
MPRI, Typage

Didier Rémy
(With course material from François Pottier)

October 05, 2013

Plan of the course

Introduction

Simply-typed λ-calculus

Polymorphism and System F

Polymorphism and System F

Messages

– Course notes are on the web: http://gallium.inria.fr/~remy/mpri/

– Paper course notes and slides and handwritten nodes are allowed for
written exams, but books and all electronic devices are forbidden.

– The partial exam on will take place on Tuesday November 03. It will
cover the beginning of the course (all lessons covered before the exam).
The final exam will cover the whole course—not just the end.

– Further reading Pierce [2002]

Excellent book .
Include chapters that cover
the two first lessons.

http://gallium.inria.fr/~remy/mpri/

Polymorphism System F Type soundness Type-erasing References ML

Contents

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

Polymorphism and references

Damas and Milner’s type system

5 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

What is polymorphism?

Polymorphism is the ability for a term to simultaneously admit several
distinct types.

6 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Why polymorphism?

Polymorphism is indispensable [Reynolds, 1974]: if a function that sorts a
list is independent of the type of the list elements, then it should be
directly applicable to lists of integers, lists of booleans, etc.

In short, it should have polymorphic type:

∀α. (α → α → bool) → list α → list α

which instantiates to the monomorphic types:

(int → int→ bool) → list int→ list int
(bool→ bool→ bool) → list bool→ list bool

. . .

7 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Why polymorphism?

In the absence of polymorphism, the only ways of achieving this effect
would be:

• to manually duplicate the list sorting function at every type (no-no!);

• to use subtyping and claim that the function sorts lists of values of
any type:

(⊺ → ⊺ → bool) → list ⊺ → list ⊺

(The type ⊺ is the type of all values, and the supertype of all types.)

Why isn’t this so good?

8⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Why polymorphism?

In the absence of polymorphism, the only ways of achieving this effect
would be:

• to manually duplicate the list sorting function at every type (no-no!);

• to use subtyping and claim that the function sorts lists of values of
any type:

(⊺ → ⊺ → bool) → list ⊺ → list ⊺

(The type ⊺ is the type of all values, and the supertype of all types.)

This leads to loss of information and subsequently requires
introducing an unsafe downcast operation. This was the approach
followed in Java before generics were introduced in 1.5.

8⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Polymorphism seems almost free

Polymorphism is already implicitly present in simply-typed λ-calculus.
Indeed, we have checked that the type:

(α1 → α2) → α1 → α1 → α2 × α2

is a principal type for the term λfxy. (f x, f y).

By saying that this term admits the polymorphic type:

∀α1α2. (α1 → α2) → α1 → α1 → α2 × α2

we make polymorphism internal to the type system.

9 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Towards type abstraction

Polymorphism is a step on the road towards type abstraction.

Intuitively, if a function that sorts a list has polymorphic type:

∀α. (α → α → bool) → list α → list α

then it knows nothing about α—it is parametric in α—so it must
manipulate the list elements abstractly: it can copy them around, pass
them as arguments to the comparison function, but it cannot directly
inspect their structure.

In short, within the code of the list sorting function, the variable α is an
abstract type.

10 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

For instance, the polymorphic type ∀α.α → α has only a few inhabitants,
which ones?

11⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

For instance, the polymorphic type ∀α.α → α has only one inhabitant,
up to β-equivalence, namely the identity.

11⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

Similarly, the type of the list sorting function

∀α. (α → α → bool) → list α → list α

reveals a “free theorem” about its behavior!

11⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

Similarly, the type of the list sorting function

∀α. (α → α → bool) → list α → list α

reveals a “free theorem” about its behavior!

Basically, sorting commutes with (map f), provided f is order-preserving.

(∀x, y, cmp (f x) (f y) = cmp x y) Ô⇒
∀ℓ, sort (map f ℓ) =map f (sort ℓ)

Note that there are many inhabitants of this type, but they all satisfy this
free theorem.

Can you give a few?

11⟨4⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

Similarly, the type of the list sorting function

∀α. (α → α → bool) → list α → list α

reveals a “free theorem” about its behavior!

Basically, sorting commutes with (map f), provided f is order-preserving.

(∀x, y, cmp (f x) (f y) = cmp x y) Ô⇒
∀ℓ, sort (map f ℓ) =map f (sort ℓ)

Note that there are many inhabitants of this type, but they all satisfy this
free theorem. (e.g. a function that sorts in reverse order, or a function
that removes duplicates)

11⟨5⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

This phenomenon was studied by Reynolds [1983] and by Wadler [1989;
2007], among others. An account based on an operational semantics is
offered by Pitts [2000].

11⟨6⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

This phenomenon was studied by Reynolds [1983] and by Wadler [1989;
2007], among others. An account based on an operational semantics is
offered by Pitts [2000].

Unfortunately, parametricity theorems are invalidated or degenerate in
the presence of side effects

?

11⟨7⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

This phenomenon was studied by Reynolds [1983] and by Wadler [1989;
2007], among others. An account based on an operational semantics is
offered by Pitts [2000].

Unfortunately, parametricity theorems are invalidated or degenerate in
the presence of side effects (non-termination, exceptions, or references).

11⟨8⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Parametricity

In the presence of polymorphism (and in the absence of effects), a type
can reveal a lot of information about the terms that inhabit it.

This phenomenon was studied by Reynolds [1983] and by Wadler [1989;
2007], among others. An account based on an operational semantics is
offered by Pitts [2000].

Unfortunately, parametricity theorems are invalidated or degenerate in
the presence of side effects (non-termination, exceptions, or references).

While most programs use side effects and side effects cannot be ignored
when reasoning globally, many parts of programs do not use them and
reasoning locally as if they where no side effects is still often helpful.

Parametricity plays an important role in the study of functional
programming languages and remains a guideline when programming.

11⟨9⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Ad hoc versus parametric

The term “polymorphism” dates back to a 1967 paper by
Strachey [2000], where ad hoc polymorphism and parametric
polymorphism were distinguished.

There are two different (and sometimes incompatible) ways of defining
this distinction...

12 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Ad hoc versus parametric: first definition

With parametric polymorphism, a term can admit several types, all of
which are instances of a single polymorphic type:

int→ int,
bool→ bool,

. . .

∀α.α → α

With ad hoc polymorphism, a term can admit a collection of unrelated
types:

int→ int→ int,
float→ float→ float,

. . .

but not
∀α.α → α → α

13 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Ad hoc versus parametric: second definition

With parametric polymorphism, untyped programs have a well-defined
semantics. (Think of the identity function.) Types are used only to rule
out unsafe programs.

With ad hoc polymorphism, untyped programs do not have a semantics:
the meaning of a term can depend upon its type (e.g. 2 + 2), or, even
worse, upon its type derivation (e.g. λx. show (read x)).

14 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Ad hoc versus parametric polymorphism: type classes

By the first definition, Haskell’s type classes [Hudak et al., 2007] are a
form of (bounded) parametric polymorphism: terms have principal
(qualified) type schemes, such as:

∀α.Num α⇒ α → α → α

Yet, by the second definition, type classes are a form of ad hoc
polymorphism: untyped programs do not have a semantics.

In this course, we are mostly interested only in the simplest form of
parametric polymorphism.

Still, we will study Haskell type classes and show how the two views can
be reconciled in some cases.

15 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Contents

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

Polymorphism and references

Damas and Milner’s type system

16 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

System F

The System F, (also known as: the polymorphic λ-calculus, the
second-order λ-calculus; F2) was independently defined by Girard (1972)
and Reynolds [1974].

Compared to the simply-typed λ-calculus, types are extended with
universal quantification:

τ ∶∶= . . . ∣ ∀α.τ

How are the syntax and semantics of terms extended?

There are several variants, depending on whether one adopts an

• implicitly-typed or explicitly-typed presentation of terms

• and a type-passing or a type-erasing semantics.

17 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Explicitly-typed System F

In the explicitly-typed variant [Reynolds, 1974], there are term-level
constructs for introducing and eliminating the universal quantifier:

Tabs

Γ, α ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α.τ

Tapp

Γ ⊢M ∶ ∀α.τ

Γ ⊢ M τ ′ ∶ [α ↦ τ ′]τ

Terms are extended accordingly:

M ∶∶= . . . ∣ Λα.M ∣M τ

Type variables are explicitly bound and appear in type environments.

Γ ∶∶= . . . ∣ Γ, α

18 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Well-formedness of environment

Mandatory: We extend our previous convention to form environments:
Γ, α requires α # Γ, i.e. α is neither in the domain nor in the image of Γ.

Optional: We also require that environments be closed with respect to
type variables, that is, we require ftv(τ) ⊆ dom(Γ) to form Γ, x ∶ τ .

However, a looser style would also be possible.

• Our stricter definition allows fewer judgments, since judgments with
open contexts are not allowed.

• However, these judgments can always be closed by adding a prefix
composed of a sequence of its free type variables to be well-formed.

The stricter presentation is easier to manipulate in proofs;
it is also easier to mechanize.

19 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Well-formedness of environments and types

Well-formedness of environments, written ⊢ Γ and well-formedness of
types, written Γ ⊢ τ , may also be defined recursively by inference rules:

WfEnv

-Empty

⊢ ∅

WfEnvVar

⊢ Γ x ∉ dom(Γ) Γ ⊢ τ

⊢ Γ, x ∶ τ

WfEnvTvar

⊢ Γ α ∉ dom(Γ)

⊢ Γ, α

WfTypeVar

⊢ Γ α ∈ Γ

Γ ⊢ α

WfTypeArrow

Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 → τ

WfTypeForall

Γ, α ⊢ τ

Γ ⊢ ∀α. τ

20 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Well-formedness of environments and types

There is a choice whether well-formedness of environments should be
made explicit or left implicit in typing rules.

Explicit well-formedness amounts to adding well-formedness premises to
every rule where the environment or some type that appears in the
conclusion does not appear in any premise.

Var

x ∶ τ ∈ Γ ⊢ Γ

Γ ⊢ x ∶ τ

Tapp

Γ ⊢M ∶ ∀α.τ Γ ⊢ τ ′

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ

Explicit well-formedness is more precise and better suited for mechanized
proofs. Explicit well-formedness is recommended.

However, we choose to leave well-formedness conditions implicit in this
course, as it is a bit verbose and sometimes distracting. Still, we remind
implicit well-formedness premises in the definition of typing rules.

21 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type-passing semantics

We need the following reduction for type-level expressions:

(Λα.M) τ Ð→ [α ↦ τ]M (ι)

Then, there is a choice.

The most common presentation of System F is that type abstraction
stops the evaluation. It is described by:

?

22⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type-passing semantics

We need the following reduction for type-level expressions:

(Λα.M) τ Ð→ [α ↦ τ]M (ι)

Then, there is a choice.

The most common presentation of System F is that type abstraction
stops the evaluation. It is described by:

V ∶∶= . . . ∣ Λα.M E ∶∶= . . . ∣ [] τ

However,

?

22⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type-passing semantics

We need the following reduction for type-level expressions:

(Λα.M) τ Ð→ [α ↦ τ]M (ι)

Then, there is a choice.

The most common presentation of System F is that type abstraction
stops the evaluation. It is described by:

V ∶∶= . . . ∣ Λα.M E ∶∶= . . . ∣ [] τ

However, this defines a type-passing semantics!

Indeed, Λα.((λy ∶ α.y) V) is then a value while its type erasure
(λy. y) ⌈V ⌉ is not—and can be further reduced.

22⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type-erasing semantics

We recover a type-erasing semantics if we allow evaluation under type
abstraction:

?

23⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type-erasing semantics

We recover a type-erasing semantics if we allow evaluation under type
abstraction:

V ∶∶= . . . ∣ Λα.V E ∶∶= . . . ∣ [] τ ∣ Λα.[]

Then, we only need a weaker version of ι-reduction:

?

23⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type-erasing semantics

We recover a type-erasing semantics if we allow evaluation under type
abstraction:

V ∶∶= . . . ∣ Λα.V E ∶∶= . . . ∣ [] τ ∣ Λα.[]

Then, we only need a weaker version of ι-reduction:

(Λα.V) τ Ð→ [α ↦ τ]V (ι)

We now have:
Λα.((λy ∶ α.y) V)Ð→ Λα.V

We verify below that this defines a type-erasing semantics, indeed.

23⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type-passing versus type-erasing: pros and cons

The type-passing interpretation has a number of disadvantages.

• because it alters the semantics, it does not fit our view that
the untyped semantics should pre-exist and that a type system is
only a predicate that selects a subset of the well-behaved terms.

• it blocks reduction of polymorphic expressions: e.g., if f is list
flattening of type ∀α. list (list α)→ list α, the monomorphic
function (f int) ○ (f (list int)) reduces to Λx.f (f x), while its more
general polymorphic version Λα.(f α) ○ (f (list α)) is irreducible.

• because it requires both values and types to exist at runtime, it can
lead to a duplication of machinery. Compare type-preserving closure
conversion in type-passing [Minamide et al., 1996] and in
type-erasing [Morrisett et al., 1999] styles.

24 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type-passing versus type-erasing: pros and cons

An apparent advantage of the type-passing interpretation is to allow
typecase; however, typecase can be simulated in a type-erasing system by
viewing runtime type descriptions as values [Crary et al., 2002].

The type-erasing semantics does not alter the semantics of untyped
terms.

It also coincides with the semantics of ML—and, more generally, with the
semantics of most programming languages. It also exhibits difficulties
when adding side effects while the type-passing semantics does not.

In the following, we choose a type-erasing semantics.

Notice that we allow evaluation under a type abstraction as a
consequence of choosing a type-erasing semantics—and not the converse.

25 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Reconciling type-passing and type-erasing views

If we restrict type abstraction to value-forms (which include values and
variables), that is, we only allow Λα.M when M is a value-form, then
the type-passing and type-erasing semantics coincide.

Indeed, under this restriction, closed type abstractions will always be type
abstractions of values, and evaluation under type abstraction will never
be used, even if allowed.

This restriction will be chosen when adding side-effects as a way to
preserve type-soundness.

26 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Explicitly-typed System F

We study the explicitly-typed presentation of System F first because it is
simpler.

Once, we have verified that the semantics is indeed type-preserving,
many properties can be transferred back to the implicitly-typed version,
and in particular, to its interesting ML subset.

27 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Encoding data-structures

System F is quite expressive: it enables the encoding of data structures.

For instance, the church encoding of pairs is well-typed:

pair
△
== Λα1.Λα2.λx1 ∶α1. λx2 ∶α2.Λβ.λy ∶α1 → α2 → β. y x1 x2

proji
△
== Λα1.Λα2.λy ∶∀β. (α1 → α2 → β)→ β. y αi (λx1 ∶α1. λx2 ∶α2. xi)

⌈pair⌉
△
== λx1. λx2. λy. y x1 x2

⌈proji⌉
△
== λy. y (λx1. λx2. xi)

Natural numbers, List, etc. can also be encoded.

28 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Constructors and destructors

Unit, Pairs, Sums, etc. can also be added to System F as primitives.

We can then proceed as for simply-typed λ-calculus.

However, we may take advantage of the expressiveness of System F to
deal with such extensions is a more elegant way: thanks to
polymorphism, we need not add new typing rules for each extension.

We may instead add one typing rule for constants that is parametrized by
an initial typing environment.

This allows sharing the meta-theoretical developments between the
different extensions.

Let us first illustrate an extension of System F with primitive pairs.
(We will them generalize it to arbitrary constructors and destructors.)

29 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Constructors and destructors Pairs

Types are extended with a type constructor × of arity 2:

τ ∶∶= . . . ∣ τ × τ

Expressions are extended with a constructor (⋅, ⋅) and two destructors
proj1 and proj2 with the respective signatures:

Pair ∶ ∀α1.∀α2. α1 → α2 → α1 × α2

proji ∶ ∀α1.∀α2. α1 ×α2 → αi

which represent an initial environment ∆. We need not add any new
typing rule, but instead type programs in the initial environment ∆.

This allows for the formation of partial applications of constructors and
destructors (all cases but one). Hence, values are extended as follows:

V ∶∶= . . . ∣ Pair ∣ Pair τ ∣ Pair τ τ ∣ Pair τ τ V ∣ Pair τ τ V V

∣ proji ∣ proji τ ∣ proji τ τ

30 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Constructors and destructors Pairs

We add the two following reduction rules:

proji τ1 τ2 (pair τ
′
1
τ ′
2
V1 V2)Ð→ Vi (δpair)

Comments?

31⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Constructors and destructors Pairs

We add the two following reduction rules:

proji τ1 τ2 (pair τ
′
1
τ ′
2
V1 V2)Ð→ Vi (δpair)

Comments?

• For well-typed programs, τi and τ ′i will always be equal, but the
reduction will not check this at runtime.

Instead, one could have defined the rule:

proji τ1 τ2 (pair τ1 τ2 V1 V2)Ð→ Vi (δ′pair)

The two semantics are equivalent on well-typed terms, but differ on
ill-typed terms where δ′pair may block when rule δpair would
progress, ignoring type errors.

Interestingly, with δ′pair, the proof obligation is simpler in subject
reduction but replaced by a stronger proof obligation in progress.

31⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Constructors and destructors Pairs

We add the two following reduction rules:

proji τ1 τ2 (pair τ
′
1
τ ′
2
V1 V2)Ð→ Vi (δpair)

Comments?

• This presentation forces the programmer to specify the types of the
components of the pair.

However, since this is an explicitly type presentation, these types are
already known from the arguments of the pair (when present)

This should not be considered as a problem: explicitly-typed
presentations are always verbose. Removing redundant type
annotations is the task of type reconstruction.

31⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Constructors and destructors General case

Assume given a collection of type constructors G, with their arity
arity (G). We assume that types respect the arities of type constructors.

A type G (τ⃗) is called a G-type.
A datatype is a G-type for some type constructor G.

Let ∆ be an initial environment binding constants c of arity n (split into
constructors C or destructors d) to signatures of the form:

c ∶ ∀α1. . . .∀αk. τ1 → . . . τn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

arity(c)

→ τ

We require that

• τ be is a datatype whenever c is a constructor (for progress);

• n is strictly positive when c is a destructor
(nullary destructors introduce pathological cases for little benefit).

32 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Constructors and destructors General case

Expressions are extended with constants: Constants are typed as
variables, but their types are looked up in the initial environment ∆:

M ∶∶= . . . ∣ c

Cst

c ∶ τ ∈∆

Γ ⊢ c ∶ τ

Values are extended with partial or full applications of constructors and
partial applications of destructors:

V ∶∶= . . .

∣ C τ1 . . . τp V1 . . . Vq q ≤ arity (C)
∣ d τ1 . . . τp V1 . . . Vq q < arity (d)

For each destructor d of arity n, we assume given a set of δ-rules of the
form

d τ1 . . . τk V1 . . . Vn Ð→M (δd)

33 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Constructors and destructors General case

Of course, we need assumptions to relate typing and reduction of
constants:

Subject-reduction for constants: δ-rules preserve typings for well-typed
terms: If α⃗ ⊢ M1 ∶ τ and M1 Ð→δ M2 then α⃗ ⊢M2 ∶ τ .

Progress for constants: If α⃗ ⊢ M1 ∶ τ and M1 is of the form
d τ1 . . . τk V1 . . . Vn where n = arity (d), then there exists M2 such that
M1 Ð→M2.

Intuitively, progress means that the domain of destructors is at least as
large as specified by their type in ∆.

34 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Example Unit, Pairs

Adding units:

• Introduce a type constant unit

• Introduce a constructor () of arity 0 of type unit.

• No primitive and no reduction rule is added.

The assumptions obviously hold in the absence of destructors.

The previous example of pairs fits exactly in this framework.

35 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Example Fixpoint

We introduce a destructor

fix ∶ ∀α.∀β. ((α → β)→ α → β)→ α → β ∈∆

of arity 2, together with the δ-rule

fix τ1 τ2 V1 V2 Ð→ V1 (fix τ1 τ2 V1) V2 (δfix)

It is straightforward to check the assumptions:

?

36⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Example Fixpoint

We introduce a destructor

fix ∶ ∀α.∀β. ((α → β)→ α → β)→ α → β ∈∆

of arity 2, together with the δ-rule

fix τ1 τ2 V1 V2 Ð→ V1 (fix τ1 τ2 V1) V2 (δfix)

It is straightforward to check the assumptions:

• Progress is obvious,

?

36⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Example Fixpoint

We introduce a destructor

fix ∶ ∀α.∀β. ((α → β)→ α → β)→ α → β ∈∆

of arity 2, together with the δ-rule

fix τ1 τ2 V1 V2 Ð→ V1 (fix τ1 τ2 V1) V2 (δfix)

It is straightforward to check the assumptions:

• Progress is obvious, since δfix works for any values V1 and V2.

36⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Example Fixpoint

We introduce a destructor

fix ∶ ∀α.∀β. ((α → β)→ α → β)→ α → β ∈∆

of arity 2, together with the δ-rule

fix τ1 τ2 V1 V2 Ð→ V1 (fix τ1 τ2 V1) V2 (δfix)

It is straightforward to check the assumptions:

• Progress is obvious, since δfix works for any values V1 and V2.

• Subject reduction is also straightforward.

?

36⟨4⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Example Fixpoint

We introduce a destructor

fix ∶ ∀α.∀β. ((α → β)→ α → β)→ α → β ∈∆

of arity 2, together with the δ-rule

fix τ1 τ2 V1 V2 Ð→ V1 (fix τ1 τ2 V1) V2 (δfix)

It is straightforward to check the assumptions:

• Progress is obvious, since δfix works for any values V1 and V2.

• Subject reduction is also straightforward.
Assume that Γ ⊢ fix τ1 τ2 V1 V2 ∶ τ . By inversion of typing rules, τ
must be equal to τ2, V1 and V2 must be of types
(τ1 → τ2)→ τ1 → τ2 and τ1 in the typing context Γ. We may then
easily build a derivation of the judgment Γ ⊢ V1 (fix τ1 τ2 V1) V2 ∶ τ

36⟨5⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Exercise Lists

1) Formulate the extension of System F with lists as constants.

2) Check that this extension is sound.

37⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Exercise Lists

1) Formulate the extension of System F with lists as constants.

2) Check that this extension is sound.

Solution

1) We introduce a new unary type constructor list ; two constructors Nil ⋅
and Cons of types ∀α. list α and ∀α.α → list α→ list α; and one
destructor matchlist ⋅ ⋅ ⋅⋅ of type:

∀αβ. list α → β → (α → list α → β)→ β

with the two reduction rules:

matchlistM(NilM ′) Vn Vc Ð→ Vn

matchlistM(Cons M ′ Vh Vt) Vn Vc Ð→ Vc Vh Vt

2) See the case of pairs in the course.

37⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Contents

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

Polymorphism and references

Damas and Milner’s type system

38 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type soundness

The structure of the proof is similar to the case of simply-typed
λ-calculus and follows from subject reduction and progress.

Subject reduction uses the following lemmas:

• inversion of typing judgments

• permutation and weakening

• expression substitution

• type substitution

• compositionality

39 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type soundness Weakening

Lemma (Weakening)

Assume Γ ⊢M ∶ τ .
1) If x# Γ, then Γ, x ∶ τ ′ ⊢M ∶ τ .
2) If β # Γ, then Γ, β ⊢ M ∶ τ .

Case 1) is as for simply-typed λ-calculus. Case 2) is new for System F,
since now environments also introduce type variables. The proof schema
is similar to the case of simply-typed λ-calculus. We just have more
cases. We still reason by induction on M , then by cases on M applying
the inversion lemma (for System F).

Cases for value and type abstraction appeal to the permutation lemma,
which must also be extended.

Lemma (Permutation)

If Γ,∆,∆′,Γ′ ⊢M ∶ τ and ∆#∆′, then Γ,∆′,∆,Γ′ ⊢M ∶ τ .
40 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type Soundness Type substitution

Lemma (Expression substitution, strengthened)

If Γ, x ∶ τ0,Γ
′ ⊢M ∶ τ and Γ ⊢ M0 ∶ τ0 then Γ,Γ′ ⊢ [x ↦M0]M ∶ τ .

The proof is similar to that for the simply-typed λ-calculus, with just a
few more cases.

We have strengthened the lemma with an arbitrary context Γ′ as for the
simply-typed λ-calculus

We have also generalized the lemma with an arbitrary context Γ on the
left and an arbitrary expression M , as this does not complicate the proof.

41 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type Soundness Type substitution

Lemma (Type substitition , strengthened)

If Γ, α,Γ′ ⊢M ∶ τ ′ and Γ ⊢ τ then Γ, [α ↦ τ]Γ′ ⊢ [α ↦ τ]M ∶ [α ↦ τ]τ ′.

The proof is by induction on M .

The interesting cases are for type and value abstraction, which required
the strengthened version with an arbitrary typing context Γ′ on the right.
Then, the proof is straightforward.

We also generalized the lemma using an arbitrary environment instead of
the empty environment, as it does not complicate the proof, but yields a
stronger result.

42 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Compositionality

Lemma (Compositionality)

If Γ ⊢ E[M] ∶ τ , then there exists ᾱ and τ ′ such that Γ, ᾱ ⊢M ∶ τ ′ and
all M ′ verifying Γ, ᾱ ⊢M ′

∶ τ ′ also verify Γ ⊢ E[M ′] ∶ τ .

Extension of Γ by variables is needed because evaluation proceeds under
type abstractions.

43 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type Soundness Subject reduction

Proof of subject reduction.

The proof is by induction on M .

Using the previous lemmas it is straightforward.

Interestingly, the case for δ-rules follows from the subject-reduction
assumption for constants.

44 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type soundness Progress

Progress is restated as follows:

Theorem (Progress, strengthened)

A well-typed, irreducible closed term is a value:
if α⃗ ⊢M ∶ τ and M /Ð→ , then M is some value V .

The theorem has been strengthened, using a sequence of type variables α⃗
for the typing context instead of the empty environment.

It is then proved by induction and case analysis on M .

It relies mainly on the classification lemma (reminded below) and the
progress assumption for destructors.

45 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type soundness Classification

The classification lemma is slightly modified to account for polymorphic
types and constructed types.

Lemma (Classification)

Assume ᾱ ⊢ V ∶ τ

• If τ is an arrow type, then V is either a function or a partial
application of a constant.

• If τ is a polymorphic type, then V is either a type abstraction of a
value or a partial application of a constant to types.

• If τ is a constructed type, then V is a constructed value.

The last case can be refined by partitioning constructors into their
associated type-constructor: If τ is a G-constructed type, then V is a
value constructed with a G-constructor.

46 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Normalization

Theorem

Reduction terminates in pure System F.

This is also true for arbitrary reductions and not just for call-by-value
reduction.

This is a more difficult proof, which generalizes the proof method for the
simply-typed λ-calculus. It is due to Girard [1972] (See also Girard et al.
[1990]).

See also the 2011-2012 partial exam.

47 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Contents

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

Polymorphism and references

Damas and Milner’s type system

48 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Implicitly-typed System F

The syntax and dynamic semantics of terms are that of the untyped
λ-calculus. However, we only accept terms that are the type erasure of
an explicitly-typed term.

We use letters a, v, and e to range over implicitly-typed terms, values
and evaluation contexts.

We may equivalently rewrite the typing rules to operate directly on
unannotated terms by dropping all type information in terms, as we did
for the simply-typed λ-calculus. Then, there are two new rules :

if-Tabs

Γ, α ⊢ a ∶ τ

Γ ⊢ a ∶ ∀α.τ

if-Tapp

Γ ⊢ a ∶ ∀α.τ

Γ ⊢ a ∶ [α ↦ τ0]τ

Notice that these rules are not syntax directed.

49 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Implicitly-typed System F On the side condition α # Γ

Notice that the explicit introduction of variable α in the premise of Rule
Tabs contains an implicit side condition α # Γ due to the assumption on
the formation of contexts.

In implicitly-typed System F, we could also omit type declarations from
the typing environment. (Although, in some extensions of System F, type
variables may carry a kind or a bound and must be explicitly introduced.)

Then, we would need an explicit side-condition on Rule Tabs:

Tabs-Bis

Γ ⊢ a ∶ τ α # Γ

Γ ⊢ a ∶ ∀α.τ

Why is the side condition important?...

50 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Implicitly-typed System F On the side condition α # Γ

Omitting the side condition leads to unsoundness:

Broken Tabs

Var

x ∶ α1 ⊢ x ∶ α1

Tapp

x ∶ α1 ⊢ x ∶ ∀α1.α1

Abs

x ∶ α1 ⊢ x ∶ α2

Tabs-Bis

∅ ⊢ λx.x ∶ α1 → α2

∅ ⊢ λx.x ∶ ∀α1.∀α2.α1 → α2

This is a type derivation for a type cast (Objective Caml’s Obj.magic).

51⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Implicitly-typed System F On the side condition α # Γ

Omitting the side condition leads to unsoundness:

Broken Tabs

Var

x ∶ α1 ⊢ x ∶ α1 α1 ∈ ftv(x ∶ α1)

Tapp

x ∶ α1 ⊢ x ∶ ∀α1.α1

Abs

x ∶ α1 ⊢ x ∶ α2

Tabs-Bis

∅ ⊢ λx.x ∶ α1 → α2

∅ ⊢ λx.x ∶ ∀α1.∀α2.α1 → α2

This is a type derivation for a type cast (Objective Caml’s Obj.magic).

51⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Implicitly-typed System F On the side condition α # Γ

This is equivalent to using an ill-formed typing environment :

Broken Tabs

Broken Var

x ∶ α1, α1 ⊢ x ∶ α1

Tapp

x ∶ α1 ⊢ x ∶ ∀α1.α1

Abs

x ∶ α1 ⊢ x ∶ α2

Tabs

∅ ⊢ λx ∶α1. x ∶ α1 → α2

∅ ⊢ Λα1.Λα2.λα1 ∶x.x ∶ ∀α1.∀α2.α1 → α2

52⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Implicitly-typed System F On the side condition α # Γ

This is equivalent to using an ill-formed typing environment :

Broken Tabs

Broken Var

x ∶ α1, α1 ⊢ x ∶ α1 x ∶ α1, α1 ill-formed

Tapp

x ∶ α1 ⊢ x ∶ ∀α1.α1

Abs

x ∶ α1 ⊢ x ∶ α2

Tabs

∅ ⊢ λx ∶α1. x ∶ α1 → α2

∅ ⊢ Λα1.Λα2.λα1 ∶x.x ∶ ∀α1.∀α2.α1 → α2

52⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Implicitly-typed System F On the side condition α # Γ

A good intuition is: a judgment Γ ⊢ a ∶ τ corresponds to the logical
assertion ∀ᾱ.(Γ⇒ τ), where ᾱ are the free type variables of the
judgment.

In that view, Tabs-Bis corresponds to the axiom:

∀α.(P ⇒ Q) ≡ P ⇒ (∀α.Q) if α # P

53 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type-erasing typechecking

Type systems for implicitly-typed and explicitly-type System F coincide.

Lemma

Γ ⊢ a ∶ τ holds in implicitly-typed System F if and only if there exists an
explicitly-typed expression M whose erasure is a such that Γ ⊢M ∶ τ .

Trivial.

We write F and ⌈F ⌉ for the explicitly-typed and implicit-typed versions
of System F.

One could write judgements of the form M ⇒ Γ ⊢ a ∶ τ to mean that the
explicitly tuped term M witnesses that the implicitly typed term a has
type τ in the environment Γ.

54 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

An example λfxy. (f x, f y)

Here is a version of the term λfxy. (f x, f y) that carries explicit type
abstractions and annotations:

Λα1.Λα2.λf ∶ α1 → α2. λx ∶ α1. λy ∶ α1. (f x, f y)

This term admits the polymorphic type:

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

Quite unsurprising, right?

55⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

An example λfxy. (f x, f y)

Here is a version of the term λfxy. (f x, f y) that carries explicit type
abstractions and annotations:

Λα1.Λα2.λf ∶ α1 → α2. λx ∶ α1. λy ∶ α1. (f x, f y)

This term admits the polymorphic type:

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

Quite unsurprising, right? Perhaps more surprising is the fact that this
untyped term can be decorated in a different way:

?

55⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

An example λfxy. (f x, f y)

Here is a version of the term λfxy. (f x, f y) that carries explicit type
abstractions and annotations:

Λα1.Λα2.λf ∶ α1 → α2. λx ∶ α1. λy ∶ α1. (f x, f y)

This term admits the polymorphic type:

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

Quite unsurprising, right? Perhaps more surprising is the fact that this
untyped term can be decorated in a different way:

Λα1.Λα2.λf ∶ ∀α.α → α.λx ∶ α1. λy ∶ α2. (f α1 x, f α2 y)

This term admits the polymorphic type:

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

This begs the question: ...

55⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Incomparable types in System F λfxy. (f x, f y)

Which of the two is more general?

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

56⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Incomparable types in System F λfxy. (f x, f y)

Which of the two is more general?

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic.

56⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Incomparable types in System F λfxy. (f x, f y)

Which of the two is more general?

∀α1.∀α2.(α1 → α2)→ α1 → α1 → α2 × α2

∀α1.∀α2.(∀α.α → α) → α1 → α2 → α1 ×α2

The first one requires x and y to admit a common type, while
the second one requires f to be polymorphic. Neither one is an instance
of the other, for any reasonable definition of the word instance, because
each has an inhabitant that does not admit the other as a type.

(Exercise: find these inhabitants!)

56⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Notions of instance in ⌈F ⌉

It seems plausible that the untyped term λfxy. (f x, f y) does not admit
a type of which both of these types are instances.

But, in order to prove this, one must fix what it means for τ2 to be an
instance of τ1—or, equivalently, for τ1 to be more general than τ2.

Several definitions are possible...

57 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Syntactic notions of instance in ⌈F ⌉

In System F, to be an instance is usually defined by the rule:

Inst-Gen

β̄ # ∀ᾱ.τ

∀ᾱ.τ ≤ ∀β̄.[α⃗ ↦ τ⃗]τ

One can show that, if τ1 ≤ τ2, then any term that has type τ1 also has
type τ2; that is, the following rule is admissible:

Sub

Γ ⊢ a ∶ τ1 τ1 ≤ τ2

Γ ⊢ a ∶ τ2

Perhaps surprisingly, the rule is not derivable in our presentation of
System F as the proof of admissibility requires weakening.
(It would be derivable if we had left type variables implicit in contexts.)

58 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Syntactic notions of instance in F

What is the counter-part of instance in explicitly-typed System F?

Assume Γ ⊢M ∶ τ1 and τ1 ≤ τ2. How can we see M with type τ2?

Well, M1 and M2 must be of the form ∀ᾱ. τ and ∀β̄. [α⃗ ↦ τ⃗]τ where
β̄ # ∀ᾱ. τ . W.l.o.g, we may assume that β̄ # Γ.

We can wrap M with a retyping context, as follows.

Weak.

Γ ⊢M ∶ ∀α⃗. τ β̄ # Γ

Tapp
∗

Γ, β⃗ ⊢M ∶ ∀α⃗. τ

Tabs
∗

Γ, β⃗ ⊢M τ⃗ ∶ [α⃗ ↦ τ⃗]τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ

59⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Syntactic notions of instance in F

What is the counter-part of instance in explicitly-typed System F?

Assume Γ ⊢M ∶ τ1 and τ1 ≤ τ2. How can we see M with type τ2?

Well, M1 and M2 must be of the form ∀ᾱ. τ and ∀β̄. [α⃗ ↦ τ⃗]τ where
β̄ # ∀ᾱ. τ . W.l.o.g, we may assume that β̄ # Γ.

We can wrap M with a retyping context, as follows.

Weak.

Γ ⊢M ∶ ∀α⃗. τ β̄ # Γ

Tapp
∗

Γ, β⃗ ⊢M ∶ ∀α⃗. τ

Tabs
∗

Γ, β⃗ ⊢M τ⃗ ∶ [α⃗ ↦ τ⃗]τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Admissible rule:

Sub

β̄ # ∀α⃗. τ

Γ ⊢M ∶ ∀α⃗. τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ

59⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Syntactic notions of instance in F

What is the counter-part of instance in explicitly-typed System F?

Assume Γ ⊢M ∶ τ1 and τ1 ≤ τ2. How can we see M with type τ2?

Well, M1 and M2 must be of the form ∀ᾱ. τ and ∀β̄. [α⃗ ↦ τ⃗]τ where
β̄ # ∀ᾱ. τ . W.l.o.g, we may assume that β̄ # Γ.

We can wrap M with a retyping context, as follows.

Weak.

Γ ⊢M ∶ ∀α⃗. τ β̄ # Γ (1)

Tapp
∗

Γ, β⃗ ⊢M ∶ ∀α⃗. τ

Tabs
∗

Γ, β⃗ ⊢M τ⃗ ∶ [α⃗ ↦ τ⃗]τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Admissible rule:

Sub

β̄ # ∀α⃗. τ (2)
Γ ⊢M ∶ ∀α⃗. τ

Γ ⊢ Λβ⃗.M τ⃗ ∶ ∀β⃗. [α⃗ ↦ τ⃗]τ

If condition (2) holds, condition (1) may always be satisfied up to a
renaming of β̄.

59⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Retyping contexts in F

In F , subtyping is a judgment Γ ⊢ τ1 ≤ τ2 to track well-formedness of
types. Subtyping relations can be witnessed by retyping contexts.

Retyping contexts are just wrapping type abstractions and type
applications around expressions, without changing their type erasure.

R ∶∶= [] ∣ Λα.R ∣R τ

(Notice that R are arbitrarily deep, as opposed to evaluation contexts.)

Let us write Γ ⊢ R[τ1] ∶ τ2 iff Γ, x ∶ τ1 ⊢ R[x] ∶ τ2.

If Γ ⊢M ∶ τ1 and Γ ⊢ R[τ1] ∶ τ2, then Γ ⊢ R[M] ∶ τ2,

Then Γ ⊢ τ1 ≤ τ2 iff Γ ⊢ R[τ1] ∶ τ2. for some retyping context R.

In System F, retyping contexts can only change toplevel polymorphism:
they cannot operate under arrow types to weaken the return type of or
strengthen the domain of functions.

60 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Another syntactic notion of instance: Fη

Mitchell [1988] defined Fη , a version of ⌈F ⌉ extended with a richer
instance relation as:

Inst-Gen

β̄ # ∀ᾱ.τ

∀ᾱ.τ ≤ ∀β̄.[α⃗ ↦ τ⃗]τ

Distributivity

∀α. (τ1 → τ2) ≤ (∀α. τ1)→ (∀α. τ2)

Congruence-→

τ2 ≤ τ1 τ ′
1
≤ τ ′

2

τ1 → τ ′1 ≤ τ2 → τ ′2

Congruence-∀

τ1 ≤ τ2

∀α.τ1 ≤ ∀α.τ2

Transitivity

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

In Fη , Rule Sub must be primitive as it is not admissible (but still sound).

Fη can also be defined as the closure of System F under η-equality.

Why is a rich notion of instance potentially interesting?

?
61⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Another syntactic notion of instance: Fη

Mitchell [1988] defined Fη , a version of ⌈F ⌉ extended with a richer
instance relation as:

Inst-Gen

β̄ # ∀ᾱ.τ

∀ᾱ.τ ≤ ∀β̄.[α⃗ ↦ τ⃗]τ

Distributivity

∀α. (τ1 → τ2) ≤ (∀α. τ1)→ (∀α. τ2)

Congruence-→

τ2 ≤ τ1 τ ′
1
≤ τ ′

2

τ1 → τ ′1 ≤ τ2 → τ ′2

Congruence-∀

τ1 ≤ τ2

∀α.τ1 ≤ ∀α.τ2

Transitivity

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

In Fη , Rule Sub must be primitive as it is not admissible (but still sound).

Fη can also be defined as the closure of System F under η-equality.

Why is a rich notion of instance potentially interesting?

• More polymorphism.
• More hope of principal types.

61⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

A definition of principal typings

A typing of an expression M is a pair Γ, τ such that Γ ⊢M ∶ τ .

Ideally, a type system should have principal typings [Wells, 2002]:

Every well-typed term M admits a principal typing – one whose
instances are exactly the typings of M .

Whether this property holds depends on a definition of instance. The
more liberal the instance relation, the more hope there is of having
principal typings.

62 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

A semantic notion of instance

Wells [2002] notes that, once a type system is fixed, a most liberal notion
of instance can be defined, a posteriori, by:

A typing θ1 is more general than a typing θ2 if and only if every
term that admits θ1 admits θ2 as well.

This is the largest reasonable notion of instance: ≤ is defined as the
largest relation such that a subtyping principle (for typings) is admissible.

This definition can be used to prove that a system does not have
principal typings, under any reasonable definition of “instance”.

63 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Which systems have principal typings?

The simply-typed λ-calculus has principal typings, with respect to a
substitution-based notion of instance (See lesson on type inference).

Wells [2002] shows that neither System F nor Fη have principal typings.

It was shown earlier that Fη’s instance relation is undecidable [Wells,
1995; Tiuryn and Urzyczyn, 2002] and that type inference for both
System F and Fη is undecidable [Wells, 1999].

64 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Which systems have principal typings?

There are still a few positive results...

Some systems of intersection types have principal typings [Wells, 2002] –
but they are very complex and have yet to see a practical application.

A weaker property is to have principal types. Given an environment Γ
and an expression M is there a type τ for M in Γ such that all other
types of M in Γ are instances of τ .

Damas and Milner’s type system (coming up next) does not have
principal typings but it has principal types and decidable type inference.

65 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type soundness for ⌈F ⌉

Subject reduction and progress imply the soundness of the
explicitly-typed System F. What about the implicitly-typed version?

Can we reuse the soundness proof for the explicitly-typed version? Can
we pull back subject reduction and progress from F to ⌈F ⌉?

Progress? Given a well-typed term a ∈ ⌈F ⌉, can we find a term M ∈ F
whose erasure is a and since M is a value or reduces, conclude that a is
a value or reduces?

Subject reduction? Given a well-typed term a1 ∈ ⌈F ⌉ of type τ that
reduces to a2, can we find a term M1 ∈ F whose erasure is a1 and show
that M1 reduces to a term M2 whose erasure is a2 to conclude that the
type of a2 is the type a1?

In both cases, this reasoning requires a type-erasing semantics.

67 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics

We claimed earlier that the explicitly-typed System F has an erasing
semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the
reduction of type applications on explicitly-typed terms is dropped on
implicitly-typed terms, hence the two reductions cannot coincide exactly.

The way to formalize this is to split reduction steps into βδ-steps
corresponding to β or δ rules that are preserved by type-erasure, and
ι-steps corresponding to the reduction of type applications that disappear
during type-erasure:

68⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics

We claimed earlier that the explicitly-typed System F has an erasing
semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the
reduction of type applications on explicitly-typed terms is dropped on
implicitly-typed terms, hence the two reductions cannot coincide exactly.

The way to formalize this is to split reduction steps into βδ-steps
corresponding to β or δ rules that are preserved by type-erasure, and
ι-steps corresponding to the reduction of type applications that disappear
during type-erasure:

M0 M ′
0

M1

a0 a1
βδ

βδι

∗

68⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics

We claimed earlier that the explicitly-typed System F has an erasing
semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the
reduction of type applications on explicitly-typed terms is dropped on
implicitly-typed terms, hence the two reductions cannot coincide exactly.

The way to formalize this is to split reduction steps into βδ-steps
corresponding to β or δ rules that are preserved by type-erasure, and
ι-steps corresponding to the reduction of type applications that disappear
during type-erasure:

M0 M ′
0

M1

a0 a1
βδ

βδι

∗

. . .

Mj M ′
j Mj+1

aj aj+1
βδ

βδι

∗

68⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics

We claimed earlier that the explicitly-typed System F has an erasing
semantics. We now verify it.

There is a difference with the simply-typed λ-calculus because the
reduction of type applications on explicitly-typed terms is dropped on
implicitly-typed terms, hence the two reductions cannot coincide exactly.

The way to formalize this is to split reduction steps into βδ-steps
corresponding to β or δ rules that are preserved by type-erasure, and
ι-steps corresponding to the reduction of type applications that disappear
during type-erasure:

M0 M ′
0

M1

a0 a1
βδ

βδι

∗

. . .

Mj M ′
j Mj+1

aj aj+1
βδ

βδι

∗

. . .

Mn V

an = v /

/
ι

∗

68⟨4⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Forward simulation

Type erasure simulates in ⌈F ⌉ the reduction in F upto ι-steps:

Lemma (Forward simulation)

Assume Γ ⊢M1 ∶ τ .
1) If M1 Ð→ι M2, then ⌈M1⌉ = ⌈M2⌉
2) If M1 Ð→βδ M2, then ⌈M1⌉Ð→βδ ⌈M2⌉

69 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Backward simulation

The backward direction is more delicate to state, since there are usually
many expressions of F whose erasure is a given expression in ⌈F ⌉,
as ⌈⋅⌉ is not injective.

Lemma (Backward simulation)

Assume Γ ⊢M1 ∶ τ and ⌈M1⌉Ð→ a.
Then, there exists a term M2 such that M1 Ð→

∗
ιÐ→βδ M2 and ⌈M2⌉ = a.

70 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Assumption on δ-reduction

Of course, the semantics can only be type erasing if δ-rules do not
themselves depend on type information.

We need δ-reduction to be defined on type erasures.

• We may prove the theorem directly for some concrete examples of
δ-reduction.
However, keeping δ-reduction abstract is preferable to avoid
repeating the same reasoning.

• We assume that it is such that type erasure establishes a
bisimulation for δ-reduction taken alone.

71 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Assumption on δ-reduction

We assume that for any explicitly-typed term M of the form
d τ1 . . . τj V1 . . . Vk such that Γ ⊢M ∶ τ , the following properties hold:

(1) If M Ð→δ M
′, then ⌈M⌉Ð→δ ⌈M

′⌉.

(2) If ⌈M⌉Ð→δ a, then there exists M ′ such that M Ð→δ M
′ and a is

the type-erasure of M ′.

Remarks

• In most cases, the assumption on δ-reduction is obvious to check.

• In general the δ-reduction on untyped terms is larger than the
projection of δ-reduction on typed terms.

• If we restrict δ-reduction to implicitly-typed terms, then it usually
coincides with the projection of δ-reduction of explicitly-typed terms.

72 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Proofs

The forward simulation is straightforward.

The backward simulation can first be shown assuming that M1 is
ι-normal.

The general case follows, since then M1 ι-reduces to a normal form M ′
1

preserving typings; then, the lemma can be applied to M ′
1
instead of M1.

Notice that this argument relies on the termination of ι-reduction alone.

The termination of ι-reduction is easy for System F , since it strictly
decreases the number of type abstractions. (In System Fω, it requires
termination of simply-typed λ-calculus.)

The proof of backward simulation uses a few helper lemmas to deal with
the fact that type-erasure is not injective.

73 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Helper lemmas

Lemma

1) A term that erases to ē[a] is of the form Ē[M] where ⌈Ē⌉ is ē and
⌈M⌉ is a, and moreover, M does not start with a type abstraction
nor a type application.

2) An evaluation context Ē whose erasure is the empty context is a
retyping context R.

3) If R[M] is in ι-normal form, then R is of the form Λα⃗.[] τ⃗ .

74 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Helper lemmas

Lemma (inversion of type erasure)

Assume ⌈M⌉ = a

• If a is x, then M is of the form R[x]

• If a is c, then M is of the form R[c]

• If a is λx.a1, then M is of the form R[λx ∶τ.M1] with ⌈M1⌉ = a1

• If a is a1 a2, then M is of the form R[M1 M2] with ⌈Mi⌉ = ai

The proof is by induction on M .

75 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Helper lemmas

Lemma (Inversion of type erasure for well-typed values)

Assume Γ ⊢M ∶ τ and M is ι-normal. If ⌈M⌉ is a value v, then M is a
value V . Moreover,

• If v is λx.a1, then V is Λα⃗.λx ∶τ.M1 with ⌈M1⌉ = a1.

• If v is a partial application c v1 . . . vn then V is R[c τ⃗ V1 . . . Vn]
with ⌈Vi⌉ = vi.

The proof is by induction on M . It uses the inversion of type erasure and
analysis of the typing derivation to restrict the form of retyping contexts.

76 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Corollary

Let M be a well-typed term in ι-normal form whose erasure is a.

• If a is (λx.a1) v, then M if of the form R[(λx ∶τ.M1) V], with
⌈M1⌉ = a1 and ⌈V ⌉ = v.

• If a is a full application (d v1 . . . vn), then M is of the form
R[d τ⃗ V1 . . . Vn] and ⌈Vi⌉ is vi.

77 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Backward simulation

The proof of backward simulation in the case M is ι-normal is by
induction on the reduction in ⌈F ⌉.

78 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Backward simulation

Case ⌈M⌉ is (λx.a1) v :

By the previous corollary, M is of the form R[(λx ∶τ1.M1) V]. Since R
is an evaluation context, M reduces to R[[x ↦ V]M1] whose erasure is
[x ↦ v]a1, i.e. a.

79 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Backward simulation

Case ⌈M⌉ is a full application (d v1 . . . vn) and reduces to a:

Then M is of the form R[M0] where M0 is d τ⃗ V1 . . . Vn and ⌈Vi⌉ is vi.

Since ⌈M0⌉↝ a, by the backward assumption for δ-rules, there exists M ′
0

such that M0 Ð→δ M
′
0
and ⌈M ′

0
⌉ is a. Let M ′ be R[M ′

0
]. Since R is an

evaluation context, we have M Ð→δ M
′ and ⌈M ′⌉ is a.

80 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics Backward simulation

Case ⌈M⌉ is e[a1] and a1 Ð→ a2:

Then, M is of the form Ē[M1] where ⌈Ē⌉ and ⌈M1⌉ are e and a1.

By compositionality, M1 is well-typed.

Since M is ι-normal and Ē is an evaluation context, M1 is also ι-normal.

By induction hypothesis, it βδ-reduces to a term M2 whose erasure is a2.

By Rule Context, M βδ-reduces to Ē[M2] whose erasure is a.

81 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type soundness for implicitly-typed System F

We may now easily transpose subject reduction and progress from the
implicitly-typed version to the implicitly-typed version of System F.

Progress Well-typed expressions in ⌈F ⌉ have a well-typed antecedent in
ι-normal form in F , which, by progress in F , either βδ-reduces or is a
value; then, its type erasure βδ-reduces (by forward simulation) or is a
value (by observation).

Subject reduction Assume that Γ ⊢ a1 ∶ τ and a1 Ð→ a2.
By well-typedness of a1, there exists a term M1 that erases to a1 such
that Γ ⊢M1 ∶ τ .
By backward simulation in F , there exists M2 such that and
M1 Ð→

∗
ιÐ→βδ M2 and ⌈M2⌉ is a2.

By subject reduction in F , Γ ⊢M2 ∶ τ , which implies Γ ⊢ a2 ∶ τ .

82 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics

The design of advanced typed systems for programming languages is
usually done in explicitly-typed version, with a type-erasing semantics in
mind, but this is not always checked in details.

While the forward simulation is usually straightforward, the backward
simulation is often harder. As the type systems gets more complicated,
reduction at the level of types also gets more complicated.

It is important and not always obvious that type reduction terminates
and is rich enough to never block reductions that could occur in the type
erasure.

83 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type erasing semantics On bisimulations

Using bisimulations to show that compilation preserves the semantics
given in small-step style is a classical technique.

For example, this technique is heavily used in the CompCert project to
prove the correctness of a C-compiler to assembly code in Coq, using a
dozen of successive intermediate languages.

84 124 ◁

http://compcert.inria.fr/

Polymorphism System F Type soundness Type-erasing References ML

Contents

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

Polymorphism and references

Damas and Milner’s type system

85 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Combining extensions

We have shown how to extend simply-typed λ-calculus with

• polymorphism, and

• references, in a previous session.

Can we combine these two extensions?

86 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Beware of polymorphic locations!

When adding references, we noted that type soundness relies on the fact
that every reference cell (or memory location) has a fixed type.

Otherwise, if a location had two types ref τ1 and ref τ2, one could store a
value of type τ1 and read back a value of type τ2.

Hence, it should also be unsound if a location could have type ∀α. ref τ
(where α appears in τ) as it could then be specialized to both types
ref ([α ↦ τ1]τ) and ref ([α ↦ τ2]τ).

By contrast, a location ℓ can have type ref (∀α. τ): this says that ℓ
stores values of polymorphic type ∀α. τ , but ℓ, as a value, is viewed with
the monomorphic type ref (∀α. τ).

87 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

A counter example

Still, if naively extended with references, System F allows construction of
polymorphic references, which breaks subject reduction:

88⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

A counter example

Still, if naively extended with references, System F allows construction of
polymorphic references, which breaks subject reduction:

let y ∶ ∀α. ref (α → α) = Λα.ref (α → α) (λz ∶α. z) in
(y bool) ∶= (bool → bool) not;
!(int → int) (y int) 1 /∅

∗
Ð→ not 1 / ℓ ↦ not

88⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

A counter example

Still, if naively extended with references, System F allows construction of
polymorphic references, which breaks subject reduction:

let y ∶ ∀α. ref (α → α) = Λα.ref (α → α) (λz ∶α. z) in
(y bool) ∶= (bool → bool) not;
!(int → int) (y int) 1 /∅

∗
Ð→ not 1 / ℓ ↦ not

What happens is that the evaluation of the reference:

• creates and returns a location ℓ bound to the identity function
λz ∶α. z of type α → α,

• abstracts α in the result and binds it to y with the polymorphic type
∀α.α → α;

• writes the location at type bool→ bool and reads it back at type
int→ int.

88⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Nailing the bug

In the counter-example, the first reduction step uses the following rule
(where V is λx ∶α.x and τ is α → α).

Context

ref τ V /∅Ð→ ℓ / ℓ ↦ V

Λα.ref τ V /∅Ð→ Λα.ℓ / ℓ ↦ V

While we have

α ⊢ ref τ V /∅ ∶ ref τ and α ⊢ ℓ / ℓ ↦ V ∶ ref τ

We have

⊢ Λα.ref τ V /∅ ∶ ∀α. ref τ but not ⊢ Λα.ℓ / ℓ↦ V ∶ ∀α. ref τ

Hence, the context case of subject reduction breaks.

89 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Nailing the bug

The typing derivation of Λα.ℓ requires a store typing Σ of the form ℓ ∶ τ

and a derivation of the form:

Tabs

Σ, α ⊢ ℓ ∶ ref τ

Σ ⊢ Λα.ℓ ∶ ∀α. ref τ

However, the typing context Σ, α is ill-formed as α appears free in Σ.

Instead, a well-formed premise should bind α earlier as in α,Σ ⊢ ℓ ∶ ref τ ,
but then, Rule Tabs cannot be applied.

By contrast, the expression ref τ V is pure, so Σ may be empty:

Tabs

α ⊢ ref τ V ∶ ref τ

∅ ⊢ ref τ V ∶ ∀α. ref τ

The expression Λα.ℓ is correctly rejected as ill-typed, so Λα.(ref M V)
should also be rejected. Why?

90 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Fixing the bug

Mysterious slogan:

One must not abstract over a type variable that might, after
evaluation of the term, enter the store typing.

Indeed, this is what happens in our example. The type variable α which
appears in the type of V is abstracted in front of ref V .

When ref V reduces, α → α becomes the type of the fresh location ℓ,
which appears in the new store typing.

This is all well and good, but how do we enforce this slogan?

91 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Fixing the bug

In the context of ML, a number of rather complex historic approaches
have been followed: see Leroy [1992] for a survey.

Then came Wright [1995], who suggested an amazingly simple solution,
known as the value restriction: only value-forms can be abstracted over.

TAbs

Γ, α ⊢ u ∶ τ

Γ ⊢ Λα.u ∶ ∀α.τ

Value forms:

u ∶∶= x ∣ V ∣ Λτ.u ∣ u τ

The problematic proof case vanishes, as we now never reduce under type
abstraction. The form Λα.E of evaluation context becomes useless and
can be removed.

Subject reduction holds again.

92 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

A good intuition: internalizing configurations

A configuration M / µ is an expression M in a memory µ. The memory
can be viewed as a recursive extensible record.

The configuration M / µ may be viewed as the recursive definition (of
values) let rec m ∶ Σ = µ in [ℓ↦m.ℓ]M where Σ is a store typing for µ.

The store typing rules are coherent with this view.

Allocation of a reference is a reduction of the form

let rec m ∶ Σ = µ in E[ref τ V]
Ð→ let rec m ∶ Σ, ℓ ∶ τ = µ, ℓ↦ v in E[m.ℓ]

For this transformation to preserve well-typedness, it is clear that the
evaluation context E must not bind any type variable appearing in τ .

Otherwise, we are violating the scoping rules.

93 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Clarifying the typing rules

Let us review the typing rules for configurations:

?

94⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Clarifying the typing rules

Let us review the typing rules for configurations:

Config

⊢M ∶ τ ⊢ µ ∶ Σ

⊢M / µ ∶ τ

Store

∀ℓ ∈ dom(µ), Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)

⊢ µ ∶ Σ

94⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Clarifying the typing rules

Let us review the typing rules for configurations:

Config

α⃗ ⊢M ∶ τ α⃗ ⊢ µ ∶ Σ

α⃗ ⊢M / µ ∶ τ

Store

∀ℓ ∈ dom(µ), α⃗,Σ,∅ ⊢ µ(ℓ) ∶ Σ(ℓ)

α⃗ ⊢ µ ∶ Σ

Because we explicitly introduce type variables in judgments, closed
configurations must be typed in an environment composed of type
variables.

Because we never reduce under type abstraction, these variables need not
be changed during evaluation and can be placed in front of the store
typing.

94⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Clarifying the typing rules

Judgments are now of the form α⃗,Σ,Γ ⊢ M ∶ τ although we may see
α⃗,Σ,Γ as a whole typing context Γ′.

For locations, we need a new context formation rule:
WfEnvLoc

⊢ Γ Γ ⊢ τ ℓ ∉ dom(Γ)

⊢ Γ, ℓ ∶ τ

This allows locations to appear anywhere. However, in a derivation of a
closed term, the typing context will always be of the form α⃗,Σ,Γ where:

• Σ only binds locations (to arbitrary types) and

• Γ does not bind locations.

95 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Clarifying the typing rules

The typing rule for memory locations (where Γ is of the form α⃗,Σ,Γ′)

Loc

Γ ⊢ ℓ ∶ ref Γ(ℓ)

In System F, typing rules for references need not be primitive.
We may instead treat them as constants of the following types:

ref ∶ ∀α.α → ref α
(!) ∶ ∀α. ref α → α

(∶=) ∶ ∀α. ref α → α → unit

Which ones are constructors?

96⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Clarifying the typing rules

The typing rule for memory locations (where Γ is of the form α⃗,Σ,Γ′)

Loc

Γ ⊢ ℓ ∶ ref Γ(ℓ)

In System F, typing rules for references need not be primitive.
We may instead treat them as constants of the following types:

ref ∶ ∀α.α → ref α
(!) ∶ ∀α. ref α → α

(∶=) ∶ ∀α. ref α → α → unit

There are all destructors (event ref !) with the obvious arities.

The δ-rules are adapted to carry explicit type parameters:

ref τ V / µ Ð→ ℓ / µ[ℓ ↦ V] if ℓ /∈ dom(µ)
ℓ ∶= (τ) V / µ Ð→ () / µ[ℓ ↦ V]

!τ ℓ / µ Ð→ µ(ℓ) / µ

96⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Stating type soundness

Lemma

δ-rules preserve well-typedness of closed configurations.

Theorem (Subject reduction)

Reduction of closed configurations preserves well-typedness.

Lemma

A well-typed closed configuration M/µ where M is a full application of
constants ref, (!), and (∶=) to types and values can always be reduced.

Theorem (Progress)

A well-typed irreducible closed configuration M/µ is a value.

97 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Consequences

The problematic program is now syntactically ill-formed:

let y ∶ ∀α. ref (α → α) = Λα.ref (λz ∶α. z) in
(∶=) (bool → bool) (y bool) not;
! (int → int) (y (int)) 1

Indeed, ref (λz ∶α. z) is not a value, but the application of a unary
destructor to a value.

98 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Consequences

With the value restriction, some pure programs become ill-typed, even
though they were well-typed in the absence of references.

Therefore, this style of introducing references in System F (or in ML)
is not a conservative extension.

Assuming:

map ∶ ∀α. list α → list α id ∶ ∀α.α → α

This expression is ill-typed:

Λα.map α (id α)

?

99⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Consequences

With the value restriction, some pure programs become ill-typed, even
though they were well-typed in the absence of references.

Therefore, this style of introducing references in System F (or in ML)
is not a conservative extension.

Assuming:

map ∶ ∀α. list α → list α id ∶ ∀α.α → α

This expression is ill-typed:

Λα.map α (id α)

A common work-around is to perform a manual η-expansion:

Λα.λy ∶ list α.map α (id α) y

?
99⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Consequences

With the value restriction, some pure programs become ill-typed, even
though they were well-typed in the absence of references.

Therefore, this style of introducing references in System F (or in ML)
is not a conservative extension.

Assuming:

map ∶ ∀α. list α → list α id ∶ ∀α.α → α

This expression is ill-typed:

Λα.map α (id α)

A common work-around is to perform a manual η-expansion:

Λα.λy ∶ list α.map α (id α) y

Of course, in the presence of side effects, η-expansion is not
semantics-preserving, so this must not be done blindly.

99⟨3⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

In practice

The value restriction can be slightly relaxed by enlarging the class of
value-forms to a syntactic category of so-called non-expansive
terms—terms whose evaluation will definitely not allocate new reference
cells. Non-expansive terms form a strict superset of value-forms.

Garrigue [2004] relaxes the value restriction in a more subtle way, which
is justified by a subtyping argument.

For instance, the following expressions may be well-typed:

• Λα.((λx ∶τ. u) u) because the inner expression is non-expansive.
Λα.(let x ∶ τ = u in u), which is its syntactic sugar, as well.

• let x ∶ ∀α. list α = Λα.(M1 M2) inM

because α appears only positively in the type of M1 M2.

Objective Caml implements both refinements.

100 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

In practice

In fact, Λα.M need only be forbidden when α appears in the type of
some exposed expansive term at some negative occurrence, where
exposed subterms are those that do not appear under some λ-abstraction.

For instance, the expression

let x ∶ ∀α. int × (list α) × (α → α) =
Λα.(ref (1 + 2), (λx ∶α.x) Nil, λx ∶α.x)

inM

may be accepted because α appears only in the type of the
non-expansive exposed expression λx ∶α.x and only positively in the type
of the expansive expression (λx ∶α.x) Nil.

101 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Conclusion

Experience has shown that the value restriction is tolerable. Even though
it is not conservative, the search for better solutions has been pretty
much abandoned.

There is still on going research for tracing side effects more precisely, in
particular to better circumvent their use.

102 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Conclusion

In a type-and-effect system [Lucassen and Gifford, 1988; Talpin and
Jouvelot, 1994], or in a type-and-capability system [Charguéraud and
Pottier, 2008], the type system indicates which expressions may allocate
new references, and at which type. This permits strong
updates—updates that may also change the type of references.

There, the value restriction is no longer necessary.

However, if one extends a type-and-capability system with a mechanism
for hiding state, the need for the value restriction re-appears.

Pottier and Protzenko [2012] are designing a language, called Mezzo ,
where mutable states is tracked very precisely, using permissions,
ownership, and afine types.

103 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Contents

Why polymorphism?

Polymorphic λ-calculus

Type soundness

Type erasing semantics

Polymorphism and references

Damas and Milner’s type system

104 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Damas and Milner’s type system

Damas and Milner’s type system [Milner, 1978] offers a restricted form of
polymorphism, while avoiding the difficulties associated with type
inference in System F.

This type system is at the heart of Standard ML, Objective Caml, and
Haskell.

105 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Some intuitions on the definition of ML

The idea behind the definition of ML is to make a small extension of
simply-typed λ-calculus that enables to factor out several occurrences of
the same subexpression a1 in a term of the form [x↦ a1]a2 using a
let-binding form let x = a1 in a2 so as to avoid code duplication.

Expressions of the simply-typed λ-calculus are extended with a primitive
form of let-binding, which can also be viewed as a way of annotating
some redexes (λx.a2) a1 in the source program.

106 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Some intuitions on the definition of ML

This provides a simple intuition behind Damas and Milner’s type system:
a closed term has type τ if and only if its let-normal form has type τ in
the simply-typed λ-calculus.

A term’s let-normal form is obtained by iterating the rewrite rule (in all
context—not just evaluation contexts):

let x = a1 in a2 Ð→ a1; [x ↦ a1]a2

Notice that we use a sequence starting with a1 and not just [x ↦ a1]a2.

Why?

107⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Some intuitions on the definition of ML

This provides a simple intuition behind Damas and Milner’s type system:
a closed term has type τ if and only if its let-normal form has type τ in
the simply-typed λ-calculus.

A term’s let-normal form is obtained by iterating the rewrite rule (in all
context—not just evaluation contexts):

let x = a1 in a2 Ð→ a1; [x ↦ a1]a2

Notice that we use a sequence starting with a1 and not just [x ↦ a1]a2.

This is to enforce well-typedness of a1 in the pathological case where x

does not appear free in a2.

If we disallow this pathological case (e.g. well-formedness could require
that x always occurs in a2) then we could use the more intuitive rule:

let x = a1 in a2 Ð→ [x ↦ a1]a2

107⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Some intuitions on the definition of ML

This intuition suggests type-checking and type inference algorithms. But
these algorithms are not practical,

?

108⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Some intuitions on the definition of ML

This intuition suggests type-checking and type inference algorithms. But
these algorithms are not practical, because:

• they have intrinsic exponential complexity;

• separate compilation prevents reduction to let-normal forms.

In the following, we study a direct presentation of Damas and Milner’s
type system, which does not involve let-normal forms.

It is practical, because:

• it leads to an efficient type inference algorithm;

• it supports separate compilation.

108⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Terms

The language ML is usually presented in its implicitly-typed version.

Terms are now given by:

a ∶∶= x ∣ λx.a ∣ a a ∣ let x = a in a ∣ . . .

The let construct is no longer sugar for a β-redex: it is now a primitive
form, as it will be typed especially.

Note: As constants behave much as program variables from a typing
point of view, and do not raise any typing issues, we omit them here for
conciseness—but we still keep them in the course notes.

109 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Types and type schemes

The language of types lies between those for simply-typed λ-calculus and
System F; it is stratified between types and type schemes.

The syntax of types is that of simply-typed λ-calculus:

τ ∶∶= α ∣ τ → τ ∣ . . .

A separate category of type schemes is introduced:

σ ∶∶= τ ∣ ∀α.σ

All quantifiers must appear in prenex position, so type schemes are less
expressive than System-F types.

We often write ∀α⃗. τ as a short hand for ∀α1. . . .∀αn. τ .

When viewed as a subset of System F, one must think of type schemes
are the primary notion of types, of which types are a subset.

110 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Typing judgments

An ML typing context Γ binds program variables to type schemes.

In the implicitly-typed presentation, type variables are often introduced
implicitly and not part of Γ. However, we keep our presentation where
type variables are explicitly declared in Γ.

Judgments now take the form:

Γ ⊢ a ∶ σ

Types form a subset of type schemes, so type environments and
judgments can contain types too.

111 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Typing rules

A standard, non-syntax-directed presentation is:

ml-Var

Γ ⊢ x ∶ Γ(x)

ml-Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx.a ∶ τ0 → τ

ml-App

Γ ⊢ a1 ∶ τ2 → τ1 Γ ⊢ a2 ∶ τ2

Γ ⊢ a1 a2 ∶ τ1

ml-Let

Γ ⊢ a1 ∶ σ1 Γ, x ∶ σ1 ⊢ a2 ∶ σ2

Γ ⊢ let x = a1 in a2 ∶ σ2

ml-Gen

Γ, α ⊢ a ∶ σ

Γ ⊢ a ∶ ∀α.σ

eml-Inst

Γ ⊢ a ∶ ∀α.σ

Γ ⊢ a ∶ [α ↦ τ]σ

Rules Abs and App are as in simply-typed λ-calculus: λ-bound variables
receive a monotype.

Rule Let moves a type scheme into the environment which Var and
Inst can exploit: although syntactically unchanged, Rule Var now
returns a type scheme Γ(x), which Rule Inst may instantiate.

Rules Gen and Inst are as in implicitly-typed System F.
Except that type variables are instantiated with monotypes.

112 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Explicitly-typed terms (eML)

In proofs, we also use the explicitly-typed version of ML:

M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ ∣ let x ∶ σ =M inM . . .

The subset eML of ⌈F ⌉ whose type erasure is in ML is defined by:

eml-Var

Γ ⊢ x ∶ Γ(x)

eml-Abs

Γ, x ∶ τ0 ⊢ M ∶ τ

Γ ⊢ λx ∶τ0 .M ∶ τ0 → τ

eml-App

Γ ⊢M1 ∶ τ2 → τ1 Γ ⊢M2 ∶ τ2

Γ ⊢M1 M2 ∶ τ1

eml-Let

Γ ⊢M1 ∶ σ1

Γ, x ∶ σ1 ⊢ M2 ∶ σ2

Γ ⊢ let x ∶ σ1 =M1 inM2 ∶ σ2

eml-Tabs

Γ, α ⊢ M ∶ σ

Γ ⊢ Λα.M ∶ ∀α.σ

eml-Tapp

Γ ⊢M ∶ ∀α.σ

Γ ⊢M τ ∶ [α ↦ τ]σ

113 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Example

Here is a simple type derivation that exploits polymorphism:

Let

Gen

Abs

Var
α, z ∶ α ⊢ z ∶ α

α ⊢ λz. z ∶ α → α

∅ ⊢ λz. z ∶ ∀α.α → α

Γ ⊢ f ∶ ∀α.α → α
Var

Γ ⊢ f ∶ int → int
Inst

Γ ⊢ f 0 ∶ int
App

Γ ⊢ f ∶ ∀α.α → α
Var

Γ ⊢ f ∶ bool → bool
Inst

Γ ⊢ f true ∶ bool
App

Γ ⊢ (f 0, f true) ∶ int × bool
Pair

∅ ⊢ let f = λz. z in (f 0, f true) ∶ int × bool

(Γ stands for f ∶ ∀α.α → α.)

Gen is used above Let (at left), and Inst is used below Var.

In fact, we will see that every type derivation can be put in this form.

114 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

A non-example

By contrast, this term is ill-typed:

λf. (f 0, f true)

115⟨1⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

A non-example

By contrast, this term is ill-typed:

λf. (f 0, f true)

Indeed, this term contains no “let” construct, so it is type-checked
exactly as in simply-typed λ-calculus, where it is ill-typed, because f

must be assigned a type τ that must be simultaneously of the form
int→ τ1 and bool→ τ2, but there is not such type.

Recall that this term is well-typed in implicitly-typed System F because f

can be assigned, for instance, the polymorphic type ∀α.α → α.

115⟨2⟩ 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Syntax-directed presentation of ML

Explicitly-typed terms have unique derivations (and unique types).

Implicitly-typed terms have many derivations, i.e. many explicitly-typed
terms of which they are the erasure.

Can we reduce the set of explicitly-typed terms so that implicitly-typed
terms have unique derivations, i.e. such that their corresponding
explicitly typed terms have the same skeleton?

116 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Normalization of ML terms

We may define the subset xML of eML as terms in the following form:

N ∈ xML ∶∶= Λα⃗.Q

Q ∶∶= x τ⃗ ∣ Q Q ∣ λx ∶τ.Q ∣ let x ∶ σ =M in Q

and such that the arity of τ⃗ in x τ⃗ is the arity of α⃗ in the type scheme
∀α⃗. τ assigned to the variable x.

117 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Syntax-directed presentation of ML

Terms of xML are so constrained that their typing derivations is
determined by their type-erasure. Consider the following typing-rules:

xml-Tabs

Γ, α⃗ ⊢ M ∶M

Γ ⊢ Λα⃗.M ∶ ∀α⃗. τ

xml-VarInst

∀α⃗. τ = Γ(x)

Γ ⊢ x τ⃗ ∶ [α⃗ ↦ τ⃗]τ

xml-Abs

Γ, x ∶ τ0 ⊢ Q ∶ τ

Γ ⊢ λx ∶τ0.Q ∶ τ0 → τ

xml-App

Γ ⊢ Q1 ∶ τ2 → τ1 Γ ⊢ Q2 ∶ τ2

Γ ⊢ Q1 Q2 ∶ τ1

xml-LetGen

Γ, α⃗ ⊢ Q1 ∶ τ1 Γ, x ∶ ∀α⃗. τ1 ⊢ Q2 ∶ τ2

Γ ⊢ let x ∶ ∀α⃗. τ1 = Λα⃗.Q1 in Q2 ∶ τ2

By construction, terms of xML are a syntactic subset of eML.
Moreover, if M is in xML, then Γ ⊢xML M ∶ σ implies Γ ⊢eML M ∶ σ.

Conversely, can we associate to any term of eML such that Γ ⊢eML M ∶ σ

a term N of xML with the same type erasure such that Γ ⊢xML M ∶ σ ?

118 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Normalization of ML terms

norm-Var

∀α⃗. τ = Γ(x)

Γ ⊢ x ∶ ∀α⃗. τ ⇒ Λα⃗.x α⃗

norm-Tabs

Γ, α ⊢M ∶ σ⇒N

Γ ⊢ Λα.M ∶ ∀α.σ ⇒ Λα.N

norm-Tapp

Γ ⊢M ∶ ∀α.σ ⇒ Λα.N

Γ ⊢M τ ∶ [α ↦ τ]σ⇒ [α ↦ τ]N

norm-Abs

Γ, x ∶ τ0 ⊢M ∶ τ ⇒ Q

Γ ⊢ λx ∶τ0.M ∶ τ0 → τ ⇒ λx ∶τ0.Q

norm-App

Γ ⊢M1 ∶ τ2 → τ1 ⇒ Q1 Γ ⊢M2 ∶ τ2 ⇒Q2

Γ ⊢M1 M2 ∶ τ1 ⇒ Q1 Q2

norm-Let

Γ ⊢ M1 ∶ σ1 ⇒N1 α⃗# Γ, σ1 Γ, x ∶ σ1 ⊢M2 ∶ ∀α⃗.M ⇒ Λα⃗.Q

Γ ⊢ let x ∶ σ1 =M1 inM2 ∶ ∀α⃗.M ⇒ Λα⃗.let x ∶ σ1 = N1 in Q

119 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Normalization

The translation is well-defined for all eML terms:

If Γ ⊢eML M ∶ σ holds then Γ ⊢M ∶ σ⇒ N .

(The proof is by induction on M and all cases are obvious.)

Moreover:

If Γ ⊢M ∶ σ⇒ N holds, then Γ ⊢xML N ∶ σ and ⌈M⌉ = ⌈N⌉.

The proof is also by induction on M . The preservation of erasure is immediate.

The only non obvious cases for well-typedness of N are Norm-Tapp, which

performs strong ι-reduction and uses type substitution, and Norm-Let, which

extrudes type abstractions.

120 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Syntax-directed presentation for ML

By dropping type information in terms from xML, we thus obtain an
equivalent syntax-directed presentation of ML typing rules:

sml-VarInst

∀α⃗. τ = Γ(x)

Γ ⊢s x ∶ [α⃗ ↦ τ⃗]τ

sml-LetGen

Γ, α⃗ ⊢s a1 ∶ τ1 Γ, x ∶ ∀α⃗. τ1 ⊢s a2 ∶ τ2

Γ ⊢s let x = a1 in a2 ∶ τ2

sml-Abs

Γ, x ∶ τ0 ⊢s a ∶ τ

Γ ⊢s λx. a ∶ τ0 → τ

sml-App

Γ ⊢s a1 ∶ τ2 → τ1 Γ ⊢s a2 ∶ τ2

Γ ⊢s a1 a2 ∶ τ1

sml-Tabs

Γ, α⃗ ⊢s M ∶M

Γ ⊢s Λα⃗.M ∶ ∀α⃗. τ

Then, the judgments Γ ⊢ a ∶ σ and Γ ⊢sML a ∶ σ are equivalent.

121 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Syntax-directed presentation for ML Side result

For type inference, we rather use the following equivalent presentation
where type variables are not explicitly declared in the typing context:

iml-VarInst

∀α⃗. τ = Γ(x)

Γ ⊢ x ∶ [α⃗ ↦ τ⃗]τ

iml-LetGen

Γ ⊢ a1 ∶ τ1 α⃗# Γ Γ, x ∶ ∀α⃗. τ1 ⊢ a2 ∶ τ2

Γ ⊢ let x = a1 in a2 ∶ τ2

iml-Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx. a ∶ τ0 → τ

iml-App

Γ ⊢ a1 ∶ τ2 → τ1 Γ ⊢ a2 ∶ τ2

Γ ⊢ a1 a2 ∶ τ1

In this system, the type substitution lemma can be restated as follows:

Lemma (Substitution lemma for types)

Typings are stable by substitution.
If Γ ⊢ a ∶ τ then ϕΓ ⊢ a ∶ ϕτ . for any substitution ϕ.

122 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Type soundness for ML

Since ML is a subset of ⌈F ⌉, which has been proved sound, we know that
ML is sound, i.e. that ML programs cannot go wrong.

This also implies that progress holds in ML.

However, this does not imply that subject reduction holds for ML.
Indeed, ML expressions could reduce to System F expressions that are
not in the ML subset.

Most proofs of subject reduction for ML use implicitly-typed terms.
For instance, see Wright and Felleisen [1994], Pottier and Rémy [2005].

123 124 ◁

Polymorphism System F Type soundness Type-erasing References ML

Subject reduction in eML

The proof of subject reduction follows the same schema as for System F.

The main part of the proof also works almost unchanged.

However, it uses auxiliary lemmas (inversion, permutation, weakening,
type substitution, term substitution, compositionality) that all need to be
rechecked, since those lemmas conclude with typing judgments in F that
may not necessarily hold in eML.

Unsurprisingly, all proofs can be easily adjusted.

See also the course notes for an indirect proof reusing subject reduction
in System F.

124 124 ◁

Bibliography

Bibliography I

(Most titles have a clickable mark “▷” that links to online versions.)

▷ Arthur Charguéraud and François Pottier. Functional translation of a
calculus of capabilities. In ACM International Conference on
Functional Programming (ICFP), pages 213–224, September 2008.

▷ Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional
polymorphism in type erasure semantics. Journal of Functional
Programming, 12(6):567–600, November 2002.

▷ Jacques Garrigue. Relaxing the value restriction. In Functional and Logic
Programming, volume 2998 of Lecture Notes in Computer Science,
pages 196–213. Springer, April 2004.

Jean-Yves Girard. Interprétation fonctionnelle et élimination des
coupures de l’arithmétique d’ordre supérieur. Thèse d’état, Université
Paris 7, June 1972.

125 124 ◁

http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://www-2.cs.cmu.edu/~crary/papers/2002/typepass/typepass.ps
http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf

Bibliography

Bibliography II

▷ Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.
Cambridge University Press, 1990.

▷ Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A
history of Haskell: being lazy with class. In ACM SIGPLAN Conference
on History of Programming Languages, June 2007.

▷ Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power of
system F . In ACM International Conference on Functional
Programming (ICFP), pages 27–38, August 2003.

▷ Xavier Leroy. Typage polymorphe d’un langage algorithmique. PhD
thesis, Université Paris 7, June 1992.

▷ John M. Lucassen and David K. Gifford. Polymorphic effect systems. In
ACM Symposium on Principles of Programming Languages (POPL),
pages 47–57, January 1988.

126 124 ◁

http://www.paultaylor.eu/stable/prot.pdf
http://research.microsoft.com/~simonpj/papers/history-of-haskell/history.pdf
http://cristal.inria.fr/~remy/work/mlf/icfp.pdf
http://cristal.inria.fr/~xleroy/publi/these-doctorat.ps.gz
http://pag.lcs.mit.edu/reading-group/lucassen88effects.pdf

Bibliography

Bibliography III

▷ Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17(3):348–375, December 1978.

▷ Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure
conversion. In ACM Symposium on Principles of Programming
Languages (POPL), pages 271–283, January 1996.

▷ John C. Mitchell. Polymorphic type inference and containment.
Information and Computation, 76(2–3):211–249, 1988.

▷ Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F
to typed assembly language. ACM Transactions on Programming
Languages and Systems, 21(3):528–569, May 1999.

▷ Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local
type inference. In ACM Symposium on Principles of Programming
Languages (POPL), pages 41–53, 2001.

127 124 ◁

http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://www.cs.cornell.edu/Info/People/jgm/papers/closure-summary.ps
http://dx.doi.org/10.1016/0890-5401(88)90009-0
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://lampwww.epfl.ch/papers/clti-colored.ps.gz

Bibliography

Bibliography IV

▷ Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

▷ Benjamin C. Pierce and David N. Turner. Local type inference. ACM
Transactions on Programming Languages and Systems, 22(1):1–44,
January 2000.

▷ Andrew M. Pitts. Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science, 10:321–359, 2000.

François Pottier and Jonathan Protzenko. Programming with permissions
in Mezzo. Submitted for publication, October 2012.

▷ François Pottier and Didier Rémy. The essence of ML type inference. In
Benjamin C. Pierce, editor, Advanced Topics in Types and
Programming Languages, chapter 10, pages 389–489. MIT Press,
2005.

128 124 ◁

http://www.cis.upenn.edu/~bcpierce/tapl/
http://doi.acm.org/10.1145/345099.345100
http://www.cl.cam.ac.uk/~amp12/papers/parpoe/parpoe.pdf
http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf

Bibliography

Bibliography V

▷ John C. Reynolds. Towards a theory of type structure. In Colloque sur la
Programmation, volume 19 of Lecture Notes in Computer Science,
pages 408–425. Springer, April 1974.

▷ John C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing 83, pages 513–523. Elsevier Science, 1983.

▷ Christopher Strachey. Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation, 13(1–2):11–49, April 2000.

▷ Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline.
Information and Computation, 11(2):245–296, 1994.

▷ Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for
second-order types is undecidable. Information and Computation, 179
(1):1–18, 2002.

129 124 ◁

http://www.springerlink.com/content/p5801737k78207p7/
ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf
http://dx.doi.org/10.1023/A:1010000313106
http://www.irisa.fr/prive/talpin/papers/ic94.pdf
http://dx.doi.org/10.1006/inco.2001.2950

Bibliography

Bibliography VI

▷ Philip Wadler. Theorems for free! In Conference on Functional
Programming Languages and Computer Architecture (FPCA), pages
347–359, September 1989.

▷ Philip Wadler. The Girard-Reynolds isomorphism (second edition).
Theoretical Computer Science, 375(1–3):201–226, May 2007.

▷ J. B. Wells. The essence of principal typings. In International Colloquium
on Automata, Languages and Programming, volume 2380 of Lecture
Notes in Computer Science, pages 913–925. Springer, 2002.

▷ J. B. Wells. The undecidability of Mitchell’s subtyping relation.
Technical Report 95-019, Computer Science Department, Boston
University, December 1995.

▷ J. B. Wells. Typability and type checking in system F are equivalent and
undecidable. Annals of Pure and Applied Logic, 98(1–3):111–156,
1999.

130 124 ◁

http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz
http://homepages.inf.ed.ac.uk/wadler/papers/gr2/gr2.pdf
http://www.macs.hw.ac.uk/~jbw/papers/Wells:The-Essence-of-Principal-Typings:ICALP-2002.pdf
http://www.cs.bu.edu/ftp/pub/jbw/types/subtyping-undecidable.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz

Bibliography

Bibliography VII

▷ Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic
Computation, 8(4):343–356, December 1995.

▷ Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, November
1994.

131 124 ◁

http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz

	Polymorphism and System F
	Why polymorphism?
	Polymorphic lambda-calculus
	Type soundness
	Type erasing semantics
	Polymorphism and references
	Damas and Milner's type system

	Appendix

