
MPRI, Typage

Didier Rémy
(With course material from François Pottier)

November 14, 2014

Plan of the course

Introduction

Simply-typed λ-calculus

Polymorphism and System F

Type reconstruction

Existential types

Overloading

Overloading

Programming task

The programming task has been published. See:

http://gallium.inria.fr/~xleroy/mpri/2-4/index.html#project

also anchored from my course web page:

http://gallium.inria.fr/~remy/mpri/

To be returned by the end of February.

http://gallium.inria.fr/~xleroy/mpri/2-4/index.html#project
http://gallium.inria.fr/~remy/mpri/

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

5 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What is overloading?

Overloading occurs when at some program point, several definitions for a
same identifier are visible simultaneously.

An interpretation of the program (and a fortiori a run of the program)
must choose the definition that applies at this point. This is called
overloading resolution, which may use very different strategies and
techniques.

All sorts of identifiers may be subject to overloading: variables, labels,
constructors, types, etc.

Overloading must be distinguished from shadowing of identifiers by
normal scoping rules, where in this case, a new definition may just
shadow an older one and temporarily become the only one visible.

6 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Why use overloading?

Naming convenience

It avoids name mangling, such as suffixing similar names by type
information: printing functions, e.g. print int, print string, etc.; numerical
operations, e.g. +, +● etc.); or numerical constants e.g. 0, 0●, etc.

Modularity

To avoid clashing, the naming discipline (including name mangling
conventions) must be known globally. Isolated identifiers with no
particular naming convention may still interfere between different
developments and cannot be used together unless fully qualified.

To think more abstractly

In terms of operations rather than of particular implementations.
For instance, calling to string conversion lets the system check whether
one definition is available according to the type of the argument.

7 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Why use overloading?

Type dependent functions

A function defined on τ[α] for all α may have an implementation
depending on the type of α. For instance, a marshaling function of type
∀α.α → string may execute different code for each base type α.

Ad hoc polymorphism

Overloading definitions may be ad hoc, i.e. completely unrelated for each
type, or just share a same type schema.

For example 0 could mean either integer zero or the empty list. × could
mean either the integer product or string concatenation.

8⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Why use overloading?

Type dependent functions

A function defined on τ[α] for all α may have an implementation
depending on the type of α. For instance, a marshaling function of type
∀α.α → string may execute different code for each base type α.

Polytypic polymorphism

Overloading definitions depend solely on the type structure (on whether
it is a sum, a product, etc.) and can thus be derived mechanically for all
types from their definitions on base types.

Typical examples of polytypic functions are marshaling functions or the
generation of random values for arbitrary types, e.g. as used in
Quickcheck for Haskell.

8⟨2⟩ 92 ◁

http://en.wikipedia.org/wiki/QuickCheck

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Different forms of overloading

There are many variants of overloading, which can be classified by how
overloading is introduced and resolved.

What are the restrictions on overloading definitions?

• None, i.e. arbitrary definitions can be overloaded!

• Can just functions or any definition be overloaded? e.g. can
numerical values be overloaded?

• Are all overloaded definitions of the same name instances of a
common type scheme? Are these type schemes arbitrary?

• Are overloaded definitions primitive (pre-existing), automatic
(generated mechanically from other definitions), or user-defined?

• Can overloaded definitions overlap?

• Can overloaded definitions have a local scope?

9 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

How is overloading tamed?

How is overloading resolution defined?

• up to subtyping?

• static or dynamic?

Static resolution (rather simple)

• Overloaded symbols can/must be statically replaced by their
implementations at the appropriate types.

• This does not increase expressiveness, but may still significantly
reduce verbosity.

10⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

How is overloading tamed?

How is overloading resolution defined?

• up to subtyping?

• static or dynamic?

Dynamic resolution (more involved)

This is required when the choice of the implementation depends on the
dynamic of the program execution. For example, the resolution at a
program point in a polymorphic function may depend on the type of its
argument so that different calls can make different choices.

The resolution is driven by information made available at runtime:

• it can be full or partial type information, or extra values (tags,
dictionaries, etc.) correlated to types instead of types themselves.

• it can be attached to normal values or passed as extra arguments.

10⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Static resolution Examples

In SML

Overloaded definitions are primitive (for numerical operators), and
automatic (for record accesses).

Typechecking fails if overloading cannot be resolved at outermost
let-definitions. For example, let twice x = x + x is rejected in SML, at
toplevel, as + could be the addition on either integers or floats.

11⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Static resolution Examples

In SML

Overloaded definitions are primitive (for numerical operators), and
automatic (for record accesses).

Typechecking fails if overloading cannot be resolved at outermost
let-definitions. For example, let twice x = x + x is rejected in SML, at
toplevel, as + could be the addition on either integers or floats.

In Java?

11⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Static resolution Examples

In Java

Overloading is not primitive but automatically generated by subtyping.
When a class extends another one and a method is redefined, the older
definition is still visible, hence the method is overloaded.

Overloading is resolved at compile time by choosing the most specific
definition. There is always a best choice—according to static knowledge.

An argument may have a runtime type that is a subtype of the best
known compile-time type, and perhaps a more specific definition could
have been used if overloading were resolved dynamically.

This is often a source of confusion for Java programmers.

12 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Static resolution Limits

It does not fit well with first-class functions and polymorphism:

For example, λx.x + x is rejected when + is overloaded, as it cannot be
statically resolved. The function must be specialized at some type at
which + is defined.

This argues in favor of some form of dynamic overloading:
dynamic overloading allows to delay resolution of overloaded symbols
until polymorphic functions have been sufficiently specialized.

13 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

How is dynamic resolution implemented?

Three main techniques for dynamic resolution

• Pass types at runtime and dispatch on the runtime type, using a
general typecase construct.

• Tag values with their types—or, usually, an approximation of their
types—and dispatch on these tags.
(This is one possible approach to object-orientation where objects
may be tagged with the class they belong to.)

• Pass the appropriate implementations at runtime as extra
arguments, usually grouped in dictionaries of implementations.

14 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Dynamic resolution Type passing semantics

Runtime type dispatch

• Use an explicitly-typed calculus (e.g. System F)
• Add a typecase function.
• The runtime cost of typecase may be high, unless type patterns are
significantly restricted.

• By default, one pays even when overloading is not used.
• Monomorphization may be used to reduce type matching statically.
• Ensuring exhaustiveness of type matching is difficult.

ML& (Castagna)

• System F + intersection types + subtyping + type matching
• An expressive type system that keeps track of exhaustiveness; type
matching functions are first-class and can be extended or overridden.

• Allows overlapping definitions with a best match resolution strategy.

15 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Dynamic resolution Type erasing semantics

Passing unresolved implementations as extra arguments

• Abstract over unresolved overloaded symbols and pass them around
as extra arguments.
Hopefully, overloaded symbols can be resolved when their types are
sufficiently specialized and before they are actually needed.
In short, let f = λx.x + x in a can be elaborated into
let f = λ(+). λx.x+ x in a. Then, the application of f to a float in a

e.g. f 1.0 can be elaborated into f (+.) 1.0.

• This can be done based on the typing derivation.

• After elaboration, types are no longer needed and can be erased.

• Monomorphization or other simplifications may reduce the number
of abstractions and applications introduced by overloading
resolution.

16 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Dynamic resolution Type erasing semantics

This has been explored under different facets in the context of ML:

• Type classes, introduced in [1989] by Wadler and Blott are the most
popular and widely explored framework of this kind.

• Other contemporary proposals were proposed by Rouaix [1990] and
Kaes [1992].

• Tentative simplifications of type classes have been made [Odersky
et al., 1995] but did not take over, because of their restrictions.

• Recent works on type classes is still going [Morris and Jones, 2010]

We present Mini-Haskell that contains the essence of Haskell.

17 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

18 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini-Haskell

Mini Haskell is a simplification of Haskell to avoid most of the difficulties
of type classes while keeping their essence:

• single parameter type classes

• no overlapping instance definitions

It is close to A second look at overloading by Odersky et al. in terms of
expressiveness and simplicity—but closer to Haskell in style: it can be
easily generalized by lifting restrictions without changing the framework.

Our version of Mini-Haskell is explicitly typed. We present:

• Some examples in Mini-Haskell.

• Elaboration of Mini-Haskell into (the ML subset of) System F.

• An implicitly-typed version with type inference.

19 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini-Haskell Example Implicitly Typed

Mini-Haskell class declarations and instance definitions

class Eq X { equal : X → X → Bool }
inst Eq Int { equal = (==) }
inst Eq Char { equal = (==) }
inst Eq X ⇒ Eq (List (X))
{ equal = λ(l1) λ(l2) match l1, l2 with

| [],[] → true | [], | [], → false
| h1::t1 , h2::t2 → equal h1 h2 && equal t1 t2 }

This code:

• declares a class (dictionary) of type Eq(X) that contains definitions
for equal : X → X → X,

• creates two concrete instances (dictionaries) of type Eq Int and
Eq Char,

• creates a function that given a dictionary for Eq X builds a
dictionary for Eq (List(X)).

20⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini-Haskell Example Explicitly Typed

Mini-Haskell class declarations and instance definitions

class Eq X { equal : X → X → Bool }
inst Eq Int { equal = (==) }
inst Eq Char { equal = (==) }
inst Λ(X) Eq X ⇒ Eq (List (X))
{ equal = λ(l1 ∶ List X) λ(l2 ∶ List X) match l1, l2 with

| [],[] → true | [], | [], → false
| h1::t1 , h2::t2 → equal X h1 h2 && equal (List X) t1 t2 }

This code:

• declares a class (dictionary) of type Eq(X) that contains definitions
for equal : X → X → X,

• creates two concrete instances (dictionaries) of type Eq Int and
Eq Char,

• creates a function that given a dictionary for Eq X builds a
dictionary for Eq (List(X)).

20⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Example Elaboration into explicit dictionaries

class Eq X { equal : X → X → Bool }

inst Eq Int { equal = (==) }
inst Eq Char { equal = (==) }
inst Λ(X) Eq X ⇒ Eq (List (X))
{ equal = λ(l1 ∶ List X) λ(l2 ∶ List X) match l1, l2 with

| [],[] → true | [], | [], → false
| h1::t1 , h2::t2 → equal X h1 h2 && equal (List X) t1 t2 }

Becomes:
type Eq (X) = { equal : X → X → Bool }
let equal X (EqX : Eq X) : X → X → Bool = EqX.equal

let EqInt : Eq Int = { equal = ((==) : Int → Int → Bool) }
let EqChar : Eq Char = { equal = primEqChar }
let EqList X (EqX : Eq X) : Eq (List X)
{ equal = λ(l1 ∶ List X) λ(l2 ∶ List X) match l1, l2 with

| [],[] → true | [], | [], → false
| h1::t1 , h2::t2 →

equal X EqX h1 h2 && equal (List X) (EqList X EqX) t1 t2 }

21 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Example Class Inheritance

Classes may themselves depend on other classes (called superclasses):

class Eq X ⇒ Ord (X) { lt : X → X → Bool }
inst Ord Int { lt = (<) }

This declares a new class (dictionary) Ord X that depends on a dictionary
Eq X and contains a method lt : X → X → Bool.

The instance definition builds a dictionary Ord Int from the existing
dictionary Eq Int and the primitive (<) for lt .

The two declarations are elaborated into:

type Ord X = { Eq : Eq X; lt : X → X → Bool }
let EqOrd X (OrdX : Ord X) : Eq X = OrdX.eq
let lt X (OrdX : Ord X) : X → X → Bool = OrdX.lt

let OrdInt : Ord Int = { Eq = EqInt; lt = (<) }

22 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell Overloading

An overloaded function search is defined as follows:

let rec search : ∀(X) Ord X ⇒ X → List X → Bool =
Λ(X) λ(x : X) λ(l : List X)
match l with [] → false | h::t → equal x h || search x t

let b = search Int 1 [1; 2; 3];;

This elaborates into:

let rec search X (OrdX : Ord X) (x : X) (l : List X) : Bool =
match l with
| [] → false
| h::t → equal X (EqOrd X OrdX) x h || search X OrdX x t

let b = search Int OrdInt 1 [1; 2; 3];;

That is, the code in green is inferred.

23 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

24 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

We restrict to single parameter classes.

Class and instance declarations are restricted to the toplevel.
Their scope is the whole program.

25 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

In practice, a program is composed of interleaved

• class declarations,

• instance definitions,

• function definitions,

given in any order and

• ending with an expression.

Instance and function definitions are interpreted recursively.
Hence, their definition order does not matter.

For simplification, we assume that instance definitions do not depend on
function definitions, which may then come last as part of the expression
in a recursive let-binding.

26⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

In practice, a program is composed of sequences of

• class declarations,

• instance definitions,

given in this order and

• ending with an expression.

Instance definitions are interpreted recursively; their order does not
matter.

We may assume, w.l.o.g., that instance definitions come after all class
declarations.

The order or class declaration matters, since they may only refer to other
class constructors that have been previously defined.

26⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

Source programs p are of the form:

p ∶∶=H1 . . .Hp h1 . . . hq M

H ∶∶= class P⃗ ⇒ K α {ρ}
ρ ∶∶= u1 ∶ τ1, . . . um ∶ τm

h ∶∶= inst ∀β⃗. P⃗ ⇒ K (G β⃗) {r}
r ∶∶= u1 =M1, . . . uk =Mk

P ∶∶= K α Q ∶∶= K τ T ∶∶= τ ∣ Q σ ∶∶= ∀α⃗. Q⃗⇒ T

Letter u ranges over overloaded symbols.

Class constructors K may appear in Q but not in τ .
Only regular type constructors G may appear in τ .

We write ∀α⃗.Q1 ⇒ . . . Qm ⇒ T for ∀α⃗.Q1, . . . Qm ⇒ T

and see ⇒ as an annotated version of →.

27⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

Source programs p are of the form:

p ∶∶=H1 . . .Hp h1 . . . hq M

H ∶∶= class P⃗ ⇒ K α {ρ}
ρ ∶∶= u1 ∶ τ1, . . . um ∶ τm

h ∶∶= inst ∀β⃗. P⃗ ⇒ K (G β⃗) {r}
r ∶∶= u1 =M1, . . . uk =Mk

P ∶∶= K α Q ∶∶= K τ T ∶∶= τ ∣ Q σ ∶∶= ∀α⃗. Q⃗⇒ T

The sequence P⃗ in class and instance definitions is a typing context.
Each clause P⃗ is of the form K′ α′ and can be read as an assumption
“given a dictionary K′ of type α′. . . ”

The restriction to types of the form K′ α′ in typing contexts and class
declarations, and to types of the form K′ (G′ α⃗′) in instances are for
simplicity. Generalization are discussed later.

27⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Target language

System F, extended with record types, let-bindings, and let-rec.

Records are provided as data types. They are used to represent
dictionaries. Record labels represent overloaded symbols u.

We may also use overloaded symbols u as variables.
This amounts to reserving a subset of variables xu indexed by overloaded
symbols, but just writing u as a shortcut for xu.

We use letter N instead of M for elaborated terms, to distinguish them
from source terms.

28 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations

H
△
== classK1 α1, . . .Kp αp⇒ K α {ρ}

A class declaration H defines a class constructor K.

Every class (constructor) K must be defined by one and only one class
declaration. So we may say that H is the declaration of K.

Classes Ki’s are superclasses of K and we write Ki ≺ K.

Class definitions must respect the order ≺ (acyclic)

The dictionary of K will contain a sub-dictionary for each Ki.

All Ki’s are independent in a typing context: there does not exists i and
j such that Kj ≺ Ki.

(If Kj ≺ Ki, then Ki dictionary would contain a sub-dictionary for Kj , to
which K has access via Ki so K does not itself need dictionary Kj .)

29 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations

H
△
== classK1 α1, . . .Kp αp⇒ K α {ρ}

The row type ρ is of the form

u1 ∶ τ1, . . . um ∶ τm
and declares overloaded symbols ui (also called methods) of class K.

An overloaded symbol cannot be declared twice in the same class and
must be declared only in one class.

Types τi’s must be closed with respect to α.

Each class dictionary will contain a definition for each method of the
class.

30 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations Elaboration

H
△
== classK1 α1, . . .Kp αp⇒ K α {ρ}

Its elaboration consists in a record type declaration to represent the
dictionary and the definition of accessors for each field of the record.

The row ρ only lists methods u1 ∶ τ1, . . . um ∶ τm. We extend it with
sub-dictionary fields and define ρK to be ρ,uKK1

∶ K1 α, . . . u
K
Kp
∶ Kp α.

Thus ρK is of the form u1 ∶ T1, . . . un ∶ Tn. We introduce:

• a record type definition K α ≈ {u1 ∶ T1, . . . un ∶ Tn},
• for each i in 1..n we define the accessor to field ui:

• let Ni be Λα.λz ∶K α. (z.ui).
• let σi be ∀α.K α⇒ Ti, i.e. the type of Ni

• let Ri be the program context let ui ∶ σi = Ni in [].

Then, JHK is R1 ○ . . .Rn and we write ΓH for the typing environment
u1 ∶ σ1 . . . up ∶ σp in the hole of JHK.

31 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations Elaboration

The elaboration JH⃗K of the sequence of class definitions H⃗ is the
composition of the elaboration of each.

JH1 . . .HpK
△
== JH1K ○ . . . JHpK

Record type definitions are collected in the program prelude.

We write ΓH1...Hp
for ΓH1

, . . .ΓHp
.

32 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Instance definitions

h
△
== inst ∀β⃗. K1 β1, . . .Kp βp⇒ K (G β⃗) {r}

It defines an instance of a class K.

The typing context K1 β1, . . . Kp βp describes the dictionaries that must
be available on type parameters β⃗ to build the dictionary K (G β⃗).

This is not related to the superclasses of the class K:

For example, in

inst Λ(X) Eq X ⇒ Eq (List (X))

An instance of class Eq at type X is needed to build an instance of class
Eq at type List(X), but Eq is not a superclass of itself.

33 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Instance definitions

h
△
== inst ∀β⃗. K ′1 β1, . . .K

′
k βk ⇒ K (G β⃗) {r}

The typing context describes dictionaries that cannot yet be built
because they depend on some unknown type β in β⃗.

We assume that the typing context is such that:

• each βi is in β⃗

• βi and βj may be equal, except if Ki and Kj are related
(i.e. Ki ≺ Kj or Kj ≺ Ki or Ki = Kj)
The reason is, as for class declarations, that it would be useless to
require both dictionaries Ki β and Kj β when there are equal or one
is contained in the other.

Such typing contexts are said to be canonical.

34 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Instance declarations Elaboration

h
△
== inst ∀β⃗. K ′1 β1, . . .K

′
k βk ⇒ K (G β⃗) {r}

This instance definition h is elaborated into a triple (zh,N
h, σh) where

zh is an identifier to refer to the elaborated body Nh of type σh.

The type σh is ∀β⃗.K′
1
β1 ⇒ . . .K′k βk ⇒ K (G β⃗)

The expression Nh builds a dictionary of type K (G β⃗), given k ≥ 0
dictionaries of respective types K′

1
β1, . . .K

′

k βk:

Λβ⃗.λ(z1 ∶K
′

1
β1). . . . λ(zk ∶K

′

k βk).

{u1 = N
h
1
, . . . um = N

h
m, uKK1

= q1, . . . u
K
Kp
= qp}

The types of fields are as prescribed by the class definition K:

• Nh
i is the elaboration of Mi where r is u1 =M1, . . . um =Mm.

• qi is a dictionary of type Ki (G β⃗) (the i’th subdictionary of K)

(We write z for a variable x that binds a dictionary.)

35 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of whole programs

The elaboration of all class instances Jh⃗K is the program context

let rec (z⃗h ∶ σ⃗h) = N⃗h in []

The elaboration of the whole program H⃗ h⃗ M is

JH⃗ h⃗ MK
△
== let u⃗ ∶ σ⃗u = N⃗u in let rec (z⃗h ∶ σ⃗h) = N⃗h in N

Hence, the expression N and all expressions Nh are typed (and
elaborated) in the environment Γ0 equal to Γ

H⃗
, Γ

h⃗
where

• Γ
H⃗

declares functions to access components of dictionaries
(both sub-dictionaries and definitions of overloaded symbols).

• Γ
h⃗
equal to (z⃗h ∶ σ⃗h) declares functions to build dictionaries

(i.e. all class instances).

36 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of expressions

The elaboration of expressions is defined by a judgment

Γ ⊢ M ↝ N ∶ σ

where Γ is a System-F typing context, M is the source expression, N is
the elaborated expression and σ its type in Γ.

In particular, Γ ⊢M ↝ N ∶ σ implies Γ ⊢ N ∶ σ in F .

We write q for dictionary terms, i.e. the following subset of F terms:

q ∶∶= u ∣ z ∣ q τ ∣ q q

(u and z are just particular cases of x)

The elaboration of dictionaries is the judgment Γ ⊢ q ∶ σ which is just
typability in System F—but restricted to dictionary expressions.

37 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of expressions

Var

x ∶ σ ∈ Γ

Γ ⊢ x↝ x ∶ σ

Inst

Γ ⊢ M ↝ N ∶ ∀α.σ

Γ ⊢M τ ↝ N τ ∶ [α ↦ τ]σ

Gen

Γ, α ⊢M ↝ N ∶ σ

Γ ⊢ Λα.M ↝ Λα.N ∶ ∀α.σ

Let

Γ ⊢M1 ↝N1 ∶ σ Γ, x ∶ σ ⊢M2 ↝ N2 ∶ τ

Γ ⊢ let x ∶ σ =M1 inM2 ↝ let x ∶ σ = N1 in N2 ∶ τ

App

Γ ⊢M1 ↝ N1 ∶ τ2 → τ1
Γ ⊢M2 ↝ N2 ∶ τ2

Γ ⊢ M1 M2 ↝ N1 N2 ∶ τ1

Abs

Γ, x ∶ τ ′ ⊢M ↝ N ∶ τ

Γ ⊢ λx ∶τ ′.M ↝ λx ∶τ ′.N ∶ τ ′ → τ

In rule Let, σ must be canonical, i.e. of the form ∀α⃗. P⃗ ⇒ T where P⃗ is
itself empty or canonical (see the definition and also this restriction).

Rules App and Abs do not apply to overloaded expressions of type σ.

38 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of overloaded expressions

The interesting rules are the elaboration of missing abstractions and
applications of dictionaries.

OAbs

Γ, x ∶ Q ⊢M ↝ N ∶ σ x#M

Γ ⊢M ↝ λx ∶Q.N ∶ Q⇒ σ

OApp

Γ ⊢ M ↝ N ∶ Q⇒ σ Γ ⊢ q ∶ Q

Γ ⊢M ↝ N q ∶ σ

Rule Oabs pushes dictionary abstractions Q in the context Γ as
prescribed by the expected type of the argument x.

These may then be used (in addition to dictionary accessors and instance
definitions already in Γ) to elaborate dictionaries as described by the
premise Γ ⊢ q ∶ Q of rule OApp.

39⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of overloaded expressions

The interesting rules are the elaboration of missing abstractions and
applications of dictionaries.

OAbs

Γ, x ∶ Q ⊢M ↝ N ∶ σ x#M

Γ ⊢M ↝ λx ∶Q.N ∶ Q⇒ σ

OApp

Γ ⊢ M ↝ N ∶ Q⇒ σ Γ ⊢ q ∶ Q

Γ ⊢M ↝ N q ∶ σ

Judgment Γ ⊢ q ∶ Q is just well-typedness in System F, but restricted to
dictionary expressions. There is an algorithmic reading of the rule,
described further, where Γ and Q are given and q is inferred.

39⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of overloaded expressions

The interesting rules are the elaboration of missing abstractions and
applications of dictionaries.

OAbs

Γ, x ∶ Q ⊢M ↝ N ∶ σ x#M

Γ ⊢M ↝ λx ∶Q.N ∶ Q⇒ σ

OApp

Γ ⊢ M ↝ N ∶ Q⇒ σ Γ ⊢ q ∶ Q

Γ ⊢M ↝ N q ∶ σ

By construction, elaboration produces well-typed expressions: that is
Γ0 ⊢M ↝ N ∶ τ implies that is Γ0 ⊢ N ∶ τ .

39⟨3⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Resuming the elaboration

An instance declaration h of the form:

inst ∀β⃗. K ′
1
β1, . . . K

′

k βk ⇒ K (G τ⃗) {u1 =M1, . . . um =Mm}

is translated into

Λβ⃗.λ(z1 ∶K
′

1 β1). . . . λ(zk ∶K
′

k βk).

{u1 = N
h
1
, . . . um = N

h
m, uKK1

= q1, . . . u
K
Kp
= qp}

where:

• uKKi
∶ Qi are the superclasses fields, ui ∶ τi are the method fields

• Γh is β⃗,K ′
1
β1, . . .K

′

k βk
• Γ0,Γh ⊢ qi ∶ Qi

• Γ0,Γh ⊢Mi ↝ Ni ∶ τi

Finally, given the program p equal to H⃗ h⃗ M , we elaborate M as N such
that Γ0 ⊢ M ↝ N ∶ ∀ᾱ. τ .

Notice that ∀ᾱ. τ is an unconstrained type scheme. Why?
40 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Resuming the elaboration

Otherwise, N could elaborate into an abstraction over dictionaries, i.e. it
would be a value and never applied!

Where else should we be careful that the intended semantics is preserved?

?

41⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Let-monomorphization

Otherwise, N could elaborate into an abstraction over dictionaries, i.e. it
would be a value and never applied!

Where else should we be careful that the intended semantics is
preserved?

In a call-by-value setting, we must not elaborate applications into
abstractions, since it would delay and perhaps duplicate the order of
evaluations.

For that purpose, we must restrict rule Let so that either σ is of the
form ∀ᾱ. τ or M1 is a value or a variable.

What about call-by-name? and Haskell?

41⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Let-monomorphization

In call-by-name, an application is not evaluated until it is needed. Hence,
adding an abstraction in front of an application should not change the
evaluation order M1 M2.

We must in fact compare:

let x1 = let x2 = λy.V1 V2 in [x2 ↦ x2 q]M2 inM1 (1)
let x1 = λy. let x2 = V1 V2 inM2 in [x1 ↦ x1 q]M1 (2)

The order of evaluation of V1 V2 is preserved.

However, Haskell is call-by-need, and not call-by-name!

Hence, applications are delayed as in call-by-name but their evaluation is
shared and only reduced once.

The application V1 V2 will be reduced once in (2), but as many types as
there are occurrences of x2 in M2 in (1).

42 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Let-monomorphization

The final result will still be the same in both cases because Haskell is
pure, but the intended semantics is changed regarding the efficiency.

Hence, Haskell may also use monomorphization in this case. This is a
delicate design choice

(Of course, monomorphization reduces polymorphism, hence the set of
typable programs.)

43 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Resuming the elaboration Sources of failures

The elaboration may fail for several reasons:

• The input expression does not obey one of the restrictions we have
requested.

• A typing error may occur during elaboration of an expression.

• Some required dictionary cannot be built.

If elaboration fails, the program p is rejected, indeed.

44 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

When elaboration succeeds

When the elaboration of p succeeds it returns JpK, well-typed in F .

Then, the semantics of p is given by that of JpK.

45⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

When elaboration succeeds

When the elaboration of p succeeds it returns JpK, well-typed in F .

Then, the semantics of p is given by that of JpK.

Hum. . .

45⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

When elaboration succeeds

When the elaboration of p succeeds it returns JpK, well-typed in F .

Then, the semantics of p is given by that of JpK.

Hum. . . Although terms are explicitly-typed, their elaboration may not
be unique! Indeed, there might be several ways to build dictionaries of
some given type (see below for details).

In the worst case, a source program may elaborate to completely
unrelated programs. In the best case, all possible elaborations are
equivalent programs and we say that the elaboration is coherent: the
programs has a deterministic semantics given by elaboration.

But what does it mean for programs be equivalent?

45⟨3⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On program equivalence

There are several notions of program equivalence:

• If programs have a denotational semantics, the equivalence of
programs should be the equality of their denotations.

• As a subcase, two programs having a common reduct should
definitely be equivalent. However, this will in general not be
complete: values may contain functions that are not identical, but
perhaps would reduce to the same value whenever applied to the
same arguments.

• This leads to the notion of observational equivalence. Two
expressions are observationally equivalent (at some observable type,
such as integers) if their are indistinguishable whenever they are put
in arbitrary (well-typed) contexts of the observable type.

46 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On program equivalence

For instance, two different elaborations that would just consistently
change the representation of dictionaries (e.g. by ordering records in
reverse order), would be equivalent if we cannot observe the
representation of dictionaries.

47 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Sufficient conditions for coherence

Since terms are explicitly typed, the only source of non-determinism is
the elaboration of dictionaries.

One way to ensure coherence is that two dictionary values of the same
type are always equal. This does not mean that there is a unique way of
building dictionaries, but that all ways are equivalent as they eventually
return the same dictionary.

48 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionaries

Elaboration of dictionaries is just typing in System F.

More precisely, it infers a dictionary q given Γ and Q so that Γ ⊢ q ∶ Q.

The relevant subset of rules for dictionary expressions are:

D-OVar

x ∶ σ ∈ Γ

Γ ⊢ x ∶ σ

D-Inst

Γ ⊢ q ∶ ∀α.σ

Γ ⊢ q τ ∶ [α ↦ τ]σ

D-App

Γ ⊢ q1 ∶ Q1 ⇒ Q2 Γ ⊢ q2 ∶ Q1

Γ ⊢ q1 q2 ∶ Q2

Can we give a type-directed presentation?

49 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionaries

Elaboration is driven by the type of the expected dictionary and the
bindings available in the typing environment, which may be:

• a dictionary constructor zh given by an instance definition h;

• a dictionary accessor uK
′

K given by a class declaration K′;

• a dictionary argument z, given by the local typing context.

Hence, the typing rules may be reorganized as follows:

D-OVar-Inst

zh ∶ ∀β⃗. P1 ⇒ . . . Pn ⇒ K (G β⃗) ∈ Γ Γ ⊢ qi ∶ [β⃗ ↦ τ⃗]Pi

Γ ⊢ zh τ⃗ q⃗ ∶ K (G τ⃗)

D-Proj

uK
′

K ∶ ∀α.K
′ α⇒ K α ∈ Γ Γ ⊢ q ∶ K′ τ

Γ ⊢ uK
′

K τ q ∶ K τ

D-Var

z ∶ K α ∈ Γ

Γ ⊢ z ∶ K α

50 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary values

Dictionary values are typed in Γ0, which does not contain free type
variables, hence, only the first rule applies:

D-OVar-Inst

zh ∶ ∀β⃗. P1 ⇒ . . . Pn ⇒ K (G β⃗) ∈ Γ Γ ⊢ qi ∶ [β⃗ ↦ τ⃗]Pi

Γ ⊢ zh τ⃗ q⃗ ∶ K (G τ⃗)

This rule for the judgment Γ ⊢ q ∶ τ can be read as an algorithm where Γ
and Q are inputs (and Γ is constant) and q is an output.

Provided there is no choice in finding zh ∶ ∀β⃗. P1 ⇒ . . . Pn ⇒ K (G β⃗) ∈ Γ

Since each such clause is coming from an instance definition h, their is no
choice in the application of this rule if instance definitions never overlap.

This assumption ensures coherence.

51 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overlapping instances

Two instances inst ∀β⃗i. P⃗ ⇒ K (Gi β⃗i) {ri} for i in {1,2} of a class K
overlap if the type schemes ∀β⃗i.K (Gi τ⃗i) have a common instance, i.e.
in the present setting, if G1 and G2 are equal.

Overlapping instances are an inherent source of incoherence: it means
that for some type Q (in the common instance), a dictionary of type Q

may (possibly) be built using two different implementations.

52 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments

Dictionary expressions, as opposed to dictionary values, will also be built
by extracting dictionaries from other dictionaries.

Why?

53⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments

Dictionary expressions, as opposed to dictionary values, will also be built
by extracting dictionaries from other dictionaries.

Indeed, in overloaded code, the exact type is not fully known at compile
time, hence dictionaries must be passed as arguments, from which
superclass dictionaries may (and must, as we forbid to pass both a class
and one of its super class dictionary simultaneously) be extracted.

Technically, they are typed in an extension of the typing context Γ0

which may contain typing assumptions z ∶ K′ β about dictionaries
received as arguments. Hence rules D-Proj and D-Var may also apply.

53⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments

The elaboration of dictionaries uses the three rules (reminder):

D-OVar-Inst

z ∶ ∀β⃗. P1 ⇒ . . . Pn ⇒ K (G β⃗) ∈ Γ Γ ⊢ qi ∶ [β⃗ ↦ τ⃗]Pi

Γ ⊢ z τ⃗ q⃗ ∶ K (G τ⃗)

D-Proj

u ∶ ∀α.K′ α⇒ K α ∈ Γ Γ ⊢ q ∶ K′ τ

Γ ⊢ z τ q ∶ K τ

D-Var

z ∶ K α ∈ Γ

Γ ⊢ z ∶ K α

They can be read as a backtracking algorithm.

54 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments Termination

The proof search always terminates, since premises have smaller Q than
the conclusion when using the lexicographic order of first the height of τ ,
then the reverse order of class inheritance.

If no rule applies, we fail. If rule D-Var applies, the derivation ends with
success.

If rule D-Proj applies, the premise is called with a smaller problem since
the height is unchanged and K′ τ⃗ with K′ ≺ K.

If D-Ovar-Inst applies, the premises are called at type Ki τj where τj is
subtype (i.e. subterm) of τ⃗ , hence of a strictly smaller height.q

55 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments Non determinism

For instance, in the introduction, we defined two instances eqInt and
ordInt, while the later contains an instance of the former.

Hence, a dictionary of type eqInt may be obtained:

• directly as EqInt, or

• indirectly as OrdInt.Eq, by projecting the Eq sub-dictionary of class
Ord Int

In fact, the latter choice could then be reduced at compile time and be
equivalent to the first one.

One may enforce determinism by fixing a simple and sensible strategy for
elaboration. Restrict the use of rule D-Proj to cases where Q is P–when
D-OVar-Inst does not apply. However, the extra flexibility is harmless
and perhaps useful freedom for the compiler.

56 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Typing dictionaries Example

In the introductory example Γ0 is:

equal
△
== uequal ∶ ∀α.Eq α⇒ α→ α → bool,

EqInt
△
== zIntEq ∶ Eq int

EqList
△
== zListEq ∶ ∀α.Eq α⇒ Eq (list α)

EqOrd
△
== uOrd

Eq ∶ ∀α.Ord α⇒ Eq α

lt
△
== ult ∶ ∀α.Ord α⇒ α → α → bool

When elaborating the body of search, we have to infer a dictionary for
EqOrd X OrdX in the local context X, OrdX : Ord X. Thus, Γ is
Γ0, α, z ∶ Ord α and EqOrd is uOrd

Eq . We have:

D-Proj

D-OVar-Inst

Γ ⊢ uOrd
Eq α ∶ Ord α → Eq α

D-Var

Γ ⊢ z ∶ Ord α

Γ ⊢ uOrd
Eq α z ∶ Eq α

57 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

58 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What can be left implicit?

Class declarations?

59⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What can be left implicit?

Class declarations must remain explicit:

• They define the structure of dictionaries: a record type definition
and its accessors.

• They define the type scheme of overloaded symbols and the class
they belong to.

The type of instance declarations?

59⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What can be left implicit?

Class declarations must remain explicit:

• They define the structure of dictionaries: a record type definition
and its accessors.

• They define the type scheme of overloaded symbols and the class
they belong to.

The type of instance declarations must also remain explicit:

• These are polymorphic recursive definitions, hence their types are
mandatory.

59⟨3⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What can be left implicit?

Class declarations must remain explicit:

• They define the structure of dictionaries: a record type definition
and its accessors.

• They define the type scheme of overloaded symbols and the class
they belong to.

The type of instance declarations must also remain explicit:

• These are polymorphic recursive definitions, hence their types are
mandatory.

However, all core language expressions (in instance declarations and the
final one) can be left implicit.

59⟨4⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Example

class Eq X { equal : X → X → Bool }
inst Eq Int { equal = (==) }
inst Eq Char { equal = (==) }
inst Λ(X) Eq X ⇒ Eq (List (X))
{ eq = λ(l1 ∶ List X) λ(l2 ∶ List X) match l1, l2 with

| [],[] → true | [], | [], → false
| h1::t1 , h2::t2 → eq X h1 h2 && eq (List X) t1 t2 }

class Eq (X) ⇒ Ord (X) { lt : X → X → Bool }
inst Ord (Int) { lt = (<) }

let rec search ∶ ∀(X)Ord X⇒X → List X →Bool =
Λ(X) λ(x ∶X) λ(l ∶ ListX)
match l with [] → false | h::t → equal X x h || search X x t

let b = search Int 1 [1; 2; 3];;

60⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Example

class Eq X { equal : X → X → Bool }
inst Eq Int { equal = (==) }
inst Eq Char { equal = (==) }
inst Eq X ⇒ Eq (List (X))
{ eq = λ(l1) λ(l2) match l1, l2 with

| [],[] → true | [], | [], → false
| h1::t1 , h2::t2 → eq h1 h2 && eq t1 t2 }

class Eq (X) ⇒ Ord (X) { lt : X → X → Bool }
inst Ord (Int) { lt = (<) }

let rec search =
λ(x) λ(l)

match l with [] → false | h::t → equal x h || search x t

let b = search Int 1 [1; 2; 3];;

60⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type inference

The idea is to see dictionary types K τ , which can only appear in type
schemes and not in types, as a type constraint to mean “there exists a
dictionary of type K α”.

Just read ∀α⃗. P⃗ ⇒ τ as the constraint type scheme ∀α⃗[P⃗]. τ .

We extend constraints with dictionary predicates:

C ∶∶= . . . ∣ K τ

On ground types a constraint K t is satisfied if one can build a dictionary
of type K t in the initial environment Γ0 (that contains all class and
instance declarations), i.e. formally, if there exists a dictionary expression
q such that Γ0 ⊢ q ∶ K t.

The satisfiability of class-membership constraints is thus:

K φτ

φ ⊢ K τ
61 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every class declaration classK1 α1, . . . Kn αn ⇒ K α {ρ},

K α ⊩ K1 α1 ∧ . . . Kn αn (1)

This rule allows to decompose any set of simple constraints into a
canonical one.

Proof of (1).

62⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every class declaration classK1 α1, . . . Kn αn ⇒ K α {ρ},

K α ⊩ K1 α1 ∧ . . . Kn αn (1)

This rule allows to decompose any set of simple constraints into a
canonical one.

Proof of (1). Assume φ ⊢ K α, i.e. Γ0 ⊢ q ∶ K (φα) for some q.

From the class declaration, we know that K α is a record type definition
that contains fields uKKi

of type Ki αi. Hence, the dictionary value q

contains field values of types Ki (φα). Therefore, we have φ ⊢ Ki α for
all i in 1..n, which implies φ ⊢ K1 α ∧ . . . Kn α.

62⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every instance definition inst ∀β⃗. K1 β1, . . . Kp βp ⇒ K (G β) {r}

K (G β⃗) ≡ K1 β1 ∧ . . . Kp βp (2)

This rule allows to decompose all class constraints into simple constraints
of the form K α.

Proof of (2) (ê direction). Assume φ ⊢ Ki βi. There exists dictionaries
qi such that Γ0 ⊢ qi ∶ Ki (φβi). Hence, Γ0 ⊢ xh β⃗ q1 . . . qp ∶ K (G (φβ⃗)),
i.e. φ ⊢ K (G (φβ⃗)).

(⊩ direction). Assume, φ ⊢ K (G (φβ⃗). i.e. there exists a dictionary q

such that Γ0 ⊢ q ∶ K (G φβ⃗). By non-overlapping of instance declarations,
the only way to build such a dictionary is by an application of xh. Hence,
q must be of the form xh β⃗ q1 . . . qp with Γ0 ⊢ qi ∶ Ki (φβi), that is,
φ ⊢ Ki βi for every i, which implies φ ⊢ K1 β1 ∧ . . . Kp βp.

63⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every instance definition inst ∀β⃗. K1 β1, . . . Kp βp ⇒ K (G β) {r}

K (G β⃗) ≡ K1 β1 ∧ . . . Kp βp (2)

This rule allows to decompose all class constraints into simple constraints
of the form K α.

Notice that the equivalence still holds in an open-world assumption
where new instance clauses may be added later, because another future
instance definition cannot overlap with existing ones.

If overlapping of instances were allowed, the ⊩ direction would not hold.
Then, the rewriting rule:

K (G β⃗) Ð→ K1 β1 ∧ . . . Kp βp

would still be sound (the right-hand side entails the left-hand side, and
thus type inference would infer sound typings), ı.e. but not complete
(type inference could miss some typings).

63⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every class K and type constructor G for which there is no instance of
K,

K (G β⃗) ≡ false (3)

This rule allows failure to be reported as soon as constraints of the form
K (G τ⃗) appear and there is no instance of K for G.

Proof of (3). The ê direction is a tautology, so it suffices to prove the
⊩ direction. By contradiction. Assume φ ⊢ K (G β⃗). This implies the
existence of a dictionary q such that Γ0 ⊢ q ∶ K (G (φβ⃗)). Then, there
must be some xh in Γ whose type scheme is of the form
∀β⃗. P⃗ ⇒ K (G β⃗), i.e. there must be an instance of class K for G.

Notice that this rule does not work in an open world assumption. The
rewriting rule

K (G β⃗) Ð→ false

would still remain sound but incomplete.
64 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Typing constraints

Constraint generation is as in ML.

A constraint type scheme can always be decomposed into one of the
form ∀ᾱ[P1 ∧ P2]. τ where ftv(P1) ∈ ᾱ and ftv(P2)# ᾱ.

The constraints P2 can then be extruded in the enclosing context if any,
so we are in general left with just P1.

65 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Checking well-typedness

To check well-typedness of the program p equal to H⃗ h⃗ a, we must check
that: each expression ahi and the expression a are well-typed, in the
environment used to elaborate them:

This amounts to checking:

• Γ0,Γh ⊢ ahi ∶ τ
h
i where τhi is given.

Thus, we check that the constraints def Γ0,Γh in Lahi M ⪯ τ
h
i ≡ true.

• Γ0 ⊢ a ∶ τ for some τ .
Thus, we check that def Γ0 in ∃α. LaM ⪯ α ≡ true.

However, . . .

66⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Checking well-typedness

To check well-typedness of the program p equal to H⃗ h⃗ a, we must check
that: each expression ahi and the expression a are well-typed, in the
environment used to elaborate them:

This amounts to checking:

• Γ0,Γh ⊢ ahi ∶ τ
h
i where τhi is given.

Thus, we check that the constraints def Γ0,Γh in Lahi M ⪯ τ
h
i ≡ true.

• Γ0 ⊢ a ∶ τ for some τ .
Thus, we check that def Γ0 in ∃α. LaM ⪯ α ≡ true.

However, . . . Typechecking is not sufficient!

Type reconstruction should also return an explicitly-typed term M that
can then be elaborated into N .

66⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction

As for ML the resolution strategy for constraints may be tuned to keep
persistent constraints from which an explicitly typed term M can be read
back.

67 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Back to coherence

When the source language is implicitly-typed, the elaboration from the
source language into System F code is the composition of type
reconstruction with elaboration of explicitly-typed terms.

That is, a elaborates to N if Γ ⊢ a↝M ∶ τ and Γ ⊢M ↝ N ∶ τ .

Hence, even if the elaboration is coherent for explicitly-typed terms, this
may not be true for implicitly-typed terms.

There are two potential problems:

• The language has principal constrained type schemes, but the
elaboration requests unconstrained type schemes.

• Ambiguities could be hidden (and missed) by non principal type
reconstruction.

68 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Toplevel unresolved constraints

Thanks to the several restrictions on class declarations and instance
definitions, the type system has principal constrained schemes (and
principal typing reconstruction). However, this does not imply that there
are principal unconstrained type schemes.

Indeed, assume that the principal constrained type scheme is
∀α[K α]. α → α and the typing environment contains two instances of
K G1 and K G2 of class K. Constraint-free instances of this type scheme
are G1→ G1 and G2→ G2 but ∀α.α → α is certainly not one.

Not only neither choice is principal, but the two choices would elaborate
into expressions with different (non-equivalent) semantics.

We must fail in such cases.

69 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Toplevel unresolved constraints

This problem may appear while typechecking the final expression a in Γ0

that request an unconstrained type scheme ∀α. τ

It may also occur when typechecking the body of an instance definition,
which requests an explicit type scheme ∀α⃗[Q⃗]. τ in Γ0 or equivalently
that request a type τ in Γ0, α⃗, Q⃗.

70 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Example of unresolved constraints

class Num (X) { 0 : X, (+) : X → X → X }
inst Num Int { 0 = Int.(0), (+) = Int.(+} }
inst Num Float { 0 = Float.(0), (+) = Float.(+} }
let zero = 0 + 0;

The type of zero or zero + zero is ∀α[Num α]. α—and several classes are
possible for Num X. The semantics of the program is undetermined.

class Readable (X) { read : descr → X }
inst Readable (Int) { read = read int }
inst Readable (Char) { read = read char }
let x = read (open in())

The type of x is ∀α[Readable α].unit → α—and several classes are
possible for Readable α. The program is rejected.

71 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Inaccessible constraint variables

In the previous examples, the incoherence comes from the obligation to
infer type schemes without constraints. A similar problem may occur
with isolated constraints in a type scheme.

Assume, for instance, that the elaboration of let x = a1 in a2 is
let x ∶ ∀α[K α]. int → int = N1 in N2.

All applications of x in N2 will lead to an unresolved constraint K α since
neither the argument nor the context of this application can determine
the value of the type parameter α. Still, a dictionary of type K τ must be
given before N1 can be executed.

Although x may not be used in N2, in which case, all elaborations of the
expression may be coherent, we may still raise an error, since an unusable
local definition is certainly useless, hence probably a programmer’s
mistake. The error may then be raised immediately, at the definition site,
instead of at every use of x.

72 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence The open-world view

When there is a single instance K G for a class K that appears in an
unresolved or isolated constraint K α, the problem formally disappears, as
all possible type reconstructions are coherent.

However, we may still not accept this situation, for modularity reasons,
as an extension of the program with another non-overlapping correct
instance declaration would make the program become ambiguous.

Formally, this amounts to saying that the program must be coherent in
its current form, but also in all possible extensions with well-typed class
definitions. This is taking an open-world view.

73 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On the importance of principal type reconstruction

In the source of incoherence we have seen, some class constraint
remained undetermined.

As noticed earlier some (usually arbitrary) less general elaboration would
cover the problem—but the source program would remain incoherent.

Hence, in order to detect incoherent (i.e. ambiguous) programs it is
essential that type reconstruction is principal.

Once a program has been checked coherent, i.e. with no undetermined
constraint, based on a principal type reconstruction, can we still use
another non principal type reconstruction for its elaboration?

74⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On the importance of principal type reconstruction

In the source of incoherence we have seen, some class constraint
remained undetermined.

As noticed earlier some (usually arbitrary) less general elaboration would
cover the problem—but the source program would remain incoherent.

Hence, in order to detect incoherent (i.e. ambiguous) programs it is
essential that type reconstruction is principal.

Once a program has been checked coherent, i.e. with no undetermined
constraint, based on a principal type reconstruction, can we still use
another non principal type reconstruction for its elaboration?

Yes, indeed, this will preserve the semantics.

This freedom may actually be very useful for optimizations.

74⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On the importance of principal type reconstruction

Consider the program

let twice = λ(x) x + x in twice (twice 1)

Its principal type reconstruction is:

let twice : ∀(X) [Num X] X → X = Λ(X) [Num X] λ(x) x + x in
twice Int (twice Int) 1

which elaborates into

75⟨1⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On the importance of principal type reconstruction

Consider the program

let twice = λ(x) x + x in twice (twice 1)

Its principal type reconstruction is:

let twice : ∀(X) [Num X] X → X = Λ(X) [Num X] λ(x) x + x in
twice Int (twice Int) 1

which elaborates into

let twice X numX = λ(x : X) x (plus numX) x in
twice Int NumInt (twice Int NumInt 1)

while, avoiding the generalization of twice, would elaborate into:

let twice = λ(x : Int) x (plus NumInt) x in twice (twice 1)

where moreover, the plus NumInt can be statically reduced.

75⟨2⟩ 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overloading by return types

All previous ambiguous examples are overloaded by return types:

• 0 : X.
The value 0 has an overloaded type that is not constraint by the
argument.

• read : desc → X.
The function read applied to some ground type argument will be
under specified.

Odersky et al. [1995] suggested to prevent overloading by return types by
requesting that overloaded symbols of a class K α have types of the form
α → τ .

The above examples are indeed rejected by this definition.

76 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overloading by return types

In fact, disallowing overloading by return types suffices to ensure that all
well-typed programs are coherent.

Moreover, untyped programs can then be given a semantics directly
(which of course coincides with the semantics obtained by elaboration).

Many interesting examples of overloading fits in this schema.

However, overloading by returns types is also found useful in several
cases and Haskell allows it, using default rules to resolve ambiguities.

This is still an arguable design choice in the Haskell community.

77 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

78 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Changing the representation of dictionaries

An overloaded method call u of a class K is elaborated into an
application u q of u to a dictionary expression q of class K. The function
u and the representation of the dictionary are both defined in the
elaboration of the class K and need not be known at the call site.

This leaves quite a lot of flexibility in the representation of dictionaries.

For example, we used record data-type definitions to represent
dictionaries, but tuples would have been sufficient.

79 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

An alternative compilation of type classes

The dictionary passing semantics is quite intuitive and very easy to type
in the target language.

However, dictionaries may be replaced by a derivation tree that proves
the existence of the dictionary. This derivation tree can be passed around
instead of the dictionary and at the call site be used to dispatch to the
appropriate implementation of the method.

This has been studied in [Furuse, 2003].

This can also elegantly be explained as a type preserving compilation of
dictionaries called concretization and described in [Pottier and Gauthier,
2006]. It is somehow similar to defunctionalization and also requires that
the target language is equipped with GADT (Guarded Abstract Data
Types). See the following course.

80 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Multi-parameter type classes

Multi-parameter type classes are of the form

class P⃗ ⇒ K α⃗ {ρ}

where free variables of P⃗ are in α⃗.

The current framework can easily be extended to handle multi-parameter
type classes.

Example: Collections represented by type C whose elements are of type
E can be defined as follows:

class Collection C E { find : C → E → Option(E), add : C → E → C }
inst Collection (List X) X { find = List.find, add = λ(c)λ(e) e::c }
inst Collection (Set X) X { ... }

81 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type dependencies

However, the class Collection does not provide the intended intuition that
collections be homogeneous:

let add2 c x y = add (add c x) y
add2 : ∀(C, E, E’) Collection C E, Collection C E’ ⇒ C → E → E’ → C

This definition assumes that collections may be heterogeneous. This may
not be intended, and perhaps no instance of heterogeneous collections
will ever be provided.

To statically enforce collections to be homogeneous in types, the
definition can add a clause to say that the parameter C determines the
parameter E:

class Collection C E | C → E { ... }

Then, add2 would enforce E and E′ to be equal.

82 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type dependencies

Type dependencies also reduce overlapping between class declarations.

Hence they allow examples that would have to be rejected if type
dependencies could not be expressed.

83 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Associated types

Functional dependencies are being replaced by the notion of associated
types.

Associated types allow a class to declare its own type function.

Correspondingly, instance definitions must provide a definition for
associated type (in addition to values for overloaded symbols as before).

For example, the Collection class becomes a single parameter class with
an associated type definition:

class Collection E {
type C : ∗ → ∗

find : C → E → Option E
add : C → E → C

}
inst Collection Eq X ⇒ Collection X {type C = List E, ... }
inst Collection Eq X ⇒ Collection X {type C = Set E, ... }

84 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Associated types

Associated types increase the expressiveness of type classes.

85 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overlapping instances Example

In practice, overlapping instances may be desired! For example, one
could provide a generic implementation of sets provided an ordering
relation on elements, but also provide a more efficient version for bit sets.

If overlapping instances are allowed, further rules are needed to
disambiguate the resolution of overloading, such as giving priority to
rules, or using the most specific match.

However, the semantics depend on some particular resolution strategy
and becomes more fragile. See [Jones et al., 1997] for a discussion.

See also [Morris and Jones, 2010] for a recent new proposal.

86 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overlapping instances Example

inst Eq(X) { equal = (=) }
inst Eq(Int) { equal = (==) }

This elaborates into the creation of a generic dictionary

let Eq X : Eq X= { equal = (=) }
let EqInt : Eq Int = { equal = (==) }

Then, EqInt or Eq Int are two dictionaries of type Eq Int but with
different implementations.

87 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Restriction that are harder to lift

One may consider removing other restrictions on the class declarations or
instance definitions. While some of these generalizations would make
sense in theory, they may raise serious difficulties in practice.

For example:

• If constrained type schemes are of the form K τ instead of K α?
(which affects all aspects of the language), then it becomes difficult
to control the termination of constrained resolution and of the
elaboration of dictionaries.

• If a class instance inst ∀β⃗. P⃗ ⇒ K τ {ρ} could be such that τ is G τ⃗

and not G β⃗, then it would be more difficult to check
non-overlapping of class instances.

88 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Methods as overloading functions

One approach to object-orientation is to see methods as over as
overloaded functions.

Object then carry class tags that can be used at runtime to find the best
matching definition.

This approach has been studied in detail by [Millstein and Chambers,
1999]. See also [Bonniot, 2002, 2005].

89 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Summary

Static overloading is not a solution for polymorphic languages.
Dynamics overloading must be used instead.

Dynamics overloading is a powerful mechanism.

Haskell type classes are a practical, general and powerful solution to
dynamic overloading,

Dynamic overloading works relatively well in combination with ML-like
type inference.

However, besides the simplest case where every one agrees, useful
extensions often come with some drawbacks, and they is not yet an
agreement on the best design choices.

The design decisions are often in favor of expressiveness, but loosing
some of the properties and the canonicity of the minimal design.

90 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Summary

Dynamic overloading is a typical and very elegant use of elaboration.

The programmer could in principle write the elaborated program, build
and pass dictionaries explicitly, but this would be cumbersome, tricky,
error prone, and it would obfuscate the code.

The elaboration does this automatically, without arbitrary choices (in the
minimal design) and with only local transformations that preserve the
structure of the source.

91 92 ◁

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Further Reading

For an all-in-one explanation of Haskell-like overloading, see The essence
of Haskell by Odersky et al.

See also the Jones’s monograph Qualified types: theory and practice.

For a calculus of overloading see ML& [Castagna, 1997]

Type classes have also been added to Coq [Sozeau and Oury, 2008].
Interestingly, the elaboration of proof terms need not be coherent which
makes it a simpler situation for overloading.

92 92 ◁

Bibliography

Bibliography I

(Most titles have a clickable mark “▷” that links to online versions.)

Daniel Bonniot. Typage modulaire des multi-méthodes. PhD thesis,
École des Mines de Paris, November 2005.

▷ Daniel Bonniot. Type-checking multi-methods in ML (a modular
approach). In Workshop on Foundations of Object-Oriented Languages
(FOOL), January 2002.

Giuseppe Castagna. Object-Oriented Programming: A Unified
Foundation. Progress in Theoretical Computer Science Series.
Birkäuser, Boston, 1997.

▷ Jun Furuse. Extensional polymorphism by flow graph dispatching. In
Asian Symposium on Programming Languages and Systems (APLAS),
volume 2895 of Lecture Notes in Computer Science. Springer,
November 2003.

93 92 ◁

http://cristal.inria.fr/~bonniot/bonniot02.ps
http://cristal.inria.fr/~furuse/publications/flowgraph.ps.gz

Bibliography

Bibliography II

Mark P. Jones. Qualified types: theory and practice. Cambridge
University Press, New York, NY, USA, 1995. ISBN 0-521-47253-9.

▷ Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an
exploration of the design space. In Haskell workshop, 1997.

Stefan Kaes. Type inference in the presence of overloading, subtyping
and recursive types. In LFP ’92: Proceedings of the 1992 ACM
conference on LISP and functional programming, pages 193–204, New
York, NY, USA, 1992. ACM. ISBN 0-89791-481-3. doi:
http://doi.acm.org/10.1145/141471.141540.

Todd D. Millstein and Craig Chambers. Modular statically typed
multimethods. In ECOOP ’99: Proceedings of the 13th European
Conference on Object-Oriented Programming, pages 279–303, London,
UK, 1999. Springer-Verlag. ISBN 3-540-66156-5.

94 92 ◁

http://research.microsoft.com/en-us/um/people/simonpj/papers/type-class-design-space/multi.ps.gz

Bibliography

Bibliography III

J. Garrett Morris and Mark P. Jones. Instance chains: type class
programming without overlapping instances. In ICFP ’10: Proceedings
of the 15th ACM SIGPLAN international conference on Functional
programming, pages 375–386, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-794-3. doi:
http://doi.acm.org/10.1145/1863543.1863596.

▷ Martin Odersky, Philip Wadler, and Martin Wehr. A second look at
overloading. In FPCA ’95: Proceedings of the seventh international
conference on Functional programming languages and computer
architecture, pages 135–146, New York, NY, USA, 1995. ACM. ISBN
0-89791-719-7.

▷ François Pottier and Nadji Gauthier. Polymorphic typed
defunctionalization and concretization. Higher-Order and Symbolic
Computation, 19:125–162, March 2006.

95 92 ◁

http://doi.acm.org/10.1145/224164.224195
http://cristal.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.ps.gz

Bibliography

Bibliography IV

François Rouaix. Safe run-time overloading. In Proceedings of the 17th
ACM Conference on Principles of Programming Languages, pages
355–366, 1990. doi: http://doi.acm.org/10.1145/96709.96746.

▷ Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In Sofiène
Tahar, Otmame Ait-Mohamed, and César Muñoz, editors, TPHOLs
2008: Theorem Proving in Higher Order Logics, 21th International
Conference, Lecture Notes in Computer Science. Springer, August
2008.

▷ Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism
less ad-hoc. In ACM Symposium on Principles of Programming
Languages (POPL), pages 60–76, January 1989.

96 92 ◁

http://www.lri.fr/~sozeau/research/publications/First-Class_Type_Classes.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/class/class.ps.gz

	Overloading
	Introduction
	Examples in Mini Haskell
	Mini Haskell
	Implicitly-typed terms
	Variations

	Appendix

