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Chapter 6

Existential types

Compilation is type-preserving when each intermediate language is explicitly typed, and each
compilation phase transforms a typed program into a typed program in the next intermediate
language.

Type preserving compilation is interesting for several reasons: it can help debug the
compiler; types can be used to drive optimizations; types can also be used to produce proof-
carrying code; proving that types are preserved during compilation can be the first step
towards proving that the semantics is preserved Chlipala (2007).

Besides, type-preserving compilation is quite challenging as it exhibits an encoding of
programming constructs into programming language that usually requires richer type sys-
tems. Sometimes, an encoding later becomes a programming idiom that is used directly in
the source language. There are several examples: closure conversion requires an extension
of the language with existential types, which happens to very useful on their own. Closures
are themselves a simple form of objects. Defunctionalization may be done manually on some
particular programs, e.g. in web applications to monitor the computation.

A classic paper by Morrisett et al. 1999 shows how to go from System F to “Typed
Assembly Language”, while preserving types along the way. Its main passes are:

1. CPS conversion fixes the order of evaluation, names intermediate computations, and
makes all function calls tail calls;

2. closure conversion makes environments and closures explicit, and produces a program
where all functions are closed;

3. allocation and initialization of tuples is made explicit;

4. the calling convention is made explicit, and variables are replaced with (an unbounded
number of) machine registers.
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124 CHAPTER 6. EXISTENTIAL TYPES

In general, a type-preserving compilation phase involves not only a translation of terms,
mapping M to JMK, but also a translation of types, mapping τ to JτK, with the property:

Γ ⊢ M ∶ τ implies JΓK ⊢ JMK ∶ JτK

The translation of types carries a lot of information: examining it is often enough to guess
what the translation of terms will be.

6.1 Towards typed closure conversion

First-class functions may appear in the body of other functions. hence, their own body may
contain free variables that will be bound to values during the evaluation in the execution
environment. Because they can be returned as values, and thus used outside of their defini-
tion environment, they must store their execution environment in their value. A closure is
the packaging of the code of a first-class function with its runtime environment, so that it
becomes closed, i.e. independent of the runtime environment and can be passed to another
function and applied in another runtime environment. Closures can also be used to represent
recursive functions and objects in the object-as-record-of-methods paradigm.

In the following, the source calculus has unary λ-abstractions, which can have free vari-
ables, while the target calculus has binary λ-abstractions, which must be closed. In the
target language, we also use pattern matching over tuples. The translation will be naive,
insofar as it will not handle functions of multiple arguments in a special way. One could
argue that this is a feature, not a limitation, and that “uncurrying” (if desired) should be
a separate type-preserving pass anyway. But closure conversion can also be easily extended
to n-ary functions.

There are at least two variants of closure conversion: In the closure-passing variant, the
closure and the environment are a single memory block; In the environment-passing variant,
the environment is a separate block, to which the closure points. The impact of this choice on
the term translations is minor. Closure-passing better supports simple recursive functions;
but this is less obvious with mutually recursive ones. Closure-passing optimizes the case
of closed functions: they is no need to create a closure—the code pointer can be passed
directly Steckler and Wand (1997). However, its impact on the type translations is more
important: the closure-passing variant requires more type-theoretic machinery (recursive
types and rows).

The closure-passing variant is as follows:

Jλx.MK = let code = λ(clo, x). let ( , x1, . . . , xn) = clo in JMK in
(code , x1, . . . , xn)

JM1 M2K = let clo = JM1K in
let code = proj

0
clo in

code (clo, JM2K)
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where {x1, . . . , xn} is fv(λx.M) (the variables code and clo must be suitably fresh). Note
that the layout of the environment must be known only at the closure allocation site, not at
the call site. In particular, proj

0
clo need not know the size of clo.

The environment-passing variant is as follows:

Jλx.MK = let code = λ(env , x). let (x1, . . . , xn) = env in JMK in
(code, (x1, . . . , xn))

JM1 M2K = let (code, env) = JM1K in
code (env , JM2K)

where {x1, . . . , xn} = fv(λx.M).

To understand type-preserving closure conversion, let us first focus on the environment-
passing variant. How can closure conversion be made type-preserving? The key issue is to
find a sensible definition of the type translation. In particular, what is the translation of
a function type, Jτ1 → τ2K ? Let us examine the closure allocation code again. Suppose
Γ ⊢ λx.M ∶ τ1 → τ2. Suppose, without loss of generality (see Remark 5), that dom(Γ) is
exactly fv(λx.M), i.e. {x1, . . . , xn}. Overloading the notation, if Γ is x1 ∶ τ1; . . . ;xn ∶ τn, we
also write JΓK for the tuple type Jτ1K× . . .× JτnK. By hypothesis, we have JΓK, x ∶ Jτ1K ⊢ JMK ∶
Jτ2K, so env has type JΓK, code has type (JΓK × Jτ1K)→ Jτ2K, and the entire closure has type
((JΓK × Jτ1K)→ Jτ2K) × JΓK.

So, can we adopt ((JΓK × Jτ1K)→ Jτ2K) × JΓK as a definition of Jτ1 → τ2K ?

Naturally not. This definition is mathematically ill-formed, as we cannot use Γ out of
the blue! That is, we cannot have a translation of Jτ1 → τ2K that depends on the type of free
variables of M ! Indeed. we need a uniform translation of types, not just because it is nice
to have one, but because it describes a uniform calling convention. If closures with distinct
environment sizes or layouts receive distinct types, then we will be unable to translate well-
typed code: if . . . then λx.x + y else λx.x. Furthermore, we want function invocations to be
translated uniformly, without knowledge of the size and layout of the closure’s environment.

So, the only sensible solution is: ∃α.((α × Jτ1K)→ Jτ2K) ×α. An existential quantification
over the type of the environment abstracts away the differences in size and layout. Enough
information is retained to ensure that the application of the code to the environment is valid:
this is expressed by letting the variable α occur twice on the right-hand side.

The existential quantification also provides a form of security. The caller cannot do
anything with the environment except pass it as an argument to the code. In particular,
it cannot inspect or modify the environment. For instance, in the source language, the
following coding style guarantees that x remains even, no matter how f is used:

let f = let x = ref 0 in λ(). x ∶= (!x + 2); !x

After closure conversion, the reference x is reachable via the closure of f . A malicious,
untyped client could write an odd value to x. However, a well-typed client is unable to do
so. This encoding is not just type-preserving, but also fully abstract: it preserves (a typed
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version of) observational equivalence (Ahmed and Blume, 2008).

Remark 5 In order to support the hypothesis dom(Γ) = fv(λx.M) at every λ-abstraction,
it is possible to introduce an (admissible) weakening rule:

Weakening

Γ1; Γ2 ⊢M ∶ τ x#M

Γ1;x ∶ τ
′; Γ2 ⊢M ∶ τ

If the weakening rule is applied eagerly at every λ-abstraction, then the hypothesis is met, and
closures have minimal environments. (In some cases, one may not use minimal environments,
e.g. to allow sharing of environments between several closures.)

6.2 Existential types

One can extend System F with existential types, in addition to universals:

τ ∶∶= . . . ∣ ∃α.τ

As in the case of universals, there are type-passing and type-erasing interpretations of the
terms and typing rules and, in the latter interpretation, there are explicit and implicit ver-
sions. Let us first look at the type-erasing interpretation with an explicit notation for
introducing and eliminating existential types.

6.2.1 Existential types in Church style (explicitly typed)

The existential quantifier are introduced and eliminated as follows:
Pack

Γ ⊢M ∶ [α ↦ τ ′]τ
Γ ⊢ pack τ ′,M as ∃α. τ ∶ ∃α. τ

Unpack

Γ ⊢M1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢M2 ∶ τ2 α # τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

The side condition α # τ2 is mandatory here to ensure well-formedness of the conclusion.
If well-formedness conditions were explicit in judgments, this could be equivalently defined
as Γ ⊢ τ2, as it would imply α# τ2 since the last premise implies α # Γ.

Notice the imperfect duality between existential and universals, reminded below:
TAbs

Γ, α ⊢M ∶ τ

Γ ⊢ Λα.M ∶ ∀α. τ

TApp

Γ ⊢M ∶ ∀α. τ

Γ ⊢M τ ′ ∶ [α ↦ τ ′]τ

This suggests a simpler elimination form, perhaps like this:

Γ ⊢M ∶ ∃α.τ

Γ, α ⊢ unpackM ∶ τ
Broken!
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Informally, this could mean that, if M has type τ for some unknown α, then it has type τ ,
where α is “fresh”. Unfortunately, this is a broken rule, as we could immediately universally
quantify over α and conclude that Γ ⊢ M ∶ ∀α. τ . This is nonsense! Replacing the premise
Γ, α ⊢ M ∶ ∃α.τ by the conjunction Γ ⊢M ∶ ∃α.τ and α ∈ dom(Γ) would make the rule even
more permissive, so it wouldn’t help.

A correct elimination rule must force the existential package to be used in a way that
does not rely on the value of α. Hence, the elimination rule must have control over the user
or continuation of the package—that is, over the term M2. The restriction α # τ2 prevents
writing “let α,x = unpack M1 in x”, which would be equivalent to the unsound “unpack M”
discussed above. The fact that α is bound within M2 forces it to be treated abstractly. In
fact, M2 must be polymorphic in α. The rule could be written:

Γ ⊢M1 ∶ ∃α.τ1 Γ ⊢ Λα.λx.M2 ∶ ∀α. τ1 → τ2 α# τ2

Γ ⊢ let α,x = unpackM1 inM2 ∶ τ2

Or, more economically:

Γ ⊢M1 ∶ ∃α.τ1 Γ ⊢M0 ∶ ∀α. τ1 → τ2 α # τ2

Γ ⊢ unpackM1 M0 ∶ τ2

where M0 would evaluate to a value of the form Λα.λx.M2.

One could even view “unpack
∃α.τ” as a constant, of type ∃α.τ → ∀β. ((∀α. (τ → β))→ β).

The variable β, which stands for τ2, is bound prior to α, so it naturally cannot be instantiated
to a type that refers to α. This reflects the side condition α # τ2. If desired, “pack

∃α.τ”
could also be viewed as a constant of type ∀α. (τ → ∃α.τ).

In summary, System F with existential types can also be presented as follows:

pack
∃α.τ ∶ ∀α. (τ → ∃α.τ) unpack

∃α.τ ∶ ∃α. τ → ∀β. ((∀α. (τ → β))→ β) (∆∃)

These can be read as follows: for any α, if you have a τ , then, for some α, you have a τ ;
conversely, if, for some α, you have a τ , then, (for any β,) if you wish to obtain a β out
of ∃α. τ , you must present a function which, for any α, obtains a β out of a τ . This is
somewhat reminiscent of ordinary first-order logic: ∃x.F is equivalent to, and can be defined
as, ¬(∀x.¬F ).

One can go one step further and entirely encode existential types into universal types.
This encoding is actually a small example of type-preserving translation! The type transla-
tion is double negation:

J∃α.τK = ∀β. ((∀α. (JτK → β))→ β) if β # τ

There is actually little choice for the term translation, if the translation is to be type-
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preserving:
Jpack

∃α.τK ∶ ∀α. (JτK → J∃α.τK)
= Λα.λx ∶JτK.Λβ.λk ∶∀α. (JτK→ β). k α x

Junpack
∃α.τK ∶ J∃α.τK → ∀β. ((∀α. (JτK → β))→ β)

= λx ∶J∃α.τK. x

This encoding is a continuation-passing transform. This encoding is due to Reynolds 1983,
although it has more ancient roots in logic.

When existential are presented as constrants, their semantics is defined by seeing pack
∃α.τ

as a unary constructor and unpack
∃α.τ as a unary destructor with the following reduction

rule:

unpack
∃α.τ0
(pack

∃α.τ τ
′ V ) Ð→ Λβ.λy ∶∀α. τ → β. y τ ′ V (δ∃)

Exercise 38 Show that this δ-rule satisfies the progress and subject reduction assumptions
for constants with the types in ∆∃. (You may assume that the standard lemmas still hold.)

(Solution p. 167)

Exercise 39 The δ∃ reduction for existential is permissive it allows reducing of ill-typed
terms. Give a more restrictive version of the rule. What will need to be changed in the proof
of subject reduction and proress for the δ-rule (Exercise 38)? (Solution p. 167)

Notice that our δ∃-reduction reduces an “unpack of a pack” to a polymorphic function
that applies its argument to the packed value. This is still a form of continuation-passing-
style encoding. It seems more natural to treat unpack

∃α.τ as a binary destructor to avoid
this intermediate step and have the more intuitive reduction rule:

unpack
∃α.τ0
(pack

∃α.τ τ
′ V ) τ1 (Λα.λx ∶τ.M) Ð→ [x↦ V ][α↦ τ ′]M (δ∃)

However, this does not fit in our framework and notion of arity for constants where all type
arguments must be passed first and not interleaved with value arguments. Our framework
could be extended to the above δ-rules for existentials, but the presentation would become
cumbersome.

Alternatively, if existential are primitive, their semantics is defined by extending values
and evaluation contexts as follows:

V ∶∶= . . . ∣ pack τ ′, V as τ E ∶∶= . . . ∣ pack τ ′, [] as τ ∣ let α,x = unpack [] inM

and by adding the following reduction rule:

let α,x = unpack (pack τ ′, V as τ) inM Ð→ [α ↦ τ ′][x ↦ V ]M
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Exercise 40 Check that the proofs of subject reduction and progress for System F extend to
existential types. (Just check the new cases, assuming that the standard lemmas still hold.)

The reduction rule for existential destructs its arguments. Hence, let α,x = unpackM1 inM2

cannot be reduced unless M1 is itself a packed expression, which is indeed the case when M1

is a value (or in head normal form). This contrasts with let x ∶ τ =M1 inM2 where M1 need
not be evaluated and may be an application (e.g. in call-by-name or with strong reduction).

Exercise 41 The reduction of let α,x = unpack M1 in M2 could be problematic when M1

is not a value. Illustrate this on an example (You may use the following hint if needed:
lanoitidnocaesu.) (Solution p. 168)

One may wonder whether the pack construct is not too verbose: isn’t the type witness
type annotation τ ′ in rule Pack superfluous? The type τ0 of M is fully determined by M

and the given type ∃α.τ of the packed value. Checking that τ0 is of the form [α ↦ τ ′]τ is
the matching problem for second-order types, which is simple. However, the reduction rule
need the witness type τ ′. If it were not available, it would have to be computed during
reduction. The reduction rule would then not be pure rewriting. The explicitly-typed
language need the witness type for simplicity, while in the surface language, it could be
omitted and reconstructed by second-order matching.

6.2.2 Implicitly-type existential types

Intuitively, pack and unpack are just type information that can be dropped by type erasure.
More precisely, the erasure of pack τ ′,M as ∃α. τ∃α. τ isM and the erasure of let α,x = unpackM1 inM2

is a let-binding let x =M1 in M2. After type-erasure, the following typing rules for existential
types in implicit-typed System F:

if-Unpack

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ let x = a1 in a2 ∶ τ2

if-Pack

Γ ⊢ a ∶ [α ↦ τ ′]τ
Γ ⊢ a ∶ ∃α.τ

Notice, that the let-binding is not typechecked as syntactic sugar for an immediate applica-
tion. Its semantics remains the same.

E ∶∶= . . . let x = [] inM let x = V inM Ð→ [x↦ V ]M

Is the semantics still type-erasing? Yes, it is, but there is a subtlety! This is only true in
call-by-value. In a call-by-name semantics, a let-bound expression is not reduced prior to
substitution of the argument, that is, the rule would be:

let x = a1 in a2 Ð→ [x ↦ a1]a2
With existential types, this breaks subject reduction!
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To see this, let τ0 be ∃α. (α → α)→ (α → α) and let v0 be a value of type bool. Then,
let v1 and v2 two values of type τ0 with incompatible witness types, taking for instance,
λf.λx.1+(f (1 + x)) and λf.λx.not (f (not x)). Let v be the function λb. if b then v1 else v2
of type bool → τ0, which returns either one of V1 or V2 depending on its argument b. We
then have the reduction

a1 = let x = v v0 in x (x (λy. y)) Ð→ v v0 (v v0 (λy. y)) = a2

The typing judgment ∅ ⊢ a1 ∶ ∃α.α → α holds, while ∅ ⊢ a2 ∶ τ does not hold for any τ .
Indeed, the term a1 is well-typed since v v0 has type τ0, hence x can be assumed of type
(β → β)→ (β → β) for some unknown type β and λy. y is of type β → β. However, without
the outer existential type v v0 can only be typed with (∀α.α → α) → ∃α. (α → α), because
the value returned by the function need different witnesses for α. This is demanding too
much on its argument and the outer application is ill-typed.

One may wonder whether the syntax should not allow the implicit introduction of un-
packing instead. For instance, one could argue that if some expression is the expansion of a
well-typed let-binding, then it should also be well-typed:

Γ ⊢ a1 ∶ ∃α.τ1 Γ, α, x ∶ τ1 ⊢ a2 ∶ τ2 α # τ2

Γ ⊢ [x↦ a1]a2 ∶ τ2
However, this rule is not quite satisfactory as it does not have a logical flavor. Moreover, it
fixes the previous example, but does not help with the general case: Pick a1 that is not yet a
value after one reduction step. Then, after let-expansion reduce one of the two occurrences
of a1. The result is no longer of the form [x↦ a1]a2.

In summary, existential types are tricky: The subject reduction property breaks if re-
duction is not restricted to expressions in head-normal forms. Unrestricted reduction is still
safe because well-typedness may eventually be recovered by further reduction steps—so that
progress will never break.

Interestingly, the CPS encoding of existential types (1) enforces the evaluation of the
packed value (2) before it can be unpacked (3) and substituted(4):

Junpack a1 (λx. a2)K = Ja1K (λx. Ja2K) (1)
Ð→ (λk. JaK k) (λx. Ja2K) (2)
Ð→ (λx. Ja2K) JaK (3)
Ð→ [x ↦ Ja2K]JaK (4)

In the call-by-value setting, λk. JaK k would come from the reduction of Jpack aK, i.e. is
(λk.λx. k x) JaK, so that a is always a value v. However, a need not be a value. What is
essential is again that a1 be reduced to some head normal form λk. JaK k.
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6.2.3 Existential types in ML

What if one wished to extend ML with existential types? Full type inference for existential
types is undecidable, just like type inference for universals. However, introducing existential
types in ML is easy if one is willing to rely on user-supplied annotations that indicate where
to pack and unpack.

This iso-existential approach was suggested by Läufer and Odersky (1994). Iso-existential
types are explicitly declared, much as datatypes:

D α⃗ ≈ ∃β̄.τ if ftv(τ) ⊆ ᾱ ∪ β̄ and ᾱ # β̄

This introduces two constants, with the following type schemes:

packD ∶ ∀ᾱβ̄. τ →D α⃗ unpackD ∶ ∀ᾱγ.D α⃗→ (∀β̄. (τ → γ))→ γ

(Compare with basic iso-recursive types, where β̄ = ∅.)

Unfortunately, the “type scheme” of unpackD is not an ML type scheme. A solution is to
make unpackD a binary primitive construct, rather than a constant, with an ad hoc typing
rule:

UnpackD

Γ ⊢M1 ∶ D τ⃗ Γ ⊢M2 ∶ ∀β̄. ([α⃗ ↦ τ⃗]τ → τ2) β̄ # τ⃗ , τ2

Γ ⊢ unpackD M1 M2 ∶ τ2
where D α⃗ ≈ ∃β̄.τ

We have seen a version of this rule in System F earlier; this in an ML version. The term M2

must be polymorphic, which Gen can prove.

Iso-existential types are perfectly compatible withML type inference. The constant packD
admits an ML type scheme, so it is not problematic. The construct unpackD leads to this
constraint generation rule (cf. §5):

⟪unpackD M1 M2 ∶ τ2⟫ = ∃ᾱ. ( ⟪M1 ∶D α⃗⟫ ∧∀β̄.⟪M2 ∶ τ → τ2⟫ )

where D α⃗ ≈ ∃β̄.τ and, w.l.o.g., ᾱβ̄ # M1,M2, τ2. Note that a universally quantified con-
straint appears where polymorphism is required.

In practice, Läufer and Odersky suggest fusing iso-existential types with algebraic data
types. The somewhat bizarre Haskell syntax for this is:

dataD α⃗ = forall β̄.ℓ τ

where ℓ is a data constructor. The elimination construct ⟪case M1 of ℓ x →M2 ∶ τ2⟫ and is
typed as follows:

⟪caseM1 of ℓ x→M2 ∶ τ2⟫ = ∃ᾱ. ( ⟪M1 ∶D α⃗⟫ ∧∀β̄.def x ∶ τ in ⟪M2 ∶ τ2⟫ )

where, w.l.o.g., ᾱβ̄ #M1,M2, τ2.
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Examples Define Any ≈ ∃β.β. The following code that attempts to extract the raw content
of a package fails:

⟪unpackAny M1 (λx.x) ∶ τ2⟫ = ⟪M1 ∶ Any⟫ ∧∀β.⟪λx.x ∶ β → τ2⟫ ⊩ ∀β.β = τ2 ≡ false

Now, define D α ≈ ∃β.(β → α) × β. A client that regards β as abstract succeeds:

⟪unpackD M1 (λ(f, y). f y) ∶ τ⟫
= ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.⟪λ(f, y). f y ∶ ((β → α) × β)→ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β.def f ∶ β → α;y ∶ β in ⟪f y ∶ τ⟫)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ ∀β. τ = α)
≡ ∃α.(⟪M1 ∶ D α⟫ ∧ τ = α)
≡ ⟪M1 ∶D τ⟫

Remark 6 We reuse the type D α ≈ ∃β.(β → α)×β of frozen computations, defined above.
Assume given a list l of elements of type D τ1. Assume given a function g of type τ1 → τ2.
We may transform the list into a new list l′ of frozen computations of type D τ2 (without
actually running any computation).

List.map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

We may generalize the code into a functional that receives g and and l as arguments and
returns l′. Unfortunately, the following code does not typecheck:

let lift g l = List.map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

The problem is that, in expression let α,x = unpack M1 in M2, occurrences of x can only
be passed to polymorphic functions so that the type α of x does not escape from its scope.
That is first-class existential types calls for first-class universal types as well!

Mitchell and Plotkin (1988) note that existential types offer a means of explaining ab-
stract types. For instance, the type:

∃stack.{ empty ∶ stack; push ∶ int × stack → stack; pop ∶ stack → option (int × stack) }

specifies an abstract implementation of integer stacks.
Unfortunately, it was soon noticed that the elimination rule is too awkward, and that

existential types alone do not allow designing module systems Harper and Pierce (2005).
Montagu and Rémy (2009) make existential types more flexible in several important ways,
and argue that they might explain modules after all.

6.2.4 Existential types in OCaml

Amusingly, existential types were first available in OCaml via abstract types and first-
class modules. There are now also available as a degenerate case of Generalized Algebraic
DataTypes (GADT) which coincides with the appraoached described above.

For example, one may defined the previous datatype of frozen computations:
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type ’a d = D : (’b → ’a) ∗ ’b → ’a d

let freeze f x = D (f, x)
let run (D (f, x)) = f x

Here is the equivalent, more verbose code with modules:

module type D = sig type b type a val f : b → a val x : b end

let freeze (type u) (type v) f x =
(module struct type b = u type a = v let f = f let x = x end : D);;

let unfreeze (type u) (module M : D with type a = u) = M.f M.x

6.3 Typed closure conversion

Equipped with existential types, we may now revisit type closure conversion.

6.3.1 Environment-passing closure conversion

Remember that we came to the conclusion that the translation of arrow types Jτ1 → τ2K must
be ∃α.((α×Jτ1K)→ Jτ2K)×α. Let us show that we may translate expressions so as to preserve
well-typedness, i.e. so that Γ ⊢ M ∶ τ implies JΓK ⊢ JMK ∶ JτK. Assume Γ ⊢ λx.M ∶ τ1 → τ2
and dom(Γ) = {x1, . . . xn} = fv(λx.M). We may now hide the dependence on Γ using an
existential type:

Jλx ∶τ1.MK = let code ∶ (JΓK × Jτ1K)→ Jτ2K =
λ(env ∶ JΓK, x ∶ Jτ1K). let (x1, . . . xn ∶ JΓK) = env in JMK in

pack JΓK, (code , (x1, . . . , xn)) as ∃α((α × Jτ1K)→ Jτ2K) × α

∶ ∃α.((α × Jτ1K)→ Jτ2K) × α = Jτ1 → τ2K

In the case of application, assume Γ ⊢M ∶ τ1 → τ2 and Γ ⊢M1 ∶ τ1 and take:

JM M1K = let α, (code ∶ (α × Jτ1K)→ τ2, env ∶ α) = unpack JMK in code (env , JM1K)
∶ Jτ2K

For recursive functions we may use the “fix-code” variant (Morrisett and Harper, 1998):

Jµf.λx.MK = let rec code (env , x) =
let f = pack (code, env) in let (x1, . . . , xn) = env in JMK in

pack (code, (x1, . . . , xn))

where {x1, . . . , xn} = fv(µf.λx.M). The translation of applications is unchanged as recursive
and non-recursive functions have an identical calling convention. This translation builds
recursive code, avoiding a recursive closure, hence the code is easy to type. Unfortunately,
as a counterpart, a new closure is allocated at every call, which is the weak point of this
variant.
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Instead, the “fix-pack” variant (Morrisett and Harper, 1998) uses an extra field in the
environment to store a back pointer to the closure:

Jµf.λx.MK = let code = λ(env , x). let (f, x1, . . . , xn) = env in JMK in
let rec clo = (code, (clo, x1, . . . , xn)) in clo

where {x1, . . . , xn} = fv(µf.λx.M). Hence, we avoid rebuilding the closure at every call by
creating a recursive closure. However, this requires, in general, recursively-defined values
and closures are now cyclic data structures.

Here is how the “fix-pack” variant is type-checked. Assume Γ ⊢ µf.λx.M ∶ τ1 → τ2 and
dom(Γ) = {x1, . . . , xn} = fv(µf.λx.M).

Jµf ∶ τ1 → τ2.λx.MK =
let code ∶ (Jf ∶ τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =
λ(env ∶ Jf ∶ τ1 → τ2,ΓK, x ∶ Jτ1K). let (f, x1, . . . , xn) ∶ Jf ∶ τ1 → τ2,ΓK = env in JMK in

let rec clo ∶ Jτ1 → τ2K =
pack Jf ∶ τ1 → τ2,ΓK, (code , (clo, x1, . . . , xn)) as ∃α((α × Jτ1K)→ Jτ2K) × α)

in clo

This implements monomorphic recursion, as by default inML. To allow the recursive function
to be polymorphic, we can generalize the encoding afterwards:

JΛβ⃗.µf ∶ τ1 → τ2.λx.MK = Λβ⃗.Jµf ∶ τ1 → τ2.λx.MK

whenever the right-hand side is well-defined. This allows the indirect compilation of poly-
morphic recursive functions as long as the recursion is monomorphic.

Fortunately, the encoding can be straightforwardly adapted to directly compile polymor-
phically recursive functions into polymorphic closure.

Jµf ∶∀β⃗. τ1 → τ2. λx.MK =

let code ∶ ∀β⃗. (Jf ∶ ∀β⃗. τ1 → τ2; ΓK × Jτ1K)→ Jτ2K =

Λβ̄.λ(env ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK, x ∶ Jτ1K).
let (f, x1, . . . , xn) ∶ Jf ∶ ∀β⃗. τ1 → τ2,ΓK = env in JMK in

let rec clo ∶ J∀β⃗. τ1 → τ2K = Λβ⃗.

pack Jf ∶ ∀β⃗. τ1 → τ2,ΓK, (code β⃗, (clo, x1, . . . , xn)) as ∃α((α × Jτ1K)→ Jτ2K) ×α)
in clo

In summary, the environment-passing closure conversion is simple, but it requires the
introduction of recursive non-functional values let rec x = V in M . While this is a useful
construct, it really alters the operational semantics and requires updating the type soundness
proof (as recursive non-functional values were not permitted so far).
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6.3.2 Closure-passing closure conversion

Recall the closure-passing variant:

Jλx.MK = let code = λ(clo, x). let ( , x1, . . . , xn) = clo in JMK in
(code, x1, . . . , xn)

JM1 M2K = let clo = JM1K in let code = proj
0
clo in code (clo, JM2K)

where {x1, . . . , xn} = fv(λx.M).
There are two difficulties to typecheck this: first, a closure is a tuple, whose first field—the

code pointer—should be exposed, while the number and types of the remaining fields—the
environment—should be abstract; second, the first field of the closure contains a function
that expects the closure itself as its first argument.

To describe this, we use two type-theoretic mechanisms; first existential quantification
over the tail of a tuple (a.k.a. a row) to allow the environment to remain abstract; and
recursive types to allow the closure to points to itself.

Tuples, rows, row variables Let us first introduce extensible tuples. The standard tuple
types that we have used so far are:

τ ∶∶= . . . ∣ Π R – types
R ∶∶= ǫ ∣ (τ ;R) – rows

The notation (τ1× . . .×τn) was sugar for Π (τ1; . . . ; τn; ǫ). Let us introduce row variables and
allow quantification over them:

τ ∶∶= . . . ∣ Π R ∣ ∀ρ. τ ∣ ∃ρ.τ – types
R ∶∶= ρ ∣ ǫ ∣ (τ ;R) – rows

This allows reasoning about the first few fields of a tuple whose length is not known. The
typing rules for tuple construction and deconstruction are:

Tuple

∀i. ∈ [1, n] Γ ⊢Mi ∶ τi

Γ ⊢ (M1, . . . ,Mn) ∶ Π (τ1; . . . ; τn; ǫ)

Proj

Γ ⊢M ∶ Π (τ1; . . . ; τi;R)
Γ ⊢ proji M ∶ τi

These rules make sense with or without row variables. Projection does not care about the
fields beyond i. Thanks to row variables, this can be expressed in terms of parametric
polymorphism: proji ∶ ∀α1 . . . αiρ.Π (α1; . . . αi;ρ)→ αi.

Remark 7 Rows were invented by Wand (1988) and improved by Rémy (1994b) in order to
ascribe precise types to operations on records. The case of tuples, presented here, is simpler.
Rows are used to describe objects in OCaml (Rémy and Vouillon, 1998). Rows are explained
in depth by Pottier and Rémy (2005).
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Back to closure-passing closure conversion Rows and recursive types allow to define
the translation of types in the closure-passing variant:

Jτ1 → τ2K = ∃ρ.µα.Π (((α × Jτ1K)→ Jτ2K) ;ρ)

ρ describes the environment represented as a row of fields, which is abstract; α is the concrete
type of the closure that is to refer to recursively; Π (((α × Jτ1K)→ Jτ2K) ;ρ) is a tuple that
begins with a code pointer of type (α × Jτ1K) → Jτ2K and continues with the environment ρ.
See the “fix-type” encoding proposed by Morrisett and Harper (1998).

Notice that the type is ∃ρ. µα. τ and not µα. ∃ρ. τ : The type of the environment is fixed
once for all and does not change at each recursive call. Notice that ρ appears only once,
which may seem surprising. Usually, an existential type variable appears both at positive
and negative occurrences. Here, the variable α appear only at a negative occurrence, but in
a recursive part of the type that can be unfolded.

To help checking well-typedness of the encoding, let Clo(R) abbreviate the concrete type
of a closure of row R and UClo(R) its unfolded version:

Clo(R) △
== µα.Π ((α × Jτ1K)→ Jτ2K;R)

UClo(R) △
== Π ((Clo(R) × Jτ1K)→ Jτ2K;R)

The encoding of arrow types Jτ1 → τ2K is ∃ρ.Clo(ρ). The encoding of abstactions and appli-
cations is:

Jλx ∶τ1.MK = let code ∶ (Clo(JΓK) × Jτ1K)→ Jτ2K =
λ(clo ∶ Clo(JΓK, x ∶ Jτ1K).
let ( , x1, . . . , xn) ∶ UCloJΓK = unfold clo in JMK in

pack JΓK, (fold (code, x1, . . . , xn)) as ∃ρ.Clo(ρ)

JM1 M2K = let ρ, clo = unpack JM1K in
let code ∶ (Clo(ρ) × Jτ1K)→ Jτ2K = proj

0
(unfold clo) in

code (clo, JM2K)

where {x1, . . . , xn} = fv(λx.M).
In the closure-passing variant, recursive functions can be translated as follows:

Jµf.λx.MK = let code = λ(clo, x).
let f = clo in let ( , x1, . . . , xn) = clo in JMK in
(code, x1, . . . , xn)

where {x1, . . . , xn} = fv(µf.λx.M). No extra field or extra work is required to store or
construct a representation of the free variable f : the closure itself plays this role. However,
this untyped code can only be typechecked when recursion is monomorphic.

Exercise 42 Carefully check well-typedness of the above translation with monomorphic re-
cursion.
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To adapt this encoding to polymorphic recursion, the problem is that recursive occur-
rences of f are rebuilt from the current invocation of the closure, this with the same type
since the closure is invoked after type specialization.

By contrast, in the environment passing encoding, the environment contained a polymor-
phic binding for the recursive calls that was filled with the closure before its invocation, i.e.
with a polymorphic type.

Fortunately, we may slightly change the encoding, using a recursive closure as in the
type-passing version, to allow typechecking in System F.

Remark 8 One could think of changing the encoding of closure types Jτ1 → τ2K to make
the encoding work. However, although this should be possible in some more expressive type
systems, there seems to be no easy way to do so and certainly not within System F.

Let τ be ∀α⃗. τ1 → τ2 and Γf be f ∶ τ,Γ where β⃗ # Γ

Jµf ∶τ . λx.MK = let code =

Λβ⃗.λ(clo ∶ CloJΓf K, x ∶ Jτ1K).
let ( code, f, x1, . . . , xn) ∶ ∀β⃗.UClo(JΓf K) = unfold clo in JMK in

let rec clo ∶ ∀β⃗.∃ρ.Clo(ρ) =
Λβ⃗.pack JΓK, (fold (code β⃗, clo, x1, . . . , xn)) as ∃ρ.Clo(ρ)

in clo

Remind that Clo(R) abbreviates µα.Π ((α × Jτ1K)→ Jτ2K;R). Hence, β⃗ are free variables of
Clo(R). Here, a polymorphic recursive function is directly compiled into a polymorphic re-
cursive closure. Notice that the type of closures is unchanged, so the encoding of applications
is also unchanged.

Optimizing representations Closure-passing and environment-passing closure conver-
sions cannot be mixed because the calling-convention (i.e., the encoding of application)
must be uniform. However, their is some flexibility in the representation of the closure. For
instance, the following change is completely local:

Jλx.MK = let code = λ(clo, x). let ( , (x1, . . . , xn)) = clo in JMK in
(code, (x1, . . . , xn))

This allows for sharing the closure (or part of it) may be shared when many definitions share
the same closure,

6.3.3 Mutually recursive functions

Can we compile mutually recursive functions µ(f1, f2).(λx1.M1, λx2.M2), say M?
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The environment passing encoding is as follows:

JMK = let codei = λ(env , x). let (f1, f2, x1, . . . , xn) = env in JMiK in
let rec env = (clo1, clo2, x1, . . . , xn)
and clo1 = (code1, env)
and clo2 = (code2, env) in

clo1, clo2

Notice that we can share the environment inside the two closures. The closure passing
encoding is:

JMK = let codei = λ(clo, x). let ( , f1, f2, x1, . . . , xn) = clo in JMiK in
let rec clo1 = (code1, clo1, clo2, x1, . . . , xn)
and clo2 = (code2, clo1, clo2, x1, . . . , xn)

in clo1, clo2

Question: Can we share the closures c1 and c2 in case n is large?
Here the environment cannot be shared between the two closures, since they belong to

tuples of different size. Unless the runtime, in particular the garbage collector, supports such
an operation as returning the tail of a tuple without allocating a new tuple. Then we could
write:

JMK = let code1 = λ(clo, x). let ( , , f1, f2, x1, . . . , xn) = clo in JM1K in
let code2 = λ(clo, x). let ( , f1, f2, x1, . . . , xn) = clo in JM2K in
let rec clo1 = (code1, code2, clo1, clo2, x1, . . . , xn)
and clo2 = clo1.tail

in clo1, clo2

Here clo1.tail returns a pointer to the tail (code2, clo1, clo2, x1, . . . , xn) of clo1 without allo-
cating a new tuple.

Encoding of objects The closure-passing representation of mutually recursive functions
is similar to the representation of objects in the object-as-record-of-functions paradigm:

A class definition is an object generator:

class c (x1, . . . xq) {meth m1 =Mi; . . .meth mq =Mi}

Given arguments for parameter x1, . . .xn, it builds recursive methods m1, . . .mn. A class
can be compiled into an object closure:

letm =
{ m1 = λ(m,x1, . . . xq). JM1K;

⋮
mp = λ(m,x1, . . . xq). JMpK } in

λx1, . . . xq. (m,x1, . . . xq)

Each mi is bound to the code for the corresponding method. All codes are combined into a
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record of codes. Then, calling method mi of an object p is (proj
0
p).mi p.

Let us write the typed version of this encoding. Let τi be the type of Mi and row R

describe the types of (x1, . . . xq). Let Clo(R) be µα.Π({(mi ∶ α → τi)i∈1..n};R) and UClo(R)
its unfolding.

Fields R are hidden in an existential type µα.Π({(mi ∶ α → τi)i∈I};ρ):

letm =
{ m1 = λ(m,x1, . . . xq ∶ UClo(R)). JM1K;

⋮
mp = λ(m,x1, . . . xq ∶ UClo(R)). JMpK } in

λx1. . . . λxq.pack R, fold (m,x1, . . . xq) as ∃ρ. (M,ρ)

Calling a method of an object p of type M is

p#mi
△
== let ρ, z = unpack p in (proj

0
unfold z).mi z

An object has a recursive type but it is not a recursive value.

Typed encoding of objects were first studied in the 90’s to understand what objects
really are in a type setting. These encodings are in fact type-preserving compilation of
(primitive) objects. There are several variations on these encodings. See Bruce et al. (1999)
for a comparison. See Rémy (1994a) for an encoding of objects in (a small extension of) ML
with iso-existentials and universals. See Abadi and Cardelli (1996, 1995) for more details on
primitive objects.

Summary

Type-preserving compilation is rather fun. (Yes, really!) It forces compiler writers to make
the structure of the compiled program fully explicit, in type-theoretic terms. In practice,
building explicit type derivations, ensuring that they remain small and can be efficiently
typechecked, can be a lot of work.

Because we have focused on type preservation, we have studied only naive closure con-
version algorithms. More ambitious versions of closure conversion require program analysis:
see, for instance, Steckler and Wand 1997. These versions can be made type-preserving.

Defunctionalization, an alternative to closure conversion, offers an interesting challenge,
with a simple solution. See, for instance Pottier and Gauthier (2006). Designing an effi-
cient, type-preserving compiler for an object-oriented language is quite challenging. See, for
instance, Chen and Tarditi (2005).

One may think that references in System F could be translated away by making the
store explicit. In fact, this can be done, but not in System F, nor even in System F ω: the
translation is quite tricky and in order for the translation to be well-typed the type system
must be reach enough to express monotonicity of the store in a context where the store is
itself recursively defined. See Pottier (2011) for details.
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Exercise 43 (CPS conversion) Here is an untyped version of call-by-value CPS conver-
sion:

JV K = λk. k LV M
JM1 M2K = λk. JM1K (λx1. JM2K (λx2. x1 x2 k))

LxM = x

L()M = ()
L(V1, V2)M = (LV1M, LV2M)

Lλx.MM = λx. JMK

Is this a type-preserving transformation? (Solution p. 168)
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Appendix A

Proofs and Answers to exercises

Solution of Exercise 38

We first need to show that the δ∃ preserves typings. Assume that

Γ ⊢ unpack
∃α.τ1
(pack

∃α.τ τ
′ V ) ∶ τ0

By inversion of typing, τ1 and τ0 must be equal to τ and ∀β. (∀α. τ → β) → β, respectively,
and the judgment Γ ⊢ V ∶ [α ↦ τ ′]τ must hold. Let Γ′ be Γ, β, y ∶ ∀α. τ → β. By weakening,
we have Γ′ ⊢ V ∶ [α ↦ τ ′]τ . We then have Γ′ ⊢ y τ ′ V ∶ β and finally, we have

Γ ⊢ Λβ.λy ∶∀α. τ → β. y τ ′ V ∶ τ0

as expected.

We then need to show that δ∃ satisfies progress, i.e., a full well typed application of
unpack

∃α.τ can always be reduced. Assume that Γ ⊢ unpack
∃α.τ V ∶ τ0. By inversion of typing,

we must have Γ ⊢ V ∶ ∃α. τ . By the classification lemma (to be extended and rechecked), V
must be an existential value, i.e. of the form pack

∃α.τ1
τ0 V0. Hence, unpack∃α.τ V reduces by

δ∃.

Solution of Exercise 39

We just force τ1 to coincide with τ :

unpack
∃α.τ (pack∃α.τ τ ′ V ) Ð→ Λβ.λy ∶∀α. τ → β. y τ ′ V (δ∃)

The proof of subject reduction will know by construction that τ0 is τ instead of learning it
by inversion of typing. Conversely for progress, we will have to show that τ1 and τ are equal
by inversion so that δ∃ can be applied.

167
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Solution of Exercise 41

Let M1 be if M then V1 else V2 where Vi is of the form pack τi, Vi as ∃ατ and the two witnesses
τ1 and τ2 differ. There is no common type for the unpacking of the two possible results V1

and V2. The choice between those two possible results must be made, by evaluating M1,
before unpacking.

Solution of Exercise 43

The answer is in the 2007–2008 exam.

http://gallium.inria.fr/~fpottier/mpri/corrige-2008.pdf
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