recursive functions can be translated in this way, known as the “fix-code”
variant [Morrisett and Harper, 1998] (leaving out type information):

Jµf.λx.MK = let rec code (env , x) =
let f = pack (code , env) in
let (x1, . . . , xn) = env in
JMK in

pack (code , (x1, . . . , xn))
where {x1, . . . , xn} = fv(µf.λx.M).
The translation of applications is unchanged: recursive and non-recursive
functions have an identical calling convention.

What is the weak point of this variant?

76⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion recursion

Recursive functions can be translated in this way, known as the “fix-code”
variant [Morrisett and Harper, 1998] (leaving out type information):

Jµf.λx.MK = let rec code (env , x) =
let f = pack (code , env) in
let (x1, . . . , xn) = env in
JMK in

pack (code , (x1, . . . , xn))
where {x1, . . . , xn} = fv(µf.λx.M).
The translation of applications is unchanged: recursive and non-recursive
functions have an identical calling convention.

What is the weak point of this variant?

A new closure is allocated at every call.

76⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion recursion

Instead, the “fix-pack” variant [Morrisett and Harper, 1998] uses an
extra field in the environment to store a back pointer to the closure:

Jµf.λx.MK = let code = λ(env , x).
let (f ,x1, . . . , xn) = env in
JMK

in
let rec clo = (code , (clo, x1, . . . , xn)) in
clo

where {x1, . . . , xn} = fv(µf.λx.M).
This requires general, recursively-defined values. Closures are now cyclic
data structures.

77 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf .λx.MK =
let code ∶ =

λ(env ∶ , x ∶).
let (f,x1, . . . , xn) ∶ = env in
JMK in

let rec clo ∶ =

pack , (code , (clo, x1, . . . , xn))
as

in clo

78⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ =

pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as

in clo

78⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ =

pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as

in clo

78⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ Jτ1 → τ2K =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as

in clo

78⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ Jτ1 → τ2K =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) ×α)

in clo

78⟨5⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ Jτ1 → τ2K =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) ×α)

in clo

Problem?

78⟨6⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion recursion

The recursive function may be polymorphic, but recursive calls are
monomorphic...

We can generalize the encoding afterwards,

JΛβ⃗.µf ∶ τ1 → τ2.λx.MK = Λβ⃗.Jµf ∶ τ1 → τ2.λx.MK

whenever the right-hand side is well-defined.

This allows the indirect compilation of polymorphic recursive functions as
long as the recursion is monomorphic.

Fortunately, the encoding can be straightforwardly adapted to directly
compile polymorphically recursive functions into polymorphic closure.

79 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Environment-passing closure conversion recursion

Jµf ∶∀β⃗. τ1 → τ2. λx.MK =

let code ∶ ∀β⃗. (Jf ∶ ∀β⃗. τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ J∀β⃗. τ1 → τ2K =

Λβ⃗.pack Jf ∶ ∀β⃗. τ1 → τ2,ΓK, (code β⃗, (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) × α)

in clo

The encoding is simple.

However, this requires the introduction of recursive non-functional values
“let rec x = v”. While this is a useful construct, it really alters the
operational semantics and requires updating the type soundness proof.

80 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Algebraic Data Types

Equi- and iso-recursive types

Typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

Generalized Algebraic Datatypes

81 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Jλx.MK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

where {x1, . . . , xn} = fv(λx.M).

82⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Jλx.MK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

where {x1, . . . , xn} = fv(λx.M).
How could we typecheck this? What are the difficulties?

82⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Jλx.MK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

There are two difficulties:

• a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

• the first field of the closure contains a function that expects the
closure itself as its first argument.

82⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

There are two difficulties:

• a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

• the first field of the closure contains a function that expects the
closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

82⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

There are two difficulties:

• a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

• the first field of the closure contains a function that expects the
closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

• existential quantification over the tail of a tuple (a.k.a. a row);

• recursive types.

82⟨5⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Tuples, rows, row variables

The standard tuple types that we have used so far are:

τ ∶∶= . . . ∣ Π R – types
R ∶∶= ǫ ∣ (τ ;R) – rows

The notation (τ1 × . . . × τn) was sugar for Π (τ1; . . . ; τn; ǫ).
Let us now introduce row variables and allow quantification over them:

τ ∶∶= . . . ∣ Π R ∣ ∀ρ. τ ∣ ∃ρ.τ – types
R ∶∶= ρ ∣ ǫ ∣ (τ ;R) – rows

This allows reasoning about the first few fields of a tuple whose length is
not known.

83 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Typing rules for tuples

The typing rules for tuple construction and deconstruction are:

Tuple

∀i. ∈ [1, n] Γ ⊢ Mi ∶ τi

Γ ⊢ (M1, . . . ,Mn) ∶ Π (τ1; . . . ; τn; ǫ)
Proj

Γ ⊢ M ∶ Π (τ1; . . . ; τi;R)
Γ ⊢ proji M ∶ τi

These rules make sense with or without row variables

Projection does not care about the fields beyond i. Thanks to row
variables, this can be expressed in terms of parametric polymorphism:

proji ∶ ∀α. 1 . . . αiρ. Π (α1; . . . ;αi;ρ) → αi

84 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

About Rows

Rows were invented by Wand and improved by Rémy in order to ascribe
precise types to operations on records.

The case of tuples, presented here, is simpler.

Rows are used to describe objects in Objective Caml
[Rémy and Vouillon, 1998].

Rows are explained in depth by Pottier and Rémy
[Pottier and Rémy, 2005].

85 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

86⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Why is it ∃ρ. µα. τ and not µα. ∃ρ. τ

86⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Why is it ∃ρ. µα. τ and not µα. ∃ρ. τ

The type of the environment is fixed once for all and does not change at
each recursive call.

86⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Notice that ρ appears only once. Any comments?

86⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Notice that ρ appears only once. Any comments?

Usually, an existential type variable appears both at positive and negative
occurrences.

86⟨5⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Notice that ρ appears only once. Any comments?

Usually, an existential type variable appears both at positive and negative
occurrences. Here, the variable appear only at a negative occurrence, but
in a recursive part of the type that can be unfolded.

86⟨6⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Let Clo(R) abbreviate µα.Π ((α × Jτ1K)→ Jτ2K;R).
Let UClo(R) abbreviate its unfolded version,
Π ((Clo(R) × Jτ1K)→ Jτ2K;R).
We have Jτ1 → τ2K = ∃ρ.Clo(ρ).

Jλx ∶ .MK = let code ∶ =

λ(clo ∶ , x ∶).
let (, x1, . . . , xn) ∶ = unfold clo in
JMK in

pack , (fold (code , x1, . . . , xn))
as

JM1 M2K = let ρ, clo = unpack JM1K in
let code ∶ =

proj0 (unfold clo) in
code (clo, JM2K)

87⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion

Let Clo(R) abbreviate µα.Π ((α × Jτ1K)→ Jτ2K;R).
Let UClo(R) abbreviate its unfolded version,
Π ((Clo(R) × Jτ1K)→ Jτ2K;R).
We have Jτ1 → τ2K = ∃ρ.Clo(ρ).

Jλx ∶Jτ1K.MK = let code ∶ (Clo(JΓK) × Jτ1K)→ Jτ2K =
λ(clo ∶ Clo(JΓK, x ∶ Jτ1K).
let (, x1, . . . , xn) ∶ UCloJΓK = unfold clo in
JMK in

pack JΓK, (fold (code , x1, . . . , xn))
as ∃ρ.Clo(ρ)

JM1 M2K = let ρ, clo = unpack JM1K in
let code ∶ (Clo(ρ) × Jτ1K)→ Jτ2K =

proj0 (unfold clo) in
code (clo, JM2K)

87⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion recursive functions

In the closure-passing variant, recursive functions can be translated as:

Jµf.λx.MK = let code = λ(clo, x).
let f = clo in
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
where {x1, . . . , xn} = fv(µf.λx.M).
No extra field or extra work is required to store or construct a
representation of the free variable f : the closure itself plays this role.

However, this untyped code can only be typechecked when recursion is
monomorphic.

Exercise:

Check well-typedness with monomorphic recursion.
88 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion recursive functions

The problem to adapt this encoding to polymorphic recursion is that
recursive occurrences of f are rebuilt from the current invocation of the
closure, i.e. is monomorphic since the closure is invoked after type
specialization.

By contrast, in the environment passing encoding, the environment
contained a polymorphic binding for the recursive calls that was filled
with the closure before its invokation, i.e. with a polymorphic type.

Fortunately, we may slightly change the encoding, using a recursive
closure as in the type-passing version, to allow typechecking in System F.

89 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Closure-passing closure conversion recursive functions

Let τ be ∀α⃗. τ1 → τ2 and Γf be f ∶ τ,Γ where β⃗ # Γ

Jµf ∶τ . λx.MK = let code =

Λβ⃗.λ(clo ∶ CloJΓfK, x ∶ Jτ1K).
let (code , f, x1, . . . , xn) ∶ ∀β⃗.UClo(JΓf K) =

unfold clo in
JMK in

let rec clo ∶ ∀β⃗.∃ρ.Clo(ρ) = Λβ⃗.
pack JΓK, (fold (code β⃗, clo, x1, . . . , xn)) as ∃ρ.Clo(ρ)

in clo

Remind that Clo(R) abbreviates µα.Π ((α × Jτ1K)→ Jτ2K;R). Hence, β⃗
are free variables of Clo(R).
Here, a polymorphic recursive function is directly compiled into a
polymorphic recursive closure. Notice that the type of closures is
unchanged, so the encoding of applications is also unchanged.

90 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK =

91⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec clo1 = (code1, (clo1, clo2, x1, . . . , xn))

and clo2 = (code2, (clo1, clo2, x1, . . . , xn)) in
clo1, clo2

91⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec clo1 = (code1, (clo1, clo2, x1, . . . , xn))

and clo2 = (code2, (clo1, clo2, x1, . . . , xn)) in
clo1, clo2

Comments?

91⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec env = (clo1, clo2, x1, . . . , xn)

and clo1 = (code1, env)
and clo2 = (code2, env) in

clo1, clo2

91⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Mutually recursive functions Closure passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Closure passing:

let code i = λ(clo, x).
let (, f1, f2, x1, . . . , xn) = clo in JMiK

in
let rec clo1 = (code1, clo1, clo2, x1, . . . , xn)
and clo2 = (code2, clo1, clo2, x1, . . . , xn)

in clo1, clo2

91⟨5⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Mutually recursive functions Closure passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Closure passing:

let code i = λ(clo, x).
let (, f1, f2, x1, . . . , xn) = clo in JMiK

in
let rec clo1 = (code1, clo1, clo2, x1, . . . , xn)
and clo2 = (code2, clo1, clo2, x1, . . . , xn)

in clo1, clo2

Question: Can we share the closures c1 and c2 in case n is large?

91⟨6⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Mutually recursive functions Closure passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Closure passing:

let code1 = λ(clo, x).
let (code1, code2, f1, f2, x1, . . . , xn) = clo in JM1K in

let code2 = λ(clo, x).
let (code2, f1, f2, x1, . . . , xn) = clo in JM2K in

let rec clo1 = (code1, code2, clo1, clo2, x1, . . . , xn) and clo2 = c1.tail

in clo1, clo2

• clo1.tail returns a pointer to the tail (code2, clo1, clo2, x1, . . . , xn)
of clo1 without allocating a new tuple.

• This is only possible with some support from the GC (and
extra-complexity and runtime cost for GC)

91⟨6⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Optimizing representations

Can closure passing and environment passing be mixed?

92⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Optimizing representations

Can closure passing and environment passing be mixed?

No because the calling-convention (i.e., the encoding of application)
must be uniform.

However, their is some flexibility in the representation of the closure.
For instance, the following change is completely local:

Jλx.MK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in JMK in

(code , x1, . . . , xn)
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

Applications? When many definitions share the same closure, the closure
(or part of it) may be shared.

92⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Optimizing representations

Can closure passing and environment passing be mixed?

No because the calling-convention (i.e., the encoding of application)
must be uniform.

However, their is some flexibility in the representation of the closure.
For instance, the following change is completely local:

Jλx.MK = let code = λ(clo, x).
let (, (x1, . . . , xn)) = clo in JMK in

(code , (x1, . . . , xn))
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

Applications? When many definitions share the same closure, the closure
(or part of it) may be shared.

92⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Encoding of objects

The closure-passing representation of mutually recursive functions is
similar to the representations of objects in the
object-as-record-of-functions paradigm:

A class definition is an object generator:

class c (x1, . . . xq){
meth m1 =M1

. . .

meth mp =Mp}
Given arguments for parameter x1, . . . x1, it will build recursive methods
m1, . . .mn.

93 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Encoding of objects

A class can be compiled into an object closure:

letm =
letm1 = λ(m,x1, . . . , xq).M1 in
. . .

letmp = λ(m,x1, . . . , xq).Mp in{m1, . . . ,mp} in
λx1 . . . xq. (m,x1, . . . xq)

Each mi is bound to the code for the corresponding method.
The code of all methods are combined into a record of methods,
which is shared between all objects of the same class.

Calling method mi of an object p is

(proj0 p).mi p

How can we type the encoding?

94 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Typed encoding of objects

Let τi be the type of Mi, and row R describe the types of (x1, . . . xq).
Let Clo(R) be µα.Π({(mi ∶ α → τi)i∈1..n};R) and UClo(R) its
unfolding.

Fields R are hidden in an existential type ∃ρ. µα.Π({(mi ∶ α → τi)i∈I};ρ):
letm = {

m1 = λ(m,x1, . . . xq ∶ UClo(R)). JM1K
. . .

mp = λ(m,x1, . . . xq ∶ UClo(R)). JMpK} in
λx1. . . . λxq.pack R, fold (m,x1, . . . xq) as ∃ρ. (M,ρ)

Calling a method of an object p of type M is

p#mi
△
== let ρ, z = unpack p in (proj0 unfold z).mi z

An object has a recursive type but it is not a recursive value.

95 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Typed encoding of objects

Typed encoding of objects were first studied in the 90’s to understand
what objects really are in a type setting.

These encodings are in fact type-preserving compilation of (primitive)
objects.

There are several variations on these encodings. See [Bruce et al., 1999]
for a comparison.

See [Rémy, 1994] for an encoding of objects in (a small extension of) ML
with iso-existentials and universals.

See [Abadi and Cardelli, 1996, 1995] for more details on primitive objects.

96 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Moral of the story

Type-preserving compilation is rather fun. (Yes, really!)

It forces compiler writers to make the structure of the compiled program
fully explicit, in type-theoretic terms.

In practice, building explicit type derivations, ensuring that they remain
small and can be efficiently typechecked, can be a lot of work.

97 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Optimizations

Because we have focused on type preservation, we have studied only
näıve closure conversion algorithms.

More ambitious versions of closure conversion require program analysis:
see, for instance, Steckler and Wand [1997]. These versions can be made
type-preserving.

98 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Other challenges

Defunctionalization, an alternative to closure conversion, offers an
interesting challenge, with a simple solution [Pottier and Gauthier, 2006].

Designing an efficient, type-preserving compiler for an object-oriented
language is quite challenging. See, for instance, Chen and Tarditi [2005].

99 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Contents

Algebraic Data Types

Equi- and iso-recursive types

Typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

Generalized Algebraic Datatypes

100 120 ◁

An introduction to GADTs

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Examples Defunctionalization

let add (x, y) = x + y in

let not x = if x then false else true in

(fun b →
let step x =
add (x, if not b then 1 else 2)

in step (step 0)) true

102⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Examples Defunctionalization

let add (x, y) = x + y in

let not x = if x then false else true in

(fun b →
let step x =
add (x, if not b then 1 else 2)

in step (step 0)) true

Introduce a constructor per call site

type (’a, ’b) apply =
| Fadd : (int ∗ int, int) apply
| Fnot : (bool, bool) apply
| Fstep : int → (int, int) apply
| Fbody : (bool, int) apply

102⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Examples Defunctionalization

let add (x, y) = x + y in

let not x = if x then false else true in

(fun b →
let step x =
add (x, if not b then 1 else 2)

in step (step 0)) true

Introduce a constructor per call site

type (’a, ’b) apply =
| Fadd : (int ∗ int, int) apply
| Fnot : (bool, bool) apply
| Fstep : int → (int, int) apply
| Fbody : (bool, int) apply

Key point the typechecker refines the types a and b in each branch

let rec apply : type a b. (a, b) apply → a → b = fun f arg →
match f with (∗ a b ∗)
| Fadd → let x, y = arg in x + y (∗ int ∗ int int ∗)
| Fnot → let x = arg in if x then false else true (∗ bool bool ∗)
| Fstep y → let x = arg in apply Fadd (x, y) (∗ int int ∗)
| Fbody → let b = arg in (∗ bool int ∗)

let step = Fstep (if not b then 1 else 2)
in apply step (apply step 0)

in apply Fbody true
102⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Example Typed evaluator

A typed abstract syntax tree

type ’a expr =
| Int : int → int expr
| Zerop : int expr → bool expr
| If : (bool expr ∗ ’a expr ∗ ’a expr) → ’a expr

let e0 = (If (Zerop (Int 0), Int 1, Int 2))

What is the type of e0?

103⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Example Typed evaluator

A typed abstract syntax tree

type ’a expr =
| Int : int → int expr
| Zerop : int expr → bool expr
| If : (bool expr ∗ ’a expr ∗ ’a expr) → ’a expr

let e0 ∶ int expr = (If (Zerop (Int 0), Int 1, Int 2))

A typed evaluator (with no failure)

let rec eval : type a . a expr → a = fun x → match x with
| Int x → x
| Zerop x → eval x > 0
| If (b, e1, e2) → if eval b then eval e1 else eval e2

let b0 = eval e0

103⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Example Typed evaluator

A typed abstract syntax tree

type ’a expr =
| Int : int → int expr
| Zerop : int expr → bool expr
| If : (bool expr ∗ ’a expr ∗ ’a expr) → ’a expr

let e0 ∶ int expr = (If (Zerop (Int 0), Int 1, Int 2))

A typed evaluator (with no failure)

let rec eval : type a . a expr → a = fun x → match x with
| Int x → x
| Zerop x → eval x > 0
| If (b, e1, e2) → if eval b then eval e1 else eval e2

let b0 = eval e0

Exercise
Define a typed abstract syntax tree for the simply-typed lambda-calculus
and a typed evaluation.

103⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Example Encoding sum types

type (’a, ’b) sum = Left of ’a | Right of ’b

can be encoded as a product:

type (’t, ’a, ’b) tag = Ltag : (’a, ’a, ’b) tag | Rtag : (’b, ’a, ’b) tag
type (’a, ’b) prod = Prod : (’t, ’a, ’b) tag ∗ ’t → (’a, ’b) prod

let sop (type a b) (p : (a, b) prod) : (a, b) sum =
let Prod (t, v) = p in match t with Ltag → Left v | Rtag → Right v

Prod is a single constructor and need not be allocated.

A field common to both cases can be accessed without looking at the tag.

type (’a, ’b) prod = Prod : (’t, ’a, ’b) tag ∗ ’t ∗ bool → (’a, ’b) prod
let get (type a b) (p : (a, b) prod) : bool =
let Prod (t, v, s) = p in s

Exercise
Can we have a flat representation if ’a is int * int and ’b is bool?

105 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Example Encoding sum types

Exercise

Specialize the encoding of sum types to the encoding of ’a list

106 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Example Generic programming

type ’a ty =
| Tint : int ty
| Tbool : bool ty
| Tlist : ’a ty → (’a list) ty
| Tpair : ’a ty ∗ ’b ty → (’a ∗ ’b) ty

let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint → string of int x
| Tbool → if x then ”true” else ”false”
| Tlist t → ”[” ˆ String.concat ”; ” (List.map (to string t) x) ˆ ”]”
| Tpair (a, b) →

let u, v = x in ”(” ˆ to string a u ˆ ”, ” ˆ to string b v ˆ ”)”

let s = to string (Tpair (Tlist Tint, Tbool)) ([1; 2; 3], true)

107 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Other uses of GADTs

GADTs

• May encode data structures invariants, such as the state of an
automaton, as illustrated by Pottier and Régis-Gianas [2006] for
typechecking LR-parsers.

• They may be used to implement a form of dynamic type (version
inspired by the generic printer)

• GADTs can be used to encode type classes, using a technique
analogous to defunctionalization [Pottier and Gauthier, 2006].

108 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Reducing GADTs to type equality

All GADTs can be encoded with a single one:

type (’a, ’b) eq = Eq : (’a, ’a) eq

For instance, generic programming can be redefined as follows:

type ’a ty =
| Tint : (’a, int) eq → ’a ty
| Tlist : (’a, ’b list) eq ∗ ’b ty → ’a ty
| Tpair : (’a, (’b ∗ ’c)) eq ∗ ’b ty ∗ ’c ty → ’a ty

This declaration is not a GADT, just an existential type!

let rec to string : type a. a ty → a → string = fun t x → match t with
| Tint Eq → string of int x
| Tlist (Eq, t) → ”[” ˆ String.concat ”; ” (List.map (to string t) x) ˆ ”]”
| Tpair (Eq, a, b) →

let u, v = x in ”(” ˆ to string a u ˆ ”, ” ˆ to string b v ˆ ”)”

let s = to string (Tpair (Eq, Tlist (Eq, Tint Eq), Tint Eq)) ([1; 2; 3], 0)

109 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Reducing GADTs to type equality

All GADTs can be encoded with a single one:

type (’a, ’b) eq = Eq : (’a, ’a) eq

For instance, generic programming can be redefined as follows:

type ’a ty =
| Tint : (’a, int) eq → ’a ty
| Tlist : (’a, ’b list) eq ∗ ’b ty → ’a ty
| Tpair : (’a, (’b ∗ ’c)) eq ∗ ’b ty ∗ ’c ty → ’a ty

This declaration is not a GADT, just an existential type!

let rec to string : type a. a ty → a → string = fun t x → match t with

| Tint Eq → string of int x

| Tlist (Eq, t) → ...
| Tpair (Eq, a, b) → ...

110⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Reducing GADTs to type equality

All GADTs can be encoded with a single one:

type (’a, ’b) eq = Eq : (’a, ’a) eq

For instance, generic programming can be redefined as follows:

type ’a ty =
| Tint : (’a, int) eq → ’a ty
| Tlist : (’a, ’b list) eq ∗ ’b ty → ’a ty
| Tpair : (’a, (’b ∗ ’c)) eq ∗ ’b ty ∗ ’c ty → ’a ty

This declaration is not a GADT, just an existential type!

let rec to string : type a. a ty → a → string = fun t x → match t with

| Tint p → let p = Eq in string of int x

| Tlist (Eq, t) → ...
| Tpair (Eq, a, b) → ...

▷ Tint Eq is ordinary ADT matching
▷ let p = Eq in introduces the equality a = int in the current branch

110⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Formalisation of GADTs

We can encode GADTs with type equalities

We cannot encode type equalities in System F.

They bring something more, namely local equalities in the typing context.

We write τ1 ∼ τ2 for (τ1, τ2) eq
When typechecking an expression

E[let x ∶ τ1 ∼ τ2 =M0 inM] E[λx ∶ τ1 ∼ τ2.M]
▷ M is typechecked with the asumption that τ1 ∼ τ2, i.e. types τ1 and

τ2 are equivalent, which allows for type conversion within M

▷ but E and M0 are typechecked without this asumption

▷ What is learned by an equation remains local to its static scope,
and does not extend to its surrounding context (or the rest of the
program execution trace).

111 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Fc (simplified) Add equality coercions to System F

Types

τ ∶∶= . . . ∣ τ1 ∼ τ2
Expressions

M ∶∶= . . . ∣ γ ◁M ∣ γ

Coercions

γ ∶∶= α variable∣ ⟨τ⟩ reflexivity∣ symγ symmetry∣ γ1;γ2 transitivity∣ γ1 → γ2 arrow coercions∣ leftγ left projection∣ right γ right projection∣ ∀α.γ type generalization∣ γ@τ type instantiation

Typing rules

Coerce

Γ ⊢ M ∶ τ1 Γ ⊩ γ ∶ τ1 ∼ τ2

Γ ⊢ γ ◁M ∶ τ2

Coercion

Γ ⊩ γ ∶ τ1 ∼ τ2

Γ ⊢ γ ∶ τ1 ∼ τ2

Coabs

Γ, x ∶ τ1 ∼ τ2 ⊢ M ∶ τ

Γ ⊢ λx ∶ τ1 ∼ τ2.M ∶ τ

112 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Fc (simplified) Conversion

Eq-Hyp

y ∶ τ1 ∼ τ2 ∈ Γ
Γ ⊩ y ∶ τ1 ∼ τ2

Eq-Ref

Γ ⊢ τ

Γ ⊩ ⟨τ⟩ ∶ τ ∼ τ
Eq-Sym

Γ ⊩ γ ∶ τ1 ∼ τ2
Γ ⊩ symγ ∶ τ2 ∼ τ1

Eq-Trans

Γ ⊩ γ1 ∶ τ1 ∼ τ Γ ⊩ γ2 ∶ τ ∼ τ2
Γ ⊩ γ1;γ2 ∶ τ1 ∼ τ2

Eq-Arrow

Γ ⊩ γ1 ∶ τ ′1 ∼ τ1 Γ ⊩ γ2 ∶ τ2 ∼ τ ′2
Γ ⊩ γ1 → γ2 ∶ τ1 → τ2 ∼ τ

′

1
→ τ ′

2

Eq-Left

Γ ⊩ γ ∶ τ1 → τ2 ∼ τ
′

1
→ τ ′

2

Γ ⊩ left γ ∶ τ ′
1
∼ τ1

Eq-Right

Γ ⊩ γ ∶ τ1 → τ2 ∼ τ
′

1
→ τ ′

2

Γ ⊩ rightγ ∶ τ2 ∼ τ ′2
Eq-All

Γ, α ⊩ γ ∶ τ1 ∼ τ2
Γ ⊩ ∀α.γ ∶ ∀α. τ1 ∼ ∀α. τ2

Eq-Inst

Γ ⊩ γ ∶ ∀α. τ1 ∼ ∀α. τ2 Γ ⊢ τ

Γ ⊩ γ@τ ∶ [α ↦ τ]τ1 ∼ [α ↦ τ]τ2
113 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Fc (simplified)—the internal language of Haskell

Use a language of coercions to witnessed type equivalences:

γ ∶∶= α variable∣ ⟨τ⟩ reflexivity∣ symγ symmetry∣ γ1;γ2 transitivity∣ γ → arrow coercions∣ leftγ left projection∣ right γ right projection∣ ∀α.γ coercion generalization∣ γ@τ coercion instantiation

114 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Semantics

Coercions should be without computational content

?

115⟨1⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Semantics

Coercions should be without computational content

▷ they are just type information, and should be erased at runtime

▷ they should not block redexes

▷ we may push them down inside terms:

(γ ◁ V1) V2 Ð→ rightγ ◁ (V1 (left γ ◁ V2))(γ ◁ V) τ Ð→ (γ@τ)◁ (V τ)
γ1◁ (γ2 ◁ V) Ð→ (γ1;γ2)◁ V

115⟨2⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Semantics

Coercions should be without computational content

Always?

115⟨3⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Semantics

Coercions should be without computational content

Except ...

?

115⟨4⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Semantics

Coercions should be without computational content

Except for coercion abstractions that must stop the evaluation

Why?

115⟨5⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Semantics

Coercions should be without computational content

Except for coercion abstractions that must stop the evaluation

▷ Otherwise, one could attempt to reduce M in λint ∼ bool.M
when M is not (bool◁ 0), which is well-typed .

▷ In call-by-value,

λx ∶ τ1 ∼ τ2.M freezes the evaluation of M ,
M ◁ γ resumes the evaluation of M .

Must always be enforced, even with other strategies

▷ Full reduction at compile time

?

115⟨6⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Semantics

Coercions should be without computational content

Except for coercion abstractions that must stop the evaluation

▷ Otherwise, one could attempt to reduce M in λint ∼ bool.M
when M is not (bool◁ 0), which is well-typed .

▷ In call-by-value,

λx ∶ τ1 ∼ τ2.M freezes the evaluation of M ,
M ◁ γ resumes the evaluation of M .

Must always be enforced, even with other strategies

▷ Full reduction at compile time may still be perfomed,

?

115⟨7⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Semantics

Coercions should be without computational content

Except for coercion abstractions that must stop the evaluation

▷ Otherwise, one could attempt to reduce M in λint ∼ bool.M
when M is not (bool◁ 0), which is well-typed .

▷ In call-by-value,

λx ∶ τ1 ∼ τ2.M freezes the evaluation of M ,
M ◁ γ resumes the evaluation of M .

Must always be enforced, even with other strategies

▷ Full reduction at compile time may still be perfomed,
but be aware of stuck programs and treat them as dead branches.

115⟨8⟩ 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Type soundness Syntactic proofs

Type soundness

By subject reduction and progress with explicit coercions

Erasing semantics

Important and non obvious.

γ ◁M erases to M

γ erases to ◇

Slogan that “coercion have 0-bit information”, i.e.
Coercions need not be passed at runtime—-but still block the reduction.

Expressions and typing rules

Coerce

Γ ⊢ M ∶ τ1 Γ ⊩ τ1 ∼ τ2

Γ ⊢ M ∶ τ2

Coercion

Γ ⊩ τ1 ∼ τ2

Γ ⊢ ◇ ∶ τ1 ∼ τ2

Coabs

Γ, x ∶ τ1 ∼ τ2 ⊢ M ∶ τ

Γ ⊢ λx ∶ τ1 ∼ τ2.M ∶ τ

116 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Type soundness Syntactic proofs

The introduction of type equality constraints in System F has been
introduced and formalized by Sulzmann et al. [2007].

Scherer and Rémy [2015] show how strong reduction and confluence can
be recovered in the present of possibly uninhabited coercions.

117 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Type soundness Semantic proofs

Equality coercions are a small logic of type conversions.

This may be enriched with more operations.

A very general form of coercions has been introduced by
Cretin and Rémy [2014].

The soundness proof became too cumbersome to be conducted
syntactically.

They instead used a semantic proof, interpreting types as sets of terms
(a technique similar to unary logical relations)

118 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Type checking / inference

With explicit coercions, types are fully determined by expressions.

However, the user prefers to leave applications of Coerce implicit.

Then types becomes ambiguous: when leaving the scope of an equation:
which form should be used, among the equivalent ones?
This must be determined by the context, including the return type, and
calls for extra type annotations:

let rec eval : type a . a expr → a = fun x → match x with
| Int x → x (∗ x : int , but a = int, should we return x : a? ∗)
| Zerop x → eval x > 0
| If (b, e1, e2) → if eval b then eval e1 else eval e2

In ML, type annotations must be used to tell

• the type of the context
• which datatypes must be typed as GADTs.

In Coq, one must use the return type annotion on matches.
119 120 ◁

Algebraic Data Types Typed closure conversion Existential types Typed closure conversion GADTs

Type inference in ML-like languages

Simonet and Pottier [2007] gave a presentation of type inference for
GADTs with general typing constraints for ML-like languages.

Pottier and Régis-Gianas [2006] introduced a stratified approach to
better propagate constraints from outisde to inside GADTs contexts.

Vytiniotis et al. [2011] introduced outside-in approach, used in Haskell,
which restrict type information to flow from outside to inside a GADT
contexts.

Garrigue and Rémy [2013] introduced the notion of ambivalent types,
used in OCaml, to restrict the type occurrences that must be considered
ambiguous and determined by a type annotation.

120 120 ◁

Bibliography

Bibliography I

(Most titles have a clickable mark “▷” that links to online versions.)

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Untyped
and first-order systems. Information and Computation, 125(2):78–102,
March 1996.

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects:
Second-order systems. Science of Computer Programming, 25(2–3):
81–116, December 1995.

▷ Amal Ahmed and Matthias Blume. Typed closure conversion preserves
observational equivalence. In ACM International Conference on
Functional Programming (ICFP), pages 157–168, September 2008.

▷ Michael Brandt and Fritz Henglein. Coinductive axiomatization of
recursive type equality and subtyping. Fundamenta Informaticæ, 33:
309–338, 1998.

121 120 ◁

http://research.microsoft.com/Users/luca/Papers/PrimObj1stOrder.pdf
http://research.microsoft.com/Users/luca/Papers/PrimObj2ndOrder.pdf
http://ttic.uchicago.edu/~amal/papers/tccpoe.pdf
ftp://ftp.diku.dk/diku/semantics/papers/D-353.ps.gz

Bibliography

Bibliography II

▷ Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object
encodings. Information and Computation, 155(1/2):108–133,
November 1999.

▷ Juan Chen and David Tarditi. A simple typed intermediate language for
object-oriented languages. In ACM Symposium on Principles of
Programming Languages (POPL), pages 38–49, January 2005.

▷ Adam Chlipala. A certified type-preserving compiler from lambda calculus
to assembly language. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 54–65, June 2007.

Julien Cretin and Didier Rémy. System F with Coercion Constraints. In
Logics In Computer Science (LICS). ACM, July 2014.

Jacques Garrigue and Didier Rémy. Ambivalent Types for Principal Type
Inference with GADTs. In 11th Asian Symposium on Programming
Languages and Systems, Melbourne, Australia, December 2013.

122 120 ◁

http://www.cis.upenn.edu/~bcpierce/papers/compobj.ps
http://research.microsoft.com/pubs/59934/lilc_popl05.pdf
http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf

Bibliography

Bibliography III

▷ Nadji Gauthier and François Pottier. Numbering matters: First-order
canonical forms for second-order recursive types. In Proceedings of the
2004 ACM SIGPLAN International Conference on Functional
Programming (ICFP’04), pages 150–161, September 2004. doi:
http://doi.acm.org/10.1145/1016850.1016872.

Robert Harper and Benjamin C. Pierce. Design considerations for
ML-style module systems. In Benjamin C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 8, pages
293–345. MIT Press, 2005.

▷ Konstantin Läufer and Martin Odersky. Polymorphic type inference and
abstract data types. ACM Transactions on Programming Languages
and Systems, 16(5):1411–1430, September 1994.

Fabrice Le Fessant and Luc Maranget. Optimizing pattern-matching. In
Proceedings of the 2001 International Conference on Functional
Programming. ACM Press, 2001.

123 120 ◁

http://gallium.inria.fr/~fpottier/publis/gauthier-fpottier-icfp04.ps.gz
http://www.cs.luc.edu/laufer/papers/toplas94.pdf

Bibliography

Bibliography IV

Luc Maranget. Warnings for pattern matching. Journal of Functional
Programming, 17, May 2007.

▷ John C. Mitchell and Gordon D. Plotkin. Abstract types have existential
type. ACM Transactions on Programming Languages and Systems, 10
(3):470–502, 1988.

▷ Benôıt Montagu and Didier Rémy. Modeling abstract types in modules
with open existential types. In ACM Symposium on Principles of
Programming Languages (POPL), pages 63–74, January 2009.

▷ Greg Morrisett and Robert Harper. Typed closure conversion for
recursively-defined functions (extended abstract). In International
Workshop on Higher Order Operational Techniques in Semantics
(HOOTS), volume 10 of Electronic Notes in Theoretical Computer
Science. Elsevier Science, 1998.

124 120 ◁

http://theory.stanford.edu/people/jcm/papers/mitch-plotkin-88.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://www.cs.cornell.edu/home/jgm/papers/hootsclosure.ps

Bibliography

Bibliography V

▷ Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F
to typed assembly language. ACM Transactions on Programming
Languages and Systems, 21(3):528–569, May 1999.

▷ François Pottier and Nadji Gauthier. Polymorphic typed
defunctionalization and concretization. Higher-Order and Symbolic
Computation, 19:125–162, March 2006.

▷ François Pottier and Yann Régis-Gianas. Stratified type inference for
generalized algebraic data types. In ACM Symposium on Principles of
Programming Languages (POPL), pages 232–244, January 2006.

▷ François Pottier and Yann Régis-Gianas. Towards efficient, typed LR
parsers. In ACM Workshop on ML, volume 148 of Electronic Notes in
Theoretical Computer Science, pages 155–180, March 2006.

125 120 ◁

http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.ps.gz
http://cristal.inria.fr/~fpottier/publis/pottier-regis-gianas-popl06.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-regis-gianas-typed-lr.pdf

Bibliography

Bibliography VI

▷ François Pottier and Didier Rémy. The essence of ML type inference. In
Benjamin C. Pierce, editor, Advanced Topics in Types and
Programming Languages, chapter 10, pages 389–489. MIT Press,
2005.

▷ Didier Rémy. Programming objects with ML-ART: An extension to ML
with abstract and record types. In International Symposium on
Theoretical Aspects of Computer Software (TACS), pages 321–346.
Springer, April 1994.

▷ Didier Rémy and Jérôme Vouillon. Objective ML: An effective
object-oriented extension to ML. Theory and Practice of Object
Systems, 4(1):27–50, 1998.

▷ John C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing 83, pages 513–523. Elsevier Science, 1983.

126 120 ◁

http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/objective-ml!tapos98.ps.gz
ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf

Bibliography

Bibliography VII

▷ Gabriel Scherer and Didier Rémy. Full reduction in the face of absurdity.
In Programming Languages and Systems - 24th European Symposium
on Programming, ESOP 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, pages 685–709, 2015.
doi: 10.1007/978-σ23-σ2662-σ246669-σ28 28.

▷ Vincent Simonet and François Pottier. A constraint-based approach to
guarded algebraic data types. ACM Trans. Program. Lang. Syst., 29
(1), January 2007. ISSN 0164-0925. doi: 10.1145/1180475.1180476.

▷ Paul A. Steckler and Mitchell Wand. Lightweight closure conversion.
ACM Transactions on Programming Languages and Systems, 19(1):
48–86, 1997.

127 120 ◁

http://gallium.inria.fr/~remy/coercions/
http://doi.acm.org/10.1145/1180475.1180476
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/steckler-wand-97.ps

Bibliography

Bibliography VIII

▷ Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and
Kevin Donnelly. System f with type equality coercions. In Proceedings
of the 2007 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, TLDI ’07, pages 53–66, New
York, NY, USA, 2007. ACM. ISBN 1-59593-393-X. doi:
10.1145/1190315.1190324.

▷ Dimitrios Vytiniotis, Simon Peyton jones, Tom Schrijvers, and Martin
Sulzmann. Outsidein(x) modular type inference with local
assumptions. J. Funct. Program., 21(4-5):333–412, September 2011.
ISSN 0956-7968. doi: 10.1017/S0956796811000098.

128 120 ◁

http://doi.acm.org/10.1145/1190315.1190324
http://dx.doi.org/10.1017/S0956796811000098

	Abstract Data types, Existential types, GADTs
	Algebraic Data Types
	Equi- and iso-recursive types

	Typed closure conversion
	Existential types
	Implicitly-type existential types passing
	Iso-existential types

	Typed closure conversion
	Environment passing
	Closure passing

	Generalized Algebraic Datatypes

	Appendix

