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What are they?

So far, most proofs involving terms have been by induction on the
structure of terms.

Logical relations are relations between well-typed terms defined
inductively on the structure of types. They allow proofs between terms
by induction on the structure of types.

Unary relations

• Unary relations are predicates on expressions
• They can be used to prove type safety and strong normalisation

Binary relations

• Binary relations relates two expressions of related types.
• They can be used to prove equivalence of programs and
non-interference properties.

Logical relations are a common proof method for programming languages.
5 62 ◁
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Normalization of simply-typed λ-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

7⟨1⟩ 62 ◁
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Normalization of simply-typed λ-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.

7⟨2⟩ 62 ◁



Introduction Normalization of stlc Observational equivalence in stlc Logical relations in stlc Logical relations in F

Normalization of simply-typed λ-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.

The simply-typed λ-calculus is also lifted at the level of types in richer
type systems such as System Fω; then, the decidability of type-equality
depends on the termination of the reduction at the type level.
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Normalization of simply-typed λ-calculus

Types usually ensure termination of programs—as long as neither types
nor terms contain any form of recursion.

Even if one wishes to add recursion explicitly later on, it is an important
property of the design that non-termination is originating from the
constructions introduced especially for recursion and could not occur
without them.

The simply-typed λ-calculus is also lifted at the level of types in richer
type systems such as System Fω; then, the decidability of type-equality
depends on the termination of the reduction at the type level.

The proof of termination for the simply-typed λ-calculus is a simple and
illustrative use of logical relations.

Notice however, that our simply-typed λ-calculus is equipped with a
call-by-value semantics. Proofs of termination are usually done with a
strong evaluation strategy where reduction can occur in any context.
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Normalization

Proving termination of reduction in fragments of the λ-calculus is often a
difficult task because reduction may create new redexes or duplicate
existing ones.

Hence the size of terms may grow (much) larger during reduction. The
difficulty is to find some underlying structure that decreases.

We follow the proof schema of Pierce [2002], which is a modern
presentation in a call-by-value setting of an older proof by Hindley and
Seldin [1986]. The proof method is due to [Tait, 1967].
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Calculus

Take the call-by-value simply-typed λ-calculus with primitive booleans
and conditional.

Write B the type of booleans and tt and ff for true and false.

We define V(τ) and E(τ) the subsets of closed values and closed
expressions of type τ by induction on types as follows:

V(B)
△
== {tt,ff}

V(τ1 → τ2)
△
== {λx ∶τ1.M ∣ λx ∶τ1.M ∶ τ1 → τ2 ∧ ∀V ∈ V(τ1),M V ∈ E(τ2)}

E(τ)
△
== {M ∣M ∶ τ ∧ ∃V ∈ V(τ),M Ð→∗ V }

The goal is to show that any closed expression of type τ is in E(τ).

Remarks
V(τ) ⊆ E(τ)—by definition.
E(τ) is closed by inverse reduction—by definition, i.e.
If M ∶ τ and M Ð→ N and N ∈ E(τ) then M ∈ E(τ).
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Problem

We wish to show that every closed term of type τ is in E(τ)

• Proof by induction on the typing derivation.

• Problem with abstraction: the premisse is not closed.

We need to strengthen the hypothesis, i.e. also give a semantics to open
terms.

• The semantics of open terms can be given by abstracting over the
semantics of their free variables.

15 62 ◁
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Generalize the definition to open terms

We define a semantic judgment for open terms Γ ⊧M ∶ τ so that
Γ ⊢M ∶ τ implies Γ ⊧M ∶ τ and ∅ ⊧M ∶ τ means M ∈ E(τ).

We interpret free type variables of type τ as closed values in V(τ).

We interpret environments Γ as mappings γ from type variables to closed
values:

We write γ ∈ G(Γ) to mean dom(γ) = dom(Γ) and γ(x) ∈ V(τ) for all
x ∶ τ ∈ Γ.

Γ ⊧M ∶ τ
def
⇐⇒ ∀γ ∈ G(Γ), γ(M) ∈ E(τ)

16 62 ◁
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Fundamental Lemma

Theorem (fundamental lemma)
If Γ ⊢M ∶ τ then Γ ⊧M ∶ τ .

Corollary (termination of well-typed terms):
If ∅ ⊢M ∶ τ then M ∈ E(τ).

That is, closed well-typed terms of type τ evaluates to values of type τ .

17 62 ◁
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Proof by induction on the typing derivation

Routine cases

Case Γ ⊢ tt ∶ B or Γ ⊢ ff ∶ B: by definition, tt,ff ∈ V(B) and V(B) ⊆ E(B).

Case Γ ⊢ x ∶ τ : γ ∈ G(Γ), thus γ(x) ∈ V(τ) ⊆ E(τ)

Case Γ ⊢M1 M2 ∶ τ :

By inversion, Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2.

Let γ ∈ G(Γ). We have γ(M1 M2) = (γM1) (γM2).
By IH, we have Γ ⊧M1 ∶ τ2 → τ and Γ ⊧M2 ∶ τ2.
Thus γM1 ∈ E(τ2 → τ) (1) and γM2 ∈ E(τ2) (2).

By (2), there exists V ∈ V(τ2) such that γM2 Ð→∗ V .
Thus (γM1) (γM2)↝ (γM1) V ∈ E(τ) by (1).

Then, (γM1) (γM2) ∈ E(τ), by closure by inverse reduction.

Case Γ ⊢ ifM then M1 elseM2 ∶ τ : By cases on the evaluation of γM .

18 62 ◁
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Proof by induction on the typing derivation

The interesting case

Case Γ ⊢ λx ∶τ1.M ∶ τ1 → τ :

Assume γ ∈ G(Γ).
We must show that γ(λx ∶τ1.M) ∈ E(τ1 → τ) (1)

That is, λx ∶τ1. γM ∈ V(τ1 → τ) (we may assume x ∉ dom(γ) w.l.o.g.)

Let V ∈ V(τ1), it suffices to show (λx ∶τ1. γM) V ∈ E(τ) (2).

We have (λx ∶τ1. γM) V Ð→ (γM)[x ↦ V ] = γ′M
where γ′ is γ[x ↦ V ] ∈ G(Γ, x ∶ τ1) (3)

Since Γ, x ∶ τ1 ⊢M ∶ τ , we have Γ, x ∶ τ1 ⊧M ∶ τ by IH. Therefore by (3),
we have γ′M ∈ E(τ). Since E(τ) is closed by inverse reduction, this
proves (2) which finishes the proof of (1).

19 62 ◁
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Variations

We have shown both termination and type soundness, simultaneously.

Termination would not hold if we had a fix point. But type soundness
would still hold.

The proof may be modified by choosing:

E(τ) = {M ∶ τ ∣ ∀N,M Ð→∗ N Ô⇒ N ∈ V(τ) ∨ ∃N ′,N Ð→ N ′}

Exercise

Show type soundness with this semantics.

20 62 ◁
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(Bibliography)

Mostly following Bob Harper’s course notes Practical foundations for
programming languages [Harper, 2012].

See also

• Types, Abstraction and Parametric Polymorphism [Reynolds, 1983]

• Parametric Polymorphism and Operational Equivalence [Pitts, 2000].

• Theorems for free! [Wadler, 1989].

We assume a call-by-name semantics for generality of the presentation.
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When are two programs equivalent

M Ð→∗ N ?

M Ð→∗ V and N Ð→∗ V ?

But what if M and N are functions?

Aren’t λx. (x + x) and λx.2 ∗ x equivalent?

Idea two functions are observationally equivalent if when applied to
equivalent arguments, they lead to observationally equivalent results.

Are we general enough?

23 62 ◁
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Observatual equivalence

We can only observe the behavior of full programs, i.e. closed terms of
some computation type, such as B (the only one so far).

If M ∶ B and N ∶ B, then M ≃ N iff there exists V such that M Ð→∗ V
and N Ð→∗ V . (Call M ≃ N behavioral equivalence.)

To compare programs at other types, we place them in closing arbitrary
contexts.

Definition (observational equivalence)

Γ ⊢M ≅ N ∶ τ
△
== ∀C ∶ (Γ▷ τ)↝ (∅▷B), C[M] ≃ C[N]

Typing of contexts

C ∶ (Γ▷ τ)↝ (∆▷ σ) ⇐⇒ (∀M, Γ ⊢M ∶ τ Ô⇒ ∆ ⊢ C[M] ∶ σ)

There is an equivalent definition given by a set of typing rules. This is
useful to proof some properties by induction on the derivations.

We write M ≅τ N for ∅ ⊢M ≅ N ∶ τ 24 62 ◁
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Observational equivalence

Observational equivalence is the coarsiest consistent congruence, where:

≡ is consistent if ∅ ⊢M ≡ N ∶ B implies M ≃ N .

≡ is a congruence if it is an equivalence and is closed by context, i.e.

Γ ⊢M ≅ N ∶ τ ∧ C ∶ (Γ▷τ)↝ (∆▷σ) Ô⇒ ∆ ⊢ C[M] ≅ C[N] ∶ σ

Consistent: by definition, using the empty context.

Congruence: by compositionality of contexts.

Largest: Assume ≡ is a consistent congruence. Assume Γ ⊢M ≡ N ∶ τ
holds and show that Γ ⊢M ≅ N ∶ τ holds (1).
Let C ∶ (Γ▷ τ)↝ (∅▷B) (2). We must show that C[M] ≃ C[N].
This follows by consistency applied to Γ ⊢ C[M] ≡ C[N] ∶ B which
follows by congruence from (1) and (2).

25 62 ◁
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Problem with Observational Equivalence

Problems

• Observational equivalence is too difficult to test.

• Because of quantification over all contexts (too many for testing).

• But many contexts will do the same experiment.

Solution

We take advantage of types to reduce the number of experiments.

• Defining/testing the equivalence on base types.

• Propagating the definition mechanically at other types.

Logical relations provide the infrastructure for conducting such proofs.

27 62 ◁
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Logical equivalence for closed terms

We inductively define M ∼τ M
′ on closed terms of type τ by induction

on τ :

• M ∼B M ′ iff M ≃M ′

• M ∼τ1→τ2 M
′ iff ∀M1,M

′
1, M ∼τ1 M

′ Ô⇒ M M1 ∼τ2 M
′ M ′

1

Lemma

Logical equivalence is symmetric and transitive (at any given type).

Note

Reflexivity is not obvious at all.

28 62 ◁
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Logical equivalence for closed terms

Proof by induction on type τ

Case τ is B for values: the result is immediate.

Case τ is τ1 → τ2:. By IH, symmetry and transitivity holds at types τ1
and τ2.

For symmetry, assume M ∼τ M
′ (H), we must show M ′ ∼τ M . Assume

M1 ∼τ1 M
′
1
. We must show M ′M1 ∼τ2 M M ′

1
(C). We have M ′

1
∼τ1 M1

by symmerty at τ1. By (H), we have M M ′
1 ∼τ2 M

′ M1 and (C) follows
by symmetry at type τ2.

For transitivity, assume M ∼τ M
′ (H1) and M ′ ∼τ M

′′ (H2). To show
M ∼τ M

′′, we assume N ∼τ1 N
′′ and show M N ∼τ2 M

′′ N ′′ (C).
By (H1), we have M N ∼τ2 M

′ N ′′ (C1).
By symmetry and transitivity at type τ1, we have N ′′ ∼τ1 N

′′. (Remark)
By (H2), we have M ′ N ′′ ∼τ2 M

′′ N ′′ (C2).
(C) follows by transitivity of (C1) and (C2) at type τ2.

29 62 ◁
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Properties of logical equivalence

Closure by inverse reduction

Assume that N ∶ τ and M ∼τ M
′.

If N Ð→∗M and N ′ Ð→∗M ′ then N ∼τ N
′.

The proof is by induction on τ .
(We show it for a single reduction step, e.g. on the left-hand side)

Case τ is B: By closure of behavioral equivalence ≃ by inverse reduction.

Case τ is τ1 → τ2: To show N ∼τ M
′ we assume M1 ∼τ1 M

′
1
and show

N M1 ∼τ2 M
′M ′

1
(1).

From M ∼τ M
′, we have M M1 ∼τ2 M

′M ′
1
. The conclusion (1) then

follows by IH at type τ2, since we have N M1 Ð→M M1 as a
consequence of the asumption N Ð→M .

Consistency If M ∼B M ′, then M ≃M ′

(Obvious, by definition.)

30 62 ◁
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Logical equivalence for open terms

When Γ ⊢M ∶ τ and Γ ⊢M ′ ∶ τ , we wish to define a judgment
Γ ⊢M ∼M ′ ∶ τ to mean that the open terms M and M ′ are equivalent
at type τ .

We write γ ∼Γ γ′ to mean that γ and γ′ are two subtitutions of domain
dom(Γ) such that for all x ∶ τ ∈ dom(Γ), we have γ(x) ∼τ γ

′(x)

Definition

Γ ⊢M ∼M ′ ∶ τ ⇐⇒ ∀γ, γ′, γ ∼Γ γ′ Ô⇒ γ(M) ∼τ γ
′(M ′)

We write M ∼τ N for ∅ ⊢M ∼ N ∶ τ

Immediate properties

Open logical equivalence is symmetric and transitive.

(Proof is immediate by the definition and the symmetry and transitivity
of closed logical equivalence.)

31 62 ◁
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Fundamental lemma of logical equivalence

Reflexivity If Γ ⊢M ∶ τ , then Γ ⊢M ∼M ∶ τ .

Proof Assume Γ ⊢M ∶ τ (1) and γ ∼Γ γ′ (2). We must show
γM ∼τ γ

′M . The proof is by induction on the typing derivation.

Case M is λx ∶τ1.N and τ is τ1 → τ2 with x # γ, γ′:
We show λx ∶τ1. γN ∼τ1→τ2 λx ∶τ1. γ

′N . Assume M1 ∼τ1 M
′
1 (3).

We must show (λx ∶τ1. γN)M1 ∼τ2 (λx ∶τ1. γ
′N)M ′

1.

By inverse reduction, it suffices to show
γ(N)[x ↦M1] ∼τ2 γ

′(N)[x ↦M ′
1], i.e.

γ1(N) ∼τ2 γ
′
1(N) where γ1 is (γ[x ↦M1]) and γ′1 is (γ′[x ↦M ′

1]) (4).

We have γ1 ∼Γ,x∶τ1 γ
′
1 (5) from (2) and (3).

By inversion of typing applied to (1), we have Γ, x ∶ τ1 ⊢ N ∶ τ2.
Thus (4) follows by induction hypothesis applied with (5).

32 62 ◁
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Properties of logical equivalence

Proof (continued) Assume Γ ⊢M ∶ τ and γ ∼Γ γ′. We must show
γ(M) ∼τ γ

′(M). The proof is by induction on the typing derivation.

Case M is tt or ff and τ is B: Since M is closed it suffices to show
M ∼B M which holds by reflexivity of ∼B, i.e. of behavioral
equivalence ≃.

Case M is M1 M2: By induction hypothesis and the fact that
substitution distributes over term application.

Case M is x: Immediate.

33 62 ◁
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Properties of logical equivalence

Proof (continued)

Case M is if N then N1 elseN2: By induction applied to Γ ⊢ N ∶ B, we
have Γ ⊢ N ∼ N ∶ B. Thus γN ∼B γ′N . By consistency, we have
γN ≃ γ′N . We reason by cases on the evaluation of γN .

If γN Ð→∗ tt then so does γ′N ; then γM Ð→∗ γN1 and
γ′M Ð→∗ γ′N1. We have Γ ⊢ N1 ∶ τ by inverseion of typing. By IH, we
have γN1 ∼τ γ′N1. By inverse reduction, we get γM Ð→∗ γ′M .

Otherwise, γN Ð→∗ ff, and we proceed symmetrically.

34 62 ◁
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Properties of logical relations

Corollary (equivalence) Open logical relation is an equivalence relation

Corollary (Termination) If M ∶ B then the evaluation of M terminates.

Proof: M ∶ B implies M ∼B M which implies M ≃M , and, in turn,
implies that M evaluates to either tt or ff.

35 62 ◁
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Properties of logical equivalence

Logical equivalence is a congruence
If Γ ⊢M ∼M ′ ∶ τ and C ∶ (Γ▷ τ)↝ (∆▷ σ), then
∆ ⊢ C[M] ∼ C[M ′] ∶ σ.

Proof By induction on the proof of C ∶ (Γ▷ τ)↝ (∆▷ σ).
Similar to the proof of reflexivity. (We need a definition of context typing
derivations by a set of typing rules to be able to reason by induction on
the typing derivation.)

Corollary Logical equivalence implies observational equivalence.
If Γ ⊢M ∼M ′ ∶ τ then Γ ⊢M ≅M ′ ∶ τ .

Proof: Logical equivalence is a consistent congruence, hence included in
observational equivalence which is the coarsest such relation.

36 62 ◁
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Properties of logical equivalence

Lemma
Observational equivalence of closed terms implies logical equivalence.
If M ≅τ M

′ then M ′ ∼τ M
′.

Proof by induction on τ .

Case τ is B: With the empty context, we have M ≃M ′, hence M ≃M ′.

Case τ is τ1 → τ2: By congruence of observational equivalence. To show
M ∼τ M

′, we assume M1 ∼τ1 M
′
1 (1) and show M M1 ∼τ2 M

′M1. By
IH, it suffices to show M M1 ≅τ2 M

′ M1. This follows by congruence,
from the hypothesis M ≅τ M

′ and M1 ≅τ1 M
′
1 which follows from (1) by

the previous lemma.
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Properties of logical equivalence

Corollary (Value arguments)

To show M ∼τ1→τ2 M
′, it suffices to show that M V ∼τ2 M

′ V ′ for all
values V and V ′ such that V ∼τ1 V

′.

Proof

Assume N ∼τ1 N
′.

There exists V and V ′ such that N Ð→∗ V and N ′ Ð→∗ V ′.
It suffices to show that M V ∼τ2 M

′ V ′ (H) implies M N ∼τ2 M
′ N ′ (1).

We have N ∼τ1 V from N Ð→∗ V .
Then M N ∼τ2 M V follows by congruence of ∼τ2 .
Similarly, we have M ′ N ′ ∼τ2 M

′ V ′.

The conclusion (1) follows by transitivity of ∼τ2 with (H).

38 62 ◁
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Logical equivalence: application

Assume not
△
== λx ∶B. if x then ff else tt

and M
△
== λx ∶B. λy ∶τ. λz ∶τ. if not x then y else z

and M ′ △== λx ∶B. λy ∶τ. λz ∶τ. if x then z else y

Show that M ≅B→τ→τ→τ M
′ (C).

It suffices to show M V0 V1 V2 ∼τ M
′ V ′0 V ′1 V ′2 whenever V0 ∼B V ′0 and

V1 ∼τ V
′
1 and V2 ∼τ V

′
2 .

By inverse reduction, it suffices to show

if not V0 then V1 else V2 ∼τ if V ′0 then V ′2 else V ′1

By cases on V0.

Case V0 is tt: Then not V0 Ð→∗ ff and thus M Ð→∗ V2 while
M ′ Ð→∗ V2. Then (C) follows by inverse reduction and V2 ∼τ V

′
2
.

Case V0 is ff: is symmetric.

39 62 ◁
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Observational equivalence

We now extend the notion of logical equivalence to System F.

τ ∶∶= . . . ∣ α ∣ ∀α. τ M ∶∶= . . . ∣ Λα.M ∣M τ

We write typing contexts ∆;Γ where ∆ binds variables and Γ binds
program variables.

Typing of contexts becomes C ∶ (∆;Γ▷ τ)↝ (∆′; Γ′▷ τ ′).

Observational equivalence

We defined ∆;Γ ⊢M ≅M ′ ∶ τ as

∀C ∶ (∆;Γ▷ τ)↝ (∅;∅▷B), C[M] ≃ C[M ′]

As before, write M ≅τ N for ∅,∅ ⊢M ≅ N ∶ τ (in particular, τ is closed).
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Logical equivalence

For closed terms (no free program variables)

• We need to give the semantics of polymoprhic types ∀α. τ

• Problem: We cannot do it in terms of the semantics of instances
τ[α ↦ σ] since the semantics is defined by induction on types.

• Solution: we give the semantics of terms with open types—in some
suitable environment that interprets type variables by logical
relations.

For simple types, we defined logical relations and observed that

• they respect observational equivalence

• they are closed by inverse reduction

We require that relations used to interpret type variables satisfy those
properties.

42 62 ◁



Introduction Normalization of stlc Observational equivalence in stlc Logical relations in stlc Logical relations in F

Logical equivalence

Definition A relation R between closed expressions of closed types ρ and
ρ′ is admissible, and we write R ∶ ρ↔ ρ′, if:

• It respects observational equivalence: If R(M,M ′) and N ≅ρ M and
N ′ ≅ρ′ M

′, then R(N,N ′).

• It is closed under inverse reduction: If R(M,M ′) and N Ð→∗M
and N ′ Ð→∗M ′, then R(N,N ′).

Given a sequence of type variables ∆, let δ and δ′ be maps from
dom(∆) to closed types and let η be a map from dom(∆) that sends
each type variable α to an admissible relation between values of closed
types δ(α) and δ′(α). We write η ∶ δ↔∆ δ′ for such a relation.
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Example of admissible relations

Take

∆
△
== α δ

△
== α ↦ B δ′

△
== α ↦ Z

Then R ∶ bool↔ int may be the closure by inverse reduction of

{(tt,0)} ∪ {(ff, n) ∣ n ∈ Z⋆}

where integers may be used to simulate booleans.

Allows to relate values at different types.
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Logical equivalence for closed terms with open types

Assume η ∶ δ↔∆ δ′ and M ∶ δ(τ) and M ′ ∶ δ′(τ).

We defined M ∼τ M ′ [η ∶ δ↔ δ′] by induction on τ as follows:

M ∼B M ′ [η ∶ δ↔ δ′] iff M ≃M ′

M ∼τ1→τ2 M
′ [η ∶ δ↔ δ′] iff for all N ∼τ1 N

′ [η ∶ δ↔ δ′],
M N ∼τ2 M

′ N ′ [η ∶ δ↔ δ′]

M ∼α M ′ [η ∶ δ↔ δ′] iff η(α)(M,M ′)

M ∼∀α. τ M
′ [η ∶ δ↔ δ′] iff for all ρ, ρ′,R ∶ ρ↔ ρ′,

M ρ ∼τ M ′ ρ′

[(η,α ↦ R) ∶ (δ,α ↦ ρ)↔ (δ′, α ↦ ρ′)]
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Logical equivalence for closed terms with open types

Assume η ∶ δ↔∆ δ′ and M ∶ δ(τ) and M ′ ∶ δ′(τ).

We defined M ∼τ M ′ [η ∶ δ↔ δ′] by induction on τ as follows:

M ∼B M ′ [η] iff M ≃M ′

M ∼τ1→τ2 M
′ [η] iff for all N ∼τ1 N

′ [η], M N ∼τ2 M
′ N ′ [η]

M ∼α M ′ [η] iff η(α)(M,M ′)

M ∼∀α. τ M
′ [η] iff for all R ∶ ρ↔ ρ′, M ρ ∼τ M

′ ρ′ [η,α ↦ R]

With implicit notations...
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Logical equivalence for open terms

Definition If ∆;Γ ⊢M,M ′ ∶ τ we define ∆;Γ ⊢M ∼M ′ ∶ τ as

∀η ∶ δ↔∆ δ′, ∀γ ∼Γ γ′, γ(δ(M)) ∼τ γ
′(δ′(M ′)) [η ∶ δ↔ δ′]

(Notations are a bit heavy, but intuitions should remain simple.)

Notice We write M ∼τ M
′ for ∅;∅ ⊢M ∼M ′ ∶ τ . In particular, τ is a

closed type and M and M ′ are closed termsof type τ . By definition, this
means M ∼τ M

′ [∅ ∶ ∅ ↔ ∅], which also coincide with the previous
definition of logical relation for closed terms.
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Properties

Closure under inverse reduction

If M ∼τ M
′ [η ∶ δ ↔ δ′] and N Ð→∗M and N ′ Ð→∗M ′ (and

N ∶ δ(τ)), then N ∼τ N ′ [η ∶ δ↔ δ′].

Proof by induction on τ .

Similar to the monomorphic case, except for:

Case τ is ∀α.σ:

To show N ∼τ M ′ [η ∶ δ↔ δ′],
we assume R ∶ ρ↔ ρ′ and show N ρ ∼σ M ′ ρ′ [η,α ↦ R].
Since N ρÐ→ M ρ,
by induction hypothesis it sufficies to show M ρ ∼σ M ′ ρ′ [η,α ↦ R],
which follows from M ∼τ M ′ [η ∶ δ↔ δ′].
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Properties

Respect for observational equivalence

If M ∼τ M
′ [η ∶ δ ↔ δ′] and N ≅δ(τ) M and N ′ ≅δ′(τ) M

′

then N ∼τ N
′ [η ∶ δ ↔ δ′].

Proof by induction on τ .

Assume M ∼τ M ′ [η ∶ δ↔ δ′] (1) and N ≅δ(τ)M (2). We show
N ∼τ M ′ [η ∶ δ↔ δ′].

Case τ is ∀α.σ:

We assume R ∶ ρ↔ ρ′ and show N ρ ∼σ M ′ ρ′ [η,α ↦ R].
Since N ρ ≅δ(τ) M ρ (by (2) as ≅ is a congruence),
by induction hypothesis it sufficies to show M ρ ∼σ M ′ ρ′ [η,α ↦ R],
which follows from (1).
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Properties

Corollary The relation M ∼τ M
′ [η ∶ δ↔ δ′] is an admissible relation

between expressions of closed types δ(τ) and δ′(τ).

(Useful, as we may take ∼τ for the default relation.)
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Properties

Lemma (respect for observational equivalence)
If ∆;Γ ⊢M ∼M ′ ∶ τ and ∆;Γ ⊢M ≅ N ∶ τ and ∆;Γ ⊢M ′ ≅ N ′ ∶ τ , then
∆;Γ ⊢ N ∼ N ′ ∶ τ

Lemma (Compositionality)

M ∼τ[α↦σ]M
′ [η ∶ δ↔ δ′] iff

M ∼τ M
′ [(η,α ↦ R) ∶ (δ,α ↦ δ(σ))↔ (δ′, α ↦ δ′(σ))]

where R ∶ δ(s)↔ δ′(s) is defined by

R(N,N ′) ⇐⇒ N ∼σ N ′ [η ∶ δ↔ δ′]

Proof by structural induction on τ .

Case τ is α:
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Parametricity

Theorem (reflexivity) If ∆;Γ ⊢M ∶ τ then ∆;Γ ⊢M ∼M ∶ τ .
(Also called parametricity or the fundamental theorem.)

Proof by induction on the typing derivation.
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Properties

Theorem
Logical equivalence and observational equivalence coincide.
i.e. ∆;Γ ⊢M ∼ M ′ ∶ τ iff ∆;Γ ⊢M ≅M ′ ∶ τ .

As a particular case, M ∼τ M
′ iff M ≅τ M ′.
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Properties

Extensionality
M ≅τ1→τ2 M

′ iff for all M1 ∶ τ1, M M1 ≅τ2 M
′M1.

M ≅∀α. τ M
′ iff for all closed type ρ, M ρ ≅τ[α↦ρ]M

′ ρ.

Proof. Forward direction is immediate as ≅ is a congruence.

Case Value abstration: It suffices to show M ∼τ1→τ2 M
′. That is, given

M1 ∼τ1 M
′
1
(1), we show M M1 ∼τ2 M

′ M ′
1
(2). By assumption, we have

M M ′
1
≅τ2 M

′ M ′
1
(3). By the fundamental lemma, we have M ∼τ1→τ2 M .

Hence, from (1), we get M M1 ∼τ2 M M ′
1
.

We conclude (2) by respect for observational equivalence with (3).

Case Type abstration: It suffices to show M ∼∀α. τ M ′. That is, given
R ∶ ρ↔ ρ′, we show M ρ ∼∀α. τ M ′ ρ′ (4). By assumption, we have
M ρ′ ≅τ2 M

′ ρ′ (5). By the fundamental lemma, we have M ∼∀α. τ M . Hence,
we have M ρ ∼τ2 M ρ′. We conclude (4) by respect for observational
equivalence with (5).
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Properties

Identity extension
Let η ∶ δ ↔ δ where η(α) is observational equivalence at type δ(α) for all
α ∈ dom(δ). Then M ∼τ M

′ [η ∶ δ ↔ δ] iff M ≅δ(τ) M
′.
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Applications Inhabitants of ∀α.α → α

Fact If M ∶ ∀α.α → α, then M ≅∀α.α→α id where id
△
== Λα.λx ∶α.x.

Proof By extensionality, it suffices to show that for any ρ and N ∶ ρ we
have M ρ N ≅ρ id ρ N . In fact, by closure by inverse reduction, it
suffices to show M ρ N ≅ρ N or, equivalently, M ρ N ∼ρ N (1).

By parametricity, we have M ∼∀α.α→α M .

The relation R ∶ ρ↔ ρ defined as R(P,P ′) iff P ∼ρ N ∼ρ P
′ is

admissible. Thus M ρ ∼α→α M ρ [η] where η is α ↦ R.

By parametricity, we have N ∼ρ N , hence R(N,N), thus N ∼α N [η].

Therefore M ρ N ∼α M ρ N [η], i.e. R(M ρ N,M ρ N), by definition
of ∼α, which implies (1) by definition of R.
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α If M ∶ σ, then either

M ≅σ M1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ M2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show for either i = 1 or i = 2 that for any
closed type ρ and N1,N2 ∶ ρ, we have M ρ N1 N2 ≅σ Mi ρ N1 N2, or, by
closure by inverse reduction and replacing observational by logical equivalence
that M ρ N1 N2 ≅σ Ni (1).

?
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α If M ∶ σ, then either

M ≅σ M1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ M2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show for either i = 1 or i = 2 that for any
closed type ρ and N1,N2 ∶ ρ, we have M ρ N1 N2 ≅σ Mi ρ N1 N2, or, by
closure by inverse reduction and replacing observational by logical equivalence
that M ρ N1 N2 ≅σ Ni (1).

Let ρ and N1,N2 ∶ ρ be fixed. The relation R ∶ B↔ ρ defined as R(P,P ′) iff
(P ∼B tt ∧P ′ ∼ρ N1) or (P ∼B ff ∧P ′ ∼ρ N2) is admissible.

?
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α If M ∶ σ, then either

M ≅σ M1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ M2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show for either i = 1 or i = 2 that for any
closed type ρ and N1,N2 ∶ ρ, we have M ρ N1 N2 ≅σ Mi ρ N1 N2, or, by
closure by inverse reduction and replacing observational by logical equivalence
that M ρ N1 N2 ≅σ Ni (1).

Let ρ and N1,N2 ∶ ρ be fixed. The relation R ∶ B↔ ρ defined as R(P,P ′) iff
(P ∼B tt ∧P ′ ∼ρ N1) or (P ∼B ff ∧P ′ ∼ρ N2) is admissible. Moreover, we have
tt ∼σ N1 [η] where η is α ↦ R, since R(tt,N1) and, similarly, ff ∼σ N2 [η].

We have M ∼σ M by parametricity.

?
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α If M ∶ σ, then either

M ≅σ M1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ M2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show for either i = 1 or i = 2 that for any
closed type ρ and N1,N2 ∶ ρ, we have M ρ N1 N2 ≅σ Mi ρ N1 N2, or, by
closure by inverse reduction and replacing observational by logical equivalence
that M ρ N1 N2 ≅σ Ni (1).

Let ρ and N1,N2 ∶ ρ be fixed. The relation R ∶ B↔ ρ defined as R(P,P ′) iff
(P ∼B tt ∧P ′ ∼ρ N1) or (P ∼B ff ∧P ′ ∼ρ N2) is admissible. Moreover, we have
tt ∼σ N1 [η] where η is α ↦ R, since R(tt,N1) and, similarly, ff ∼σ N2 [η].

We have M ∼σ M by parametricity. Hence, M B tt ff ∼α M ρ N1 N2 [η], i.e.
R(M B tt ff,M ρ N1 N2), which means:

⋁
⎧⎪⎪
⎨
⎪⎪⎩

M B tt ff ∼B tt ∧M ρ N1 N2 ∼ρ N1

M B tt ff ∼B ff ∧M ρ N1 N2 ∼ρ N2
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Applications Inhabitants of ∀α.α → α → α

Fact Let σ be ∀α.α → α→ α If M ∶ σ, then either

M ≅σ M1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ M2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Proof By extensionality, it suffices to show for either i = 1 or i = 2 that for any
closed type ρ and N1,N2 ∶ ρ, we have M ρ N1 N2 ≅σ Mi ρ N1 N2, or, by
closure by inverse reduction and replacing observational by logical equivalence
that M ρ N1 N2 ≅σ Ni (1).

Let ρ and N1,N2 ∶ ρ be fixed. The relation R ∶ B↔ ρ defined as R(P,P ′) iff
(P ∼B tt ∧P ′ ∼ρ N1) or (P ∼B ff ∧P ′ ∼ρ N2) is admissible. Moreover, we have
tt ∼σ N1 [η] where η is α ↦ R, since R(tt,N1) and, similarly, ff ∼σ N2 [η].

We have M ∼σ M by parametricity. Hence, M B tt ff ∼α M ρ N1 N2 [η], i.e.
R(M B tt ff,M ρ N1 N2), which means:

⋁
⎧⎪⎪
⎨
⎪⎪⎩

M B tt ff ∼B tt ∧M ρ N1 N2 ∼ρ N1

M B tt ff ∼B ff ∧M ρ N1 N2 ∼ρ N2

Since, M B tt ff is independent of ρ, N1, and N2, this actually shows (1).
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Applications Inhabitants of ∀α. (α → α) → α → α

?
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let σ be ∀α. (α → α)→ α → α. If M ∶ σ, then M ≅σ Mn for some

integer n, where Mn
△
== Λα.λf ∶α → α.λx ∶α. (f α)n (x α)

?
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let σ be ∀α. (α → α)→ α → α. If M ∶ σ, then M ≅σ Mn for some

integer n, where Mn
△
== Λα.λf ∶α → α.λx ∶α. (f α)n (x α)

That is, the inhabitants of ∀α. (α → α) → α → α are the Church
naturals.
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let σ be ∀α. (α → α)→ α → α. If M ∶ σ, then M ≅σ Mn for some

integer n, where Mn
△
== Λα.λf ∶α → α.λx ∶α. (f α)n (x α)

Proof

?
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let σ be ∀α. (α → α)→ α → α. If M ∶ σ, then M ≅σ Mn for some

integer n, where Mn
△
== Λα.λf ∶α → α.λx ∶α. (f α)n (x α)

Proof By extensionality, it suffices to show that there exists n such for any
closed type ρ and terms N1 ∶ ρ → ρ and N2 ∶ ρ, we have
M ρ N1 N2 ≅ρ Mn ρ N1 N2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ N1 N2 ∼ρ Nn

1
N2, (1).

?

60⟨5⟩ 62 ◁



Introduction Normalization of stlc Observational equivalence in stlc Logical relations in stlc Logical relations in F

Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let σ be ∀α. (α → α)→ α → α. If M ∶ σ, then M ≅σ Mn for some

integer n, where Mn
△
== Λα.λf ∶α → α.λx ∶α. (f α)n (x α)

Proof By extensionality, it suffices to show that there exists n such for any
closed type ρ and terms N1 ∶ ρ → ρ and N2 ∶ ρ, we have
M ρ N1 N2 ≅ρ Mn ρ N1 N2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ N1 N2 ∼ρ Nn

1
N2, (1).

Let ρ and N1,N2 ∶ ρ be fixed. Let Z and S be M0 and M1.
The relation R ∶ σ↔ ρ defined as R(P,P ′) iff ∃k, P ∼σ Sk Z ∧ P ′ ∼ρ N

k
1
N2

is admissible. We have Z ∼α N2 [η] where η is α ↦ R, since R(Z,N2).

We also have S ∼α N1 [η]. Indeed,

?
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Applications Inhabitants of ∀α. (α → α) → α → α
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△
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N2, (1).

Let ρ and N1,N2 ∶ ρ be fixed. Let Z and S be M0 and M1.
The relation R ∶ σ↔ ρ defined as R(P,P ′) iff ∃k, P ∼σ Sk Z ∧ P ′ ∼ρ N

k
1
N2

is admissible. We have Z ∼α N2 [η] where η is α ↦ R, since R(Z,N2).

We also have S ∼α N1 [η]. Indeed, assume N ∼α N ′ [η], i.e. R(N,N ′). There
exists k such that (N,N ′) is (Sk Z, Nk

1
N2). Then, (S N, N1 N

′) is
(Sk+1 Z, Nk+1

1
N2). Therefore Sk+1 Z ∼α N1 N

′ [η]. (A key to the proof.)

?
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let σ be ∀α. (α → α)→ α → α. If M ∶ σ, then M ≅σ Mn for some

integer n, where Mn
△
== Λα.λf ∶α → α.λx ∶α. (f α)n (x α)

Proof By extensionality, it suffices to show that there exists n such for any
closed type ρ and terms N1 ∶ ρ → ρ and N2 ∶ ρ, we have
M ρ N1 N2 ≅ρ Mn ρ N1 N2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ N1 N2 ∼ρ Nn

1
N2, (1).

Let ρ and N1,N2 ∶ ρ be fixed. Let Z and S be M0 and M1.
The relation R ∶ σ↔ ρ defined as R(P,P ′) iff ∃k, P ∼σ Sk Z ∧ P ′ ∼ρ N

k
1
N2

is admissible. We have Z ∼α N2 [η] where η is α ↦ R, since R(Z,N2).

We also have S ∼α N1 [η]. Indeed, assume N ∼α N ′ [η], i.e. R(N,N ′). There
exists k such that (N,N ′) is (Sk Z, Nk

1
N2). Then, (S N, N1 N

′) is
(Sk+1 Z, Nk+1

1
N2). Therefore Sk+1 Z ∼α N1 N

′ [η]. (A key to the proof.)

By parametricity, we have M ∼σ M .

?
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Applications Inhabitants of ∀α. (α → α) → α → α

Fact Let σ be ∀α. (α → α)→ α → α. If M ∶ σ, then M ≅σ Mn for some

integer n, where Mn
△
== Λα.λf ∶α → α.λx ∶α. (f α)n (x α)

Proof By extensionality, it suffices to show that there exists n such for any
closed type ρ and terms N1 ∶ ρ → ρ and N2 ∶ ρ, we have
M ρ N1 N2 ≅ρ Mn ρ N1 N2, or, by closure by inverse reduction and replacing
observational by logical equivalence, M ρ N1 N2 ∼ρ Nn

1
N2, (1).

Let ρ and N1,N2 ∶ ρ be fixed. Let Z and S be M0 and M1.
The relation R ∶ σ↔ ρ defined as R(P,P ′) iff ∃k, P ∼σ Sk Z ∧ P ′ ∼ρ N

k
1
N2

is admissible. We have Z ∼α N2 [η] where η is α ↦ R, since R(Z,N2).

We also have S ∼α N1 [η]. Indeed, assume N ∼α N ′ [η], i.e. R(N,N ′). There
exists k such that (N,N ′) is (Sk Z, Nk

1
N2). Then, (S N, N1 N

′) is
(Sk+1 Z, Nk+1

1
N2). Therefore Sk+1 Z ∼α N1 N

′ [η]. (A key to the proof.)

By parametricity, we have M ∼σ M . Hence, M σ S Z ∼α M ρ N1 N2 [η],
i.e. R(M σ S Z,M ρ N1 N2) which means that there exists n such that
M σ S Z ∼σ Sn Z and M ρ N1 N2 ∼ρ Nn

1
N2. Since, M σ S Z is independent

of n, we in fact have (1).
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Representation independence

A client of an existential type ∃α. τ should not see the difference between
two implementations N1 and N2 of ∃α. τ with witness types σ1 and σ2.

A client M has type ∀α. τ → τ ′ with α ∉ fv(τ ′); it must use the argument
parametrically, and the result is independent of the witness type.

Assume that σ1 and σ2 are two closed representation types and
R ∶ σ1 ↔ σ2 is an admissible relation between them.

Suppose that N1 ∶ τ[α ↦ σ1] and N2 ∶ τ[α ↦ σ2] are two equivalent
implementations of the operations, i.e. such that N1 ∼τ N2 [η ∶ δ1 ↔ δ2]
where η ∶ α ↦ R and δ1 ∶ α↦ σ1 and δ2 ∶ α ↦ σ2.

A client M satisfies M ∼∀α. τ→τ ′ M [η ∶ δ ↔ δ′] and, in fact,
M ∼∀α. τ→τ ′ M since α does not appear free in τ ′.

Thus M σ1 N1 ≅τ ′ M σ2 N2. That is, the behavior with the
implementation N1 with representation type σ1 is indistinguisable from
the behavior with implementation N2 with representation type σ2.
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