
MPRI, Typage

Didier Rémy
(With course material from François Pottier)

November 20, 2014

Plan of the course

Introduction

Simply-typed λ-calculus

Polymorphism and System F

Type reconstruction

Existential types

Existential types

Introduction Towards typed closure conversion Existential types Typed closure conversion

Contents

Introduction

Towards typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

4 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Type-preserving compilation

Compilation is type-preserving when each intermediate language is
explicitly typed, and each compilation phase transforms a typed program
into a typed program in the next intermediate language.

Why preserve types during compilation?

• it can help debug the compiler;

• types can be used to drive optimizations;

• types can be used to produce proof-carrying code;

• proving that types are preserved can be the first step towards
proving that the semantics is preserved [Chlipala, 2007].

5 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Type-preserving compilation

Type-preserving compilation exhibits an encoding of programming
constructs into programming languages with usually richer type systems.

The encoding may sometimes be used directly as a programming idiom in
the source language.

For example:

• Closure conversion requires an extension of the language with
existential types, which happens to be very useful on their own.

• Closures are themselves a simple form of objects.

• Defunctionalization may be done manually on some particular
programs, e.g. in web applications to monitor the computation.

6 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Type-preserving compilation

A classic paper by Morrisett et al. [1999] shows how to go from System F
to Typed Assembly Language, while preserving types along the way. Its
main passes are:

• CPS conversion fixes the order of evaluation, names intermediate
computations, and makes all function calls tail calls;

• closure conversion makes environments and closures explicit, and
produces a program where all functions are closed;

• allocation and initialization of tuples is made explicit;

• the calling convention is made explicit, and variables are replaced
with (an unbounded number of) machine registers.

7 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Translating types

In general, a type-preserving compilation phase involves not only a
translation of terms, mapping M to JMK, but also a translation of types,
mapping τ to JτK, with the property:

Γ ⊢ M ∶ τ implies JΓK ⊢ JMK ∶ JτK

The translation of types carries a lot of information: examining it is often
enough to guess what the translation of terms will be.

8 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Contents

Introduction

Towards typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

9 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure conversion

First-class functions may appear in the body of other functions. hence,
their own body may contain free variables that will be bound to values
during the evaluation in the execution environment.

Because they can be returned as values, and thus used outside of their
definition environment, they must store their execution environment in
their value.

A closure is the packaging of the code of a first-class function with its
runtime environment, so that it becomes closed, i.e. independent of the
runtime environment and can be moved and applied in another runtime
environment.

Closures can also be used to represent recursive functions and objects
(in the object-as-record-of-methods paradigm).

10 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Source and target

In the following,

• the source calculus has unary λ-abstractions, which can have free
variables;

• the target calculus has binary λ-abstractions, which must be closed.

Closure conversion can be easily extended to n-ary functions, or
n-ary functions may be uncurried in a separate, type-preserving
compilation pass.

11 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Variants of closure conversion

There are at least two variants of closure conversion:

• in the closure-passing variant,
the closure and the environment are a single memory block;

• in the environment-passing variant,
the environment is a separate block, to which the closure points.

The impact of this choice on the translation of terms is minor.

Its impact on the translation of types is more important:
the closure-passing variant requires more type-theoretic machinery.

12 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in JaK in

(code , x1, . . . , xn)

Ja1 a2K = let clo = Ja1K in
let code = proj0 clo in
code (clo, Ja2K)

(The variables code and clo must be suitably fresh.)

13⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in JaK in

(code , x1, . . . , xn)

Ja1 a2K = let clo = Ja1K in
let code = proj0 clo in
code (clo, Ja2K)

Important! The layout of the environment must be known only at the
closure allocation site, not at the call site. In particular, proj0 clo need
not know the size of clo.

13⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(env , x).
let (x1, . . . , xn) = env in JaK in

(code , (x1, . . . , xn))

Ja1 a2K = let (code , env) = Ja1K in

code (env , Ja2K)

14⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(env , x).
let (x1, . . . , xn) = env in JaK in

(code , (x1, . . . , xn))

Ja1 a2K = let (code , env) = Ja1K in

code (env , Ja2K)

Questions: How can closure conversion be made type-preserving?

14⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(env , x).
let (x1, . . . , xn) = env in JaK in

(code , (x1, . . . , xn))

Ja1 a2K = let (code , env) = Ja1K in

code (env , Ja2K)

Questions: How can closure conversion be made type-preserving?

The key issue is to find a sensible definition of the type translation.
In particular, what is the translation of a function type, Jτ1 → τ2K?

14⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion

Let {x1, . . . , xn} be fv(λx.a):

Jλx.aK = let code = λ(env , x).
let (x1, . . . , xn) = env in JaK in

(code , (x1, . . . , xn))

Assume Γ ⊢ λx.a ∶ τ1 → τ2.
Assume, w.l.o.g.. dom(Γ) = fv(λx.a) = {x1, . . . , xn}.

Write JΓK for the tuple type x1 ∶ Jτ
′

1
K; . . . ;xn ∶ Jτ

′

nK where Γ is
x1 ∶ τ

′

1
; . . . ;xn ∶ τ

′

n. We also use JΓK as a type to mean Jτ ′
1
K × . . . × Jτ ′nK.

We have Γ, x ∶ τ1 ⊢ a ∶ τ2, so in environment JΓK, x ∶ Jτ1K, we have

• env has type JΓK,
• code has type (JΓK × Jτ1K)→ Jτ2K, and
• the entire closure has type ((JΓK × Jτ1K)→ Jτ2K) × JΓK.

Now, what should be the definition of Jτ1 → τ2K?
14⟨4⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Towards a type translation

Can we adopt this as a definition?

Jτ1 → τ2K = ((JΓK × Jτ1K)→ Jτ2K) × JΓK

15⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Towards a type translation

Can we adopt this as a definition?

Jτ1 → τ2K = ((JΓK × Jτ1K)→ Jτ2K) × JΓK

Naturally not. This definition is mathematically ill-formed: we cannot
use Γ out of the blue.

Hmm... Do we really need to have a uniform translation of types?

15⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Towards a type translation

Yes, we do.

16⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Towards a type translation

Yes, we do.

We need a uniform translation of types, not just because it is nice to
have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

16⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Towards a type translation

Yes, we do.

We need a uniform translation of types, not just because it is nice to
have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

if . . . then λx.x + y else λx.x

Furthermore, we want function invocations to be translated uniformly,
without knowledge of the size and layout of the closure’s environment.

16⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Towards a type translation

Yes, we do.

We need a uniform translation of types, not just because it is nice to
have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

if . . . then λx.x + y else λx.x

Furthermore, we want function invocations to be translated uniformly,
without knowledge of the size and layout of the closure’s environment.

So, what could be the definition of Jτ1 → τ2K?

16⟨4⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

The type translation

The only sensible solution is:

Jτ1 → τ2K = ∃α.((α × Jτ1K)→ Jτ2K) × α

An existential quantification over the type of the environment abstracts
away the differences in size and layout.

Enough information is retained to ensure that the application of the code
to the environment is valid: this is expressed by letting the variable α

occur twice on the right-hand side.

17 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

The type translation

The existential quantification also provides a form of security: the caller
cannot do anything with the environment except pass it as an argument
to the code; in particular, it cannot inspect or modify the environment.

For instance, in the source language, the following coding style
guarantees that x remains even, no matter how f is used:

let f = let x = ref 0 in λ(). x ∶= (x + 2); ! x

After closure conversion, the reference x is reachable via the closure of f .
A malicious, untyped client could write an odd value to x.
However, a well-typed client is unable to do so.

This encoding is not just type-preserving, but also fully abstract: it
preserves (a typed version of) observational equivalence [Ahmed and
Blume, 2008].

18 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Contents

Introduction

Towards typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

19 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Existential types

One can extend System F with existential types, in addition to universals:

τ ∶∶= . . . ∣ ∃α.τ

As in the case of universals, there are type-passing and type-erasing
interpretations of the terms and typing rules... and in the latter
interpretation, there are explicit and implicit versions.

Let’s just look at the type-erasing interpretation, with an explicit
notation for introducing and eliminating existential types.

20 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

21⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

Anything wrong?

21⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

The side condition α # τ2 is mandatory here to ensure well-formedness
of the conclusion.

The side condition may also be written Γ ⊢ τ2 which implies α # τ2,
given that the well-formedness of the last premise implies α ∉ dom(Γ).

21⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α, x ∶ τ1 ⊢ M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

The side condition α # τ2 is mandatory here to ensure well-formedness
of the conclusion.

The side condition may also be written Γ ⊢ τ2 which implies α # τ2,
given that the well-formedness of the last premise implies α ∉ dom(Γ).
Note the imperfect duality between universals and existentials:

TAbs

Γ, α ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α. τ

TApp

Γ ⊢M ∶ ∀α. τ

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ
21⟨4⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

Γ, α ⊢M ∶ ∃α.τ

Γ, α ⊢ unpackM ∶ τ

Informally, this could mean that, if M has type τ for some unknown α,
then it has type τ , where α is “fresh”...

Why is this broken?

22⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

Γ, α ⊢M ∶ ∃α.τ

Γ, α ⊢ unpackM ∶ τ

Informally, this could mean that, if M has type τ for some unknown α,
then it has type τ , where α is “fresh”...

Why is this broken?

We can immediately universally quantify over α, and conclude that
Γ ⊢ Λα.unpackM ∶ ∀α. τ . This is nonsense!

Replacing the premise Γ, α ⊢M ∶ ∃α.τ by the conjunction Γ ⊢M ∶ ∃α.τ
and α ∈ dom(Γ) would make the rule even more permissive, so it
wouldn’t help.

22⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

On existential elimination

A correct elimination rule must force the existential package to be used
in a way that does not rely on the value of α.

Hence, the elimination rule must have control over the user of the
package – that is, over the term M2.

Unpack

Γ ⊢ M1 ∶ ∃α.τ1
Γ, α;x ∶ τ1 ⊢ M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

The restriction α # τ2 prevents writing “let α,x = unpackM1 in x”,
which would be equivalent to the unsound “unpack M” of previous slide.

The fact that α is bound within M2 forces it to be treated abstractly.

In fact, M2 must be ??? in α.

23 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

On existential elimination

In fact, M2 must be polymorphic in α: the rule could be written

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ Λα.λx.M2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

or, if N2 is Λα.λx.M2:

Γ ⊢M1 ∶ ∃α.τ1 Γ ⊢ N2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 N2 ∶ τ2

24⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

On existential elimination

In fact, M2 must be polymorphic in α: the rule could be written

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ Λα.λx.M2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

or, if N2 is Λα.λx.M2:

Γ ⊢M1 ∶ ∃α.τ1 Γ ⊢ N2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 N2 ∶ τ2

One could even view “unpack∃α.τ1” as a constant with all these types:

unpack∃α.τ1 ∶ (∃α.τ1)→ (∀α. (τ1 → τ2))→ τ2 α # τ2

24⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

On existential elimination

In fact, M2 must be polymorphic in α: the rule could be written

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ Λα.λx.M2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

or, if N2 is Λα.λx.M2:

Γ ⊢M1 ∶ ∃α.τ1 Γ ⊢ N2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 N2 ∶ τ2

One could even view “unpack∃α.τ1” as a constant with all these types:

unpack∃α.τ1 ∶ (∃α.τ1)→ (∀α. (τ1 → τ2))→ τ2 α # τ2

Thus, unpack∃α.τ ∶ ∀β. ((∃α.τ) → (∀α. (τ → β)) → β)

24⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

On existential elimination

In fact, M2 must be polymorphic in α: the rule could be written

Γ ⊢ M1 ∶ ∃α.τ1 Γ ⊢ Λα.λx.M2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

or, if N2 is Λα.λx.M2:

Γ ⊢M1 ∶ ∃α.τ1 Γ ⊢ N2 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 N2 ∶ τ2

One could even view “unpack∃α.τ1” as a constant with all these types:

unpack∃α.τ1 ∶ (∃α.τ1)→ (∀α. (τ1 → τ2))→ τ2 α # τ2

Thus, unpack∃α.τ ∶ ∀β. ((∃α.τ) → (∀α. (τ → β)) → β)
or, better unpack∃α.τ ∶ (∃α.τ) → ∀β. ((∀α. (τ → β)) → β)
β stands for τ2: it is bound prior to α, so it cannot be instantiated to a
type that refers to α, which reflects the side condition α # τ2.

24⟨4⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

On existential introduction

Pack

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

If desired, “pack∃α.τ” could also be viewed as a constant with all the
types:

pack∃α.τ ∶ [α ↦ τ ′]τ → ∃α.τ

i.e. with polymorphic type:

pack∃α.τ ∶ ∀α. (τ → ∃α.τ)

25 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Existentials as constants

In System F, existential types can also be presented as constants

pack∃α.τ ∶ ∀α. (τ → ∃α.τ)
unpack∃α.τ ∶ ∃α. τ → ∀β. ((∀α. (τ → β))→ β)

Read:

• for any α, if you have a τ , then, for some α, you have a τ ;

• if, for some α, you have a τ , then, (for any β,) if you wish to obtain
a β out of it, then you must present a function which, for any α,
obtains a β out of a τ .

This is somewhat reminiscent of ordinary first-order logic:
∃x.F is equivalent to, and can be defined as, ¬(∀x.¬F).
Is there an encoding of existential types into universal types?

26 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= ?

Junpack∃α.τ K ∶ J∃α.τK→ ∀β. ((∀α. (JτK → β))→ β)
= ?

27⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). ? ∶ β

Junpack∃α.τ K ∶ J∃α.τK→ ∀β. ((∀α. (JτK → β))→ β)
= ?

27⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

Junpack∃α.τ K ∶ J∃α.τK→ ∀β. ((∀α. (JτK → β))→ β)
= ?

27⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

Junpack∃α.τ K ∶ J∃α.τK→ ∀β. ((∀α. (JτK → β))→ β)
= λx ∶J∃α.τK. x

There is little choice, if the translation is to be type-preserving.

What is the computational content of this encoding?

27⟨4⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Encoding existentials into universals

The type translation is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

The term translation is:

Jpack∃α.τ K ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK → β). k α x

Junpack∃α.τ K ∶ J∃α.τK→ ∀β. ((∀α. (JτK → β))→ β)
= λx ∶J∃α.τK. x

There is little choice, if the translation is to be type-preserving.

What is the computational content of this encoding?

A continuation-passing transform.

This encoding is due to Reynolds [1983],
although it has more ancient roots in logic.

27⟨5⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

The semantics of existential types as constants

pack∃α.τ can be treated as a unary constructor, and unpack∃α.τ as a
unary destructor. The δ-reduction rule is:

unpack∃α.τ0 (pack∃α.ττ ′ V) Ð→ Λβ.λy ∶∀α. τ → β. y τ ′ V

It would be more intuitive, however, to treat unpack∃α.τ0 as a binary
destructor:

unpack∃α.τ0 (pack∃α.ττ ′ V) τ1 (Λα.λx ∶τ.M) Ð→ [α ↦ τ ′][x ↦ V]M
This does not quite fit in our generic framework for constants, which
must receive all type arguments prior to value arguments.

But our framework could be extended.

28 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

The semantics of existential types as primitive

We extend values and evaluation contexts as follows:

V ∶∶= . . . pack τ ′, V as τ
E ∶∶= . . . pack τ ′, [] as τ ∣ let α,x = unpack [] inM

We add the reduction rule:

let α,x = unpack (pack τ ′, V as τ) in M Ð→ [α ↦ τ ′][x ↦ V]M
Exercise

Show that subject reduction and progress hold.

29 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

The semantics of existential types beware!

The reduction rule for existentials destructs its arguments.

Hence, let α,x = unpackM1 inM2 cannot be reduced unless M1 is itself
a packed expression, which is indeed the case when M1 is a value
(or in head normal form).

This contrasts with let x ∶ τ =M1 inM2 where M1 need not be evaluated
and may be an application (e.g. with call-by-name or strong reduction
strategies).

30 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

The semantics of existential types beware!

Exercise

Find an example that illustrates why the reduction of
let α,x = unpackM1 inM2 could be problematic when M1 is not a value.

31⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

The semantics of existential types beware!

Exercise

Find an example that illustrates why the reduction of
let α,x = unpackM1 inM2 could be problematic when M1 is not a value.

Need a hint?

Use a conditional

31⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

The semantics of existential types beware!

Exercise

Find an example that illustrates why the reduction of
let α,x = unpackM1 inM2 could be problematic when M1 is not a value.

Solution

Let M1 be if M then V1 else V2 where Vi is of the form
pack τi, Vi as ∃α.τ and the two witnesses τ1 and τ2 differ.

There is no common type for the unpacking of the two possible results
V1 and V2. The choice between those two possible results must be made,
by evaluating M1, before unpacking.

31⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Is pack too verbose?

Exercise

Recall the typing rule for pack:

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

Isn’t the witness type τ ′ annotation superfluous?

32⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Is pack too verbose?

Exercise

Recall the typing rule for pack:

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α.τ

Isn’t the witness type τ ′ annotation superfluous?

• The type τ0 of M is fully determined by M . Given the type ∃α.τ of
the packed value, checking that τ0 is of the form [α ↦ τ ′]τ is the
matching problem for second-order types, which is simple.

• However, the reduction rule need the witness type τ ′. If it were not
available, it would have to be computed during reduction. The
reduction rule would then not be pure rewriting.

The explicitly-typed language need the witness type for simplicity, while
in the surface language, it could be omitted and reconstructed.

32⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Introduction

Towards typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

33 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Implicitly-typed existential types

Intuitively, pack and unpack are just type annotations that could be
dropped, leaving a let-binding instead of the unpack form.

Hence, the typing rule for implicitly-typed existential types:

Unpack

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ let x = a1 in a2 ∶ τ2

Pack

Γ ⊢ a ∶ [α ↦ τ ′]τ
Γ ⊢ a ∶ ∃α.τ

Notice, however, that this let-binding is not typechecked as syntactic
sugar for an immediate application!

The semantics of this let-binding is as before:

E ∶∶= . . . ∣ let x = E inM let x = V inM Ð→ [x↦ V]M
Is the semantics type-erasing?

34 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Implicitly-typed existential types subtlety

Yes, it is.

But there is a subtlety!

35⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Implicitly-typed existential types subtlety

Yes, it is.

But there is a subtlety! What about the call-by-name semantics?

35⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Implicitly-typed existential types subtlety

Yes, it is.

But there is a subtlety! What about the call-by-name semantics?

We chose a call-by-value semantics, but so far, as long as there is no
side-effect, we could have chosen a call-by-name semantics (or even
perform reduction under abstraction).

In a call-by-name semantics, the let-bound expression is not reduced prior
to substitution in the body:

let x =M1 inM2 Ð→ [x ↦M1]M2

With existential types, this breaks subject reduction!

Why?

35⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Implicitly-typed existential types subtlety

Let τ0 be ∃α. (α → α)→ (α → α) and v0 a value of type bool. Let v1
and v2 be two values of type τ0 with incompatible witness types, e.g.
λf.λx.1 + (f (1 + x)) and λf.λx.not (f (not x)).
Let v be the function λb. if b then v1 else v2 of type bool→ τ0.

a1 = let x = v v0 in x (x (λy. y)) Ð→ v v0 (v v0 (λy. y)) = a2

We have ∅ ⊢ a1 ∶ ∃α.α → α while ∅ /⊢ a2 ∶ τ .

What happened?

36⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Implicitly-typed existential types subtlety

Let τ0 be ∃α. (α → α)→ (α → α) and v0 a value of type bool. Let v1
and v2 be two values of type τ0 with incompatible witness types, e.g.
λf.λx.1 + (f (1 + x)) and λf.λx.not (f (not x)).
Let v be the function λb. if b then v1 else v2 of type bool→ τ0.

a1 = let x = v v0 in x (x (λy. y)) Ð→ v v0 (v v0 (λy. y)) = a2

We have ∅ ⊢ a1 ∶ ∃α.α → α while ∅ /⊢ a2 ∶ τ .

The term a1 is well-typed since v v0 has type τ0, hence x can be
assumed of type (β → β)→ (β → β) for some unknown type β and λy. y

is of type β → β.

However, without the outer existential type v v0 can only be typed with(∀α.α → α)→ ∃α. (α → α), because the value returned by the function
need different witnesses for α. This is demanding too much on its
argument and the outer application is ill-typed.

36⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Implicitly-typed existential types subtlety

One could wonder whether the syntax should not allow the implicit
introduction of unpacking (instead of requesting a let-binding).

One could argue that if some expression is the expansion of a well-typed
let-binding, then it should also be well-typed:

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ [x ↦ a1]a2 ∶ τ2
Comments?

37⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Implicitly-typed existential types subtlety

One could wonder whether the syntax should not allow the implicit
introduction of unpacking (instead of requesting a let-binding).

One could argue that if some expression is the expansion of a well-typed
let-binding, then it should also be well-typed:

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ [x ↦ a1]a2 ∶ τ2
Comments:

• This rule does not have a logical flavor...

• It fixes the previous example, but not the general case:
Pick a1 that is not yet a value after one reduction step.
Then, after let-expansion reduce, one of the two occurrences of a1.
The result is no longer of the form [x ↦ a1]a2.

37⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Implicitly-typed existential types subtlety

Existential types are trickier than they may appear at first.

The subject reduction property breaks if reduction is not restricted to
expressions in head-normal forms.

Unrestricted reduction is still safe because well-typedness may eventually
be recovered by further reduction steps—so that progress will never
break.

38 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Implicitly-typed existential types encoding

Notice that the CPS encoding of existential types (1) enforces the
evaluation of the packed value (2) before it can be unpacked (3) and
substituted(4):

Junpack a1 (λx.a2)K = Ja1K (λx. Ja2K) (1)
Ð→ (λk. JaK k) (λx. Ja2K) (2)
Ð→ (λx. Ja2K) JaK (3)
Ð→ [x↦ JaK]Ja2K (4)

In the call-by-value setting, λk. JaK k would come from the reduction of
Jpack aK, i.e. is (λk.λx. k x) JaK, so that a is always a value v.

However, a need not be a value. What is essential is that a1 be reduced
to some head normal form λk. JaK k.

39 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Introduction

Towards typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

40 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Iso-existential types in ML

What if one wished to extend ML with existential types?

Full type inference for existential types is undecidable, just like type
inference for universals.

However, introducing existential types in ML is easy if one is willing to
rely on user-supplied annotations that indicate where to pack and unpack.

41 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Iso-existential types in ML

This iso-existential approach was suggested by Läufer and
Odersky [1994].

Iso-existential types are explicitly declared:

D α⃗ ≈ ∃β̄.τ if ftv(τ) ⊆ ᾱ ∪ β̄ and ᾱ # β̄

This introduces two constants, with the following type schemes:

packD ∶ ∀ᾱβ̄. τ →D α⃗

unpackD ∶ ∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

(Compare with basic iso-recursive types, where β̄ = ∅.)

42 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Iso-existential types in ML

A few corners have been cut on the previous slide. The “type scheme:”

∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

is in fact not an ML type scheme. How could we address this?

43⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Iso-existential types in ML

A few corners have been cut on the previous slide. The “type scheme:”

∀ᾱγ.D α⃗ → (∀β̄. (τ → γ))→ γ

is in fact not an ML type scheme. How could we address this?

A solution is to make unpackD a binary construct again (rather than a
constant), with an ad hoc typing rule:

UnpackD

Γ ⊢ M1 ∶D τ⃗

Γ ⊢M2 ∶ ∀β̄. ([α⃗ ↦ τ⃗]τ → τ2) β̄ # τ⃗ , τ2

Γ ⊢ unpackD M1 M2 ∶ τ2
where D α⃗ ≈ ∃β̄.τ

We have seen a version of this rule in System F earlier; this in an ML
version. The term M2 must be polymorphic, which Gen can prove.

43⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Iso-existential types in ML

Iso-existential types are perfectly compatible with ML type inference.

The constant packD admits an ML type scheme, so it is unproblematic.

The construct unpackD leads to this constraint generation rule (see type
inference):

⟪unpackD M1 M2 ∶ τ2⟫ = ∃ᾱ.(⟪M1 ∶D α⃗⟫
∀β̄.⟪M2 ∶ τ → τ2⟫)

where D α⃗ ≈ ∃β̄.τ and, w.l.o.g., ᾱβ̄ # M1,M2, τ2.

A universally quantified constraint appears where polymorphism is
required.

44 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Iso-existential types in ML

In practice, Läufer and Odersky suggest fusing iso-existential types with
algebraic data types.

This can be done in OCaml using GADTs (see last part of the course).
The (somewhat bizarre) syntax for this in OCaml is:

typeD α⃗ = ℓ ∶ τ →D α⃗

where ℓ is a data constructor and β̄ appears free in τ but does not
appear in α⃗. The elimination construct becomes:

⟪matchM1 with ℓ x →M2 ∶ τ2⟫ = ∃ᾱ.(⟪M1 ∶ D α⃗⟫
∀β̄.def x ∶ τ in ⟪M2 ∶ τ2⟫)

where, w.l.o.g., ᾱβ̄ #M1,M2, τ2.

45 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

An example

Define Any ≈ ∃β.β. An attempt to extract the raw content of a package
fails:

⟪unpackAny M1 (λx.x) ∶ τ2⟫ = ⟪M1 ∶ Any⟫ ∧ ∀β.⟪λx.x ∶ β → τ2⟫
⊩ ∀β.β = τ2
≡ false

(Recall that β # τ2.)

46 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

An example

Define
D α ≈ ∃β.(β → α) × β

A client that regards β as abstract succeeds:

⟪unpackD M1 (λ(f, y). f y) ∶ τ⟫
= ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.⟪λ(f, y). f y ∶ ((β → α) × β)→ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.def f ∶ β → α;y ∶ β in ⟪f y ∶ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β. τ = α)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ τ = α)
≡ ⟪M1 ∶D τ⟫

47 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Existential types calls for universal types!

Exercise We reuse the type D α ≈ ∃β.(β → α) × β of frozen
computations. Assume given a list l with elements of type D τ1.

Assume given a function g of type τ1 → τ2. Transform the list into a new
list l′ of frozen computations of type D τ2 (without actually running any
computation).

List.map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

Generalizing this example to a function that receives g and l and returns
l′ does not typecheck:

let lift g l =
List.map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

In expression let α,x = unpackM1 inM2, occurrences of x in M2 can
only be passed to external functions (free variables) that are polymorphic
so that x does not leak out of its context.

48 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Uses of existential types

Mitchell and Plotkin [1988] note that existential types offer a means of
explaining abstract types. For instance, the type:

∃stack.{empty ∶ stack;
push ∶ int × stack→ stack;
pop ∶ stack→ option (int × stack)}

specifies an abstract implementation of integer stacks.

Unfortunately, it was soon noticed that the elimination rule is too
awkward, and that existential types alone do not allow designing module
systems [Harper and Pierce, 2005].

Montagu and Rémy [2009] make existential types more flexible in several
important ways, and argue that they might explain modules after all.

49 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Existential types in OCaml

Existential types are available indirectly in OCaml as a degenerate case of
GADT and via abstract types and first-class modules.

Via GADT (iso-existential types)

type ’a d = D : (’b → ’a) ∗ ’b → ’a d
let freeze f x = D (f, x)
let run (D (f, x)) = f x

Via first-class modules (abstract types)

module type D = sig type b type a val f : b → a val x : b end
let freeze (type u) (type v) f x =

(module struct type b = u type a = v let f = f let x = x end : D);;
let unfreeze (type u) (module M : D with type a = u) = M.f M.x

50 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Contents

Introduction

Towards typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

51 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Introduction

Towards typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

52 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Typed closure conversion

Everything is now set up to prove that, in System F with existential types:

Γ ⊢M ∶ τ implies JΓK ⊢ JMK ∶ JτK

53 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ =

λ(env ∶ , x ∶).
let (x1, . . . , xn ∶) = env in
JMK

in
pack , (code , (x1, . . . , xn))
as

54⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ =

λ(env ∶ JΓK, x ∶ Jτ1K).
let (x1, . . . , xn ∶ JΓK) = env in
JMK

in
pack , (code , (x1, . . . , xn))
as

54⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =

λ(env ∶ JΓK, x ∶ Jτ1K).
let (x1, . . . , xn ∶ JΓK) = env in
JMK

in
pack , (code , (x1, . . . , xn))
as

54⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =

λ(env ∶ JΓK, x ∶ Jτ1K).
let (x1, . . . , xn ∶ JΓK) = env in
JMK

in
pack JΓK, (code , (x1, . . . , xn))
as ∃α.((α × Jτ1K)→ Jτ2K) ×α

54⟨4⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢ λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(λx.M).
Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =

λ(env ∶ JΓK, x ∶ Jτ1K).
let (x1, . . . , xn ∶ JΓK) = env in
JMK

in
pack JΓK, (code , (x1, . . . , xn))
as ∃α.((α × Jτ1K)→ Jτ2K) ×α

We find JΓK ⊢ Jλx ∶τ1.MK ∶ Jτ1 → τ2K, as desired.

54⟨5⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion

Assume Γ ⊢M ∶ τ1 → τ2 and Γ ⊢M1 ∶ τ1.

JM M1K = let α, (code ∶ (α × Jτ1K)→ Jτ2K, env ∶ α) =
unpack JMK in

code (env , JM1K)
We find JΓK ⊢ JM M1K ∶ Jτ2K, as desired.

55 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion recursion

Recursive functions can be translated in this way, known as the “fix-code”
variant [Morrisett and Harper, 1998] (leaving out type information):

Jµf.λx.MK = let rec code (env , x) =
let f = pack (code , env) in
let (x1, . . . , xn) = env in
JMK in

pack (code , (x1, . . . , xn))
where {x1, . . . , xn} = fv(µf.λx.M).
The translation of applications is unchanged: recursive and non-recursive
functions have an identical calling convention.

What is the weak point of this variant?

56⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion recursion

Recursive functions can be translated in this way, known as the “fix-code”
variant [Morrisett and Harper, 1998] (leaving out type information):

Jµf.λx.MK = let rec code (env , x) =
let f = pack (code , env) in
let (x1, . . . , xn) = env in
JMK in

pack (code , (x1, . . . , xn))
where {x1, . . . , xn} = fv(µf.λx.M).
The translation of applications is unchanged: recursive and non-recursive
functions have an identical calling convention.

What is the weak point of this variant?

A new closure is allocated at every call.

56⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion recursion

Instead, the “fix-pack” variant [Morrisett and Harper, 1998] uses an
extra field in the environment to store a back pointer to the closure:

Jµf.λx.MK = let code = λ(env , x).
let (f ,x1, . . . , xn) = env in
JMK

in
let rec clo = (code , (clo, x1, . . . , xn)) in
clo

where {x1, . . . , xn} = fv(µf.λx.M).
This requires general, recursively-defined values. Closures are now cyclic
data structures.

57 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf .λx.MK =
let code ∶ =

λ(env ∶ , x ∶).
let (f,x1, . . . , xn) ∶ = env in
JMK in

let rec clo ∶ =
pack , (code , (clo, x1, . . . , xn))
as

in clo

58⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as

in clo

58⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as

in clo

58⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ Jτ1 → τ2K =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as

in clo

58⟨4⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ Jτ1 → τ2K =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) ×α)

in clo

58⟨5⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion recursion

Here is how the “fix-pack” variant is type-checked. Assume
Γ ⊢ µf.λx.M ∶ τ1 → τ2 and dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ Jτ1 → τ2K =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) ×α)

in clo

Problem?

58⟨6⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion recursion

The recursive function may be polymorphic, but recursive calls are
monomorphic...

We can generalize the encoding afterwards,

JΛβ⃗.µf ∶ τ1 → τ2.λx.MK = Λβ⃗.Jµf ∶ τ1 → τ2.λx.MK

whenever the right-hand side is well-defined.

This allows the indirect compilation of polymorphic recursive functions as
long as the recursion is monomorphic.

Fortunately, the encoding can be straightforwardly adapted to directly
compile polymorphically recursive functions into polymorphic closure.

59 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion recursion

Jµf ∶∀β⃗. τ1 → τ2. λx.MK =

let code ∶ ∀β⃗. (Jf ∶ ∀β⃗. τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

λ(env ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f,x1, . . . , xn) ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK = env in
JMK in

let rec clo ∶ J∀β⃗. τ1 → τ2K =

Λβ⃗.pack Jf ∶ ∀β⃗. τ1 → τ2,ΓK, (code β⃗, (clo, x1, . . . , xn))
as ∃α((α × Jτ1K)→ Jτ2K) × α)

in clo

The encoding is simple.

However, this requires the introduction of recursive non-functional values
“let rec x = v”. While this is a useful construct, it really alters the
operational semantics and requires updating the type soundness proof.

60 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Introduction

Towards typed closure conversion

Existential types

Implicitly-type existential types passing

Iso-existential types

Typed closure conversion

Environment passing

Closure passing

61 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Jλx.MK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

where {x1, . . . , xn} = fv(λx.M).

62⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Jλx.MK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

where {x1, . . . , xn} = fv(λx.M).
How could we typecheck this? What are the difficulties?

62⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Jλx.MK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

There are two difficulties:

• a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

• the first field of the closure contains a function that expects the
closure itself as its first argument.

62⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

There are two difficulties:

• a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

• the first field of the closure contains a function that expects the
closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

62⟨4⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

There are two difficulties:

• a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

• the first field of the closure contains a function that expects the
closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

• existential quantification over the tail of a tuple (a.k.a. a row);

• recursive types.

62⟨5⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Tuples, rows, row variables

The standard tuple types that we have used so far are:

τ ∶∶= . . . ∣ Π R – types
R ∶∶= ǫ ∣ (τ ;R) – rows

The notation (τ1 × . . . × τn) was sugar for Π (τ1; . . . ; τn; ǫ).
Let us now introduce row variables and allow quantification over them:

τ ∶∶= . . . ∣ Π R ∣ ∀ρ. τ ∣ ∃ρ.τ – types
R ∶∶= ρ ∣ ǫ ∣ (τ ;R) – rows

This allows reasoning about the first few fields of a tuple whose length is
not known.

63 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Typing rules for tuples

The typing rules for tuple construction and deconstruction are:

Tuple

∀i. ∈ [1, n] Γ ⊢Mi ∶ τi

Γ ⊢ (M1, . . . ,Mn) ∶ Π (τ1; . . . ; τn; ǫ)
Proj

Γ ⊢M ∶ Π (τ1; . . . ; τi;R)
Γ ⊢ proji M ∶ τi

These rules make sense with or without row variables

Projection does not care about the fields beyond i. Thanks to row
variables, this can be expressed in terms of parametric polymorphism:

proji ∶ ∀α. 1 . . . αiρ. Π (α1; . . . ;αi;ρ) → αi

64 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

About Rows

Rows were invented by Wand and improved by Rémy in order to ascribe
precise types to operations on records.

The case of tuples, presented here, is simpler.

Rows are used to describe objects in Objective Caml [Rémy and Vouillon,
1998].

Rows are explained in depth by Pottier and Rémy [Pottier and Rémy,
2005].

65 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

66⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Why is it ∃ρ. µα. τ and not µα. ∃ρ. τ

66⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Why is it ∃ρ. µα. τ and not µα. ∃ρ. τ

The type of the environment is fixed once for all and does not change at
each recursive call.

66⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Notice that ρ appears only once. Any comments?

66⟨4⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Notice that ρ appears only once. Any comments?

Usually, an existential type variable appears both at positive and negative
occurrences.

66⟨5⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in the
closure-passing variant:

Jτ1 → τ2K
= ∃ρ. ρ describes the environment

µα. α is the concrete type of the closure

Π (a tuple...(α × Jτ1K)→ Jτ2K; ...that begins with a code pointer...

ρ ...and continues with the environment)
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Notice that ρ appears only once. Any comments?

Usually, an existential type variable appears both at positive and negative
occurrences. Here, the variable appear only at a negative occurrence, but
in a recursive part of the type that can be unfolded.

66⟨6⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Let Clo(R) abbreviate µα.Π ((α × Jτ1K)→ Jτ2K;R).
Let UClo(R) abbreviate its unfolded version,
Π ((Clo(R) × Jτ1K)→ Jτ2K;R).
We have Jτ1 → τ2K = ∃ρ.Clo(ρ).

Jλx ∶ .MK = let code ∶ =
λ(clo ∶ , x ∶).
let (, x1, . . . , xn) ∶ = unfold clo in
JMK in

pack , (fold (code , x1, . . . , xn))
as

JM1 M2K = let ρ, clo = unpack JM1K in
let code ∶ =

proj0 (unfold clo) in
code (clo, JM2K)

67⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion

Let Clo(R) abbreviate µα.Π ((α × Jτ1K)→ Jτ2K;R).
Let UClo(R) abbreviate its unfolded version,
Π ((Clo(R) × Jτ1K)→ Jτ2K;R).
We have Jτ1 → τ2K = ∃ρ.Clo(ρ).

Jλx ∶Jτ1K.MK = let code ∶ (Clo(JΓK) × Jτ1K)→ Jτ2K =
λ(clo ∶ Clo(JΓK, x ∶ Jτ1K).
let (, x1, . . . , xn) ∶ UCloJΓK = unfold clo in
JMK in

pack JΓK, (fold (code , x1, . . . , xn))
as ∃ρ.Clo(ρ)

JM1 M2K = let ρ, clo = unpack JM1K in
let code ∶ (Clo(ρ) × Jτ1K)→ Jτ2K =

proj0 (unfold clo) in
code (clo, JM2K)

67⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion recursive functions

In the closure-passing variant, recursive functions can be translated as:

Jµf.λx.MK = let code = λ(clo, x).
let f = clo in
let (, x1, . . . , xn) = clo in
JMK

in (code , x1, . . . , xn)
where {x1, . . . , xn} = fv(µf.λx.M).
No extra field or extra work is required to store or construct a
representation of the free variable f : the closure itself plays this role.

However, this untyped code can only be typechecked when recursion is
monomorphic.

Exercise:

Check well-typedness with monomorphic recursion.
68 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion recursive functions

The problem to adapt this encoding to polymorphic recursion is that
recursive occurrences of f are rebuilt from the current invocation of the
closure, i.e. is monomorphic since the closure is invoked after type
specialization.

By contrast, in the environment passing encoding, the environment
contained a polymorphic binding for the recursive calls that was filled
with the closure before its invokation, i.e. with a polymorphic type.

Fortunately, we may slightly change the encoding, using a recursive
closure as in the type-passing version, to allow typechecking in System F.

69 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Closure-passing closure conversion recursive functions

Let τ be ∀α⃗. τ1 → τ2 and Γf be f ∶ τ,Γ where β⃗ # Γ

Jµf ∶τ . λx.MK = let code =

Λβ⃗.λ(clo ∶ CloJΓfK, x ∶ Jτ1K).
let (code , f, x1, . . . , xn) ∶ ∀β⃗.UClo(JΓf K) =

unfold clo in
JMK in

let rec clo ∶ ∀β⃗.∃ρ.Clo(ρ) = Λβ⃗.

pack JΓK, (fold (code β⃗, clo, x1, . . . , xn)) as ∃ρ.Clo(ρ)
in clo

Remind that Clo(R) abbreviates µα.Π ((α × Jτ1K)→ Jτ2K;R). Hence, β⃗
are free variables of Clo(R).
Here, a polymorphic recursive function is directly compiled into a
polymorphic recursive closure. Notice that the type of closures is
unchanged, so the encoding of applications is also unchanged.

70 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK =

71⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec clo1 = (code1, (clo1, clo2, x1, . . . , xn))

and clo2 = (code2, (clo1, clo2, x1, . . . , xn)) in
clo1, clo2

71⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec clo1 = (code1, (clo1, clo2, x1, . . . , xn))

and clo2 = (code2, (clo1, clo2, x1, . . . , xn)) in
clo1, clo2

Comments?

71⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Mutually recursive functions Environment passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Environment passing:

JMK = let code i = λ(env , x).
let (f1, f2, x1, . . . , xn) = env in
JMiK

in
let rec env = (clo1, clo2, x1, . . . , xn)

and clo1 = (code1, env)
and clo2 = (code2, env) in

clo1, clo2

71⟨4⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Mutually recursive functions Closure passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Closure passing:

let code i = λ(clo, x).
let (, f1, f2, x1, . . . , xn) = clo in JMiK

in
let rec clo1 = (code1, clo1, clo2, x1, . . . , xn)
and clo2 = (code2, clo1, clo2, x1, . . . , xn)

in clo1, clo2

71⟨5⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Mutually recursive functions Closure passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Closure passing:

let code i = λ(clo, x).
let (, f1, f2, x1, . . . , xn) = clo in JMiK

in
let rec clo1 = (code1, clo1, clo2, x1, . . . , xn)
and clo2 = (code2, clo1, clo2, x1, . . . , xn)

in clo1, clo2

Question: Can we share the closures c1 and c2 in case n is large?

71⟨6⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Mutually recursive functions Closure passing

Can we compile mutually recursive functions?

M
△
== µ(f1, f2).(λx1.M1, λx2.M2)

Closure passing:

let code1 = λ(clo, x).
let (code1, code2, f1, f2, x1, . . . , xn) = clo in JM1K in

let code2 = λ(clo, x).
let (code2, f1, f2, x1, . . . , xn) = clo in JM2K in

let rec clo1 = (code1, code2, clo1, clo2, x1, . . . , xn) and clo2 = c1.tail

in clo1, clo2

• clo1.tail returns a pointer to the tail (code2, clo1, clo2, x1, . . . , xn)
of clo1 without allocating a new tuple.

• This is only possible with some support from the GC (and
extra-complexity and runtime cost for GC)

71⟨6⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Optimizing representations

Can closure passing and environment passing be mixed?

72⟨1⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Optimizing representations

Can closure passing and environment passing be mixed?

No because the calling-convention (i.e., the encoding of application)
must be uniform.

However, their is some flexibility in the representation of the closure.
For instance, the following change is completely local:

Jλx.MK = let code = λ(clo, x).
let (, x1, . . . , xn) = clo in JMK in

(code , x1, . . . , xn)
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

Applications? When many definitions share the same closure, the closure
(or part of it) may be shared.

72⟨2⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Optimizing representations

Can closure passing and environment passing be mixed?

No because the calling-convention (i.e., the encoding of application)
must be uniform.

However, their is some flexibility in the representation of the closure.
For instance, the following change is completely local:

Jλx.MK = let code = λ(clo, x).
let (, (x1, . . . , xn)) = clo in JMK in

(code , (x1, . . . , xn))
JM1 M2K = let clo = JM1K in

let code = proj0 clo in
code (clo, JM2K)

Applications? When many definitions share the same closure, the closure
(or part of it) may be shared.

72⟨3⟩ 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Encoding of objects

The closure-passing representation of mutually recursive functions is
similar to the representations of objects in the
object-as-record-of-functions paradigm:

A class definition is an object generator:

class c (x1, . . . xq){
meth m1 =M1

. . .

meth mp =Mp}
Given arguments for parameter x1, . . . x1, it will build recursive methods
m1, . . .mn.

73 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Encoding of objects

A class can be compiled into an object closure:

letm =
letm1 = λ(m,x1, . . . , xq).M1 in
. . .

letmp = λ(m,x1, . . . , xq).Mp in{m1, . . . ,mp} in
λx1 . . . xq. (m,x1, . . . xq)

Each mi is bound to the code for the corresponding method.
The code of all methods are combined into a record of methods,
which is shared between all objects of the same class.

Calling method mi of an object p is

(proj0 p).mi p

How can we type the encoding?

74 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Typed encoding of objects

Let τi be the type of Mi, and row R describe the types of (x1, . . . xq).
Let Clo(R) be µα.Π({(mi ∶ α → τi)i∈1..n};R) and UClo(R) its
unfolding.

Fields R are hidden in an existential type ∃ρ. µα.Π({(mi ∶ α → τi)i∈I};ρ):
letm = {

m1 = λ(m,x1, . . . xq ∶ UClo(R)). JM1K
. . .

mp = λ(m,x1, . . . xq ∶ UClo(R)). JMpK} in
λx1. . . . λxq.pack R, fold (m,x1, . . . xq) as ∃ρ. (M,ρ)

Calling a method of an object p of type M is

p#mi
△
== let ρ, z = unpack p in (proj0 unfold z).mi z

An object has a recursive type but it is not a recursive value.

75 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Typed encoding of objects

Typed encoding of objects were first studied in the 90’s to understand
what objects really are in a type setting.

These encodings are in fact type-preserving compilation of (primitive)
objects.

There are several variations on these encodings. See [Bruce et al., 1999]
for a comparison.

See [Rémy, 1994] for an encoding of objects in (a small extension of) ML
with iso-existentials and universals.

See [Abadi and Cardelli, 1996, 1995] for more details on primitive objects.

76 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Moral of the story

Type-preserving compilation is rather fun. (Yes, really!)

It forces compiler writers to make the structure of the compiled program
fully explicit, in type-theoretic terms.

In practice, building explicit type derivations, ensuring that they remain
small and can be efficiently typechecked, can be a lot of work.

77 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Optimizations

Because we have focused on type preservation, we have studied only
näıve closure conversion algorithms.

More ambitious versions of closure conversion require program analysis:
see, for instance, Steckler and Wand [1997]. These versions can be made
type-preserving.

78 79 ◁

Introduction Towards typed closure conversion Existential types Typed closure conversion

Other challenges

Defunctionalization, an alternative to closure conversion, offers an
interesting challenge, with a simple solution [Pottier and Gauthier, 2006].

Designing an efficient, type-preserving compiler for an object-oriented
language is quite challenging. See, for instance, Chen and Tarditi [2005].

79 79 ◁

Bibliography

Bibliography I

(Most titles have a clickable mark “▷” that links to online versions.)

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Untyped
and first-order systems. Information and Computation, 125(2):78–102,
March 1996.

▷ Mart́ın Abadi and Luca Cardelli. A theory of primitive objects:
Second-order systems. Science of Computer Programming, 25(2–3):
81–116, December 1995.

▷ Amal Ahmed and Matthias Blume. Typed closure conversion preserves
observational equivalence. In ACM International Conference on
Functional Programming (ICFP), pages 157–168, September 2008.

▷ Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object
encodings. Information and Computation, 155(1/2):108–133,
November 1999.

80 79 ◁

http://research.microsoft.com/Users/luca/Papers/PrimObj1stOrder.pdf
http://research.microsoft.com/Users/luca/Papers/PrimObj2ndOrder.pdf
http://ttic.uchicago.edu/~amal/papers/tccpoe.pdf
http://www.cis.upenn.edu/~bcpierce/papers/compobj.ps

Bibliography

Bibliography II

▷ Juan Chen and David Tarditi. A simple typed intermediate language for
object-oriented languages. In ACM Symposium on Principles of
Programming Languages (POPL), pages 38–49, January 2005.

▷ Adam Chlipala. A certified type-preserving compiler from lambda calculus
to assembly language. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 54–65, June 2007.

Robert Harper and Benjamin C. Pierce. Design considerations for
ML-style module systems. In Benjamin C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 8, pages
293–345. MIT Press, 2005.

▷ Konstantin Läufer and Martin Odersky. Polymorphic type inference and
abstract data types. ACM Transactions on Programming Languages
and Systems, 16(5):1411–1430, September 1994.

81 79 ◁

http://research.microsoft.com/pubs/59934/lilc_popl05.pdf
http://www.cs.berkeley.edu/~adamc/papers/CtpcPLDI07/CtpcPLDI07.pdf
http://www.cs.luc.edu/laufer/papers/toplas94.pdf

Bibliography

Bibliography III

▷ John C. Mitchell and Gordon D. Plotkin. Abstract types have existential
type. ACM Transactions on Programming Languages and Systems, 10
(3):470–502, 1988.

▷ Benôıt Montagu and Didier Rémy. Modeling abstract types in modules
with open existential types. In ACM Symposium on Principles of
Programming Languages (POPL), pages 63–74, January 2009.

▷ Greg Morrisett and Robert Harper. Typed closure conversion for
recursively-defined functions (extended abstract). In International
Workshop on Higher Order Operational Techniques in Semantics
(HOOTS), volume 10 of Electronic Notes in Theoretical Computer
Science. Elsevier Science, 1998.

▷ Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F
to typed assembly language. ACM Transactions on Programming
Languages and Systems, 21(3):528–569, May 1999.

82 79 ◁

http://theory.stanford.edu/people/jcm/papers/mitch-plotkin-88.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://www.cs.cornell.edu/home/jgm/papers/hootsclosure.ps
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf

Bibliography

Bibliography IV

▷ François Pottier and Nadji Gauthier. Polymorphic typed
defunctionalization and concretization. Higher-Order and Symbolic
Computation, 19:125–162, March 2006.

▷ François Pottier and Didier Rémy. The essence of ML type inference. In
Benjamin C. Pierce, editor, Advanced Topics in Types and
Programming Languages, chapter 10, pages 389–489. MIT Press,
2005.

▷ Didier Rémy. Programming objects with ML-ART: An extension to ML
with abstract and record types. In International Symposium on
Theoretical Aspects of Computer Software (TACS), pages 321–346.
Springer, April 1994.

▷ Didier Rémy and Jérôme Vouillon. Objective ML: An effective
object-oriented extension to ML. Theory and Practice of Object
Systems, 4(1):27–50, 1998.

83 79 ◁

http://cristal.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.ps.gz
http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/objective-ml!tapos98.ps.gz

Bibliography

Bibliography V

▷ John C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing 83, pages 513–523. Elsevier Science, 1983.

▷ Paul A. Steckler and Mitchell Wand. Lightweight closure conversion.
ACM Transactions on Programming Languages and Systems, 19(1):
48–86, 1997.

84 79 ◁

ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/steckler-wand-97.ps

	Existential types
	Introduction
	Towards typed closure conversion
	Existential types
	Implicitly-type existential types passing
	Iso-existential types

	Typed closure conversion
	Environment passing
	Closure passing

	Appendix

