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Choosing the meta language of this course. . .
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Choosing the meta language of this course. . .

English or French?
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Functional programming Types

Choosing the meta language of this course. . .

English or French?

In any case, questions must be asked in
the language your speak best

(French by default)
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Online material

Visit the page

http://gallium.inria.fr/~remy/mpri/

All course material:

• Course notes (will be updated as we progress)

• Calendar of lessons and exams

• Information on the programming task

• All useful information and pointers
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Online material

Written notes v.s. copies of the slides.

Both are available online.

However, you should rather read the course notes than the slides.

• Contain more details and text than what I say during the lesson.

• Proofs:
• often sketchy on the slides, or on the board.
• with full details in course notes, as you should write proofs at the

exam.

• Exercises:
• Course notes contain more exercises and solutions to exercises,
• Only a few of them are mentioned on the slides.

7 115 ◁



Functional programming Types

Questions!

Questions are welcome!

Please, ask questions. . .

• during the lesson

• at the end of the lesson

• by email

Didier.Remy@inria.fr

Please, don’t wait the end of the course to raise problems (if any).
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You are there to learn
and

I am here to help you!

If you have any difficulties during this course:

• do the exercises, check the corrections, ask me if you can’t do them.

• discuss with me: the earlier the better.

• don’t wait until the exams...



Functional programming Types

Programming task

Reminder

• The task will be given by mid-december.

• The solution is due by the end of the course.

• It usually counts for 1/3 in the final grade.

• It is fun! (according to you, i.e. previous years)

• It focuses on one particular topic of the course and usually helps
understand it in detail.
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What is functional programming?

The term “functional programming” means various things:

– it views functions as ordinary data—which, in particular, can be passed
as arguments to other functions and stored in data structures.

– it loosely or strongly discourages the use of modifiable data,
in favor of effect-free transformations of data.

(In contrast with mainstream object-oriented programming languages)

– encourages abstraction of repetitive patterns as functions
that can be called multiple times so as to avoid code duplication.
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What are functional programming languages?

They are usually:

– typed (Scheme and Erlang are exceptions),
with close connections to logic.

In this course, we focus on typed languages and types play a central role.

– given a precise formal semantics derived from that of the λ-calculus.

Some are strict (ML) and some are lazy (Haskell) [Hughes, 1989].

This difference has a large impact on the language design and on the
programming style, but has usually little impact on typing.

– sequential: their model of evaluation is not concurrent, even if core
languages may then be extended with primitives to support concurrency.
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Functional programming Types

What are types?

– Types are:

“a concise, formal description of the behavior of a program fragment.”

– For instance:

int An integer

int→ bool A function that maps an integer to a
Boolean

(int→ bool) →
(list int→ list int)

A function that maps an integer predicate to
an integer list transformer

– Types must be sound.
That is, programs must behave as prescribed by their types.

– Hence, types must be checked and ill-typed programs must be rejected.
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What are they useful for?

– Types serve as machine-checked documentation.

– Types provide a safety guarantee.

“Well-typed expressions do not go wrong.” [Milner, 1978]

(Advanced type systems can also guarantee various forms of security,
resource usage, complexity, . . . )

– Types can be used to drive compiler optimizations.

– Types encourage separate compilation, modularity, and abstraction.

“Type structure is a syntactic discipline for enforcing levels of
abstraction.” [Reynolds, 1983]

Type-checking is compositional. Types can be abstract.
Even seemingly non-abstract types offer a degree of abstraction
(e.g., a function type does not tell how a function is represented)
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Type-preserving compilation

Types make sense in low-level programming languages as well—even
assembly languages can be statically typed! [Morrisett et al., 1999]

In a type-preserving compiler, every intermediate language is typed, and
every compilation phase maps typed programs to typed programs.

Preserving types provides insight into a transformation, helps debug it,
and paves the way to a semantics preservation proof [Chlipala, 2007].

Interestingly enough, lower-level programming languages often require
richer type systems than their high-level counterparts.
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Typed or untyped?

Reynolds [1985] nicely sums up a long and rather acrimonious debate:

“One side claims that untyped languages preclude compile-time
error checking and are succinct to the point of unintelligibility,
while the other side claims that typed languages preclude a
variety of powerful programming techniques and are verbose to
the point of unintelligibility.”

The issues are safety, expressiveness, and type inference.

A sound type system with decidable type-checking (and possibly
decidable type inference) must be conservative.

18 115 ◁



Functional programming Types

Typed, Sir! with better types.

In fact, Reynolds settles the debate:

“From the theorist’s point of view, both sides are right, and
their arguments are the motivation for seeking type systems
that are more flexible and succinct than those of existing typed
languages.”

Today, the question is more whether to stay with rather simple
polymorphic types (e.g. as in ML or System F) or use more sophiscated
types (e.g. dependent types, afine types, capabililties and ownership,
effect tpes, logical assertions, etc.), or even towards full program proofs!
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Explicit v.s. implicit types?

Annotating programs with types can lead to redundancy.
Types can even become extremely cumbersome when they have to be
explicitly and repeatedly provided.

In some pathological cases, type information may be grow in square of
the size of the underlying untyped expression.

This creates a need for a certain degree of type reconstruction (also
called type inference), where the source program may contain some but
not all type information.

In principle, types could be entirely left implicit, even if the language is
typed. A well-typed program is then one that is the type erasure of a
(well-typed) explicitly-typed program.

Full type reconstruction is undecidable for expressive type systems.

Some type annotations are required or type reconstruction is incomplete.
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Functional programming Types

Outline of the course

This course is organized in 6 topics, spread over 8 lectures.

1 Simple types

2 Polymorphism

3 Type reconstruction

4 Extistential types

5 Logical relations

6 Overloading and type classes
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Simply-typed λ-calculus Type soundness Simple extensions Exceptions References

Why λ-calculus?

In this course, the underlying programming language is the λ-calculus.

The λ-calculus supports natural encodings of many programming
languages [Landin, 1965], and as such provides a suitable setting for
studying type systems.

Following Church’s thesis, any Turing-complete language can be used to
encode any programming language. However, these encodings might not
be natural or simple enough to help us in understanding their typing
discipline.

Using λ-calculus, most of our results can also be applied to other
languages (Java, assembly language, etc.).
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Why simply-typed λ-calculus, again?

You have probably seen it a couple of times.

But not under the same angle: our focus is on types, formal presentation,
and proofs.

We introduce proof methods in the context of simply-typed λ-calculus,
and will later apply them to System-F , but faster, and with fewer details.

Warning! don’t think you know how to prove properties for simply-typed
λ-calculus because you have already seen its syntax several times. . .

NB: You will see simply-typed λ-calculus again at the end of the course,
which will be mechanically formalized (in the Coq proof assistant).
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Syntax

Types are:
τ ∶∶= α ∣ τ → τ ∣ . . .

Terms are:
M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ . . .

The dots are place holders for future extensions of the language.
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Binders

λx ∶τ.M binds variable x in M .

We write ftv(M) for the set of free variables of M :

ftv(x)
△
== {x}

ftv(λx ∶τ.M)
△
== ftv(M) ∖ {x}

ftv(M1 M2)
△
== ftv(M1) ∪ ftv(M2)

We write x#M for x ∉ ftv(M).

Terms are considered equal up to renaming of bound variables:

• λx1 ∶τ1. λx2 ∶τ2. x1 x2 and λy ∶τ1. λx ∶τ2. y x are really the same term!

• λx ∶τ. λx ∶τ.M is equal to λy ∶τ. λx ∶τ.M when y ∉ ftv(M).

Substitution:

[x ↦ N]M is the capture avoiding substitution of N for x in M .
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Concrete v.s. abstract syntax

For our metatheoretical study, we are interested in the abstract syntax of
expressions rather than their concrete syntax. Hence, we like to think of
expressions as their abstract syntax trees.

Still, we need to write expressions on paper, hence we need some
concrete syntax for terms.

The compromise is to have some concrete syntax that is in one-to-one
correspondence with the abstract syntax.

We may introduce syntactic sugar as short hand that should then be
understood by its expansion into some primitive form.

28 115 ◁



Simply-typed λ-calculus Type soundness Simple extensions Exceptions References

Concrete v.s. abstract syntax

An expression in concrete notation

λx.λy.x y

must be understood as its abstract syntax tree:

λ .

x λ .

y

⋅

x

⋅

y
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Dynamic semantics

We use a small-step operational semantics.

We choose a call-by-value variant. When explaining references,
exceptions, or other forms of side effects, this choice matters.

Otherwise, most of the type-theoretic machinery applies to call-by-name
or call-by-need just as well.
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Weak v.s. full reduction (parenthesis)

Calculi are often presented with a full reduction semantics, i.e. where
reduction may occur in any context. The reduction is then
non-deterministic (there are many possible reduction paths) but the
calculus remains deterministic, since reduction is confluent.

Programming languages use weak reduction strategies, i.e. reduction is
never performed under λ-abstractions, for efficiency of reduction, to have
a deterministic semantics in the presence of side effects—and a
well-defined cost model.

Still, type systems of programming languages are also sound for full
reduction strategies (with some care in the presence of side effects).

Type soundness for full reduction is a stronger result. In particular,
potential errors may not be hidden under λ-abstractions.
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Dynamic semantics

In the pure, call-by-value λ-calculus, the values are the functions:

V ∶∶= λx ∶τ.M ∣ . . .

The reduction relation M1 Ð→M2 is inductively defined:

βv

(λx ∶τ.M) V Ð→ [x ↦ V ]M

Context

M Ð→M ′

E[M]Ð→ E[M ′]

Evaluation contexts are defined as follows:

E ∶∶= []M ∣ V [] ∣ . . .

We only need evaluation contexts of depth one, using repeated
applications of Rule Context.

An evaluation context of arbitrary depth can be defined as:

Ē ∶∶= [] ∣ E[Ē]
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Static semantics

Technically, the type system is a 3-place predicate, whose instances are
called typing judgments, written:

Γ ⊢M ∶ τ

where Γ is a typing context.
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Typing context

A typing context (also called a type environment) Γ binds program
variables to types.

We write ∅ for the empty context and Γ, x ∶ τ for the extension of Γ with
x ↦ τ .

To avoid confusion, we require x ∉ dom(Γ) when we write Γ, x ∶ τ .

Bound variables in source programs can always be suitably renamed to
avoid name clashes.

A typing context can then be thought of as a finite function from
program variables to their types.

We write dom(Γ) for the set of variables bound by Γ and x ∶ τ ∈ Γ to
mean x ∈ dom(Γ) and τ = Γ(x).
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Static semantics

Typing judgments are defined inductively by the following set of
inferences rules:

Var

Γ ⊢ x ∶ Γ(x)

Abs

Γ, x ∶ τ1 ⊢M ∶ τ2

Γ ⊢ λx ∶τ1.M ∶ τ1 → τ2

App

Γ ⊢M1 ∶ τ1 → τ2 Γ ⊢M2 ∶ τ1

Γ ⊢ M1 M2 ∶ τ2

Notice that the specification is extremely simple.

In the simply-typed λ-calculus, the definition is syntax-directed.
This is not true of all type systems.
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Example

The following is a valid typing derivation:

App

Var

Γ ⊢ f ∶ τ1 → τ2
Var

Γ ⊢ x ∶ τ1

Γ ⊢ f x ∶ τ2

Γ ⊢ f ∶ τ1 → τ2
Var

Γ ⊢ y ∶ τ1
Var

Γ ⊢ f y ∶ τ2
App

f ∶ τ1 → τ2, x ∶ τ1, y ∶ τ1 ⊢ (f x, f y) ∶ τ2 × τ2
Pair

∅ ⊢ λf ∶τ1 → τ2. λx ∶τ1. λy ∶τ1. (f x, f y) ∶ (τ1 → τ2)→ τ1 → τ1 → (τ2 × τ2)
Abs

Γ stands for (f ∶ τ1 → τ2, x ∶ τ1, y ∶ τ1). Rule Pair is introduced later on.

Observe that:

– this is in fact, the only typing derivation (in the empty environment).

– this derivation is valid for any choice of τ1 and τ2.

Conversely, every derivation for this term must have this shape, for some
τ1 and τ2.
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Inversion of typing rules

The inversion Lemma states formally the previous informal reasoning.
It describes how the subterms of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume Γ ⊢M ∶ τ .

– If M is a variable x, then x ∈ dom(Γ) and Γ(x) = τ .

– If M is M1 M2 then Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2 for some type τ2.

– If M is λx ∶τ2.M1, then τ is of the form τ2 → τ1 and Γ, x ∶ τ2 ⊢ M1 ∶ τ1.

The inversion lemma is a basic property that is used in many places when
reasoning by induction on terms. Although trivial in our simple setting,
stating it explicitly avoids informal reasoning in proofs.

In more general settings, this may be a difficult lemma that requires
reorganizing typing derivations.
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Uniqueness of typing derivations

Since typing rules are syntax-directed, the shape of the derivation tree is
fully determined by the shape of the term.

In our simple setting, each term has actually a unique type.
Hence, typing derivations are unique, up to the typing context.
The proof, by induction on the structure of terms, is straightforward.

Explicitly-typed terms can thus be used to describe and manipulate
typing derivations (up to the typing context) in a precise and concise way.

This enables reasoning by induction on terms instead of on typing
derivations, which is often lighter.

Lacking this convenience, typing derivations must otherwise be described
in the meta-language of mathematics.
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Explicitly v.s. implicitly typed?

Our presentation of simply-typed λ-calculus is explicitly typed (we also
say in church-style), as parameters of abstractions are annotated with
their types.

Simply-typed λ-calculus can also be implicitly typed (we also say in
curry-style) when parameters of abstractions are left unannotated, as in
the pure λ-calculus.

Of course, the existence of syntax-directed typing rules depends on the
amount of type information present in source terms and can be easily
lost if some type information is left implicit.

In particular, typing rules for terms in curry-style are not syntax-directed.
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Type erasure

We may translate explicitly-typed expressions into implicitly-typed ones
by dropping type annotations. This is called type erasure.

We write ⌈M⌉ for the type erasure of M , which is defined by structural
induction on M :

⌈x⌉
△
== x

⌈λx ∶τ.M⌉
△
== λx. ⌈M⌉

⌈M1 M2⌉
△
== ⌈M1⌉ ⌈M2⌉
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Type reconstruction

Conversely, can we convert implicitly-typed expressions back into
explicitly-typed ones, that is, can we reconstruct the missing type
information?

This is equivalent to finding a typing derivation for implicitly-typed
terms. It is called type reconstruction (or type inference).
(See the course on type reconstruction.)
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Untyped semantics

Observe that although the reduction carries types at runtime, types do
not actually contribute to the reduction.

Intuitively, the semantics of terms is the same as that of their type
erasure. We say that the semantics is untyped or type-erasing.

But how can we say that the semantics of typed and untyped terms
coincide when these terms do not live in the same world?

?
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Untyped semantics

Observe that although the reduction carries types at runtime, types do
not actually contribute to the reduction.

Intuitively, the semantics of terms is the same as that of their type
erasure. We say that the semantics is untyped or type-erasing.

But how can we say that the semantics of typed and untyped terms
coincide when these terms do not live in the same world?

By showing that the reductions in the two languages can be put into
close correspondence.

42⟨2⟩ 115 ◁



Simply-typed λ-calculus Type soundness Simple extensions Exceptions References

Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

If M1 Ð→M2 then ⌈M1⌉Ð→ ⌈M2⌉.

M1 M2

β
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Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

If M1 Ð→M2 then ⌈M1⌉Ð→ ⌈M2⌉.

M1 M2

a1 a2

β

⌈⌉ ⌈⌉

β
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Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

If M1 Ð→M2 then ⌈M1⌉Ð→ ⌈M2⌉.

M1 M2

a1 a2

β

⌈⌉ ⌈⌉

β
Conversely, a reduction step after type erasure could
also have been performed on the term before type erasure.

Lemma (Inverse simulation)

If ⌈M⌉ Ð→ a then there exists M ′ such that
M Ð→M ′ and ⌈M ′⌉ = a.

M1

a1 a2

⌈⌉

β
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Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

If M1 Ð→M2 then ⌈M1⌉Ð→ ⌈M2⌉.

M1 M2

a1 a2

β

⌈⌉ ⌈⌉

β
Conversely, a reduction step after type erasure could
also have been performed on the term before type erasure.

Lemma (Inverse simulation)

If ⌈M⌉ Ð→ a then there exists M ′ such that
M Ð→M ′ and ⌈M ′⌉ = a.

M1 M2

a1 a2

⌈⌉

β

β

⌈⌉
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Untyped semantics

On the one hand, type erasure preserves reduction.

Lemma (Direct simulation)

If M1 Ð→M2 then ⌈M1⌉Ð→ ⌈M2⌉.

M1 M2

a1 a2

β

⌈⌉ ⌈⌉

β
Conversely, a reduction step after type erasure could
also have been performed on the term before type erasure.

Lemma (Inverse simulation)

If ⌈M⌉ Ð→ a then there exists M ′ such that
M Ð→M ′ and ⌈M ′⌉ = a.

M1 M2

a1 a2

⌈⌉

β

β

⌈⌉

What we have established is a bisimulation between explicitly-typed
terms and implicitly-typed ones.

In general, there may be reduction steps on source terms that involved
only types and have no counter-part (and disappear) on compiled terms.
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Untyped semantics

It is an important property for a language to have an untyped semantics.

It then has an implicitly-typed presentation.

The metatheoretical study is often easier with explicitly-typed terms, in
particular when proving syntactic properties.

Properties of the implicitly-typed presentation can often be indirectly
proved via an explicitly-typed presentation of the language.

This is the path we choose in this course.

(Once we have shown that implicit and explicit presentations coincide,
we can choose whichever view is more convenient.)
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Stating type soundness

What is a formal statement of Milner’s slogan?

“Well-typed expressions do not go wrong”

By definition, a closed term M is well-typed if it admits some type τ in
the empty environment.

By definition, a closed, irreducible term is either a value or stuck.
Thus, a closed term can only:

• diverge,

• converge to a value, or

• go wrong by reducing to a stuck term.

Type soundness: the last case is not possible for well-typed terms.
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Stating type soundness

Milner’s slogan now has formal meaning:

Theorem (Type Soundness)

Well-typed expressions do not go wrong.

Proof.

By Subject Reduction and Progress.
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Establishing type soundness

We use the syntactic proof method of Wright and Felleisen [1994].
Type soundness follows from two properties:

Theorem (Subject reduction)

Reduction preserves types: if M1 Ð→M2 then for any type τ such that
∅ ⊢M1 ∶ τ , we also have ∅ ⊢M2 ∶ τ .

Theorem (Progress)

A (closed) well-typed term is either reducible or a value:
if ∅ ⊢M ∶ τ then there exists M ′ such that M Ð→M ′, or M is a value.

Equivalently, we may say: a closed, well-typed, irreducible term is a value.
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Establishing subject reduction

Subject reduction is proved by induction over the hypothesis M1 Ð→ M2.
Thus, there is one case per reduction rule.

In the pure simply-typed λ-calculus, there are just two such rules:
β-reduction and reduction under an evaluation context.

βv

(λx ∶τ.M) V Ð→ [x ↦ V ]M

Context

M Ð→M ′

E[M]Ð→ E[M ′]
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Establishing subject reduction Case β

In the β-reduction case, the first hypothesis is

(λx ∶τ.M) V Ð→ [x ↦ V ]M (1)

the second hypothesis is

∅ ⊢ (λx ∶τ.M) V ∶ τ0 (2)

and the goal is
∅ ⊢ [x↦ V ]M ∶ τ0 (3)

How do we proceed?
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Establishing subject reduction Case β

Hyp: (λx ∶τ.M) V Ð→ [x ↦ V ]M (1) and ∅ ⊢ (λx ∶τ.M) V ∶ τ0 (2).

Goal: ∅ ⊢ [x ↦ V ]M ∶ τ0 (3)

We decompose the hypothesis (2).

By inversion of the typing rules, the derivation of (2) must be:

App

Abs

x ∶ τ ⊢M ∶ τ0 (4)

∅ ⊢ (λx ∶τ.M) ∶ τ → τ0 ∅ ⊢ V ∶ τ (5)

∅ ⊢ (λx ∶τ.M) V ∶ τ0 (2)

Where next?
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Establishing subject reduction Case β

Hyp: (λx ∶τ.M) V Ð→ [x ↦ V ]M (1) and ∅ ⊢ (λx ∶τ.M) V ∶ τ0 (2).

Goal: ∅ ⊢ [x ↦ V ]M ∶ τ0 (3)

We decompose the hypothesis (2).

By inversion of the typing rules, the derivation of (2) must be:

App

Abs

x ∶ τ ⊢M ∶ τ0 (4)

∅ ⊢ (λx ∶τ.M) ∶ τ → τ0 ∅ ⊢ V ∶ τ (5)

∅ ⊢ (λx ∶τ.M) V ∶ τ0 (2)

Where next?

We expect (3) to follow from (4) and (5)...
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Establishing subject reduction (case β) Value substitution

Hence, to conclude, we only need the following lemma:

Lemma (Value substitution)

If x ∶ τ ⊢M ∶ τ0 and ∅ ⊢ V ∶ τ , then ∅ ⊢ [x ↦ V ]M ∶ τ0.

In plain words, replacing a formal parameter with a type-compatible
actual argument preserves types.

How do we prove this lemma?

?
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Establishing subject reduction (case β) Value substitution

Hence, to conclude, we only need the following lemma:

Lemma (Value substitution)

If x ∶ τ ⊢M ∶ τ0 and ∅ ⊢ V ∶ τ , then ∅ ⊢ [x ↦ V ]M ∶ τ0.

In plain words, replacing a formal parameter with a type-compatible
actual argument preserves types.

How do we prove this lemma?

—By induction on the typing derivation for M . . .

However, one case does not go through. Which one?
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Establishing subject reduction (case β) Value substitution

Hence, to conclude, we only need the following lemma:

Lemma (Value substitution)

If x ∶ τ ⊢M ∶ τ0 and ∅ ⊢ V ∶ τ , then ∅ ⊢ [x ↦ V ]M ∶ τ0.

In plain words, replacing a formal parameter with a type-compatible
actual argument preserves types.

How do we prove this lemma?

—By induction on the typing derivation for M . . .

However, one case does not go through. Which one?
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Establishing subject reduction (case β) Value substitution

The lemma must be suitably generalized so that induction can be applied
in the case of abstraction:

Lemma (Value substitution, strengthened)

If x ∶ τ,Γ ⊢M ∶ τ0 and ∅ ⊢ V ∶ τ , then Γ ⊢ [x↦ V ]M ∶ τ0.

The proof is now straightforward—at variables, it uses another lemma:

Lemma (Weakening)

If ∅ ⊢ V ∶ τ1 then Γ ⊢ V ∶ τ1.

This closes the case of the β-reduction rule.
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Establishing subject reduction (case β) Weakening

The weakening lemma need only add one binding at a time, the general
case follows as a corollary. However, . . .

?
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Establishing subject reduction (case β) Weakening

The weakening lemma need only add one binding at a time, the general
case follows as a corollary. However, it must be strengthened...

Lemma (Weakening, strengthened)

If Γ ⊢M ∶ τ and y ∉ dom(Γ), then Γ, y ∶ τ ′ ⊢M ∶ τ .

The proof is by induction and cases on M applying the inversion lemma:

Case M is x: Then, x must be bound to τ in Γ. Hence, it is also bound
to τ in (Γ, y ∶ τ ′). We conclude by rule Var.

Case M is λx ∶τ2.M1: W.l.o.g, we may choose x ∉ dom(Γ) and x /= y.
We have Γ, x ∶ τ2 ⊢ M1 ∶ τ1 with τ2 → τ1 equal to τ . By induction
hypothesis, we have Γ, x ∶ τ2, y ∶ τ

′ ⊢M1 ∶ τ1. Thanks to a permutation
lemma, we have Γ, y ∶ τ ′, x ∶ τ2 ⊢M1 ∶ τ1 and we conclude by Rule Abs.

Case M is M1 M2: easy.
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Establishing subject reduction (case β) Permutation

Lemma (Permutation lemma)

If Γ ⊢M ∶ τ and Γ′ is a permutation of Γ, then Γ′ ⊢M ∶ τ .

?
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Establishing subject reduction (case β) Permutation

Lemma (Permutation lemma)

If Γ ⊢M ∶ τ and Γ′ is a permutation of Γ, then Γ′ ⊢M ∶ τ .

The result is obvious since a permutation of Γ does not change its
interpretation as a finite function, which is all what is needed in the
typing rules so far (this will no longer be the case when we extend Γ with
type variable declarations).

Formally, the proof is by induction on M .
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Establishing subject reduction Case Context

In the context case, the first hypothesis is

M Ð→M ′ (1)

where, by induction hypothesis, this reduction preserves types (2).

The second hypothesis is
∅ ⊢ E[M] ∶ τ (3)

where E is an evaluation context (reminder E ∶∶= []M ∣ V [] ∣ . . .).

The goal is
∅ ⊢ E[M ′] ∶ τ (4)

How do we proceed?
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Establishing subject reduction Case Context

Type-checking is compositional: only the type of the sub-expression in
the hole matters, not its exact form. The context case immediately
follows from compositionality, which closes the proof of subject reduction.

Lemma (Compositionality)

If ∅ ⊢ E[M] ∶ τ , then, there exists τ ′ such that:

• ∅ ⊢M ∶ τ ′,

• for every M ′, ∅ ⊢M ′
∶ τ ′ implies ∅ ⊢ E[M ′] ∶ τ .

The proof is straightforward, by cases over E.

Informally, τ ′ is the type of the hole in the pseudo judgment
∅ ⊢ E[τ ′] ∶ τ . Evaluation contexts do not bind variables, so the hole is
typechecked in an empty environment as well.
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Establishing progress

Progress (“A closed, well-typed, irreducible term M is a value”) is proved
by structural induction over the term M . Thus, there is one case per
construct in the syntax of terms.

In the pure λ-calculus, there are just three cases:

• variable;

• λ-abstraction;

• application.

Two of these are immediate...
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Establishing progress

• The case of variables is void,
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Establishing progress

• The case of variables is void,
because a variable is never closed
(it does not admit a type in the empty environment).
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Establishing progress

• The case of variables is void,
because a variable is never closed
(it does not admit a type in the empty environment).

• The case of λ-abstractions is immediate,
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Establishing progress

• The case of variables is void,
because a variable is never closed
(it does not admit a type in the empty environment).

• The case of λ-abstractions is immediate,
because a λ-abstraction is a value.
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Establishing progress

• The case of variables is void,
because a variable is never closed
(it does not admit a type in the empty environment).

• The case of λ-abstractions is immediate,
because a λ-abstraction is a value.

• The only remaining case is that of applications.

59⟨5⟩ 115 ◁



Simply-typed λ-calculus Type soundness Simple extensions Exceptions References

Establishing progress

Let us show that a closed, well-typed, term M1 M2. is reducible.

By inversion of typing rules, there exist types τ1 and τ2 such that
∅ ⊢M1 ∶ τ2 → τ1 (1) and ∅ ⊢ M2 ∶ τ2 (2).
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Establishing progress

Let us show that a closed, well-typed, term M1 M2. is reducible.

By inversion of typing rules, there exist types τ1 and τ2 such that
∅ ⊢M1 ∶ τ2 → τ1 (1) and ∅ ⊢ M2 ∶ τ2 (2).

By the I.H. applied to (1), M1 is eiher reducible or a value V1.

?
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Establishing progress

Let us show that a closed, well-typed, term M1 M2. is reducible.

By inversion of typing rules, there exist types τ1 and τ2 such that
∅ ⊢M1 ∶ τ2 → τ1 (1) and ∅ ⊢ M2 ∶ τ2 (2).

By the I.H. applied to (1), M1 is eiher reducible or a value V1.

If M1 is reducible, so is M since []M2 is an evaluation context and we
are done.

?
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Establishing progress

Let us show that a closed, well-typed, term M1 M2. is reducible.

By inversion of typing rules, there exist types τ1 and τ2 such that
∅ ⊢M1 ∶ τ2 → τ1 (1) and ∅ ⊢ M2 ∶ τ2 (2).

By the I.H. applied to (1), M1 is eiher reducible or a value V1.

If M1 is reducible, so is M since []M2 is an evaluation context and we
are done.

Otherwise, by the I.H. applied to (2), M2 is either reducible or a value V2.

?
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Establishing progress

Let us show that a closed, well-typed, term M1 M2. is reducible.

By inversion of typing rules, there exist types τ1 and τ2 such that
∅ ⊢M1 ∶ τ2 → τ1 (1) and ∅ ⊢ M2 ∶ τ2 (2).

By the I.H. applied to (1), M1 is eiher reducible or a value V1.

If M1 is reducible, so is M since []M2 is an evaluation context and we
are done.

Otherwise, by the I.H. applied to (2), M2 is either reducible or a value V2.

If M2 is reducible, so is M since V1 [] is an evaluation context and we
are done.

?
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Establishing progress

Let us show that a closed, well-typed, term M1 M2. is reducible.

By inversion of typing rules, there exist types τ1 and τ2 such that
∅ ⊢M1 ∶ τ2 → τ1 (1) and ∅ ⊢ M2 ∶ τ2 (2).

By the I.H. applied to (1), M1 is eiher reducible or a value V1.

If M1 is reducible, so is M since []M2 is an evaluation context and we
are done.

Otherwise, by the I.H. applied to (2), M2 is either reducible or a value V2.

If M2 is reducible, so is M since V1 [] is an evaluation context and we
are done.

Because V1 is a value of type τ1 → τ2, it must be a λ-abstraction
(see next slide), so M is a β-redex, hence reducible.
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Establishing progress

Interestingly, the proof is constructive.

It corresponds to an algorithm that. . .

Does what?
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Establishing progress

Interestingly, the proof is constructive.

It corresponds to an algorithm that. . .

. . . searches for the active redex in a well-typed term.
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Classification of values

We have appealed to the following property:

Lemma (Classification)

Assume ∅ ⊢ V ∶ τ . Then,

• if τ is an arrow type, then V is a λ-abstraction;

• . . . (e.g. if τ is a product type, then V is product)

Proof.

By cases over V :

• if V is a λ-abstraction, then τ must be an arrow type;

• . . . (e.g. if V is product, then τ must be a product type)

Because different kinds of values receive types with different head
constructors, this classification is injective, and can be inverted.
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Towards more complex type systems

In the pure λ-calculus, classification is trivial,

— why?
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Towards more complex type systems

In the pure λ-calculus, classification is trivial,
because every value is a λ-abstraction.

Progress holds even in the absence of the well-typedness hypothesis, i.e.
in the untyped λ-calculus, because no term is ever stuck!

As the programming language and its type system are extended with new
features, however, type soundness is no longer trivial.

Warning!

Most type soundness proofs are shallow but large. Authors are tempted
to skip the “easy” cases, but these may contain hidden traps!

This calls for mechanized proofs that cover all cases and should be able
to treat trivial cases automatically.
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Towards more complex type systems

Sometimes, the combination of two features is unsound, even though
each feature, in isolation, is sound.

This is problematic, because researchers like studying each feature in
isolation, and do not necessarily foresee problems with their combination.

This will be illustrated in this course by the interaction between
references and polymorphism in ML.

In fact, a few such combinations have been implemented, deployed, and
used for some time before they were found to be unsound!

• call/cc + polymorphism in SML/NJ [Harper and Lillibridge, 1991]

• mutable records + existential quantification in Cyclone [Grossman,
2006]
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Soundness versus completeness

Because the λ-calculus is a Turing-complete programming language,
whether a program goes wrong is an undecidable property.

As a result, any sound, decidable type system must be incomplete, that
is, must reject some valid programs.

Type systems can be compared against one another via encodings, so it
is sometimes possible to prove that one system is more expressive than
another.

However, whether a type system is “sufficiently expressive in practice”
can only be assessed via empirical means.
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Adding a unit

The simply-typed λ-calculus is modified as follows. Values and
expressions are extended with a nullary constructor () (read “unit”):

M ∶∶= . . . ∣ () V ∶∶= . . . ∣ ()

No new reduction rule is introduced.

Types are extended with a new constant unit and a new typing rule:

τ ∶∶= . . . ∣ unit
Unit

Γ ⊢ () ∶ unit

Exercise

Check that type soundness is preserved by this extension.

Notice that the classification Lemma is no longer degenerate.
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Pairs

The simply-typed λ-calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ (M,M) ∣ proji M

E ∶∶= . . . ∣ ???
V ∶∶= . . . ∣ (V,V )
i ∈ {1,2}

A new reduction rule is introduced:

???
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Pairs

The simply-typed λ-calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ (M,M) ∣ proji M

E ∶∶= . . . ∣ ([],M) ∣ (V, []) ∣ proji []
V ∶∶= . . . ∣ (V,V )
i ∈ {1,2}

A new reduction rule is introduced:

???
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Pairs

The simply-typed λ-calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ (M,M) ∣ proji M

E ∶∶= . . . ∣ ([],M) ∣ (V, []) ∣ proji []
V ∶∶= . . . ∣ (V,V )
i ∈ {1,2}

A new reduction rule is introduced:

proji (V1, V2)Ð→ Vi
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Pairs

Types are extended:
τ ∶∶= . . . ∣ τ × τ

Two new typing rules are introduced:

Pair

Γ ⊢M1 ∶ τ1 Γ ⊢M2 ∶ τ2

Γ ⊢ (M1,M2) ∶ τ1 × τ2

Proj

Γ ⊢M ∶ τ1 × τ2

Γ ⊢ proji M ∶ τi

Exercise

Check that subject reduction is preserved by this extension.
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Sums

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ inji M ∣ caseM of V 8 V

E ∶∶= . . . ∣ ???
V ∶∶= . . . ∣ inji V

A new reduction rule is introduced:

???
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Sums

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ inji M ∣ caseM of V 8 V

E ∶∶= . . . ∣ inji [] ∣ case [] of V 8 V

V ∶∶= . . . ∣ inji V

A new reduction rule is introduced:

???
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Sums

Values, expressions, evaluation contexts are extended:

M ∶∶= . . . ∣ inji M ∣ caseM of V 8 V

E ∶∶= . . . ∣ inji [] ∣ case [] of V 8 V

V ∶∶= . . . ∣ inji V

A new reduction rule is introduced:

case inji V of V1 8 V2 Ð→ Vi V
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Sums

Types are extended:
τ ∶∶= . . . ∣ τ + τ

Two new typing rules are introduced:

Inj

Γ ⊢M ∶ τi

Γ ⊢ inji M ∶ τ1 + τ2

Case

Γ ⊢M ∶ τ1 + τ2
Γ ⊢ V1 ∶ τ1 → τ Γ ⊢ V2 ∶ τ2 → τ

Γ ⊢ caseM of V1 8 V2 ∶ τ
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Sums with unique types

Notice that a property of simply-typed λ-calculus is lost: expressions do
not have unique types anymore, i.e. the type of an expression is no
longer determined by the expression.

Uniqueness of types can be recovered

?

72⟨1⟩ 115 ◁



Simply-typed λ-calculus Type soundness Simple extensions Exceptions References

Sums with unique types

Notice that a property of simply-typed λ-calculus is lost: expressions do
not have unique types anymore, i.e. the type of an expression is no
longer determined by the expression.

Uniqueness of types can be recovered by using a type annotation in
injections:

?
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Sums with unique types

Notice that a property of simply-typed λ-calculus is lost: expressions do
not have unique types anymore, i.e. the type of an expression is no
longer determined by the expression.

Uniqueness of types can be recovered by using a type annotation in
injections:

V ∶∶= . . . ∣ inji V as τ

and modifying the typing rules and reduction rules accordingly.

Exercise

Describe an extension with the option type.
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Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

• a new type constructor, to classify values of a new shape;

• new expressions, to construct and destruct values of a new shape.

• new typing rules for new forms of expressions;

• new reduction rules, to specify how values of the new shape can be
destructed;

• new evaluation contexts—but just to propagate reduction under the
new constructors.

Subject reduction is preserved . . .

?
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Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

• a new type constructor, to classify values of a new shape;

• new expressions, to construct and destruct values of a new shape.

• new typing rules for new forms of expressions;

• new reduction rules, to specify how values of the new shape can be
destructed;

• new evaluation contexts—but just to propagate reduction under the
new constructors.

Subject reduction is preserved because types are preserved by the new
reduction rules.

Progress is preserved . . .

?
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Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

• a new type constructor, to classify values of a new shape;

• new expressions, to construct and destruct values of a new shape.

• new typing rules for new forms of expressions;

• new reduction rules, to specify how values of the new shape can be
destructed;

• new evaluation contexts—but just to propagate reduction under the
new constructors.

Subject reduction is preserved because types are preserved by the new
reduction rules.

Progress is preserved because the type system ensures that the new
destructors can only be applied to values such that at least one of the
new reduction rules applies.
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Modularity of extensions

These extensions are independent: they can be added to the λ-calculus
alone or mixed altogether.

Indeed, no assumption about other extensions (the “. . .”) is ever made,
except for the classification lemma which requires, informally, that values
of other shapes have types of other shapes.

This is indeed the case in the extensions we have presented: the unit has
the Unit type, pairs have product types, sums have sum types.

In fact, these extensions could have been presented as several instances of
a more general extension of the λ-calculus with constants, for which type
soundness can be established uniformly under reasonable assumptions
relating the given typing rules and reduction rules for constants.

See the treatment of data types in System F in the next chapter.
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Recursive functions

The simply-typed λ-calculus is modified as follows.

Values and expressions are extended:

M ∶∶= . . . ∣ µf ∶τ. λx.M
V ∶∶= . . . ∣ µf ∶τ. λx.M

A new reduction rule is introduced:

(µf ∶τ. λx.M) V Ð→ [f ↦ µf ∶τ. λx.M][x ↦ V ]M
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Recursive functions

Types are not extended. We already have function types.

Hence, types will not distinguish functions from recursive functions.

A new typing rule is introduced:

FixAbs

Γ, f ∶ τ1 → τ2 ⊢ λx ∶τ1.M ∶ τ1 → τ2

Γ ⊢ µf ∶τ1 → τ2. λx.M ∶ τ1 → τ2
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Recursive functions

Types are not extended. We already have function types.

Hence, types will not distinguish functions from recursive functions.

A new typing rule is introduced:

FixAbs

Γ, f ∶ τ1 → τ2 ⊢ λx ∶τ1.M ∶ τ1 → τ2

Γ ⊢ µf ∶τ1 → τ2. λx.M ∶ τ1 → τ2

In the premise, the type τ1 → τ2 serves both as an assumption and a
goal. This is a typical feature of recursive definitions.
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A derived construct: let

The construct “let x ∶ τ =M1 inM2” can be viewed as syntactic sugar for
the β-redex “(λx ∶τ.M2)M1”.

The latter can be type-checked only by a derivation of the form:

App

Abs

Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ λx ∶τ1.M2 ∶ τ1 → τ2 Γ ⊢M1 ∶ τ1

Γ ⊢ (λx ∶τ1.M2)M1 ∶ τ2

This means that the following derived rule is sound and complete:

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let x ∶ τ1 =M1 inM2 ∶ τ2

The construct “M1;M2” can in turn be viewed as syntactic sugar for . . .

?
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A derived construct: let

The construct “let x ∶ τ =M1 inM2” can be viewed as syntactic sugar for
the β-redex “(λx ∶τ.M2)M1”.

The latter can be type-checked only by a derivation of the form:

App

Abs

Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ λx ∶τ1.M2 ∶ τ1 → τ2 Γ ⊢M1 ∶ τ1

Γ ⊢ (λx ∶τ1.M2)M1 ∶ τ2

This means that the following derived rule is sound and complete:

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let x ∶ τ1 =M1 inM2 ∶ τ2

The construct “M1;M2” can in turn be viewed as syntactic sugar for
let x ∶ unit =M1 inM2 where x ∉ ftv(M2).
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A derived construct: let or a primitive one?

In the derived form let x ∶ τ1 =M1 inM2 the type of M1 must be
explicitly given, although by uniqueness of types, it is entirely determined
by the expression M1 itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form
let x =M1 inM2 with the following primitive typing rule.

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let x =M1 inM2 ∶ τ2

This seems better. . .

?
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A derived construct: let or a primitive one?

In the derived form let x ∶ τ1 =M1 inM2 the type of M1 must be
explicitly given, although by uniqueness of types, it is entirely determined
by the expression M1 itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form
let x =M1 inM2 with the following primitive typing rule.

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let x =M1 inM2 ∶ τ2

This seems better—not necessarily, because removing redundant type
annotations is the task of type reconstruction and we should not bother
(too much) about it in the explicitly-typed version of the language.
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A derived construct: let or a primitive one?

In the derived form let x ∶ τ1 =M1 inM2 the type of M1 must be
explicitly given, although by uniqueness of types, it is entirely determined
by the expression M1 itself. Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form
let x =M1 inM2 with the following primitive typing rule.

LetMono

Γ ⊢M1 ∶ τ1 Γ, x ∶ τ1 ⊢ M2 ∶ τ2

Γ ⊢ let x =M1 inM2 ∶ τ2

This seems better—not necessarily, because removing redundant type
annotations is the task of type reconstruction and we should not bother
(too much) about it in the explicitly-typed version of the language.

Minimizing the number of language constructs is at least as important as
avoiding extra type annotations in an explicitly-typed language.
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A derived construct: let rec

The construct “let rec (f ∶ τ) x =M1 inM2” can be viewed as syntactic
sugar for “let f = µf ∶τ. λx.M1 inM2”.

The latter can be type-checked only by a derivation of the form:

LetMono

FixAbs

Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1

Γ ⊢ µf ∶τ → τ1. λx.M1 ∶ τ → τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let f = µf ∶τ → τ2. λx.M1 inM2 ∶ τ2

This means that the following derived rule is sound and complete:

LetRecMono

Γ, f ∶ τ → τ1;x ∶ τ ⊢M1 ∶ τ1 Γ, f ∶ τ → τ1 ⊢M2 ∶ τ2

Γ ⊢ let rec (f ∶ τ → τ1) x =M1 inM2 ∶ τ2
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Exceptions Semantics

Exceptions are a mechanism for changing the normal order of evaluation
usually, but not necessarily, in case something abnormal occurred.

When an exception is raised, the evaluation does not continue as usual:
Shortcutting normal evaluation rules, the exception is propagated up into
the evaluation context until some handler is found at which the
evaluation resumes with the exceptional value received; if no handler is
found, the exception had reached the toplevel and the result of the
evaluation is the exception instead of a value.

We extend the language with a constructor form to raise an exception
and a destructor form to catch an exception; we also extend the
evaluation contexts:

M ∶∶= . . . ∣ raiseM ∣ tryM withM

E ∶∶= . . . ∣ raise [] ∣ try [] withM
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Exceptions Semantics

We do not treat raise V as a value, . . .

Why?
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Exceptions Semantics

We do not treat raise V as a value, since it stops the normal er of
evaluation.
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Exceptions Semantics

We do not treat raise V as a value, since it stops the normal er of
evaluation. Instead, reduction rules propagate and handle exceptions:

Raise

F [raise V ]Ð→ raise V

Handle-Val

try V withM Ð→ V

Handle-Raise

try raise V withM Ð→M V
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Exceptions Semantics

We do not treat raise V as a value, since it stops the normal er of
evaluation. Instead, reduction rules propagate and handle exceptions:

Raise

F [raise V ]Ð→ raise V

Handle-Val

try V withM Ð→ V

Handle-Raise

try raise V withM Ð→M V

Rule Raise uses an evaluation context F which stands for any E other
than try [] withM , so that it propagates an exception up the evaluation
contexts, but not through a handler.

The case of the handler is treated by two specific rules:

• Rule Handle-Raise passes an exceptional value to its handler;

• Rule Handle-Val removes the handler around a value.
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Exceptions Example

For example, assuming that K is λx.λy. y and M Ð→ V , we have the
following reduction:

try K (raiseM) with λx.x
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Exceptions Example

For example, assuming that K is λx.λy. y and M Ð→ V , we have the
following reduction:

try K (raiseM) with λx.x by Context

Ð→ try K (raise V ) with λx.x
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Exceptions Example

For example, assuming that K is λx.λy. y and M Ð→ V , we have the
following reduction:

try K (raiseM) with λx.x by Context

Ð→ try K (raise V ) with λx.x by Raise

Ð→ try raise V with λx.x
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Exceptions Example

For example, assuming that K is λx.λy. y and M Ð→ V , we have the
following reduction:

try K (raiseM) with λx.x by Context

Ð→ try K (raise V ) with λx.x by Raise

Ð→ try raise V with λx.x by Handle-Raise

Ð→ (λx.x) V
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Exceptions Example

For example, assuming that K is λx.λy. y and M Ð→ V , we have the
following reduction:

try K (raiseM) with λx.x by Context

Ð→ try K (raise V ) with λx.x by Raise

Ð→ try raise V with λx.x by Handle-Raise

Ð→ (λx.x) V by βv

Ð→ V

In particular, we do not have the following step,

tryK (raise V ) with λx.x by βv

Ð→/ try λy. y with λx.x Ð→ λy. y

since raise V is not a value, so the first β-reduction step is not allowed.
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Exceptions Typing rules

We assume given a fixed type τexn for exceptional values.

Raise

Γ ⊢M ∶ τexn

Γ ⊢ raiseM ∶ τ

Try

Γ ⊢M1 ∶ τ Γ ⊢M2 ∶ τexn → τ

Γ ⊢ try M1 withM2 ∶ τ
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Exceptions on the type of exception

What should we choose for τexn?

?
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Exceptions on the type of exception

What should we choose for τexn? Well, any type:

• Choosing unit, exceptions will not carry any information.

• Choosing int, exceptions can report some error code.

• Choosing string, exceptions can report error messages.
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Exceptions on the type of exception

What should we choose for τexn? Well, any type:

• Choosing unit, exceptions will not carry any information.

• Choosing int, exceptions can report some error code.

• Choosing string, exceptions can report error messages.

Can you do Better?
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Exceptions on the type of exception

What should we choose for τexn? Well, any type:

• Choosing unit, exceptions will not carry any information.

• Choosing int, exceptions can report some error code.

• Choosing string, exceptions can report error messages.

• Using a sum type or better a variant type (tagged sum), with one
case to describe each exceptional situation.

This is the approach followed by ML, which declares a new
extensible type exn for exceptions: this is a sum type, except that all
cases are not declared in advance, but only as needed.
(Extensible datatypes are available to OCaml users since version 4.02.)
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Exceptions on the type of exception

What should we choose for τexn? Well, any type:

• Choosing unit, exceptions will not carry any information.

• Choosing int, exceptions can report some error code.

• Choosing string, exceptions can report error messages.

• Using a sum type or better a variant type (tagged sum), with one
case to describe each exceptional situation.

This is the approach followed by ML, which declares a new
extensible type exn for exceptions: this is a sum type, except that all
cases are not declared in advance, but only as needed.
(Extensible datatypes are available to OCaml users since version 4.02.)

In all cases, the type of exception must be fixed in the whole program.

This is because raise ⋅ and try ⋅ with ⋅ must agree beforehand on the type
of exceptions as this type is not passed around by the typing rules.
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Exceptions Type soundness

How do we state type soundness, since exceptions may be uncaught?
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Exceptions Type soundness

How do we state type soundness, since exceptions may be uncaught?

By saying that this is the only “exception” to progress:

Theorem (Progress)

A well-typed, irreducible term is either a value or an uncaught exception.
if ∅ ⊢M ∶ τ and M /Ð→ , then M is either V or raise V for some
value V .
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On uncaught exceptions

An uncaught exception is often a programming error. It may be
surprising that they are not detected by the type system.

Exceptions may be detected using more expressive type systems.
Unfortunately, the existing solutions are often complicated for some
limited benefit, and are still not often used in practice.

The complication comes from the treatment of functions, which have
some latent effect of possibly raising or catching an exception when
applied. To be precise, the analysis must therefore enrich types of
functions with latent effects, which is quite invasive and obfuscating.

Uncaught exceptions must be declared in the language Java.

See Leroy and Pessaux [2000] for a solution in ML.
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Exceptions small semantic variation

Once raised, exceptions are propagated step-by-step by Rule Raise until
they reach a handler or the toplevel.

We can also describe their semantics by replacing propagation of
exceptions by deep handling of exceptions inside terms.

Replace the three reduction rules by:

Handle-Val’

try V withM Ð→ V

Handle-Raise’

try F [raise V ] withM Ð→M V

where F is a sequence of F contexts, i.e. handler-free evaluation context
of arbitrary depth.

This semantics is perhaps more intuitive, closer to what a compiler does,
but the two presentations are equivalent.

In this case, uncaught exceptions are of the form F [V ].
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Exceptions small syntax variation

Benton and Kennedy [2001] have argued for merging let and try
constructs into a unique form let x =M1 withM2 inM3.

The expression M1 is evaluated first and

• if it returns a value it is substituted for x in M3, as if we had
evaluated let x =M1 inM3;

• otherwise, i.e., if it raises an exception raise V , then the exception is
handled by M2, as if we had evaluated tryM1 withM2.

This combined form captures a common pattern in programming:

let rec read config in path filename (dir :: dirs) →
let fd = open in (Filename.concat dir filename)
with Sys error → read config filename dirs in
read config from fd fd

Workarounds are inelegant and inefficient. This form is also better suited
for program transformations (see Benton and Kennedy [2001]).
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Exceptions small syntax variation

Encoding the new form let x =M1 withM2 inM3 with “let” and “try” is
not easy:

In particular, it is not equivalent to: try let x =M1 in M3 withM2.

Why?
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Exceptions small syntax variation

Encoding the new form let x =M1 withM2 inM3 with “let” and “try” is
not easy:

In particular, it is not equivalent to: try let x =M1 in M3 withM2.

The continuation M3 could raise an exception that would then be
handled by M2, which is not intended.

There are several encodings:

Can you find one?
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Exceptions small syntax variation

Encoding the new form let x =M1 withM2 inM3 with “let” and “try” is
not easy:

In particular, it is not equivalent to: try let x =M1 in M3 withM2.

The continuation M3 could raise an exception that would then be
handled by M2, which is not intended.

There are several encodings:

• Use a sum type to know whether M1 raised an exception:
case (try ValM1 with λy.Exc y) of (Val ∶ λx.M3 8 Exc ∶M2)

• Freeze the continuation M3 while handling the exception:
(try let x =M1 in λ().M3 with λy.λ().M2 y) ()

Unfortunately, they are both hardly readable—and inefficient.

91⟨3⟩ 115 ◁



Simply-typed λ-calculus Type soundness Simple extensions Exceptions References

Exceptions small syntax variation

A similar construct has been added in OCaml version 4.02, allowing
exceptions combined with pattern matching.

The previous example could be written:

let rec read config in path filename (dir :: dirs) →
match open in (Filename.concat dir filename) with
| fd → read config from fd fd
| exception Sys error → read config filename dirs
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References

In the ML vocabulary, a reference cell, also called a reference, is a
dynamically allocated block of memory, which holds a value, and whose
content can change over time.

A reference can be allocated and initialized (ref), written (:=), and
read (!).

Expressions and evaluation contexts are extended:

M ∶∶= . . . ∣ refM ∣M ∶=M ∣ ! M
E ∶∶= . . . ∣ ref [] ∣ [] ∶=M ∣ V ∶= [] ∣ ! []
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References

A reference allocation is not a value. Otherwise, by β, the program:

(λx ∶τ. (x ∶= 1; ! x)) (ref 3)

(which intuitively should yield ? )
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References

A reference allocation is not a value. Otherwise, by β, the program:

(λx ∶τ. (x ∶= 1; ! x)) (ref 3)

(which intuitively should yield 1 ) would reduce to:
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References

A reference allocation is not a value. Otherwise, by β, the program:

(λx ∶τ. (x ∶= 1; ! x)) (ref 3)

(which intuitively should yield 1 ) would reduce to:

(ref 3) ∶= 1; ! (ref 3)

(which intuitively yields 3).

How shall we solve this problem?
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References

(ref 3) should first reduce to a value: the address of a fresh cell.

Not just the content of a cell matters, but also its address. Writing
through one copy of the address should affect a future read via another
copy.
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References

We extend the simply-typed λ-calculus calculus with memory locations:

V ∶∶= . . . ∣ ℓ
M ∶∶= . . . ∣ ℓ

A memory location is just an atom (that is, a name). The value found at
a location ℓ is obtained by indirection through a memory (or store).

A memory µ is a finite mapping of locations to closed values.
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References

A configuration is a pair M / µ of a term and a store. The operational
semantics (given next) reduces configurations instead of expressions.

The semantics maintains a no-dangling-pointers invariant: the

locations that appear in M or in the image of µ are in the domain

of µ.

• Initially, the store is empty, and the term contains no locations,
because, by convention, memory locations cannot appear in source
programs. So, the invariant holds.

• If we wish to start reduction with a non-empty store, we must check
that the initial configuration satisfies the no-dangling-pointers
invariant.
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References

Because the semantics now reduces configurations, all existing reduction
rules are augmented with a store, which they do not touch:

(λx ∶τ.M) V / µ Ð→ [x ↦ V ]M / µ

E[M] / µ Ð→ E[M ′] / µ′ if M / µÐ→M ′ / µ′
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References

Because the semantics now reduces configurations, all existing reduction
rules are augmented with a store, which they do not touch:

(λx ∶τ.M) V / µ Ð→ [x ↦ V ]M / µ

E[M] / µ Ð→ E[M ′] / µ′ if M / µÐ→M ′ / µ′
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References

Because the semantics now reduces configurations, all existing reduction
rules are augmented with a store, which they do not touch:

(λx ∶τ.M) V / µ Ð→ [x ↦ V ]M / µ

E[M] / µ Ð→ E[M ′] / µ′ if M / µÐ→M ′ / µ′

Three new reduction rules are added:

ref V / µÐ→ ℓ / µ[ℓ↦ V ] if ℓ /∈ dom(µ)
ℓ ∶= V / µÐ→ () / µ[ℓ↦ V ]

! ℓ / µÐ→ µ(ℓ) / µ

Notice: In the last two rules, the no-dangling-pointers invariant
guarantees ℓ ∈ dom(µ).
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References

The type system is modified as follows. Types are extended:

τ ∶∶= . . . ∣ ref τ

Three new typing rules are introduced:

Ref

Γ ⊢M ∶ τ

Γ ⊢ refM ∶ ref τ

Set

Γ ⊢M1 ∶ ref τ Γ ⊢M2 ∶ τ

Γ ⊢M1 ∶=M2 ∶ unit

Get

Γ ⊢ M ∶ ref τ

Γ ⊢ !M ∶ τ

Is that all we need?
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References

The preceding setup is enough to typecheck source terms, but does not
allow stating or proving type soundness.

Indeed, we have not yet answered these questions:

• What is the type of a memory location ℓ?

• When is a configuration M / µ well-typed?

101 115 ◁



Simply-typed λ-calculus Type soundness Simple extensions Exceptions References

References

When does a location ℓ have type ref τ?
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References

When does a location ℓ have type ref τ?

A possible answer is, when it points to some value of type τ .
Intuitively, this could be formalized by a typing rule of the form:

µ,∅ ⊢ µ(ℓ) ∶ τ

µ,Γ ⊢ ℓ ∶ ref τ

Comments?
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References

When does a location ℓ have type ref τ?

A possible answer is, when it points to some value of type τ .
Intuitively, this could be formalized by a typing rule of the form:

µ,∅ ⊢ µ(ℓ) ∶ τ

µ,Γ ⊢ ℓ ∶ ref τ

Comments?

• Typing judgments would have the form µ,Γ ⊢M ∶ τ .
However, they would no longer be inductively defined (or else, every
cyclic structure would be ill-typed). Instead, co-induction would be
required.
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References

When does a location ℓ have type ref τ?

A possible answer is, when it points to some value of type τ .
Intuitively, this could be formalized by a typing rule of the form:

µ,∅ ⊢ µ(ℓ) ∶ τ

µ,Γ ⊢ ℓ ∶ ref τ

Comments?

• Typing judgments would have the form µ,Γ ⊢M ∶ τ .
However, they would no longer be inductively defined (or else, every
cyclic structure would be ill-typed). Instead, co-induction would be
required.

• Moreover, if the value µ(ℓ) happens to admit two distinct types τ1
and τ2, then ℓ admits types ref τ1 and ref τ2. So, one can write at
type τ1 and read at type τ2: this rule is unsound!
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References

A simpler and sound approach is to fix the type of a memory location
when it is first allocated. To do so, we use a store typing Σ, a finite
mapping of locations to types.

So, when does a location ℓ have type ref τ? “When Σ says so.”

Loc

Σ,Γ ⊢ ℓ ∶ ref Σ(ℓ)

Comments:

• Typing judgments now have the form Σ,Γ ⊢M ∶ τ .
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References

How do we know that the store typing predicts appropriate types?

?
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References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store

⊢ µ ∶ Σ

Config

⊢M / µ ∶ τ
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References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store

∀ℓ ∈ dom(µ), ⊢ µ(ℓ) ∶ Σ(ℓ)

⊢ µ ∶ Σ

Config

⊢M / µ ∶ τ

104⟨3⟩ 115 ◁



Simply-typed λ-calculus Type soundness Simple extensions Exceptions References

References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store

∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)

⊢ µ ∶ Σ

Config

⊢M / µ ∶ τ
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References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store

∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)

⊢ µ ∶ Σ

Config

Σ,∅ ⊢M ∶ τ ⊢ µ ∶ Σ

⊢M / µ ∶ τ

104⟨5⟩ 115 ◁



Simply-typed λ-calculus Type soundness Simple extensions Exceptions References

References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store

∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)

⊢ µ ∶ Σ

Config

Σ,∅ ⊢M ∶ τ ⊢ µ ∶ Σ

⊢M / µ ∶ τ

Comments:

• This is an inductive definition. The store typing Σ serves both as an
assumption (Loc) and a goal (Store). Cyclic stores are not a
problem.

• The store typing is used only in the definition of a “well-typed
configuration” and in the typechecking of locations. Thus, it is not
needed for type-checking source programs, since the store is empty
and the empty-store configuration is always well-typed.

• Notice that Σ does not appear in the conclusion of Config.
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Restating type soundness

The type soundness statements are slightly modified in the presence of
the store, since we now reduce configurations:

Theorem (Subject reduction)

Reduction preserves types: if M / µÐ→M ′ / µ′ and ⊢M / µ ∶ τ , then
⊢M ′ / µ′ ∶ τ .

Theorem (Progress)

If M / µ is a well-typed, irreducible configuration, then M is a value.
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Restating subject reduction

Inlining Config, subject reduction can also be restated as:

Theorem (Subject reduction, expanded)

If M / µ Ð→M ′ / µ′ and Σ,∅ ⊢ M ∶ τ and ⊢ µ ∶ Σ, then there exists Σ′

such that Σ′,∅ ⊢M ′
∶ τ and ⊢ µ′ ∶ Σ′.

This statement is correct, but too weak—its proof by induction will fail
in one case. (Which one?)
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Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M / µ Ð→M ′ / µ′ and Σ,∅ ⊢ E[M] ∶ τ and ⊢ µ ∶ Σ
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Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M / µ Ð→M ′ / µ′ and Σ,∅ ⊢ E[M] ∶ τ and ⊢ µ ∶ Σ

Assuming compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′ and ∀M ′, (Σ,∅ ⊢M ′
∶ τ ′)⇒ (Σ,∅ ⊢ E[M ′] ∶ τ)
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Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

M / µ Ð→M ′ / µ′ and Σ,∅ ⊢ E[M] ∶ τ and ⊢ µ ∶ Σ

Assuming compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′ and ∀M ′, (Σ,∅ ⊢M ′
∶ τ ′)⇒ (Σ,∅ ⊢ E[M ′] ∶ τ)

Then, by the induction hypothesis, there exists Σ′ such that:

Σ′,∅ ⊢M ′
∶ τ ′ and ⊢ µ′ ∶ Σ′

Here, we are stuck. The context E is well-typed under Σ, but the term
M ′ is well-typed under Σ′, so we cannot combine them. How could we
fix this?
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Establishing subject reduction

We are missing a key property: the store typing grows with time. That
is, although new memory locations can be allocated, the type of an
existing location does not change.

This is formalized by strengthening the subject reduction statement:

Theorem (Subject reduction, strengthened)

If M / µ Ð→M ′ / µ′ and Σ,∅ ⊢ M ∶ τ and ⊢ µ ∶ Σ, then there exists Σ′

such that Σ′,∅ ⊢M ′
∶ τ and ⊢ µ′ ∶ Σ′ and Σ ⊆ Σ′.

At each reduction step, the new store typing Σ′ extends the previous
store typing Σ.
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Establishing subject reduction

Growing the store typing preserves well-typedness:

Lemma (Stability under memory allocation)

If Σ ⊆ Σ′ and Σ,Γ ⊢M ∶ τ , then Σ′,Γ ⊢M ∶ τ .

(The is a generalization of the weakening lemma.)
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Establishing subject reduction

Stability under memory allocation allows establishing a strengthened
version of compositionality:

Lemma (Compositionality)

Assume Σ,∅ ⊢ E[M] ∶ τ . Then, there exists τ ′ such that:

• Σ,∅ ⊢M ∶ τ ′,

• for every Σ′ such that Σ ⊆ Σ′, for every M ′,
Σ′,∅ ⊢M ′

∶ τ ′ implies Σ′,∅ ⊢ E[M ′] ∶ τ .
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Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

Σ,∅ ⊢ E[M] ∶ τ and ⊢ µ ∶ Σ and M / µÐ→M ′ / µ′
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Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

Σ,∅ ⊢ E[M] ∶ τ and ⊢ µ ∶ Σ and M / µÐ→M ′ / µ′

By compositionality, there exists τ ′ such that:

Σ,∅ ⊢M ∶ τ ′

∀Σ′ ,∀M ′, (Σ ⊆ Σ′)⇒ ( Σ′ ,∅ ⊢M ′
∶ τ ′)⇒ ( Σ′ ,∅ ⊢ E[M ′] ∶ τ ′)

By the induction hypothesis, there exists Σ′ such that:

Σ′ ,∅ ⊢M ′
∶ τ ′ and ⊢ µ′ ∶ Σ′ and Σ ⊆ Σ′

The goal immediately follows.
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On memory deallocation

In ML, memory deallocation is implicit. It must be performed by the
runtime system, possibly with the cooperation of the compiler.

The most common technique is garbage collection. A more ambitious
technique, implemented in the ML Kit, is compile-time region
analysis [Tofte et al., 2004].

References in ML are easy to type-check, thanks in large part to the
no-dangling-pointers property of the semantics.

Making memory deallocation an explicit operation, while preserving type
soundness, is possible, but difficult. This requires reasoning about
aliasing and ownership. See Charguéraud and Pottier [2008] for citations.

See also the Mezo language [Pottier and Protzenko, 2013] designed
especially for the explicit control of resources.
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Further reading

For a textbook introduction to λ-calculus and simple types, see Pierce
[2002].

For more details about syntactic type soundness proofs, see Wright and
Felleisen [1994].
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