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Chapter 4

Polymorphism and System F

4.1 Polymorphism

Polymorphism is the ability for a term to simultaneously admit several distinct types. Poly-
morphism is indispensable (Reynolds, 1974): if a list-sorting function is independent of the
type of the elements, then it should be directly applicable to lists of integers, lists of booleans,
etc.. In short, it should have polymorphic type:

∀α. (α → α → bool) → list α→ list α

which can then be instantiated to any of the monomorphic types:

(int → int→ bool) → list int→ list int (bool→ bool→ bool) → list bool→ list bool . . .

In the absence of polymorphism, the only ways of achieving this effect are either to manually
duplicate the list-sorting function at every type (no-no! ); or to use subtyping and claim that
the function sorts lists of values of any type:

(⊺ → ⊺ → bool) → list ⊺ → list ⊺

(The type ⊺ is the type of all values, and the supertype of all types.) This leads to loss of
information and subsequently requires introducing an unsafe downcast operation. This was
the approach followed in Java before generics were introduced in 1.5.

Moreover, polymorphism seems to come almost for free, as it is already implicitly present
in simply-typed λ-calculus. Indeed, all types of the compose functions are

(τ1 → τ2) → (τ0 → τ1) → τ0 → τ2

among which is

(α1 → α2) → (α0 → α1) → α0 → α2

which is principal, as all other types can be recovered by instantiation of the variables. By
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50 CHAPTER 4. POLYMORPHISM AND SYSTEM F

saying that this term admits the polymorphic type

∀α1α2. (α1 → α2) → (α0 → α1) → α0 → α2

we make polymorphism internal to the type system.
Polymorphism is a step on the road towards type abstraction. Intuitively, if a function

that sorts a list has polymorphic type

∀α. (α → α → bool) → list α→ list α

then it knows nothing about α—it is parametric in α—so it must manipulate the list elements
abstractly: it can copy them around, pass them as arguments to the comparison function,
but it cannot directly inspect their structure. In short, within the code of the list sorting
function, the variable α is an abstract type.

Parametricity In the presence of polymorphism (and in the absence of effects), a type can
reveal a lot of information about the terms that inhabit it. For instance, the polymorphic
type ∀α.α → α has only one inhabitant, namely the identity. Similarly, the type of the list
sorting function

∀α. (α → α → bool) → list α→ list α

reveals a “free theorem” about its behavior! Basically, sorting commutes with (map f),
provided f is order preserving. Note that there are many inhabitants of this type (e.g. a
function that sorts in reverse order, or a function that removes duplicates) but they all satisfy
this free theorem. This phenomenon was studied by Reynolds 1983 and by Wadler 1989;
2007, among others. An account based on an operational semantics is offered by Pitts 2000.

Ad hoc versus parametric polymorphism Let us begin a short digression. The term
“polymorphism” dates back to a 1967 paper by Strachey (2000), where ad hoc polymorphism
and parametric polymorphism were distinguished. There are two different (and sometimes
incompatible) ways of defining this distinction:

• With parametric polymorphism, a term can admit several types, all of which are in-
stances of a common polymorphic type: int→ int, bool→ bool, . . . and ∀α.α→ α.

With ad hoc polymorphism, a term can admit a collection of unrelated types: int →
int→ int, float→ float→ float, . . . but not ∀α.α → α → α.

• With parametric polymorphism, untyped programs have a well-defined semantics. (Think
of the identity function.) Types are used only to rule out unsafe programs.

With ad hoc polymorphism, untyped programs do not have a semantics: the meaning
of a term can depend upon its type (e.g. 2+2), or, even worse, upon its type derivation
(e.g. λx. show (read x)).
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Var

Γ ⊢ x ∶ Γ(x)

Abs

Γ, x ∶ τ1 ⊢M ∶ τ2

Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢M2 ∶ τ1

Γ ⊢M1 M2 ∶ τ2

Tabs

Γ, α ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α.τ

Tapp

Γ ⊢M ∶ ∀α.τ

Γ ⊢M τ ′ ∶ [α↦ τ ′]τ
Figure 4.1: Typing rules for System F.

By the first definition, Haskell’s type classes (Hudak et al., 2007) are a form of (bounded)
parametric polymorphism: terms have principal (qualified) type schemes, such as:

∀α.Num α⇒ α → α → α

Yet, by the second definition, type classes are a form of ad hoc polymorphism: untyped
programs do not have a semantics. This ends the digression.

4.2 Polymorphic λ-calculus

The System F, (also known as: the polymorphic λ-calculus; the second-order λ-calculus; F2)
was independently defined by Girard (1972) and Reynolds (1974).

4.2.1 Types and typing rules

Types of the simply-typed λ-calculus are extended with polymorphic types:

τ ∶∶= α ∣ τ ⇒ τ ∣ ∀α.τ
How are the syntax and semantics of terms extended? There are several variants, depending
on whether one adopts an implicitly-typed or explicitly-typed presentation of terms and a
type-passing or a type-erasing semantics.

In the explicitly-typed variant (Reynolds, 1974), there are term-level constructs for intro-
ducing and eliminating the universal quantifier (we recall the previous rules of simply-typed
λ-calculus in gray):

M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ

We write F for the set of explicitly-typed terms.

Type variables are explicitly bound and appear in type environments:

Γ ∶∶= ∅ ∣ Γ, x ∶ τ ∣ Γ, α
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We extend our previous convention to form environments: Γ, α extends Γ with a new variable
α, provided α # Γ, i.e. α is neither in the domain nor in the image of Γ. We also require that
environments be closed with respect to type variables. That is, we require ftv(T ) ⊆ dom(Γ)
to form Γ, x ∶ τ . This additional requirement is a matter of convenience. It allows fewer
judgments, since judgments with open contexts are not allowed. However, open contexts
can always be closed by adding a prefix composed of a sequence of its free type variables.
Hence, a loose definition of contexts (without this requirement) can also be used, and the
differences would be insignificant.

Well-formedness of environments and types may be defined (recursively) by inference rules
(Rule WfEnvVar depends on well-formedness of types while Rule WfTypeVar depends on
well-formedness of environments):

WfEnvEmpty

⊢ ∅

WfEnvVar

⊢ Γ x ∉ dom(Γ) Γ ⊢ τ

⊢ Γ, x ∶ τ

WfEnvTvar

⊢ Γ α ∉ dom(Γ)
⊢ Γ, α

WfTypeVar

⊢ Γ α ∈ Γ

Γ ⊢ α

WfTypeArrow

Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 → τ2

WfTypeForall

Γ, α ⊢ τ

Γ ⊢ ∀α. τ

There is a choice whether well-formedness of environments should be made explicit or left
implicit in typing rules.

Explicit well-formedness amounts to adding well-formedness premises to every rule where
the environment or some type that appears in the conclusion did not appear in any premise.
Namely:

Var

x ∶ τ ∈ Γ ⊢ Γ

Γ ⊢ x ∶ τ

Tapp

Γ ⊢M ∶ ∀α.τ Γ ⊢ τ ′

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ
Explicit well-formedness is more precise and better suited for mechanized proofs. It is also
recommended for (more) complicated type systems. However, it is a bit verbose and dis-
tracting for System F. The two styles are really equivalent. Formally, we choose to leave
well-formedness implicit. However, for documentation purposes, we will indicate the well-
formedness premises in the definition of typing rules.

4.2.2 Semantics

We need the following reduction for type abstraction:

(Λα.M) τ Ð→ [α ↦ τ]M (ι)
Then, there is a choice regarding whether type abstraction should stop the evaluation, or let
reduction proceed.
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Type-passing semantics In most presentations of System F, type abstraction blocks the
evaluation and is defined as follows:

E ∶∶= []M ∣ V [] ∣ [] τ V ∶∶= λx ∶τ.M ∣ Λα.M
This is a type-passing semantics. Indeed, Λα.((λy ∶ α. y) V ) is a value while its type erasure
is (λy. y) ⌈V ⌉ is not—and can be further reduced.

The type-passing semantics is perhaps more natural in a language with a call-by-value
semantics since type abstraction stops evaluation exactly as value abstraction.

However, it does not fit our view that the untyped semantics should pre-exist and that a
type system is only a predicate that selects a subset of the well-behaved terms, since type
abstraction alters the semantics.

In particular, it introduces a discontinuity between monomorphic and polymorphic types.
Assume for example that f is list flattening of type ∀α. list (list α) → list α and ○ is
the composition function Λα1.Λα0.Λα2.λf ∶ α0 → α2. λg ∶ α1 → α0. λx ∶ α1. f g x; then,
the monomorphic function (f int) (○ int (list int) (list (list int))) (f (list int)) reduces to
λx ∶ int. f int (f (list int) x), while its more general polymorphic version

Λα.(f α) (○ α (list (list α)) (list (list α))) (f (list α))
is irreducible. This discontinuity is disturbing especially in an implicitly-typed language such
as ML, where type inference infers the most general version, which behaves less efficiently
than its less general monomorphic variant.

Furthermore, since the type-passing semantics requires both values and types to exist at
runtime, it can lead to a duplication of machinery. Compare type-preserving closure con-
version in type-passing (Minamide et al., 1996) and in type-erasing (Morrisett et al., 1999)
styles.

Type-erasing semantics To recover a type-erasing semantics (also called an untyped
semantics), we need to allow evaluation under type abstraction:

E ∶∶= []M ∣ V [] ∣ [] τ ∣ Λα.[] V ∶∶= λx ∶τ.M ∣ Λα.V
Accordingly, we only need a weaker version of ι-reduction:

(Λα.V ) τ Ð→ [α ↦ τ]V (ιv)
We now have:

Λα.(λy ∶ α. y) V Ð→ Λα.V

We will show below that this defines a type-erasing semantics, indeed.
As an apparent drawback, the type-erasing semantics does not allow a typecase; however,

typecase can be simulated by viewing runtime type descriptions as values (Crary et al.,
2002).

On the opposite the type-erasing semantics, has several advantages: it does not alter the
semantics of untyped terms; it coincides with the semantics of ML—and, more generally,
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with the semantics of most programming languages. It also exhibits difficulties when adding
side effects while the type-passing semantics keeps them hidden.

For all these reasons, we prefer the type-erasing semantics, which we chose in the rest of
this course. Notice that we allow evaluation under a type abstraction as a consequence of
choosing a type-erasing semantics—and not the converse.

The two views may be reconciled by restricting type abstraction to value-forms (which
include values and variables), that is, by only allowing value-forms Λα.M when M is itself
a value-form. Under this restriction, the type-passing and type-erasing semantics coincide.
Indeed, closed type abstractions are then always type abstraction of values, and evaluation
under type abstraction even if allowed may never be used. We will choose this restriction as
a way to preserve type soundness when adding side effects to the language.

Implicitly-typed v.s. explicitly-typed variants We presented the explicitly-typed vari-
ant of System F. This is simpler for the meta-theoretical study while the implicitly typed
version, and in particular its interesting ML subset, may be more convenient to use in prac-
tice. Fortunately, most meta-theoretical properties of the explicitly-typed version can then
be transferred to the implicitly-typed version—so that proofs do not have to be redone in a
different setting when putting theory into practice!

4.2.3 Extended System F with datatypes

System F is quite expressive: it enables the encoding of data structures. For instance, the
Church encoding of pairs in the untyped λ-calculus is actually well-typed in System F:

Pair
△
== Λα1.Λα2.λx1 ∶α1. λx2 ∶α2.Λβ.λy ∶α1 → α2 → β. y x1 x2

proji
△
== Λα1.Λα2.λy ∶∀β. (α1 → α2 → β)→ β. y αi (λx1 ∶α1. λx2 ∶α2. xi)⌈Pair⌉ △
== λx1. λx2. λy. y x1 x2⌈proji⌉ △
== λy. y (λx1. λx2. xi)

Notice the use of first-class polymorphism in the definition of proji. This is general in the
encoding of datatypes.

Natural numbers, List, etc. can also be encoded.

Unit, Pairs, Sums, etc. can also be added to System F as primitives. We can then proceed
as for simply-typed λ-calculus. However, we may also take advantage of the expressive
type system of System F to deal with such extensions in a more elegant way: thanks to
polymorphism, we need not add new typing rules for each extension. We may instead add
one typing rule for constants and parametrize the definition by an initial typing environment
∆ for constants. This allows sharing the meta-theoretical developments between the different
extensions.
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Adding primitive pairs Let us first illustrate datatypes on an example, adding primitive
pairs to System F. We will then generalize the presentation to parametrize the extension as
suggested above.

We introduce a new type constructor (⋅ × ⋅) of arity 2 to classify pairs:

τ ∶∶= α ∣ τ → τ ∣ ∀α. τ ∣ τ × τ
Expressions are extended with a constructor (⋅, ⋅) and two destructors proj1 and proj2 with
the respective signatures:

Pair ∶ ∀α1.∀α2. α1 → α2 → α1 ×α2

proji ∶ ∀α1.∀α2. α1 ×α2 → αi

that forms the initial typing environment ∆. We need not add any new typing rule, but
instead type programs in the initial environment ∆.

This allows for the formation of partial applications of constructors and destructors.
Hence, values are extended as follows:

V ∶∶= . . . ∣ Pair ∣ Pair τ ∣ Pair τ τ ∣ Pair τ τ V ∣ Pair τ τ V V∣ proji ∣ proji τ ∣ proji τ τ

We add the two following reduction rules:

proji τ1 τ2 (Pair τ ′1 τ
′

2 V1 V2)Ð→ Vi (δpair)
Notice that, for well-typed programs, τi and τ ′i will always be equal, but the reduction will
not check this at runtime. This could be enforced by replacing δ with the following rule:

proji τ1 τ2 (Pair τ1 τ2 V1 V2)Ð→ Vi (δ′pair)
The two semantics coincide on well-typed terms, but differ on ill-typed terms where δ′pair may
block when rule δpair would progress, ignoring type errors. Interestingly, using δ′pair simplifies
the proof obligation in subject reduction but introduces a more stronger proof obligation in
progress.

Notice that since pairs are defined by applying the pair constructor to two arguments,
the programmer must first specify the types of the components although those could be
uniquely determined from the arguments of the pair. Even though this is a bit more ver-
bose that strictly necessary, it should not be considered as a problem in an explicitly-typed
presentation, as removing redundant type annotations is the task of type reconstruction.

A general approach Adding other datatypes such as booleans, integers, strings, lists,
trees, etc. and operations on them can be done similarly. However, all these extensions
are quite similar. Hence, we propose a general approach for adding constants to System F,
which can then be instantiated independently—or simultaneously—to each of the previous
cases: provided the dynamic semantics of constraints agree with their static semantics (some
requirements must be satisfied in order to instantiate the general approach), the soundness
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of the extension then automatically follows.

We assume given a collection of constants, written with letter c, each of which given
with a fix arity written arity (c). Constants must actually be partitioned into constructors
(written C) and destructors (written d); moreover, we disallow nullary destructors1.

Expressions are extended with constant expressions.

M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ ∣ c
The difference between constructors and destructors lies in the fact that full application of
constructors are values while full applications of destructors are not—they must be reduced.
Partial applications of constants are always values. Hence, the following definition of values:

V ∶∶= x ∣ λx ∶τ.M ∣ Λα.V ∣ C τ1 . . . τi V1 . . . Vn ∣ d τ1 . . . τj V1 . . . Vk

where n is less or equal to the arity of C and k is strictly less than the arity of d. The
semantics of constants is given by providing, for each destructor d a relation δd defined by a
set of δ-rules of the form:

d τ1 . . . τj V1 . . . Vk Ð→M (δd)
We assume given a collection of type constructors G, with their arity, written arity (G).

Types are extended as follows.

τ ∶∶= . . . ∣ G τ1 . . . τn

We assume that types respect the arities of type constructors, i.e. n is equal to arity (G) in
the expressions G τ1 . . . τn.

The typing of constants is given by the initial typing environment ∆. which binds each
constant c of arity n to a type of the form ∀α1. . . .∀αj. τ1 → . . . τn → τ . When c is a
constructor C, we require that the top most type constructor of τ not be an arrow, but
some type constructor G. We then say that C is a G-constructor. We require that ∆ be
well-formed (in the empty environment, hence closed). Constants are typed as variables,
except that their types are looked up in ∆:

Cst

c ∶ τ ∈∆ ⊢ Γ

Γ ⊢ c ∶ τ

Taking typing constraints into account, we may give a more restrictive characterization of
well-typed values: in the presentation above i is at most the number of quantified variables in
the type scheme of the constructor, and whenever n is non zero, i is equal to this number. And
similarly for destructors. For instance, if C is a constructor (respectively, d is a destructor)
of arity q and of type ∀α1 . . . αp. τ

′

1 → . . . τ ′q → τ , then values will contain:

C ∣ C τ1 ∣ . . . C τ1 . . . τp ∣ C τ1 . . . τp V1 ∣ . . . C τ1 . . . τp V1 . . . Vq

1Nullary polymorphic destructors introduce pathological cases to maintain the semantics type-erasing—
for little benefit in return.
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and
c ∣ c τ1 ∣ . . . c τ1 . . . τp ∣ c τ1 . . . τp V1 ∣ . . . c τ1 . . . τp V1 . . . Vq−1

Of course, we need assumptions to relate typing and reduction of constants.

Definition 1 δ-reduction is sound if it preserves typings and ensures progress for primitives.
That is

• If α⃗ ⊢M1 ∶ τ and M1 Ð→δ M2 then α⃗ ⊢M2 ∶ τ .

• If α⃗ ⊢ M1 ∶ τ and M1 is of the form d τ1 . . . τk V1 . . . Vn where n = arity (d), then there
exists M2 such that M1 Ð→δ M2.

Intuitively, progress for constants means that the domain of destructors is at least as large
as specified by their type in ∆.

We will show below that soundness of δ-rules is sufficient to ensure soundness of the
extension.

For example, to add a unit constant, we only introduce a type constant unit and a
constructor () of arity 0 of type unit. As no primitive is added, δ-reduction is obviously
sound. Hence, the extension of System F with unit is sound.

Exercise 24 (Pairs as constants) Reformulate the extension of System F with pairs as
constants. Check soundness of the δ-rules. (Solution p. 84)

Exercise 25 (Conditional) Give a presentation of boolean with a conditional as constants.
Is this sound? Isn’t there something wrong? Would you know how to fix it?

(Solution p. 84)

Exercise 26 (List) 1) Formulate the extension of System F with lists as constants.
(Solution p. 84)2) Check that this extension is sound.

Extending System F with a fixpoint The call-by-value fixpoint combinator Z (see §2)
is not typable in System F—indeed this would allow program to loop while all programs
terminate in System F.

However, we may introduce a fixpoint as a binary primitive with the following typing
assumption:

fix ∶ ∀α.∀β. ((α → β)→ α → β)→ α→ β ∈ ∆

and the reduction rule:
fix τ1 τ2 V1 V2 Ð→ V1 (fix τ1 τ2 V1) V2 (δfix)

It is straightforward to check the soundness of this extension: Progress is by construction,
since fix does not destruct values. As for subject reduction, assume Γ ⊢ fix τ1 τ2 V1 V2 ∶ τ .
By inversion of typing rules, τ must be equal to τ2, V1 and V2 must be of respective types(τ1 → τ2) → τ1 → τ2 and τ1 in the typing context Γ. We may then easily build a derivation
of the judgment Γ ⊢ V1 (fix τ1 τ2 V1) V2 ∶ τ .
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Exercise 27 In ML a one-constructor datatype can be used to emulate recursive types,
namely a type Any such that a value of type any → any can be converted to a value of
type any, and conversely. Give the definition in ML. Describe the extension as the addition
of new constants. Verify the soundness of δ-rules.

Use this extension to define a call-by-value fixpoint operator of type

((any → any)→ any → any)→ any→ any

in ML without using let rec or implicit recursive types (the −rectypes option). (See Exercise 7
for a definition of the fix-point in the λ-calculus or in ML with recursive types.)

(Solution p. 85)

4.3 Type soundness

We proof type soundness for System F with constants, assuming the soundness of δ-reduction.
The structure of the proof is similar to the case of simply-typed λ-calculus and follows

from subject reduction and progress. Subject reduction uses the following auxiliary lemmas:
inversion of typing rules (Lemma 13), permutation (Lemma 14), weakening (Lemma 15),
expression substitution (Lemma 16), type substitution (Lemma 17), and compositionality of
typing (Lemma 18).

Lemma 13 (Inversion of typing rules) Assume Γ ⊢M ∶ τ .

• If M is a variable x, then x ∈ dom(Γ) and Γ(x) = τ .
• If M is λx ∶τ0.M1, then τ is of the form τ0 → τ1 and Γ, x ∶ τ0 ⊢M1 ∶ τ1.

• If M is M1 M2 then Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2 for some type τ2.

• If M is a constant c, then c ∈ dom(∆) and ∆(x) = τ .
• If M is M1 τ2 then τ is of the form [α ↦ τ2]τ1 and Γ ⊢M1 ∶ ∀α. τ1.

• If M is Λα.M1, then τ is of the form ∀α. τ1 and Γ, α ⊢M1 ∶ τ1.

Lemma 14 (Permutation) If Γ and Γ′ are two well-formed permutations, then Γ ⊢M ∶ τ

iff Γ ⊢M ∶ τ .

Proof: Formally, the proof is by induction on M . The key is the observation that when Γ
and Γ′ are both well-formed and permutations of one another, they are equivalent as partial
functions, i.e. they give the same bindings and can be extended in the same manner.

Lemma 15 (Weakening) If Γ ⊢M ∶ τ and ⊢ Γ,Γ′, then Γ,Γ′ ⊢M ∶ τ .
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Proof: It suffices to prove the lemma when Γ′ is either x ∶ τ ′ or α, since the general case
follows by induction on the length of Γ′. We may prove both simultaneously, by induction
on M . The proof is similar to the one for simply-typed λ-calculus—we just have more cases.
Cases for value and type abstraction appeal to the permutation lemma. More precisely:

Case M is y: By inversion of typing, the judgment must be derived with rule Var, hence
y ∶ τ is in Γ and a fortiori y ∶ τ is in Γ,Γ′. We may thus conclude by rule Var.

Case M is c: By inversion of typing, the judgment must be derived with rule Cst, hence we
have y ∶ τ is in ∆ and we may conclude with rule Cst.

Case M is λy ∶ τ1.M2: W.l.o.g. we may choose y disjoint from Γ and Γ′ (1). By inversion
of typing, the judgment must be derived with rule Abs, hence Γ, y ∶ τ1 ⊢ M1 ∶ τ2 where τ

is τ1 → τ2. Since Γ, y ∶ τ is well-formed, by (1), both Γ, y ∶ τ1,Γ
′ and Γ,Γ′, y ∶ τ1 are well-

formed (2). By induction hypothesis, we have Γ, x ∶ τ1,Γ
′ ⊢ M1 ∶ τ2. Using the permutation

lemma and (2), we have Γ,Γ′, x ∶ τ1 ⊢M1 ∶ τ2. We conclude with rule Abs.

Case M is Λβ.M1: W.l.o.g, we may choose β disjoint from Γ and Γ′ (3). By inversion of
typing, the judgment must be derived with rule TAbs, hence Γ, β ⊢M1 ∶ τ1 with ∀β.τ1 equal
to τ . Since Γ, β is well-formed, by (3), both Γ, β,Γ′ and Γ,Γ′, β are well-formed (4). By
induction hypothesis, we have Γ, β,Γ′ ⊢ M1 ∶ τ1. We use the permutation lemma to obtain
Γ,Γ′, α ⊢M1 ∶ τ1 and conclude with Rule Tabs.

Case M is M1 M2 or M1 τ1: By inversion of typing, induction hypothesis applied to the
premises, and App or TApp to conclude.

Lemma 16 (Expression substitution, strengthened)
If Γ, x ∶ τ0,Γ′ ⊢M ∶ τ and Γ ⊢M0 ∶ τ0 then Γ,Γ′ ⊢ [x↦M0]M ∶ τ .
We have strengthened the lemma with an arbitrary context Γ′ as for the simply-typed λ-
calculus. We have also generalized the lemma with an arbitrary context Γ on the left and an
arbitrary expression M , as this does not complicate the proof (and the stronger result will
be used later). The proof is similar to the one for the simply-typed λ-calculus, with just a
few more cases. (Details of the proof p. 85)

Exercise 28 Write the details of the proof.

Lemma 17 (Type substitition, strengthened)
If Γ, α,Γ′ ⊢M ∶ τ and Γ ⊢ τ0 then Γ, θΓ′ ⊢ θM ∶ θτ where θ is [α ↦ τ0].
As for expression substitution, we have strengthened the lemma and generalized it using
an arbitrary environment instead of the empty environment, as it does not complicate the
proof, but yields a stronger result. This lemma resembles the one for expression substitutions.
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However, the substitution must also apply to the environment Γ′ and the result type τ since
α may appear free in them.

The proof is by induction on M . The interesting cases are for type and value abstraction,
which required the strengthened version with an arbitrary typing context Γ′ on the right.
Then, the proof is straightforward. (Details of the proof p. 86)

Exercise 29 Write the details of the proof.

Lemma 18 (Compositionality) If Γ ⊢ E[M] ∶ τ , then there exists ᾱ and τ ′ such that
Γ, ᾱ ⊢M ∶ τ ′ and all M ′ verifying Γ, ᾱ ⊢M ′ ∶ τ ′ also verify Γ ⊢ E[M ′] ∶ τ .

Proof: The proof is by case on E. Each case is easy. The main difference with the simply-
typed λ-calculus is that the case for type abstraction Λα.E0 requires to extend the environ-
ment with type variables.

Theorem 9 (Subject Reduction) Reduction preserves typings.
If Γ ⊢M ∶ τ and M Ð→ M ′ then Γ ⊢M ′ ∶ τ .

The proof is by induction over the derivation of M Ð→M ′. Using the previous lemmas and
the subject-reduction assumption for δ-reduction, the proof is straightforward.

Proof: By induction over the derivation of M Ð→ M ′, then by inversion of the typing
derivation of Γ ⊢M ∶ τ (1).

Case (λx ∶τ1.M1) V Ð→ [x ↦ V ]M1: By inversion, the typing derivation of (1) is of form:

App

Abs
Γ, x ∶ τ ′ ⊢M1 ∶ τ (2)

Γ ⊢ (λx ∶τ ′.M1) ∶ τ
′ → τ Γ ⊢ V ∶ τ ′ (3)

Γ ⊢ (λx ∶τ ′.M1) V ∶ τ (1)

The value-substitution Lemma applied to (2) and (3) gives the expected result.

Case (Λα.V ) τ0 Ð→ [α ↦ τ0]V : By inversion of (1), we have Γ, α ⊢ V ∶ τ1 (4) where
τ is [α ↦ τ0]τ1. The type-substitution Lemma applied to (4) gives the expected result
Γ ⊢ [α ↦ τ0]V ∶ τ .

Case E[M0] Ð→ E[M ′

0]: The hypothesis is M0 Ð→ M ′

0. Assume Γ ⊢ E[M0] ∶ τ . By
compositionality, there is some type τ0 and type variables α⃗ such that Γ, α⃗ ⊢M0 ∶ τ0 (5) and
for all M ′

0 such that Γ, α⃗ ⊢ M ′

0 ∶ τ0, we have Γ ⊢ E[M ′

0] ∶ τ . Therefore it suffices to show
Γ, α⃗ ⊢M ′

0 ∶ τ0, which holds by induction hypothesis applied to (5).
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The classification lemma, which is a key to progress, is slightly modified to account for
polymorphic types and constructed types.

Lemma 19 (Classification) Assume ᾱ ⊢ V ∶ τ

• If τ is an arrow type, then V is either a function or a partial application of a constant
to values.

• If τ is a polymorphic type, then V is either a type abstraction of a value or a partial
application of a constant to types.

• If τ is a constructed type, then V is constructed value.

The last case can be refined by partitioning constructors into their associated type-constructor:
If the top-most type constructor of τ is G, then V is a value constructed with a G-constructor.

The proof is similar to the one for simply-typed λ-calculus.
Progress is restated as follows:

Theorem 10 (Progress, strengthened) A well-typed, irreducible closed term is a value:
if α⃗ ⊢M ∶ τ and M /Ð→ , then M is some value V .

The theorem has been strengthened, using a sequence of type variables α⃗ for the typing
context instead of the empty environment. It can then be proved by induction and case
analysis on M , relying mainly on the classification lemma and the progress assumption for
δ-reduction.

Proof: By induction on (the derivation of) M . Assume α⃗ ⊢M ∶ τ and M is irreducible.

Case M is x: This is not possible since x is not well-typed in ᾱ.

Case M is c: ThenM is a value (a fully applied constructor or a partially applied destructor),
as expected.

Case M is λx ∶τ.M1: Then M is a value, as expected.

Case M is M1 M2: Then, α⃗ ⊢ M1 ∶ τ2 → τ1. and α⃗ ⊢ M2 ∶ τ2. Since the left application
is an evaluation context, M1 is irreducible. Hence, by induction hypothesis, M1 is a value.
Since the right application of a value is an evaluation context, M2 is irreducible. Hence,
by induction hypothesis, M2 is also a value. Since the application M1 M2 itself cannot be
reduced, M1 is not a function. Since it has an arrow type, it follows from the classification
lemma that it a partial application of a constant to values. Hence, M is itself the application
of a constant to values. Since it cannot be reduced, it follows from the progress assumption
for δ-rules that it is not a full application of a destructor. Hence, it is either a full application
of a constructor or a partial application of a constant to values. In both cases, M is a value.

Case M is Λβ.M1: Then, α⃗, β ⊢M1 ∶ τ1. Since type abstraction is an evaluation context M1

is irreducible. Hence, by induction hypothesis, M1 is a value and so is M .
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Case M is M1 τ1: Then, α⃗ ⊢ M1 ∶ ∀α. τ2 with τ equal to [α ↦ τ1]τ2. Since type application
is an evaluation context, M1 is irreducible. Hence, by induction hypothesis, M1 is a value.
Since M is irreducible M1 is not a type abstraction. Since M1 has a polymorphic type, it
follows from the classification lemma that M1 is an application of a constant c to types (as
it is not a type abstraction). Since it is irreducible, it follows from the progress assumption
for δ-rules that c is a destructor or the application is partial. In both cases M is a value.

Theorem 11 (Normalization) Reduction terminates in pure System F.

This is also true for arbitrary reductions and not just for call-by-value reduction. This is a
difficult proof, which generalizes the proof method for the simply-typed λ-calculus. It is due
to Girard (1972) (see also Girard et al. (1990)).

4.4 Type erasing semantics

We have presented the explicitly-typed variant of System F. In this section, we verify that
this semantics is type erasing. Hence, there is an implicitly-typed presentation of System F.

4.4.1 Implicitly-typed System F

The implicitly-typed version of System F, can be defined as follows. The syntax of terms
and their dynamic semantics are those of the untyped λ-calculus extended with constants.
However, we only accept a subset of terms of the λ-calculus, retaining only those that are
the type erasure of a term in F.

We write ⌈F⌉ for the set of implicitly-typed terms and F for the set of explicitly-typed
terms. We use letters a, v, and e to range over implicitly-typed terms, values, and evaluation
contexts, reusing the same notations as for the untyped λ-calculus.

The set of terms may also be characterized by typing rules that operate directly on
unannotated terms. These are obtained from the typing rules of F by dropping all type
information in terms. They are presented in Figure 4.2. We use the prefix if- to distinguish
them from the typing rules for explicit System F.

Unsurprisingly, as a result of erasing type information in terms, the rules that introduce
and eliminate the universal quantifier are no longer syntax-directed.

Remark 4 Notice that the explicit introduction of variable α in the premise of Rule Tabs

contains an implicit side condition α# Γ due to the assumption on the formation of typing
environments.

In implicitly-typed System F, as in ML, the introduction of type variables in typing
context is often left implicit. (In some extensions of System F, type variables may carry a
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if-Var

Γ ⊢ x ∶ Γ(x) if-Cst

Γ ⊢ c ∶∆(c)
if-Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx. a ∶ τ0 → τ

if-App

Γ ⊢ a1 ∶ τ2 → τ1 Γ ⊢ a2 ∶ τ2

Γ ⊢ a1 a2 ∶ τ1

if-Tabs

Γ, α ⊢ a ∶ τ

Γ ⊢ a ∶ ∀α.τ

if-Tapp

Γ ⊢ a ∶ ∀α.τ

Γ ⊢ a ∶ [α ↦ τ0]τ
Figure 4.2: Typing rules for explicitly-typed System F.

kind or a bound and must be explicitly introduced.) If we chose to do so, we would need an
explicit side-condition on Rule Tabs as follows:

if-Tabs-Bis

Γ ⊢ a ∶ τ α# Γ

Γ ⊢ a ∶ ∀α.τ

Omitting the side condition would lead to unsoundness. Below on the left-hand side is a type
derivation for a type cast (Obj.magic in OCaml), which is equivalent to using an ill-formed
context (on the right-hand side):

if-Tabs-Bis

Broken if-Tabs

if-Var
x ∶ α1 ⊢ x ∶ α1

if-Tapp
x ∶ α1 ⊢ x ∶ ∀α1.α1

if-Abs
x ∶ α1 ⊢ x ∶ α2

∅ ⊢ λx.x ∶ α1 → α2

∅ ⊢ λx.x ∶ ∀α1.∀α2.α1 → α2

x ∶ α1, α1 ⊢ x ∶ α1

Broken Var

x ∶ α1 ⊢ x ∶ ∀α1.α1

x ∶ α1 ⊢ x ∶ α2

∅ ⊢ λx ∶α1. x ∶ α1 → α2

Abs

Tapp

Broken Tabs

∅ ⊢ Λα1.Λα2.λα1 ∶x.x ∶ ∀α1.∀α2.α1 → α2

Tabs

A good intuition is that a judgment Γ ⊢ a ∶ τ corresponds to the logical assertion ∀ᾱ.(Γ⇒ (a ∶
τ)), where ᾱ are the free type variables of the judgment. In this view, Tabs-Bis corresponds
to the axiom:

∀α.(P ⇒ Q) ≡ P ⇒ (∀α.Q) if α # P

which without the side condition is obviously wrong.

The next lemma, states that the two definitions of ⌈F⌉—or, equivalently, the two type
systems for implicitly-typed System F and explicitly type System F—coincide. The proof is
immediate.

Lemma 20 Γ ⊢ a ∶ τ in implicitly-typed System F if and only if there exists an explicitly-
typed expression M whose erasure is a such that Γ ⊢M ∶ τ .
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For example, consider the term a0 in ⌈F⌉ equal to λfxy. (f x, f y). A version that carries
explicit type abstractions and annotations is:

Λα1.Λα2.λf ∶ α1 → α2. λx ∶ α1. λy ∶ α1. (f x, f y)
Unsurprisingly, this term admits the polymorphic type:

τ1
△
== ∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 ×α2

Perhaps more surprising is the fact that this untyped term can be decorated in a different
way:

Λα1.Λα2.λf ∶ ∀α.α → α.λx ∶ α1. λy ∶ α2. (f α1 x, f α2 y)
This term admits the polymorphic type:

τ2
△
== ∀α1.∀α2.(∀α.α → α)→ α1 → α2 → α1 ×α2

This begs the question: which of the two types τ1 or τ2 is more general? Type τ1 requires
the second and third arguments to admit a common type, while type τ2 requires the first
argument to be polymorphic.

Exercise 30 Find two terms a1 and a2 such that a1 has type τ1 type but not type τ2, and
conversely for a2. (Just give the terms a1 and a2, you do not have to prove well-typedness
or ill-typedness.) (Solution p. 86)

This suggests that the two types are not comparable, that is, neither one can be an instance
of the other.

Intuitively, one may think semantically of (i.e. interpret) a closed type as the set of terms
of that type, and of instance as inclusion between types. With such a view in mind then τ1
and τ2 are indeed incomparable. This does not imply that a0 does not have a principal type:
there could exist a type τ0 that contains a0 and that is included in the intersection of (the
interpretations of) τ1 and τ2. Indeed, one can do so in a richer system, such as System F ω.

Exercise 31 In System F ω, find a type τ0 for a0 that is more general than both τ1 and
τ2. (Solution p. 86)

4.4.2 Type instance

To reason formally, we must first define what it means for τ2 to be an instance of τ1—or,
equivalently, for τ1 to be more general than τ2. Several definitions are possible. In System F,
to be an instance is usually defined by the rule:

Inst-Gen

β̄ # ∀ᾱ. τ

∀ᾱ.τ ≤ ∀β̄. [α⃗ ↦ τ⃗]τ
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One can show that, if τ1 ≤ τ2, then any term that has type τ1 has also type τ2; that is, the
following rule is admissible2 in the implicitly-typed version:

Sub

Γ ⊢ a ∶ τ1 τ1 ≤ τ2

Γ ⊢ a ∶ τ2

Perhaps surprisingly, the rule is not derivable3 in our presentation of System F. Although,
we have the following derivation,

Gen∗

Inst∗
Γ, β̄ ⊢ a ∶ ∀ᾱ.τ

Γ, β̄ ⊢ a ∶ [α⃗ ↦ τ⃗]τ
Γ ⊢ a ∶ ∀β̄.[α⃗ ↦ τ⃗ ]τ

the premise Γ, β̄ ⊢ a ∶ ∀α. τ can only be justified from the assumption Γ ⊢ a ∶ ∀α. τ by an
application of weakening (the side condition β̄ # ∀ᾱ. τ of rule Gen ensures that Γ, β̄ is well-
formed.) Otherwise, in context Γ alone, τ⃗ would not necessarily be well-formed, as required
by rule Gen.

However, in a version of System F that does not introduce type variables explicitly in Γ,
then weakening of type variables would be built-in and implicit and the rule Sub would
become derivable. (This shows that the notion of derivability is somewhat fragile as it
depends on the presentation of the rules.)

We may also wonder what is the counter-part of the instance relation in explicitly-typed
System F. Assume Γ ⊢ M ∶ τ1 and τ1 ≤ τ2. How can we see M with type τ2? Since
explicitly-typed terms have unique types, the term M of type τ1 cannot itself also have type
τ2. However, we can wrap M with a retyping context that transforms a term of type τ1 to
one of type τ2. Since τ1 ≤ τ2, the types τ1 and τ2 must be of the form ∀ᾱ. τ and ∀β̄. [α⃗ ↦ τ⃗ ]τ
where β̄ # ∀ᾱ. τ . W.l.o.g, we may assume that β̄ # Γ (6), as it may always be satisfied up
to a renaming of bound variables β̄. Then, we have the pseudo-derivation on the left-hand
side (where the weakening lemma is used as a pseudo-typing rule Weakening), which can be
abbreviated by the admissible typing rule Sub given on the right-hand side.

Weakening
Γ ⊢M ∶ ∀α⃗. τ

(6)
β̄ # ∀α⃗. τ

β̄ # Γ

Tapp∗
Γ, β⃗ ⊢M ∶ ∀α⃗. τ

Tabs∗
Γ, β⃗ ⊢M τ⃗ ∶ [α⃗↦ τ⃗]τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗ ]τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Admissible rule:

Sub
Γ ⊢M ∶ ∀α⃗. τ β̄ # ∀α⃗. τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ
In F, we rather write subtyping as a judgment Γ ⊢ τ1 ≤ τ2 instead of the binary relation τ1 ≤ τ2

2A rule is admissible if adding the rule does not change the validity of judgments. That is, it may just
allow for more derivations of already valid judgments.

3A rule is derivable if it can be replaced by a sub-derivation tree with the same premises and conclusion.
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to also mean Γ ⊢ τ1 and Γ ⊢ τ2 and so simultaneously keep track of the well-formedness of
types.

In the previous example, the subtyping judgment Γ ⊢ τ1 ≤ τ2 has been witnessed by the
wrapping context Λβ⃗.[] τ⃗ . Since this context is only composed of type abstractions and type
applications, it changes the type of the term put in the hole without changing its behavior
and it is called a retyping context. More generally, we may allow arbitrary wrappings of
type abstractions and type applications around expressions. As in the example, they never
change the type erasure. Retyping contexts are thus defined by the following grammar:

R ∶∶= [] ∣ Λα.R ∣ R τ

(Notice that retyping contexts are arbitrarily deep here, by contrast with single-node evalu-
ation contexts E defined earlier.)

We could also define a typing judgment Γ ⊢ R[τ1] ∶ τ2 for retyping contexts as equivalent
to Γ, x ∶ τ1 ⊢ R[x] ∶ τ2 whenever x does not appear in R—or using primitive typing rules.
Then, the following property holds by compositionality of typing: if Γ ⊢ M ∶ τ1 and Γ ⊢
R[τ1] ∶ τ2, then Γ ⊢ R[M] ∶ τ2.

We can now give another equivalent definition of subtyping, based on retyping contexts:
Γ ⊢ τ1 ≤ τ2 if and only if there exists a retyping context R such that Γ ⊢ R[τ1] ∶ τ2.

Notice that retyping contexts (e.g. type-instance) can only change topmost polymor-
phism. In particular, they cannot weaken the result types of functions or strengthen the
types of their arguments.

4.4.3 Type containment in System Fη

Type containment is another, more expressive, syntactic notion of instance, introduced
by Mitchell (1988), that can also transform inner parts of types. It can be defined syn-
tactically by the following set of rules:

Inst-Gen

β̄ # ∀ᾱ.τ

∀ᾱ.τ ≤ ∀β̄.[α⃗↦ τ⃗]τ
Distributivity

∀α. (τ1 → τ2) ≤ (∀α. τ1)→ (∀α. τ2)
Congruence-→

τ2 ≤ τ1 τ ′1 ≤ τ
′

2

τ1 → τ ′1 ≤ τ2 → τ ′2

Congruence-∀

τ1 ≤ τ2

∀α.τ1 ≤ ∀α.τ2

Transitivity

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

With this larger instance relation, Rule Sub is no longer admissible—as it allows to type
more terms. However, it remains sound. That is, adding Rule Sub as a primitive typing rule
does not break type soundness. The resulting type system is known as System Fη, since it
is also the closure of System F by η-expansion; that is, a term is in System Fη if and only if
it is the η-conversion of a term in System F.

Exercise 32 1) Show that ∀α. τ ≡ τ . 2) Show that rule Distributivity can be replaced by
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the weaker rule:
Distrib-Right

α ∉ ftv(τ1)
∀α. (τ1 → τ2) ≤ τ1 → (∀α. τ2)

(Solution p. 87)

One may wonder what System Fη brings to System F that it does not already have. Con-
sider the identity function id in ⌈F⌉; it has type ∀α.α→ α but also many other incomparable
types. For example, it has type (∀α.α)→ ∀α.α → α— even though a function of that type
can never be applied, as there is no value of type ∀α.α that could be passed as argument;
it also has the more interesting type ∀α. (∀α.α → α)→ (α → α). While these types are in-
comparable in ⌈F⌉, they become comparable in System Fη. For example, in System Fη, we
have:

τid ≤ ( (∀α.α)→ (∀α.α) ≤ (∀α.α)→ τid
∀β. (β → β)→ (β → β) ≤ ∀β. τid → (β → β) ) ≤ ∀β. (∀α.α)→ (β → β)

The type ∀α.α→ α is actually a principal type for id in System Fη. Similarly, the function
ch defined below has a principal type in System Fη:

ch
△
== λx.λy. if M then x else y ∶ ∀β.β → β → β

Still, many expressions do not have most general types in System Fη. To see the difficulty,
consider the application chid of ch to id . How can it be typed? If we keep id poly-
morphic, then chid has type (∀α.α → α) → (∀α.α → α), say τ1; if, on the opposite, we
instantiate id , then chid has type ∀α. (α → α) → (α → α), say τ2—as in ML where type
schemes are automatically instantiated when used. These two types are incomparable in
System F. Although, we have τ1 ≤ τ2 in System Fη (as witnessed by the coercion context
λx ∶∀α.α→ α.Λα.([τ2] α) (x α)) and can thus give chid the type τ2 and still used it at type
τ1, this is more by chance than the general case: If we replace ch by ch3, which chooses
between three arguments, then ch3 id does not have a principal type in System Fη.

System Fη increases the expressiveness of System F by enriching its type instance relation—
without modifying the language of types (and other typing rules than Sub).

To obtain even more principal types, Le Botlan and Rémy (2009) have suggested that
the language of types should be enriched with a new form of quantification ∀α ≥ τ1. τ2
to mean, intuitively, the set of types [α ↦ τ]τ2 when τ ranges over the set of instances
of τ1. This internalizes the instance relation within the language of types. This allows to
give chid the type ∀(β ≥ ∀α.α → α). β → β and recovering (∀α.α → α) → (∀α.α → α) and
∀α. (α → α) → (α → α) by choosing particular instances of ∀α.α→ α for β. By contrast
with System Fη, this approach also works for the more general example of ch3 id .

The language MLF has been design for partial type reconstruction where programs are
partially annotated. The user need only to provide the types of parameters of functions
that are used polymorphically. The type systems is setup to implicitly use available poly-
morphism but never guess polymorphism. Available polymorphism comes either from type
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generalization as in ML or from user-provided type annotations. Every expression has a
principal type—according to the given type annotations. See (Le Botlan and Rémy, 2009;
Rémy and Yakobowski, 2008) for details.

4.4.4 A definition of principal typings

A typing of an expression M is a pair Γ, τ such that Γ ⊢M ∶ τ . Ideally, a type system should
satisfy the principal typings property (Wells, 2002):

Every well-typed term M admits a principal typing – one whose instances are
exactly the typings of M .

Whether this property holds depends on a definition of instance. The more liberal the
instance relation, the more hope there is of having principal typings.

The instance relations we have previously considered are defined syntactically. The ab-
sence of principal typings with respect to a syntactic definition of instance may result from
a bad choice of the instance relation. To avoid arbitrariness, Wells (2002) introduced a more
semantic notion of instance. He notes that, once a type system is fixed, a most liberal notion
of instance can be defined, a posteriori, by:

A typing θ1 is more general than a typing θ2 if and only if every term that admits
θ1 admits θ2 as well.

This is the largest reasonable notion of instance: ≤ is defined as the largest relation such
that a subtyping principle is admissible.

This definition can be used to prove that a system does not have principal typings, under
any reasonable definition of “instance”. Then, which systems have principal typings? The
simply-typed λ-calculus has principal typings, with respect to a substitution-based notion
of instance (See lesson on type inference). Wells (2002) shows that neither System F nor
System Fη have principal typings. It was shown earlier that System Fη’s instance relation
is undecidable (Wells, 1995; Tiuryn and Urzyczyn, 2002) and that type inference for both
System F and System Fη is undecidable (Wells, 1999).

There are still a few positive results. Some systems of intersection types have principal
typings (Wells, 2002) – but they are very complex and have yet to see a practical application.

A weaker property is to have principal types. Given an environment Γ and an expression
M is there a type τ for M in Γ such that all other types of M in Γ are instances of τ .
Damas and Milner’s type system (coming up next) does not have principal typings but it
has principal types and decidable type inference.

4.4.5 Type soundness for implicitly-typed System F

Subject reduction and progress imply the soundness of the explicitly-typed version of System F.
What about the implicitly-typed version? Can we reuse the soundness proof for the explicitly-
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typed version? Can we pullback subject reduction and progress from F to ⌈F⌉?
For progress, given a well-typed term a in ⌈F⌉, can we find a term M in F whose erasure

is a and such that M is a value or reduces, and so conclude that a is a value or reduces?
For subject reduction, given a term a1 of type τ in ⌈F⌉ that reduces to a2, can we find a
term M1 in F whose erasure is a1 and show that M1 reduces to a term M2 whose erasure is
a2 to conclude that the type of a2 is the type of a1? In both cases, this reasoning requires
a type-erasing semantics. We claimed that the explicitly-typed System F has an erasing
semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the reduction of type ap-
plications on explicitly-typed terms is dropped by type erasure, hence the two reductions
cannot coincide exactly. The way to formalize this is to split reduction steps into βδ-steps
corresponding to β or δ rules that must be preserved by type erasure, and ι-steps corre-
sponding to the reduction of type applications that disappear during type erasure. This can
be summarized in the following diagram:

M0 M ′

0 M1

a0 a1
βδ

βδι

∗

. . .

Mj M ′

j Mj+1

aj aj+1
βδ

βδι

∗

. . .

Mn V

an = v /

/
ι

∗

We say that we establish a bisimulation between reduction on typed-terms and their erasure
up to ι-steps. The bisimulation can be decomposed into a direct and a inverse simulation.

Lemma 21 (Direct simulation) The reduction in F is simulated in ⌈F⌉ up to ι-steps.
Assume Γ ⊢M ∶ τ . Then:
1) If M Ð→ι M ′, then ⌈M⌉ = ⌈M ′⌉
2) If M Ð→βδ M ′, then ⌈M⌉ Ð→βδ ⌈M ′⌉
The inverse direction is more delicate to state, since type erasure is not bijective: there are
usually many expressions of F whose type erasure is a given expression in ⌈F⌉.
Lemma 22 (Inverse simulation) Assume Γ ⊢M ∶ τ and ⌈M⌉Ð→ a. Then, there exists a
term M ′ such that M Ð→∗ιÐ→βδ M ′ and ⌈M ′⌉ = a.
Of course, the semantics can only be type erasing if δ-rules do not themselves depend on
type information. First, we need δ-reduction to be defined on type erasures. We may prove
the theorem directly for some concrete examples of δ-reduction.

However, keeping δ-reduction abstract is preferable to avoid repeating the same reasoning
many times. Then, we must assume that it is such that type erasure establishes a bisimulation
for δ-reduction taken alone.
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Assumption on δ. We assume that for any explicitly-typed term M of the form
d τ1 . . . τj V1 . . . Vk such that Γ ⊢M ∶ τ , both of the following properties hold:

(Direct bisimulation) If M Ð→δ M ′, then ⌈M⌉ Ð→δ ⌈M ′⌉.
(Inverse bisimulation) If ⌈M⌉ Ð→δ a, then there exists M ′ such that M Ð→δ M ′ and a is

the type-erasure of M ′.

In most cases, the assumption on δ-reduction is obvious to check. Notice however, that in
general the δ-reduction on untyped terms is larger than the projection of δ-reduction on typed
terms, because it pattern matches on the shapes of values but ignoring types. However, if we
restrict δ-reduction to implicitly-typed terms, then it usually coincides with the projection
of reduction of explicitly-typed terms.

Exercise 33 Consider the explicitly-typed System F with pairs of the exercise 24 (p. 57).
Add pairs in the untyped λ-calculus. Show that δ-reduction in the untyped λ-calculus is larger
than the image of the δ-reduction in the explicitly-typed calculus. Verify that type erasure is
a bisimulation for δ-reduction. (Solution p. 87)

The direct simulation (Lemma 21) is straightforward to establish. (Details of the proof p. 88)

The inverse simulation is slightly more delicate because there may be many antecedents
of a given type erasure. We use a few easy helper lemmas to keep the proof clearer.

Lemma 23

1) A term that erases to ē[a], then M0 is of the form Ē[M] where ⌈Ē⌉ is ē and ⌈M⌉ is
a, and moreover, we may assume that M does not start with a type abstraction nor a
type application.

2) If Ē erases to the empty context then Ē is a retyping context R.

3) If R[M] is in ι-normal form, then R is of the form Λα⃗.[] τ⃗ .
The main helper lemma is :

Lemma 24 (Inversion of type erasure) Assume ⌈M⌉ = a
• If a is x, then M is of the form R[x]
• If a is c, then M is of the form R[c]
• If a is λx. a1, then M is of the form R[λx ∶τ.M1] with ⌈M1⌉ = a1
• If a is a1 a2, then M is of the form R[M1 M2] with ⌈Mi⌉ = ai

The proof is by an induction on M .
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Lemma 25 (Inversion of type erasure for well-typed values) Assume Γ ⊢M ∶ τ and
M is ι-normal. If ⌈M⌉ is a value v, then M is a value V . Moreover,

• If v is λx. a1, then V is Λα⃗.λx ∶τ.M1 with ⌈M1⌉ = a1.
• If v is a partial application c v1 . . . vn then V is R[c τ⃗ V1 . . . Vn] with ⌈Vi⌉ = vi.

The proof is by induction on M . It uses the inversion of type erasure, then analysis of the
typing derivation to restrict the form of retyping contexts. (Details of the proof p. 88)

Corollary 26 Let M be a well-typed term in ι-normal whose erasure is a

• If a is (λx. a1) v must be of the form R[(λx ∶τ.M1) V ], with ⌈M1⌉ equal to a1 and ⌈V ⌉
equal to v.

• If a is a full application c v1 . . . vn then M is of the form R[c τ⃗ V1 . . . Vn] with ⌈Vi⌉ = vi.
(Proof p. 88)

We may now prove inverse simulation. It suffices to prove it when M is ι-normal. The
general case follows, since one may first ι-reduce M to a normal form M0, while preserving
typings, thanks to subject reduction and type erasure; the lemma can then be applied to M0

instead of M . Notice that this reasoning relies on the termination of ι-reduction. Indeed, if
ι-reduction could diverge, it is unlikely that the semantics would be type erasing.

Termination of ι-reduction follows indirectly from the termination of reduction in Sys-
tem F. Its direct proof is also immediate, as ι-reduction strictly decreases the number of
type abstractions.

Proof (inverse simulation): The proof is by induction on the reduction of ⌈M⌉. We assume
M is in ι-normal form.

Case ⌈M⌉ is (λx.a1) v : By Corollary 26, M is of the form R[(λx ∶ τ1.M1) V ]. Since R is
an evaluation context, M reduces to R[[x ↦ V ]M1] whose erasure is [x ↦ v]a1, i.e. a.

Case ⌈M⌉ is e[a1] and a1 Ð→ a2: By Lemma 23, M is of the form Ē[M1] where ⌈Ē⌉ is ē and
⌈M1⌉ is a1. By compositionality (Lemma 18), M1 is well-typed. Since M is ι-normal and Ē

is an evaluation, M1 is also ι-normal. By induction hypothesis, M1 reduces in one βδ step to
a term M2 whose erasure is a2. Hence, by Context, M reduces in one βδ-step to the term
Ē[M2] whose erasure is ē[a2], i.e. a.

Case ⌈M⌉ is a full application (d v1 . . . vn) and reduces to a: By Corollary 26, M is of
the form R[M0] where M0 is d τ⃗ V1 . . . Vn a ⌈Vi⌉ is vi. Since ⌈M0⌉ Ð→ a, by the inverse
assumption for δ-rules, there exists M ′

0 such that M0 Ð→δ M ′

0 and ⌈M ′

0⌉ is a. Let M ′ be
R[M ′

0]. Since R is an evaluation context, we have M Ð→δ M
′ and ⌈M ′⌉ is a.

We may now easily transpose subject reduction and progress from the implicitly-typed ver-
sion to the implicitly-typed version of System F.



72 CHAPTER 4. POLYMORPHISM AND SYSTEM F

Theorem 12 (Type soundness for implicitly-typed System F)
Progress and subject reduction holds in implicitly-typed System F.

Proof: Assume that Γ ⊢ a1 ∶ τ . By Lemma 20, there exists a term M1 such that Γ ⊢ M1 ∶ τ .
and ⌈M1⌉ is a1.

Progress: Let M2 be the ι-normal form of M1. By direct simulation, ⌈M2⌉ is a. By subject
reduction, we have Γ ⊢ M2 ∶ τ . By progress in F, either M2 βδ-reduces and so does a, by
direct simulation (Lemma 21) or M2 is a value and so is its erasure a1 (by observation).

Subject reduction: Assume a1 Ð→ a2. By inverse simulation (Lemma 22), there exists a
term M2 such that M1 Ð→

∗

ιÐ→βδ M2 and ⌈M2⌉ is a2. By subject reduction in F, we have
Γ ⊢M2 ∶ τ . By Lemma 20, we have Γ ⊢ a2 ∶ τ , as expected.

Remarks The design of advanced typed systems for programming languages is usually
done in explicitly-typed version, with a type-erasing semantics in mind, but this is not always
checked in details (and sometimes not even made very clear). While the direct simulation
is usually straightforward, the inverse simulation is often harder. As the type system gets
more complicated, reduction at the level of types also gets more involved. It is important
and not always obvious that type reduction terminates and is rich enough to never block
reductions that could occur in the type erasure.

For example, Crétin and Rémy (2012) extend System Fη with abstraction over retyping
functions, but keep the type systems bridled to preserve the type erasure semantics.

Bisimulation is a standard technique to show that compilation preserves the semantics
given in small-step style. For example, it is heavily used in the CompCert project (Leroy,
2006) to prove the correctness of a compiler from C to assembly code, using the Coq proof
assistant. The compilation from C to assembly code is decomposed into a chain of trans-
formation using a dozen of successive intermediate languages; each of the transformation is
then proved to be semantic preserving using bisimulation techniques.

4.5 Polymorphism and references

In this chapter, we have just shown how to extend simply-typed λ-calculus with polymor-
phism. In the previous chapter we have shown how to extend simply-typed λ-calculus with
references. Can these extensions be combined together?

When adding references, we noted that type soundness relies on the fact that every
reference cell (or memory location) has a fixed type. Otherwise, if a location had two types
ref τ1 and ref τ2, one could store a value of type τ1 and read back a value of type τ2. Hence,
it should also be unsound if a location could have type ∀α. ref τ (where α appears in τ) as
it could then be specialized to both types ref [α ↦ τ1]τ and ref [α ↦ τ2]τ . By contrast, a

http://compcert.inria.fr/
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location ℓ can have type ref (∀α. τ): this says that ℓ stores values of polymorphic type ∀α. τ ,
but ℓ, as a value, is viewed with the monomorphic type ref (∀α. τ).

4.5.1 A counter example

Still, if System F is naively extended with references, it allows the construction of polymor-
phic references, which breaks subject reduction:

let y ∶ ∀α. ref (α → α) =
Λα.ref (α → α) (λz ∶α. z)

in(y bool) ∶= (bool→ bool) not;
!(int→ int) (y (int)) 1 / ∅

∗

Ð→ not 1 / ℓ↦ not

(2) Abstracts α and binds ℓ to y of type ∀α. ref (α → α)
(1) Creates and returns a location ℓ of type ref (α → α)

bound to the identity function λz ∶α. z of type α → α

(3) Writes the location at type bool→ bool
(4) Reads it back at type int→ int

The program is well-typed, but reduces to the stuck expression “not 1”. So what went
wrong? As described on the right-hand side, the fault is that the location is written at type
bool and read back at type int. This is permitted because the location has a polymorphic
type ∀α. ref α → α. So this must be wrong. Indeed, the first reduction step uses the following
rule (where V is λx ∶α.x and τ is α → α).

Context
ref τ V /∅Ð→ ℓ / ℓ↦ V

Λα.ref τ V /∅Ð→ Λα.ℓ / ℓ↦ V

While we have

α ⊢ ref τ V /∅ ∶ ref τ and α ⊢ ℓ / ℓ↦ V ∶ ref τ

We have

⊢ Λα.ref τ V /∅ ∶ ∀α. ref τ but not ⊢ Λα.ℓ / ℓ↦ V ∶ ∀α. ref τ

Hence, the context case of subject reduction breaks.

The typing derivation of Λα.ℓ requires a store typing Σ of the form ℓ ∶ τ and a derivation
of the form (according to Rule Loc given below, page 4.5.2):

Tabs
Σ, α ⊢ ℓ ∶ ref τ

Σ ⊢ Λα.ℓ ∶ ∀α. ref τ

However, the typing context Σ, α is ill-formed as α appears free in Σ. Instead, a well-formed
premise should bind α earlier as in α,Σ ⊢ ℓ ∶ ref τ , but then, Rule Tabs cannot be applied.

By contrast, the expression ref τ V is pure, so Σ may be empty:

Tabs
α ⊢ ref τ V ∶ ref τ

∅ ⊢ Λα.ref τ V ∶ ∀α. ref τ
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The expression Λα.ℓ is correctly rejected as ill-typed, so Λα.ref τ V should also be rejected.
There is a fix to the bug known as this mysterious slogan:

One must not abstract over a type variable that might, after evaluation of the
term, enter the store typing.

Indeed, this is was happens in our example. The type variable α which appears in the type
of V is abstracted in front of ref τ V . When ref τ V reduces, α → α becomes the type of the
fresh location ℓ, which appears in the new store typing. This is all well and good, but how
do we enforce this slogan?

In the context of ML, a number of rather complex historic approaches have been followed:
see Leroy (1992) for a survey. Then came Wright (1995), who suggested an amazingly simple
solution, known as the value restriction: only value forms can be abstracted over.

TAbs

Γ, α ⊢ U ∶ τ

Γ ⊢ Λα.U ∶ ∀α.τ

Value forms:

U ∶∶= x ∣ V ∣ Λα.U ∣ U τ

The problematic proof case vanishes, as we now never βδ-reduce under type abstraction,
only ι-reduction is possible. Subject reduction holds again. Let us prove it.

4.5.2 Internalizing configurations

A configuration M / µ is an expression M in a memory µ. Intuitively, the memory can be
viewed as a recursive extensible mutable record. The configuration M / µ may be viewed
as the recursive definition (of values) let rec m ∶ Σ = µ in [ℓ̄ ↦ m.ℓ̄]M where Σ is a store
typing for µ. The store typing rules are coherent with this view. For instance, allocation of
a reference is a reduction of the form:

let rec m ∶ Σ = µ in E[ref τ V ]
Ð→ let rec m ∶ Σ, ℓ ∶ τ = µ, ℓ↦ v in E[m.ℓ]

For this transformation to preserve well-typedness, it is clear that the evaluation context
E must not bind any type variable appearing in τ ; otherwise, we are violating the scoping
rules.

Let use clarify the typing rules for configurations:
Config

α⃗ ⊢M ∶ τ α⃗ ⊢ µ ∶ Σ

α⃗ ⊢M / µ ∶ τ
Store

∀ℓ ∈ dom(µ), α⃗,Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)
α⃗ ⊢ µ ∶ Σ

Closed configurations must be typed in an environment composed of type variables. No new
type variables is never introduced during reduction. These type variables may appear in the
store typing during reduction, there are thus placed in front the store typing and cannot be
generalized.
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Judgments are now of the form α⃗,Σ,Γ ⊢ M ∶ τ although we may see α⃗,Σ,Γ as a whole
typing context Γ′. For locations, we need a new context formation rule:

WfEnvLoc

⊢ Γ Γ ⊢ τ ℓ ∉ dom(Γ)
⊢ Γ, ℓ ∶ τ

This allows locations to appear anywhere. However, in a derivation of a closed term, the
typing context will always be of the form α⃗,Σ,Γ where Σ only binds locations (to arbitrary
types) and Γ does not bind locations.

The typing rule for memory locations (where Γ is of the form α⃗,Σ,Γ′) is:

Loc

Γ ⊢ ℓ ∶ ref Γ(ℓ)
In System F, typing rules for references need not be primitive. We may instead treat them
as constants of the following types:

ref ∶ ∀α.α→ ref α (!) ∶ ∀α. ref α → α (∶=) ∶ ∀α. ref α→ α→ unit

They are all destructors (event ref ) with the obvious arities.

The δ-rules are adapted to carry explicit type parameters:

ref τ V / µÐ→ ℓ / µ[ℓ↦ V ] if ℓ /∈ dom(µ)
ℓ ∶= (τ) V / µÐ→ () / µ[ℓ↦ V ] !τ ℓ / µÐ→ µ(ℓ) / µ

Type soundness can now be stated as

Lemma 27 δ-rules preserve well-typedness of closed configurations.

Theorem 13 (Subject reduction) Reduction of closed configurations preserves well-typed-
ness.

Lemma 28 A well-typed closed configuration M/µ where M is a full application of constants
ref, (!), and (∶=) to types and values can always be reduced.

Theorem 14 (Progress) A well typed irreducible closed configuration M/µ is a value.

As a sanity check, the problematic program is now syntactically ill-formed:

let y ∶ ∀α. ref (α → α) = Λα.ref (α → α) (λz ∶α. z) in(y bool) ∶= (bool→ bool) not;
!(int→ int) (y (int))1

Indeed, ref (α → α) (λz ∶α. z) is not a value, but the application of a unary destructor to a
value, so the expression Λα.ref (α → α) (λz ∶α. z) is not allowed.



76 CHAPTER 4. POLYMORPHISM AND SYSTEM F

Consequences With the value restriction, some pure programs become ill-typed, even
though they were well-typed in the absence of references. This style of introducing references
in System F (or in ML) is not a conservative extension.

Assuming functions map and id of respective types ∀α. list α → list α and ∀α.α → α,
the expression Λα.map α (id α) is now ill-typed. A common work-around is to perform a
manual η-expansion Λα.λy ∶ list α.map α (id α) y. However, in the presence of side effects,
η-expansion is not semantics preserving, so this must not be done blindly.

In practice, the value restriction can be slightly relaxed by enlarging the class of value
forms to a syntactic category of so-called non-expansive terms—terms whose evaluation will
definitely not allocate new reference cells. Non-expansive terms form a strict superset of value
forms. Garrigue (2004) relaxes the value restriction in a more subtle way, which is justified
by a subtyping argument. For instance, the following expressions may be well-typed:

• Λα.((λx ∶τ.U) U) because the inner expression is non-expansive;

• Λα.(let x ∶ τ = U in U), which is its syntactic sugar;

• let x ∶ ∀α. list α = Λα.(M1 M2) inM because α appears only positively in the type of
eappM1M2.

OCaml implements both refinements.
In fact, Λα.M need only be forbidden when α appears negatively in the type of some

exposed expansive terms where exposed subterms are those that do not appear under some
λ-abstraction. For instance, the expression

let x ∶ ∀α. int × (list α) × (α → α) = Λα.(ref (1 + 2), (λx ∶α.x) Nil, λx ∶α.x) inM
may be well-typed because α appears only in the type of the non-expansive exposed expres-
sions λx ∶α.x and positively in the type of expansive expression (λx ∶α.x) Nil.

(This refinement is not implemented in OCaml, though.)

Remark Experience has shown that the value restriction is tolerable. Even though it is
not conservative, the search for better solutions has been pretty much abandoned.

In a type-and-effect system (Lucassen and Gifford, 1988; Talpin and Jouvelot, 1994), or
in a type-and-capability system (Charguéraud and Pottier, 2008), the type system indicates
which expressions may allocate new references, and at which type. There, the value re-
striction is no longer necessary—but these systems are heavy. However, if one extends a
type-and-capability system with a mechanism for hiding state, which remains useful even in
those systems, the need for the value restriction re-appears.

Pottier and Protzenko (2012) are designing a language Mezzo where mutable states is
tracked quite precisely, with permissions, ownership, linear types that even enable a reference
to even change the type of its values over time, which is called strong update.
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4.6 Damas and Milner’s type system

Damas and Milner’s type system Milner (1978) offers a restricted form of polymorphism,
while avoiding the difficulties associated with type inference in System F. This type system
is at the heart of Standard ML, OCaml, and Haskell.

The idea behind the definition of ML is to make a small extension of simply-typed λ-
calculus that enables to factor out several occurrences of the same subexpression a1 in a
term of the form [x ↦ a1]a2 using a let-binding form let x = a1 in a2 so as to avoid code
duplication.

Expressions of the simply-typed λ-calculus are extended with a primitive let-binding,
which can also be viewed as a way of annotating some redexes (λx. a2) a1 in the source
program. This actually provides a simple intuition behind Damas and Milner’s type system:
a closed term has type τ if and only if its let-normal form has type τ in simply-typed λ-
calculus. A term’s let-normal form is obtained by iterating the following rewrite rule, in any
context:

let x = a1 in a2 Ð→ a1; [x↦ a1]a2
Notice that we use a sequence starting with a1 and not just [x↦ a1]a2. This is to enforce
well-typedness of a1 in the pathological case where x does not appear free in a2. If we
disallow this pathological case (e.g. well-formedness could require that x always occurs in
a2) then we could just use the more intuitive rewrite rule:

let x = a1 in a2 Ð→ [x↦ a1]a2
This intuition suggests type-checking and type inference algorithms. However, these algo-
rithms are not practical, because they have intrinsic exponential complexity; and separate
compilation prevents reduction to let-normal forms.

In the following, we study a direct presentation of Damas and Milner’s type system,
which does not involve let-normal forms. It is practical, because it leads to an efficient type
inference algorithm (presented in chapter §5); and it supports separate compilation.

4.6.1 Definition

The language ML is usually presented in its implicitly-typed version, where terms are given
by:

a ∶∶= x ∣ c ∣ λx. a ∣ a a ∣ let x = a in a ∣ . . .
The let construct is no longer sugar for a β-redex but a primitive form that will be typed
especially.

The language of types lies between those for simply-typed λ-calculus and System F; it
is stratified between types and type schemes. The syntax of types is that of simply-typed
λ-calculus, but a separate category of type schemes is introduced:

τ ∶∶= α ∣ τ → τ ∣ . . . σ ∶∶= τ ∣ ∀α.σ
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iml-Var

Γ ⊢ x ∶ Γ(x) iml-Cst

Γ ⊢ x ∶∆(x)
iml-Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx. a ∶ τ0 → τ

iml-App

Γ ⊢ a1 ∶ τ2 → τ1 Γ ⊢ a2 ∶ τ2

Γ ⊢ a1 a2 ∶ τ1

iml-Let

Γ ⊢ a1 ∶ σ1 Γ, x ∶ σ1 ⊢ a2 ∶ σ2

Γ ⊢ let x = a1 in a2 ∶ σ2

iml-Gen

Γ, α ⊢ a ∶ σ

Γ ⊢ a ∶ ∀α.σ

iml-Inst

Γ ⊢ a ∶ ∀α.σ

Γ ⊢ a ∶ [α ↦ τ]σ
Figure 4.3: Typing rules for ML

All quantifiers must appear in prenex position, so type schemes are less expressive than
System-F types. We often write ∀α⃗. τ as a short hand for ∀α1. . . .∀αn. τ . When viewed as
a subset of System F, one must think of type schemes are the primary notion of types, of
which types are a subset.

An ML typing context Γ binds program variables to type schemes. In the implicitly-typed
presentation, type variables are often introduced implicitly and not part of Γ. However, we
keep below the equivalent presentation where type variables are declared in Γ. Judgments
now take the form Γ ⊢ a ∶ σ. Types form a subset of type schemes, so type environments
and judgments can contain types too.

The standard, non-syntax-directed presentation of ML is given in Figure 4.3. Rule Let

moves a type scheme into the environment, which Var can exploit. Rule Abs and App are
unchanged. λ-bound variables receive a monotype. Rule Gen and Inst are as in implicitly-
typed System F, except that type variables are instantiated with monotypes.

For example, here is a type derivation that exploits polymorphism (writing Γ for f ∶

∀α.α → α.) for an implicitly-typed term (omitting the iml- prefix of typing rules):

Let

Gen

Abs

Var
α, z ∶ α ⊢ z ∶ α

α ⊢ λz. z ∶ α → α

∅ ⊢ λz. z ∶ ∀α.α → α

Γ ⊢ f ∶ ∀α.α → α
Var

Γ ⊢ f ∶ int→ int
Inst

Γ ⊢ f 0 ∶ int
App

Γ ⊢ f ∶ ∀α.α→ α
Var

Γ ⊢ f ∶ bool→ bool
Inst

Γ ⊢ f true ∶ bool
App

Γ ⊢ (f 0, f true) ∶ int × bool Pair

∅ ⊢ let f = λz. z in (f 0, f true) ∶ int × bool
Notice that Rule Gen is used above Let (on the left-hand side), and Inst is used below
Var. In fact, we will see below that every type derivation can be transformed into one of
this form.

As a counter-example, the term λf. (f 0, f true) is ill-typed. Indeed, as it contains no
“let” construct, it is type-checked exactly as in simply-typed λ-calculus, where it is ill-typed,
because f must be assigned a type τ that must simultaneously be of the form int → τ1 and
bool → τ2, but there is no such type. Recall that this term is well-typed in implicitly-typed
System F because f can be assigned, for instance, the polymorphic type ∀α.α → α.
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eml-Var

Γ ⊢ x ∶ Γ(x) eml-Cst

Γ ⊢ c ∶ ∆(c)
eml-Abs

Γ, x ∶ τ0 ⊢M ∶ τ

Γ ⊢ λx ∶τ0.M ∶ τ0 → τ

eml-App

Γ ⊢M1 ∶ τ2 → τ1 Γ ⊢M2 ∶ τ2

Γ ⊢M1 M2 ∶ τ1

eml-Let

Γ ⊢M1 ∶ σ1 Γ, x ∶ σ1 ⊢M2 ∶ σ2

Γ ⊢ let x ∶ σ =M1 inM2 ∶ σ2

eml-Tabs

Γ, α ⊢M ∶ σ

Γ ⊢ Λα.M ∶ ∀α.σ

eml-Tapp

Γ ⊢M ∶ ∀α.σ

Γ ⊢M τ ∶ [α ↦ τ]σ
Figure 4.4: Typing rules for eML (explicitly-typed ML)

While we rather use implicitly-typed terms in programs, we usually prefer to use an
explicitly-typed presentation of ML in proofs. We thus identify a subset of terms of System F
whose type erasure coincide with terms of ML. The subset of terms is defined by the follow
syntax:

M ∈ eML ∶∶= x ∣ c ∣ λx ∶τ .M ∣M M ∣ Λα.M ∣M τ ∣ let x ∶ σ =M in M . . .

where τ and σ are ML-types and type schemes and not arbitrary System-F types. The typing
rules for explicitly-typed terms are given on Figure 4.4.

These are restrictions of the typing rules of System-F to terms and types of ML. Therefore,
if Γ ⊢eML M ∶ σ then Γ ⊢F M ∶ σ. In particular, explicitly-typed terms of ML have unique
typing derivations—and actually unique types—as in System-F.

Unfortunately, the converse is not true—when M is syntactically in ML and Γ and σ are
well-formed in eML, of course. Hence, the relation ⊢eML cannot be defined as the restriction
of ⊢F to ML environments terms and type schemes.

Exercise 34 Find a term M that is syntactically in eML and a type scheme σ such that
Γ ⊢F M ∶ σ holds but Γ ⊢eML M ∶ σ does not hold. (Solution p. 89)

4.6.2 Syntax-directed presentation

Explicitly-typed terms of ML have unique typing derivations—and actually unique types—as
in System-F. By contrast with explicitly-typed terms, implicitly-typed terms have several
types, since parameters of functions are not annotated, but also several typing derivations,
since places for type abstraction and type applications are not specified either, much as in
System F.

Interestingly, there is a syntax-directed presentation of implicitly-typed ML terms where
the shape of typing derivations is entirely determined by the term and is thus unique. Taking
the explicitly-typed view, this amounts to restricting the source terms so that there is no
choice for placing type abstraction and type applications.
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xml-Tabs

Γ, α⃗ ⊢ Q ∶ τ

Γ ⊢ Λα⃗.Q ∶ ∀α⃗. τ

xml-Abs

Γ, x ∶ τ0 ⊢ Q ∶ τ

Γ ⊢ λx ∶τ0.Q ∶ τ0 → τ

xml-App

Γ ⊢ Q1 ∶ τ2 → τ1 Γ ⊢ Q2 ∶ τ2

Γ ⊢ Q1 Q2 ∶ τ1

xml-LetGen

Γ, α⃗ ⊢ Q1 ∶ τ1 Γ, x ∶ ∀α⃗. τ1 ⊢ Q2 ∶ τ2

Γ ⊢ let x ∶ ∀α⃗. τ1 = Λα⃗.Q1 in Q2 ∶ τ2

xml-VarInst

∀α⃗. τ = Γ(x)
Γ ⊢ x τ⃗ ∶ [α⃗↦ τ⃗]τ

xml-CstInst

∀α⃗. τ =∆(c)
Γ ⊢ c τ⃗ ∶ [α⃗↦ τ⃗]τ

Figure 4.5: Typing rules for xML

norm-Var

∀α⃗. τ = Γ(x)
Γ ⊢ x ∶ ∀α⃗. τ ⇒ Λα⃗.x α⃗

norm-Tabs

Γ, α ⊢M ∶ σ⇒N

Γ ⊢ Λα.M ∶ ∀α.σ⇒ Λα.N

norm-Tapp

Γ ⊢M ∶ ∀α.σ⇒ Λα.N

Γ ⊢M τ ∶ [α↦ τ]σ⇒ [α↦ τ]N
norm-Cst

∀α⃗. τ =∆(c)
Γ ⊢ c ∶ ∀α⃗. τ ⇒ Λα⃗.c α⃗

norm-Let

Γ ⊢M1 ∶ σ1 ⇒N1 Γ, x ∶ σ1 ⊢M2 ∶ ∀α⃗. τ ⇒ Λα⃗.Q α⃗# N1, σ1

Γ ⊢ let x ∶ σ1 =M1 in M2 ∶ ∀α⃗. τ ⇒ Λα⃗.let x ∶ σ1 = N1 in Q

norm-App

Γ ⊢M1 ∶ τ2 → τ1 ⇒ Q1 Γ ⊢M2 ∶ τ2 ⇒ Q2

Γ ⊢M1 M2 ∶ τ1 ⇒ Q1 Q2

norm-Abs

Γ, x ∶ τ0 ⊢M ∶ τ ⇒ Q

Γ ⊢ λx ∶τ0.M ∶ τ0 → τ ⇒ λx ∶τ0.Q

Figure 4.6: Normalization of ML derivations

Let xML be the subset of explicitly-typed ML defined by the following grammar

N ∈ xML ∶∶= Λα⃗.Q
Q ∶∶= x τ⃗ ∣ Q Q ∣ λx ∶τ.Q ∣ let x ∶ σ = N in Q

where τ here ranges over simple types and such that all type variables are fully instantiated.
That is, we request that the arity of τ⃗ in x τ⃗ be the arity of α⃗ in the type scheme ∀α⃗. τ
assigned to the variable x. In particular, all Q-terms are typed with simple types.

Specializing the typing rules of eML (Figure 4.4) to the syntax of xML gives the typing
rules of xML on Figure 4.5. By construction, terms of xML are a syntactic subset of terms
of eML. By construction, we also have if Γ ⊢xML M ∶ σ then Γ ⊢eML M ∶ σ.

Conversely, we wish to show that any term M typable in eML can be mapped to a term
N typable in xML that has the same type erasure. For this purpose, we define on Figure 4.6
a normalization judgment Γ ⊢ M ∶ σ ⇒ N by inference rules, which can also be read as an
algorithm that performs:
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• Type η-expansion of every occurrence of a variable according to the arity of its type
scheme (Rule Var). This ensures that every occurrence of a type variable will be fully
specialized—hence assigned a monomorphic type.

• Strong ι-reduction, i.e. type β-reduction (Rule Tapp): this cancels type applications
of type abstractions. As a result, elaborated terms do not contain any ι-redex.

The translation is well-defined for all eML terms, since it follows the structure of the typing
derivation in eML. Formally, if Γ ⊢eML M ∶ σ holds then Γ ⊢ M ∶ σ ⇒ N holds. The proof is
by induction on M and all cases are obvious.

Moreover, if Γ ⊢ M ∶ σ holds, then Γ ⊢xML N ∶ σ also holds and M and N have the same
erasure. The proof is also by induction on M . The preservation of erasure is immediate.
The only non obvious cases for well-typedness of N are Norm-Tapp, which performs strong
ι-reduction and uses type substitution (Lemma 17), and Norm-Let, which extrudes type
abstractions.

Another way to look at the normalization of terms is as a rewriting of the typing deriva-
tions so that all applications of Inst come immediately after Var and all applications of Gen

come immediately above rule Let or at the bottom of the derivation—as imposed by the
grammar of xML terms where Q-terms can only have monomorphic types.

In summary, any term of eML can be rearranged as a term of xML with the same type
erasure. By dropping type information in terms of xML, we then obtain a syntax-directed
presentation of implicitly-typed ML, called sML:

xml-Tabs

Γ, α⃗ ⊢M ∶ τ

Γ ⊢ Λα⃗.M ∶ ∀α⃗. τ

sml-Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx. a ∶ τ0 → τ

sml-App

Γ ⊢ a2 ∶ τ2 Γ ⊢ a1 ∶ τ2 → τ1

Γ ⊢ a1 a2 ∶ τ1

sml-LetGen

Γ, α⃗ ⊢ a1 ∶ τ1 Γ, x ∶ ∀α⃗. τ1 ⊢ a2 ∶ τ2

Γ ⊢ let x = a1 in a2 ∶ τ2

sml-VarInst

∀α⃗. τ = Γ(x)
Γ ⊢ x ∶ [α⃗↦ τ⃗]τ

sml-CstInst

∀α⃗. τ =∆(c)
Γ ⊢ c ∶ [α⃗ ↦ τ⃗ ]τ

Then, the judgments Γ ⊢ML a ∶ τ and Γ ⊢sML a ∶ τ are equivalent.

However, for type inference, we rather use the equivalent presentation in Figure 4.7 called
iML (or the inference type system) where type variables are not explicitly declared in the
typing context—hence, the side condition for generalization on rule Let.

In this final system, type substitution (Lemma 17), which we will use for type inference,
can be restated as follows:

Lemma 29 (Type Substitution) Typings are stable by substitution.
If Γ ⊢ a ∶ τ then ϕΓ ⊢ a ∶ ϕτ . for any substitution ϕ.
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ml-Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx. a ∶ τ0 → τ

ml-App

Γ ⊢ a2 ∶ τ2 Γ ⊢ a1 ∶ τ2 → τ1

Γ ⊢ a1 a2 ∶ τ1

ml-LetGen

Γ ⊢ a1 ∶ τ1 α⃗ # Γ Γ, x ∶ ∀α⃗. τ1 ⊢ a2 ∶ τ2

Γ ⊢ let x = a1 in a2 ∶ τ2

ml-VarInst

∀α⃗. τ = Γ(x)
Γ ⊢ x ∶ [α⃗↦ τ⃗]τ

ml-VarCst

∀α⃗. τ = ∆(c)
Γ ⊢ c ∶ [α⃗ ↦ τ⃗ ]τ

Figure 4.7: Syntax-directed rules for ML

4.6.3 Type soundness for ML

Since ML is a subset of ⌈F⌉, which has been proved sound, we know that ML is sound,
i.e. that ML programs cannot go wrong. This also implies that progress holds in ML.
However, we do not know whether subject reduction holds for ML. Indeed, ML expressions
could reduce to System F expressions that are not in the ML subset. Most proofs of subject
reduction for implicitly-typed ML work directly with implicitly-typed terms. See for instance
(Wright and Felleisen, 1994; Pottier and Rémy, 2005).

Subject-reduction in eML The proof of subject reduction follows the same schema as for
System F (Theorem 9). The main part of the proof works almost unchanged. However, it uses
auxiliary lemmas (inversion, permutation, weakening, type substitution, term substitution,
compositionality) that all need to be rechecked, since those lemmas conclude with typing
judgments in F that may not necessarily hold in eML. Unsurprisingly, all proofs can be easily
adjusted.

An indirect proof reusing subject-reduction in System F We also present an indi-
rect proof that reuses subject reduction and progress in System F and the syntax-directed
presentation of ML.

To establish subject-reduction in ML, let a1 be an implicitly-typed ML term such that
both α⃗ ⊢ML a1 ∶ σ and a1 Ð→ a2 hold. There exists an explicitly-typed term M1 such that
α⃗ ⊢eML M1 ∶ σ and ⌈M1⌉ = a1. By normalization, we may elaborate M1 into a term N1 of
xML such that α⃗ ⊢xML N1 ∶ σ and the ⌈N1⌉ = ⌈M1⌉. Moreover, N1 is by construction ι-normal.
Since xML is a subset of System F, we have α⃗ ⊢F N1 ∶ σ. By inverse simulation in System F
(Lemma 22), there exists N2 in F whose type erasure is a2 and such that N1 Ð→β N2 (since
N1 is ι-normal). We show below that there exists a strong ι-reduction M2 of N2 that is in
xML and such that α⃗ ⊢xML N2 ∶ σ. Therefore, we have α⃗ ⊢eML M2 ∶ σ and since the type
erasure of M2 is that of N2, i.e. a2, we have α⃗ ⊢ML a2 ∶ σ, as expected.

It thus remains to check that given a term N1 such that Γ ⊢xML N1 ∶ σ and N1 Ð→β N2,
there exists a term M2 in xML that is a strong ι-reduction of N2 and such that Γ ⊢xML N2 ∶ σ.
This can be decomposed into the existence ofM2 and type preservation by strong ι-reduction.
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The β-reduction step may occur in any evaluation context and is one of two forms. If it
is a normal β-reduction: (λx ∶τ.Q) V Ð→ [x ↦ V ]Q
it preserves syntactic membership in eML, because since x is bound to a type and its occur-
rences in M cannot be specialized. However, if it is a let-reduction

let x ∶ ∀α⃗. τ = V in QÐ→ [x↦ V ]Q
then occurrences of x in Q, which are of the form x τ⃗ , become V τ⃗ and may contain ι-
redexes—which are not allowed in xML. Fortunately, V is necessarily of the form Λα⃗.V ′

where the arity of α⃗ is equal to that of τ⃗ . Hence, we may immediately perform a sequence of
ι-reduction that brings the term back into xML and in ι-normal form. Notice however that
this ι-redex is not in general in a call-by-value evaluation context. Indeed, x may appear
under an abstraction in M . Hence, this is a strong reduction step.

For type reduction, we need to ensure that strong ι-reduction is also type-preserving.
This is an easy auxiliary proof—but not a consequence of subject reduction, which we have
only proved for reduction in call-by-value evaluation contexts.
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4.7 Ommitted proofs and answers to exercises

Solution of Exercise 24

As in the case where pairs are primitive, we introduce one constructor (⋅, ⋅) of arity 2 and
and two destructors proj1 and proj2 of arity 1, with the following types in ∆

Pair ∶ ∀α1.∀α2. α1 → α2 → α1 ×α2

proji ∶ ∀α1.∀α2. α1 ×α2 → αi

and the two reduction rules:

proji τ1 τ2 (Pair τ ′1 τ
′

2 V1 V2)Ð→ Vi (δi)
We then only need to verify that δi preserves types and ensure progress.

Case Type preservation: Assume that Γ ⊢ proji τ1 τ2 (Pair τ ′1 τ
′

2 V1 V2) ∶ τ . By inversion,
it must be the case that τ is equal to τi and Γ ⊢ Vi ∶ τi holds, which ensures our goal Γ ⊢ Vi ∶ τ .

Case Progress : Assume that Γ ⊢ M ∶ τ and M is of the form proji τ1 τ2 V . By the
inversion lemma, τ must be a product type τ1 × τ2 such that Γ ⊢ V ∶ τ1 × τ2. By the
classification lemma, V must be a pair, i.e. of a form Pair τ1 τ2 V1 V2. Hence, M reduces to
Vi by δi.

Solution of Exercise 25

We introduce a new type constructor bool, two nullary constructors true and false of type
bool and one ternary destructor ifcase of type ∀α. .bool → α → α → α with two reduction
rules:

ifcase τ true V1 V2 Ð→ V1 ifcase τ false V1 V2 Ð→ V2

This extension is sound.
However, it defines a strict semantics for the conditional, while a lazy semantics is ex-

pected: indeed, since the destructor is ternary, ifcase τ V0 [] M and ifcase τ V0 V1 [] are
evaluations contexts, which allows to reduce the two branches before selecting the right one.

An easy fix is to introduce iflazy τ M0 M1 M2 as syntactic sugar for

(ifcase τ M0 (λ() ∶unit.M1) (λ() ∶unit.M2)) ()
and exposing it to the user, while hiding the primitive ifcase from the user.

Solution of Exercise 26

We introduce a new unary type constructor list ; two constructors Nil ⋅ and Cons of types
∀α. list α and ∀α.α → list α → list α; and one destructor matchlist ⋅ ⋅ ⋅⋅ of type:

∀αβ. list α → β → (α → list α→ β)→ β
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with the two reduction rules:

matchlist τ(Nil τ ′) Vn Vc Ð→ Vn

matchlist τ(Cons τ ′ Vh Vt) Vn Vc Ð→ Vc Vh Vt

Solution of Exercise 27

In ML, we may define the datatype:

type any = Fold of (any → any)

This can be simulated by adding a new type any, a constructor Any and a destructor unany
of types (any → any)→ any and any → (any → any), respectively, with the following reduction
rule:

unfold (Fold V )Ð→ V δany

Let us check soundness of this extension:
Case Type preservation: Assume that Γ ⊢ unfold (Fold V ) ∶ τ . By inversion, we known

that τ is any → any and that Γ ⊢ V ∶ any → any, which shows our goal Γ ⊢ V ∶ τ .
Case Progress : Assume that Γ ⊢ unfold V ∶ τ . By inversion, τ must be any → any and

Γ ⊢ V ∶ any holds. By classification, V must be Fold V0. Hence, unfold V reduces.
The fixpoint can be defined in the λ-calculus (or in ML with recursive types) as :

let zfix g = (fun x → x x) (fun z → g (fun v → z z v))

We may implement zfix in ML without recursive tyes as:

type any = Fold of (any → any);;
let unfold (Fold x) = x;;
let zfix g =
(fun x → unfold (x (Fold x)))
(fun z → Fold (g (fun v → unfold ((unfold z) z) v)));;

Proof of Lemma 16

Assume Γ, x ∶ τ0,Γ′ ⊢M ∶ τ (1) and Γ ⊢M0 ∶ τ0 (2). We show Γ,Γ′ ⊢ [x ↦M0]M ∶ τ (3). by
induction and cases on M and applying the inversion lemma to (1).

Case M is x: By (1), it must be the case that τ is equal to τ0. Hence, the goal (3) is
Γ,Γ′ ⊢M0 ∶ τ0, which follows from the hypothesis (2) by weakening.

Case M is y when y /= x : By (1), y ∶ τ is in dom(Γ, x ∶ τ0,Γ′), actually in dom(Γ,Γ′), since
y is not x. Hence the goal (3) follows by Rule Var.

Case M is c: By (1), c ∶ τ is in ∆. Hence, the goal (3) follows by Rule Var.
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Case M is λy ∶τ1.M1: By (1), τ is of the form τ2 → τ1 and Γ, x ∶ τ0,Γ′, y ∶ τ2 ⊢ M1 ∶ τ1 holds.
By induction hypothesis, we have Γ,Γ′, y ∶ τ2 ⊢ [x ↦ M0]M1 ∶ τ1. By rule Abs, we have
Γ,Γ′ ⊢ λy ∶τ2. [x ↦M0]M1 ∶ τ1, which is the goal (3).

Case M is Λα.M1: By (1), we have Γ, x ∶ τ,Γ′, α ⊢ M1 ∶ τ1 and τ is equal to ∀α. τ1.
By induction hypothesis, we have Γ,Γ′, α ⊢ [x ↦ M0]M1 ∶ τ1. By rule Tabs, we have
Γ ⊢ Λα.[x↦M0]M1 ∶ ∀α. τ1, which is the goal (3).

Case M is M1 M2 or M is M1 τ1: Immediate.

Proof of Lemma 17

The proof is by induction onM using inversion of the typing derivation of Γ, α,Γ′ ⊢M ∶ τ (1).
We write θ for [α ↦ τ].
Case M is x: By (1), we have x ∶ τ must be in Γ, α,Γ′. If x ∶ τ is in Γ, then by well-formedness
of types, α does not appear free in τ . Hence θτ is τ and x ∶ θτ is in Γ. Otherwise, x ∶ τ is
in Γ′ and x ∶ θτ is in θΓ′. In both cases, x ∶ θτ is in Γ, θΓ′. Hence, the conclusion follows by
Rule Var.

Case M is c: By (1), we have c ∶ τ is in ∆ and τ is closed. Hence θτ is equal to τ and c ∶ θτ

is still in ∆. Thus, the conclusion follows by Rule Const.

Case M is λx ∶ τ0.M1: By (1), we have Γ, α,Γ′, x ∶ τ0 ⊢ M1 ∶ τ . By induction hypothesis,
Γ, θ(Γ′, x ∶ τ0) ⊢ M1 ∶ τ , i.e. Γ, θΓ′, x ∶ θτ0 ⊢ θM1 ∶ θτ . By Rule Abs, we have Γ, θΓ′ ⊢ λx ∶

θτ0. θM1 ∶ θτ , i.e. Γ, θΓ′ ⊢ θ(λx ∶τ0.M1) ∶ θτ .
Case M is Λβ.M1: By (1), we have Γ, α,Γ′, β ⊢ M1 ∶ τ . By induction hypothesis, we
have Γ, θ(Γ′, β) ⊢ θM1 ∶ θτ , which is equal to Γ, θΓ′, β ⊢ θM1 ∶ θτ . By rule Tabs, we
Γ, θΓ′ ⊢ Λβ.θM1 ∶ θτ , which is equal to Γ, θΓ′ ⊢ θ(Λβ.M1) ∶ θτ .
Case M is M1 M2 or M is M1 τ1: Immediate.

Solution of Exercise 30

Take, for instance, λf.λx.λy. (f y, f x) for a1 (notice the inverse order of fields in the pair)
and λf.λx.λy. (f (f x), f (f y)) for a2.
Solution of Exercise 31

Choose, for instance,

Λα1.Λα2.Λϕ1.Λϕ2.(∀α.ϕ1(α)→ ϕ2(α))→ ϕ1(α1)→ ϕ1(α2)→ ϕ2(α1) ×ϕ2(α1)
for τ0. We recover τ1 by choosing the constant functions λα.αi for ϕi and τ2 by choosing the
identity λα.α for both ϕ1 and ϕ2.
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Solution of Exercise 32

1) Both directions follow from rule Inst-Gen, just applying the substitution α ↦ α for the
direct implication and jyst generalizing over α for the reverse.

2) Rule Distrib-Right is a particular case of Distributivity, indeed. Assuming α ∉

ftv(τ1), and using the previous equivalence (1), we have

Distributivity

∀α. (τ1 → τ2) ≤ (∀α. τ1)→ (∀α. τ2)
τ1 ≤ ∀α. τ1 (1)

(∀α. τ1)→ (∀α. τ2) ≤ τ1 → (∀α. τ2) Congruence-→

∀α. (τ1 → τ2) ≤ τ1 → (∀α. τ2) Trans

Conversely, we have the following derivation:

Distrib-Right

Congruence-∀

Congruence-→
Inst-Gen ∀α. τ1 ≤ τ1

τ1 → τ2 ≤ (∀α. τ1)→ τ2

∀α. (τ1 → τ2) ≤ ∀α. (∀α. τ1)→ τ2

∀α. (τ1 → τ2) ≤ (∀α. τ1)→ (∀α. τ2)

Solution of Exercise 33

We extend the λ-calculus with a binary constructor Pair and two unary destructors proji
for i in {1,2} with the δ-rules:

proji (Pair v1 v2)Ð→δ vi

The reduction proj1 (Pair v (λx.Pair Pair)) Ð→δ v is correct, even though the right
component of the pair is ill-typed, hence δ-reduction is larger than the type-erasure of δ-
reduction on explicitly typed terms. Still, it contains it (direct simulation); and it does not
contains more (inverse simulation) when we restrict to well-typed expressions. Both cases
are really easy:

Proof: Let M be of the form proji τ1 τ2 V0 such that Γ ⊢M ∶ τ . By inversion of typing rules,
Γ ⊢ V0 ∶ τ1 × τ2. By the classification lemma, V0 is of the form Pair τ1 τ2 V1 V2. Observe that
M reduces to Vi (1); and ⌈M⌉ is proji (pair ⌈V1⌉ ⌈V2⌉) which reduces to ⌈Vi⌉ (2).

Case direct : Assume M Ð→δ M
′. Then, M ′ is Vi and by (2), ⌈M⌉Ð→δ ⌈Vi⌉.

Case inverse: Assume that ⌈M⌉ Ð→δ a. Since reduction is deterministic in the untyped
calculus a must be ⌈Vi⌉. Hence, we may take Vi for M

′.
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Proof of Lemma 21

Assume Γ ⊢M ∶ τ and M Ð→ M ′. We reason by induction on the proof of reduction.

Case (Λ(α)M0) τ Ð→ι M0[τ/α]: Observe that both M and M ′ erases to ⌈M0⌉.
Case (λx.M1) M2 Ð→β M1[M2/x]: Then M erases to (λx. ⌈M1⌉) ⌈M1⌉ which reduces to⌈M1⌉[⌈M2⌉/x] which is the erasure of M ′

Case proji τ1 τ2 (V1, V2)Ð→δ Vi: The conclusion follows by assumption on δ-rules.

Case M is E[N] and M ′ is E[N ′] and N Ð→z N ′: By induction hypothesis, we know that
a certain relation (equality when z is ι or Ð→z otherwise) holds between ⌈M⌉ and ⌈N⌉. By
rule congruence for ι and rule Context otherwise, the same relation holds between ⌈E[M]⌉
and ⌈E⌉[⌈N⌉], i.e. between ⌈M⌉ and ⌈N⌉.

Proof of Lemma 25

Case v is λx. a1: By inversion of type erasure, M is of the form R[λx ∶τ.M1] where ⌈M1⌉ is
a1. Since R is ι-normal, it is of the form Λα.[] τ . since λx ∶ τ.M1 is an arrow type, τ must
be empty.

Case v is a partial application c v1 . . . vn: We show that then V is R[c τ⃗ V1 . . . Vn] with⌈Vi⌉ = vi by induction on n. If n is zero, then by inversion of type erasure, M is of the form
R[c] as expected. Otherwise, by inversion of type erasure, M is an application Rn[M1 M2]
where ⌈M1⌉ is the partial application c v1 . . . vn−1 and ⌈M2⌉ is vn. By induction hypothesisM1

is R1[c τ⃗ V1 . . . Vn−1] with ⌈Vi⌉ = vi. Since R1 is in an evaluation context, it is ι-normal, hence
of the form Λᾱ1.[] τ̄1. From the arity of c, the type of M1 is an arrow type. Thus τ̄1 must be
empty. Since R is applied to M2 it cannot be a type abstraction either. Hence, R1 is empty.
Moreover, by induction hypothesis M2 is a value Vn. Hence M is Rn[c τ⃗ V1 . . . Vn−1 Vn], as
expected.

Proof of Corollary 26

By Lemma 24, M is of the form R[M0 M2] where ⌈M0⌉ is a value v, which is either λx. a1
or the partial application c v1 . . . vn−1 and ⌈M2⌉ is v. Since R is an evaluation context,
M0 M2 is in ι-normal form. Since [] M2 is an evaluation context, M0 is in ι-normal form.
By Lemma 25, M0 a value V0. Since V0 [] is an evaluation context, M2 is in ι-normal form.
By 25, it must be a value V0.

Moreover, by Lemma 25, V0 is either

• Λα.λx ∶τ.M1. Since V0 is in application position α must actually be empty. Then M is
of the form R[(λx ∶τ.M1) V ], as expected.
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• R0[c τ⃗ V1 . . . Vn−1]. Since V0 is in an evaluation R0 is ι-normal, thus of the form
Λα⃗.[] τ̄0. Since V0 in application position α⃗ must be empty. From the arity of d, the
application is partial and has an arrow type, hence τ̄0 must be empty. Then, taking V

for Vn, the term M is of the form R[c τ⃗ V1 . . . Vn], as expected.
Solution of Exercise 34

Take (λx ∶τ0.Λα.λα ∶y. y )M0 for M where Γ ⊢ M0 ∶ τ0. We have Γ ⊢F M ∶ ∀α.α → α where
M is syntactically in ML, but cannot be typed in ML because function bodies cannot have
polymorphic types.
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▷ Arthur Charguéraud and François Pottier. Functional translation of a calculus of capabilities.
In ACM International Conference on Functional Programming (ICFP), pages 213–224,
September 2008.

▷ Juan Chen and David Tarditi. A simple typed intermediate language for object-oriented
languages. In ACM Symposium on Principles of Programming Languages (POPL), pages
38–49, January 2005.

▷ Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly
language. In ACM Conference on Programming Language Design and Implementation
(PLDI), pages 54–65, June 2007.

▷ Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type era-
sure semantics. Journal of Functional Programming, 12(6):567–600, November 2002.
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Université Paris 7, September 1976.

▷ John Hughes. Why functional programming matters. Computer Journal, 32(2):98–107, 1989.

▷ Mark P. Jones. Simplifying and improving qualified types. In FPCA ’95: Proceedings of
the seventh international conference on Functional programming languages and computer
architecture, pages 160–169, New York, NY, USA, 1995a. ACM. ISBN 0-89791-719-7.

Mark P. Jones. Typing Haskell in Haskell. In In Haskell Workshop, 1999a.

Mark P. Jones. Qualified types: theory and practice. Cambridge University Press, New York,
NY, USA, 1995b. ISBN 0-521-47253-9.

▷ Mark P. Jones. Typing Haskell in Haskell. In Haskell workshop, October 1999b.

http://www.paultaylor.eu/stable/prot.pdf
http://www.cs.washington.edu/homes/djg/papers/qtil.pdf
http://www.cis.upenn.edu/~bcpierce/types/archives/1991/msg00034.html
http://doi.acm.org/10.1145/169701.169692
http://dx.doi.org/10.2307/1995158
http://research.microsoft.com/~simonpj/papers/history-of-haskell/history.pdf
http://www.math.chalmers.se/~rjmh/Papers/whyfp.pdf
http://doi.acm.org/10.1145/224164.224198
http://web.cecs.pdx.edu/~mpj/thih/


176 BIBLIOGRAPHY

▷ Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of the
design space. In Haskell workshop, 1997.

▷ Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical
type inference for arbitrary-rank types. Journal of Functional Programming, 17(01):1,
2006.

Stefan Kaes. Type inference in the presence of overloading, subtyping and recursive types. In
LFP ’92: Proceedings of the 1992 ACM conference on LISP and functional programming,
pages 193–204, New York, NY, USA, 1992. ACM. ISBN 0-89791-481-3. doi: http://doi.
acm.org/10.1145/141471.141540.

▷ Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is DEXPTIME-complete.
In Colloquium on Trees in Algebra and Programming, volume 431 of Lecture Notes in
Computer Science, pages 206–220. Springer, May 1990.

▷ Peter J. Landin. Correspondence between ALGOL 60 and Church’s lambda-notation: part
I. Communications of the ACM, 8(2):89–101, 1965.
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