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Chapter 5

Type reconstruction

5.1 Introduction

We have viewed a type system as a 3-place predicate over a type environment, a term, and
a type. So far, we have been concerned with logical properties of the type system, namely
subject reduction and progress. However, one should also study its algorithmic properties:
is it decidable whether a term is well-typed?

We have seen three different type systems, simply-typed λ-calculus, ML, and System F,
of increasing expressiveness. In each case, we have presented an explicitly-typed and an
implicitly-typed version of the language and shown a close correspondence between the two
views, thanks to a type-erasing semantics.

We argued that the explicitly-typed version is often more convenient for studying the
meta-theoretical properties of the language. Which one should we used for checking well-
typedness? That is, in which language should we write programs?

The typing judgment is inductively defined, so that, in order to prove that a particular
instance holds, one exhibits a type derivation. A type derivation is essentially a version of
the program where every node is annotated with a type. Checking that a type derivation is
correct is usually easy: it basically amounts to checking equalities between types. However,
type derivations are too verbose to be tractable by humans! Requiring every node to be
type-annotated is not practical.

A more practical, common approach consists in requesting just enough annotations to
allow types to be reconstructed in a bottom-up manner. In other words, one seeks an algo-
rithmic reading of the typing rules, where, in a judgment Γ ⊢ M ∶ τ , the parameters Γ and
M are inputs, while the parameter τ is an output. Moreover, typing rules should be such
that a type appearing as output in a conclusion should also appear as output in a premise
or as input in the conclusion; and input in the premises should be input of the conclusion or
an output of other premises.

This way, types need never be guessed, just looked up into the typing context, instanti-
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88 CHAPTER 5. TYPE RECONSTRUCTION

ated, or checked for equality. This is exactly the situation with explicitly-typed presentations
of the typing rules. This is also the traditional approach of Pascal, C, C++, Java, etc.: for-
mal procedure parameters, as well as local variables, are assigned explicit types. The types
of expressions are synthesized bottom-up.

However, this implies a lot of redundancies: Parameters of all functions need to be
annotated, even when their types are obvious from context; Primitive let-bindings, recursive
definitions, injection into sum types need to be annotated. As the language grows, more
and more constructs require type annotations, e.g. type applications and type abstractions.
Type annotations may quickly obfuscate the code and large explicitly-typed terms are so
verbose that they become intractable by humans! Hence, programming in the implicitly-
typed version is more appealing.

For simply-typed λ-calculus and ML, it turns out that this is possible: whether a term
is well-typed is decidable, even when no type annotations are provided! We first present
type inference in the case of simply-typed λ-calculus taking advantage of the simplicity to
introduce type constraints as a useful intermediate to mediate between the typing rules and
the type-inference algorithms. We then extend type-constraint to perform type inference for
ML.

For System F, type inference is undecidable. Since programming in explicitly-typed
System F is not practically feasible, some amount of type reconstruction must still be done.
Typically, the algorithm is incomplete, i.e. it rejects terms that are perhaps well-typed, but
the user may always provide more annotations—and at least the fully annotated version
is always accepted if well-typed. We will present very briefly several techniques for type
reconstruction in System F.

5.2 Type inference for simply-typed λ-calculus

The type inference algorithm for simply-typed λ-calculus, is due to Hindley. The idea behind
the algorithm is simple. Because simply-typed λ-calculus is a syntax-directed type system,
an unannotated term determines an isomorphic candidate type derivation, where all types
are unknown: they are distinct type variables. For a candidate type derivation to become an
actual, valid type derivation, every type variable must be instantiated with a type, subject
to certain equality constraints on types. For instance, at an application node, the type of
the operator must match the domain type of the operator.

Thus, type inference for the simply-typed λ-calculus decomposes into constraint gener-
ation followed by constraint solving. Simple types are first-order terms. Thus, solving a
collection of equations between simple types is first-order unification. First-order unification
can be performed incrementally in quasi-linear time, and admits particularly simple solved
forms.
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⟪Γ ⊢ x ∶ τ⟫ = Γ(x) = τ

⟪Γ ⊢ λx. a ∶ τ⟫ = ∃α1α2.(⟪Γ, x ∶ α1 ⊢ a ∶ α2⟫ ∧ τ = α1 → α2) if α1, α2 # Γ, τ

⟪Γ ⊢ a1 a2 ∶ τ⟫ = ∃α.(⟪Γ ⊢ a1 ∶ α→ τ⟫ ∧ ⟪Γ ⊢ a2 ∶ α⟫) if α # Γ, τ

Figure 5.1: constraint generation for simply-typed λ-calculus

5.2.1 Constraints

At the interface between the constraint generation and constraint solving phases is the
constraint language. It is a logic: a syntax, equipped with an interpretation in a model.

There are two syntactic categories: types and constraints.

τ ∶∶= α ∣ F τ⃗

C ∶∶= true ∣ false ∣ τ = τ ∣ C ∧C ∣ ∃α.C

A type is either a type variable α or an arity-consistent application of a type constructor F .
(The type constructors are unit, ×, +, →, etc.) An atomic constraint is truth, falsity, or an
equation between types. Compound constraints are built on top of atomic constraints via
conjunction and existential quantification over type variables.

Constraints are interpreted in the Herbrand universe, that is, in the set of ground types:

t ∶∶= F t⃗

Ground types contain no variables. The base case in this definition is when F has arity zero.
We assume that there should be at least one constructor of arity zero, so that the model is
non-empty. A ground assignment φ is a total mapping of type variables to ground types. By
homomorphism, a ground assignment determines a total mapping of types to ground types.

The interpretation of constraints takes the form of a judgment, φ ⊢ C, pronounced: φ
satisfies C, or φ is a solution of C. This judgment is inductively defined:

φ ⊢ true
φτ1 = φτ2
φ ⊢ τ1 = τ2

φ ⊢ C1 φ ⊢ C2

φ ⊢ C1 ∧C2

φ[α↦ t] ⊢ C
φ ⊢ ∃α.C

A constraint C is satisfiable if and only if there exists a ground assignment φ that satisfies C.
We write C1 ≡ C2 when C1 and C2 have the same solutions. The problem “given a constraint
C, is C satisfiable?” is first-order unification.

Type inference is reduced to constraint solving by defining a mapping ⟪Γ ⊢ a ∶ τ⟫ of
candidate judgments to constraints, as given in Figure 5.1. Thanks to the use of existential
quantification, the names that occur free in ⟪Γ ⊢ a ∶ τ⟫ are a subset of those that occur
free in Γ or τ . This allows the freshness side conditions to remain local—there is no need to
informally require “globally fresh” type variables.
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5.2.2 A detailed example

Let us perform type inference for the closed term λfxy. (f x, f y). The problem is to
construct and solve the constraint ⟪∅ ⊢ λfxy. (f x, f y) ∶ α0⟫, say C. It is possible (and, for
a human, easier) to mix these tasks. A machine, however, could generate and solve in two
successive phases. There are several advantages in doing this. This leads to simpler, easier
to maintain code, as the generation of constraints deals with the complexity of the source
language which solving may ignore; moreover, adding new construct to the language does
not (in general) require new forms of constraints and can thus reuse the solving algorithm
unchanged.

Solving the constraint means to find all possible ground assignments for α0 that satisfy the
constraint. Typically, this is done by transforming the constraint into successive equivalent
constraints until some constraint that is obviously satisfiable and from which solutions may
be directly read.

Performing constraint generation for the 3 λ-abstractions, we have:

C = ∃α1α2.

⎛⎜⎜⎜⎜⎝
∃α3α4.

⎛⎜⎝
∃α5α6.( ⟪f ∶ α1;x ∶ α3;y ∶ α5 ⊢ (f x, f y) ∶ α6⟫

α4 = α5 → α6
)

α2 = α3 → α4

⎞⎟⎠
α0 = α1 → α2

⎞⎟⎟⎟⎟⎠
In the following, let Γ stand for (f ∶ α1;x ∶ α3;y ∶ α5). We may hoist up existential quantifiers,
using the rule:

(∃α.C1) ∧C2 ≡ ∃α.(C1 ∧C2) if α# C2

Hence, hoisting α3 and α4, and α5 and α6 twice, we get:

C ≡ ∃α1α2α3α4α5α6.( ⟪Γ ⊢ (f x, f y) ∶ α6⟫
α4 = α5 → α6 ∧ α2 = α3 → α4 ∧ α0 = α1 → α2

)
We may eliminate a type variable that has a defining equation with the rule:

∃α.(C ∧α = τ) ≡ [α ↦ τ]C if α # τ

By successive elimination of α4 then α2, we get:

C ≡ ∃α1α3α5α6.( ⟪Γ ⊢ (f x, f y) ∶ α6⟫
α0 = α1 → α3 → α5 → α6

)
Let us now perform constraint generation for the pair, hoisted the resulting existential quan-
tifiers, and eliminated a type variable (α6).

C ≡ ∃{ α1α3α5

α6α7α8
} .
⎛⎜⎜⎜⎝

⟪Γ ⊢ f x ∶ α7⟫⟪Γ ⊢ f y ∶ α8⟫
α7 × α8 = α6

α1 → α3 → α5 → α6 = α0

⎞⎟⎟⎟⎠
≡ ∃{ α1α3α5

α7α8
} .
⎛⎜⎜⎜⎝

⟪Γ ⊢ f x ∶ α7⟫⟪Γ ⊢ f y ∶ α8⟫
α1 → α3 → α5

→ α7 ×α8 = α0

⎞⎟⎟⎟⎠
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Let us focus on the first application, perform constraint generation for the variables f and
x (recall that Γ stands for (f ∶ α1;x ∶ α3;y ∶ α5)), and eliminate a type variable (α9):

C1 = ⟪Γ ⊢ f x ∶ α7⟫ = ∃α9.( ⟪Γ ⊢ f ∶ α9 → α7⟫⟪Γ ⊢ x ∶ α9⟫ ) = ∃α9.( α1 = α9 → α7

α3 = α9
) ≡ α1 = α3 → α7 = C2

Applying this simplification under a context, with the rule:

C1 ≡ C2 ⇒ R[C1] ≡ R[C2]
we have:

C ≡ ∃α1α3α5α7α8.
⎛⎜⎝
α1 = α3 → α7⟪Γ ⊢ f y ∶ α8⟫
α0 = α1 → α3 → α5 → α7 × α8

⎞⎟⎠
We may simplify the right-hand application analogously.

C ≡ ∃α1α3α5α7α8.( α1 = α3 → α7 ∧ α1 = α5 → α8

α0 = α1 → α3 → α5 → α7 × α8
)

We may apply transitivity at α1, structural decomposition, and eliminate three type variables
(α1, α5, α8):

C ≡ ∃α1α3α5α7α8.( α1 = α3 → α7 ∧ α3 = α5 ∧ α7 = α8

α0 = α1 → α3 → α5 → α7 × α8
)

≡ ∃α3α7. ( α0 = (α3 → α7)→ α3 → α3 → α7 × α7z )
We have now reached a solved form. To sum up, we have checked the following equivalence
holds:

⟪∅ ⊢ λfxy. (f x, f y) ∶ α0⟫ ≡ ∃α3α7. ( (α3 → α7)→ α3 → α3 → α7 × α7 = α0 )
Hence, the ground types of λfxy. (f x, f y) are all ground types of the form

(t3 → t7)→ t3 → t3 → t7 × t7

In other words, (α3 → α7)→ α3 → α3 → α7 × α7 is a principal type for λfxy. (f x, f y).
The language OCaml implements a form of this type inference algorithm:

# fun f x y → (f x, f y);;
− : (’a → ’b) → ’a → ’a → ’b ∗ ’b = ⟨fun⟩

This technique is used also by Standard ML and Haskell.

In the simply-typed λ-calculus, type inference works just as well for open terms. For
instance, the term λxy. (f x, f y) has a free variable, namely f . The type inference problem
is to construct and solve the constraint ⟪f ∶ α1 ⊢ λxy. (f x, f y) ∶ α2⟫. We have already done
so... with only a slight difference: α1 and α2 are now free, so they cannot be eliminated.
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One can check the following equivalence:

⟪f ∶ α1 ⊢ λxy. (f x, f y) ∶ α2⟫ ≡ ∃α3α7. ( α1 = α3 → α7 ∧ α2 = α3 → α3 → α7 × α7 )
In other words, the ground typings of λxy. (f x, f y) are all ground typings of the form:

((f ∶ t3 → t7), t3 → t3 → t7 × t7)
Remember that a typing is a pair of an environment and a type.

5.2.3 Soundness and completeness of type inference

Definition 3 (Typing) A pair (Γ, τ) is a typing of a if and only if dom(Γ) = fv(a) and
the judgment Γ ⊢ a ∶ τ is valid.

The type inference problem is to determine whether a term a admits a typing, and, if possible,
to exhibit a description of the set of all of its typings.

Up to a change of universes, the problem reduces to finding the ground typings of a term.
(For every type variable, introduce a nullary type constructor. Then, ground typings in the
extended universe are in one-to-one correspondence with typings in the original universe.)

Theorem 15 (Soundness and completeness) φ ⊢ ⟪Γ ⊢ a ∶ τ⟫ if and only if φΓ ⊢ a ∶ φτ .

In other words, assuming dom(Γ) = fv(a), φ satisfies the constraint ⟪Γ ⊢ a ∶ τ⟫ if and
only if (φΓ, φτ) is a (ground) typing of a. The direct implication is soundness; the reverse
implication is completeness. The proof is by structural induction over a. (Proof p. 120)

Exercise 31 (Recommended) Write the details of the proof.

Corollary 34 Let fv(a) = {x1, . . . , xn}, where n ≥ 0. Let α0, . . . , αn be pairwise distinct type
variables. Then, the ground typings of a are described by ((xi ∶ φαi)i∈1..n, φα0) where φ ranges
over all solutions of ⟪(xi ∶ αi)i∈1..n ⊢ a ∶ α0⟫.
Corollary 35 Let fv(a) = ∅. Then, a is well-typed if and only if ∃α.⟪∅ ⊢ a ∶ α⟫ ≡ true.
5.2.4 Constraint solving

A constraint solving algorithm is typically presented as a (non-deterministic) system of
constraint rewriting rules that must enjoy the following properties: reduction is meaning-
preserving, i.e. C1 Ð→ C2 implies C1 ≡ C2; reduction is terminating; and every normal form
is either “false” (literally) or satisfiable. The normal forms are called solved forms.

Our constraints are equations on first-order terms. They can be solved by first-order
unification. The algorithm can be described as constraint solving. However, in order to
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(∃ᾱ.U1) ∧U2 Ð→ ∃ᾱ.(U1 ∧U2) (extrusion)

if ᾱ# U2

α = ǫ ∧ α = ǫ′ Ð→ α = ǫ = ǫ′ (fusion)

F α⃗ = F τ⃗ = ǫ Ð→ α⃗ = τ⃗ ∧ F α⃗ = ǫ (decomposition)

F τ1 . . . τi . . . τn = ǫ Ð→ ∃α.(α = τi ∧F τ1 . . . α . . . τn = ǫ) (naming)

if τi is not a variable ∧ α # τ1, . . . , τn, ǫ

F τ⃗ = F ′ τ⃗ ′ = ǫ Ð→ false (clash)

if F ≠ F ′

U Ð→ false (occurs check)

if U is cyclic

U[false] Ð→ false (error propag.)

α = α = ǫ Ð→ α = ǫ (elim dupl.)

F τ⃗ Ð→ true (elim triv.)

U ∧ true Ð→ U (elim true)

Figure 5.2: Solving unification constraints

describe an efficient algorithm, we first extend the syntax of constraints and replace ordinary
binary equations with multi-equations, following Pottier and Rémy (2005, §10.6):

U ∶∶= true ∣ false ∣ ǫ ∣ U ∧U ∣ ∃ᾱ.U
A multi-equation ǫ is a multi-set of types. Its interpretation is given by

∀τ ∈ ǫ, φτ = t

φ ⊢ ǫ

That is, φ satisfies ǫ if and only if φ maps all members of ǫ to a single ground type.

Simplification rules are given in Figure 5.2. (See Pottier and Rémy (2005, §10.6) for a
detailed presentation.) The last three rules in gray are administrative.

The occurs check is defined as follows: we say that α dominates β (with respect to U) if
U contains a multi-equation of the form F τ1 . . . β . . . τn = α = . . .. A constraint U is cyclic if
and only if its domination relation is cyclic. A cyclic constraint is unsatisfiable: indeed, if φ
satisfies U and if α is a member of a cycle, then the ground type φα must be a strict subterm
of itself, a contradiction. Thus, the occurs-check rewriting rule is meaning-preserving.

A solved form is either false or ∃ᾱ.U , where U is a conjunction of multi-equations, ev-
ery multi-equation contains at most one non-variable term, no two multi-equations share a
variable, and the domination relation is acyclic. Every solved form that is not false is satisfi-
able. Indeed, a solution is easily constructed by well-founded recursion over the domination
relation.
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Remarks Viewing a unification algorithm as a system of rewriting rules makes it easy to
explain and reason about.

In practice, following Huet (1976), first-order unification is implemented on top of an
efficient union-find data structure (Tarjan, 1975). Its time complexity is quasi-linear (i.e.
growing in the inverse of the Ackermann function).

Unification on first-order terms can also be implemented in linear time, but with a more
complex algorithm and a higher constant that makes it behave worse than the quasi-linear
time algorithm. Moreover, while the quasi-linear time algorithm works as well when types
are regular trees— by just removing the occur check—the linear time algorithm only works
with finite trees and thus cannot be used for type inference in the presence of equi-recursive
types.

Closing remarks Thanks to type inference, conciseness and static safety are not in-
compatible. Furthermore, an inferred type is sometimes more general than a programmer-
intended type. Type inference helps reveal unexpected generality.

5.3 Type inference for ML

Two presentations of type inference for Damas and Milner’s type system are possible: One of
Milner’s classic algorithms 1978, W or J ; see Pottier’s old course notes for details (Pottier,
2002, §3.3); or a constraint-based presentation Pottier and Rémy (2005). We favor the latter,
but quickly review the former first.

5.3.1 Milner’s Algorithm J

Milner’s Algorithm J expects a pair Γ ⊢ a, produces a type τ , and uses two global variables, V
and ϕ. Variable V is an infinite fresh supply of type variables; ϕ is an idempotent substitution
(of types for type variables), initially the identity. The fresh primitive is defined as:

fresh = do α ∈ V; do V ← V ∖ {α}; return α

The Algorithm J is given on Figure 5.3 in monadic style. The algorithm mixes generation
and solving of equations. This lack of modularity leads to several weaknesses: proofs are
more difficult; correctness and efficiency concerns are not clearly separated (if implemented
literally, the algorithm is exponential in practice); adding new language constructs duplicates
solving of equations; generalizations, such as the introduction of subtyping, are not easy.
Furthermore, Algorithm J works with substitutions, instead of constraints. Substitutions
are an approximation to solved forms for unification constraints. Working with substitutions
means using most general unifiers, composition, and restriction. Working with constraints
means using equations, conjunction, and existential quantification.
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J (Γ ⊢ x) = let ∀α1 . . . αn.τ = Γ(x)
do α′1, . . . , α

′
n = fresh, . . . , fresh

return [αi ↦ α′i]ni=1(τ) – take a fresh instance
J (Γ ⊢ λx. a1) = do α = fresh

do τ1 = J (Γ;x ∶ α ⊢ a1)
return α → τ1 – form an arrow type

J (Γ ⊢ a1 a2) = do τ1 = J (Γ ⊢ a1)
do τ2 = J (Γ ⊢ a2)
do α = fresh
do ϕ← mgu(ϕ(τ1) = ϕ(τ2 → α)) ○ ϕ
return α – solve τ1 = τ2 → α

J (Γ ⊢ let x = a1 in a2) = do τ1 = J (Γ ⊢ a1)
let σ = ∀∖ftv(ϕ(Γ)). ϕ(τ1) – generalize
return J (Γ;x ∶ σ ⊢ a2)

(∀∖ᾱ. τ quantifies over all type variables other than ᾱ.)

Figure 5.3: Type inference algorithm for ML

5.3.2 Constraint-based type inference for ML

Type inference for Damas and Milner’s type system involves slightly more than first-order
unification: there is also generalization and instantiation of type schemes. So, the constraint
language must be enriched. We proceed in two steps: still within simply-typed λ-calculus,
we present a variation of the constraint language; building on this variation, we introduce
polymorphism.

How about letting the constraint solver, instead of the constraint generator, deal with
environment access and construction? That is, the syntax of constraints is as follows:

C ∶∶= . . . ∣ x = τ ∣ def x ∶ τ in C
The idea is to interpret constraints in such a way as to validate the equivalence law:

def x ∶ τ in C ≡ [x ↦ τ]C
The def form is an explicit substitution form. More precisely, here is the new interpretation
of constraints. As before, a valuation φ maps type variables α to ground types. In addition,
a valuation ψ maps term variables x to ground types. The satisfaction judgment now takes
the form φ,ψ ⊢ C. The new rules of interest are:

ψx = φτ

φ,ψ ⊢ x = τ

φ,ψ[x ↦ φτ] ⊢ C
φ,ψ ⊢ def x ∶ τ in C

(All other rules are modified to just transport ψ.) Constraint generation becomes a mapping
of an expression a and a type τ to a constraint ⟪a ∶ τ⟫. There is no longer a need for the
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⟪x ∶ τ⟫ = x = τ

⟪λx. a ∶ τ⟫ = ∃α1α2.(def x ∶ α1 in ⟪a ∶ α2⟫ ∧ α1 → α2 = τ)
if α1, α2 # a, τ

⟪a1 a2 ∶ τ⟫ = ∃α.(⟪a1 ∶ α → τ⟫ ∧ ⟪a2 ∶ α⟫)
if α # a1, a2, τ

Figure 5.4: Constraints with program variables

parameter Γ. Constraint generation is defined in Figure 5.4

Theorem 16 (Soundness and completeness) Assume fv(a) = dom(Γ). Then, φ,φΓ ⊢⟪a ∶ τ⟫ if and only if φΓ ⊢ a ∶ φτ .

Corollary 36 Assume fv(a) = ∅. Then, a is well-typed if and only if ∃α.⟪a ∶ α⟫ ≡ true.
This variation shows that there is freedom in the design of the constraint language, and that
altering this design can shift work from the constraint generator to the constraint solver, or
vice-versa.

Enriching constraints To permit polymorphism, we must extend the syntax of con-
straints so that a variable x denotes not just a ground type, but a set of ground types.

However, these sets cannot be represented as type schemes ∀ᾱ. τ , because constructing
these simplified forms requires constraint solving. To avoid mingling constraint generation
and constraint solving, we use type schemes that incorporate constraints, called constrained
type schemes. The syntax of constraints and of constrained type schemes is:

C ∶∶= τ = τ ∣ C ∧C ∣ ∃α.C ∣ x ⪯ τ ∣ σ ⪯ τ ∣ def x ∶ σ in C
σ ∶∶= ∀ᾱ[C]. τ

Both x ⪯ τ and σ ⪯ τ are instantiation constraints. The latter form is introduced so as to
make the syntax stable under substitutions of constrained type schemes for variables. As
before, def x ∶ σ in C is an explicit substitution form.

The idea is to interpret constraints in such a way as to validate the equivalence laws:

def x ∶ σ in C ≡ [x↦ σ]C (∀ᾱ[C]. τ) ⪯ τ ′ ≡ ∃ᾱ.(C ∧ τ = τ ′) if ᾱ # τ ′

Using these laws, a closed constraint can be rewritten to a unification constraint (with a
possibly exponential increase in size). The new constructs do not add much expressive
power. They add just enough to allow a stand-alone formulation of constraint generation.

The interpretation of constraints must be redefined since the environment ψ now maps
program variables to sets of ground types. The environment φ still maps type variables to
ground types. Hence, a type variable α still denotes a ground type. A variable x now denotes
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a set of ground types. Instantiation constraints are interpreted as set membership. The rules
for the new form of constraints are:

φτ ∈ ψx

φ,ψ ⊢ x ⪯ τ

φτ ∈ (φψ)σ
φ,ψ ⊢ σ ⪯ τ

φ,ψ[x ↦ (φψ)σ] ⊢ C
φ,ψ ⊢ def x ∶ σ in C

The interpretation of ∀ᾱ[C]. τ under φ and ψ, written (φψ)(∀ᾱ[C]. τ) is the set of all φ′τ ,
where φ and φ′ coincide outside ᾱ and where φ′ and ψ satisfy C:

(φψ)(∀ᾱ[C]. τ) △== {φ′τ ∣ (φ′ ∖ ᾱ = φ ∖ ᾱ) ∧ (φ′, ψ ⊢ C)}
If C is empty, then (φψ)(∀ᾱ[C]. τ) is {(φ[ᾱ↦ t])τ}. If ᾱ and C are empty, then (φψ)τ is φτ .

For instance, the interpretation of ∀α[∃β.α = β → γ]. α → α under φ and ψ is the set of
all ground types of the form (t → φγ) → (t → φγ), where t ranges over ground types. This
is also the interpretation of an unconstrained typed scheme, namely ∀β. (β → γ)→ (β → γ).
In fact, this is a general situation:

Lemma 37 Every constrained type scheme is equivalent to a standard type scheme.

This result holds because constraints can be reduced to unification constraints, which have
either no solution or a principal solution. This is an important property as it implies that
type inference problems have principal solutions and typable programs have principal types.
The property would not hold with more general constraints, such as subtyping constraints.
However, we may then generalize type schemes to constrained type schemes as a way to
factor several possible types and recover principality of type inference. Then, type inference
may have principal constrained type schemes.

Notice that if x does not appear free in C, def x ∶ σ in C is equivalent to C—whether
or not the constraints appearing in σ are solvable. To enforce the constraints in σ to be
solvable, we use a variant of the def construct:

let x ∶ σ in C
△== def x ∶ σ in ((∃α.x ⪯ α) ∧C)

Expanding the constraint type scheme σ of the form ∀ᾱ[C]. τ and simplifying, an equivalent
definition is:

let x ∶ ∀ᾱ[C]. τ in C ′ △== ∃ᾱ.C ∧ def x ∶ ∀ᾱ[C]. τ in C ′
This is equivalent to providing a direct interpretation of let-bindings as:

(φψ)σ /= ∅ φ,ψ[x↦ (φψ)σ] ⊢ C
φ,ψ ⊢ let x ∶ σ in C

Constraint generation for ML is defined in Figure 5.5. The abbreviation La M is a principal
constrained type scheme for a: its intended interpretation is the set of all ground types that
a admits.
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⟪x ∶ τ⟫ = x ⪯ τ

⟪λx. a ∶ τ⟫ = ∃α1α2.(def x ∶ α1 in ⟪a ∶ α2⟫ ∧ α1 → α2 = τ)
if α1, α2 # a, τ

⟪a1 a2 ∶ τ⟫ = ∃α.(⟪a1 ∶ α → τ⟫ ∧ ⟪a2 ∶ α⟫)
if α # a1, a2, τ

⟪let x = a1 in a2 ∶ τ⟫ = let x ∶ La1 M in ⟪a2 ∶ τ⟫
La M = ∀α[⟪a ∶ α⟫]. α

Figure 5.5: Constraint generation for ML

Lemma 38 (Constraint equivalences) The following equivalences hold:

(1) ∃α.(⟪a ∶ α⟫ ∧ α = τ) ≡ ⟪a ∶ τ⟫ if α # τ

(2) La M ⪯ τ ≡ ⟪a ∶ τ⟫
(3) [x ↦ La1 M]⟪a2 ∶ τ⟫ ≡ ⟪[x↦ a1]a2 ∶ τ⟫

Proof: (1) is by induction on the definition of ⟪a ∶ τ⟫; (2) is by definition of La M, expansion
of the instantiation constraint and (1); (3) is by induction on ⟪a ∶ τ⟫ and (2).

Another key property is that the constraint associated with a let construct is equivalent to
the constraint associated with its let-normal form.

Lemma 39 (let expansion) ⟪let x = a1 in a2 ∶ τ⟫ ≡ ⟪a1; [x ↦ a1]a2 ∶ τ⟫.
Expansion of let-binding terminates, since it can be seen as reducing the family of redexes
marked as let-bindings. The resulting expression has no let-binding and its constraint has
no def-constraint. Hence, its interpretation is the same as constraints for the simply-typed
λ-calculus. This gives another specification of ML: a closed program is well-typed in ML if
and only if its let-expansion is typable with simple types.

Constraint generation for ML can still be implemented in linear time and space.

Lemma 40 The size of ⟪a ∶ τ⟫ is linear in the sum of the sizes of a and τ .

The statement of soundness and completeness keeps its previous form, but Γ now contains
Damas-Milner type schemes. Since Γ binds variables to type schemes, we define φ(Γ) as the
point-wise mapping of (φ∅) to Γ.

Theorem 17 (Soundness and completeness) Assume fv(a) = dom(Γ). Then, φ,φΓ ⊢⟪a ∶ τ⟫ if and only if φΓ ⊢ a ∶ φτ .
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Key points Notice that constraint generation has linear complexity ; constraint generation
and constraint solving are separate. This makes constraints suitable for use in an efficient
and modular implementation. In particular, the constraint language remains small as the
programming language grows.

5.3.3 Constraint solving by example

For our running example, assume that the initial environment Γ0 stands for assoc ∶ ∀αβ.α →
list (α × β) → β. That is, the constraints considered next are implicitly wrapped within the
context def Γ0 in []. Let a stand for the term:

λx.λl1. λl2. let assocx = assoc x in (assocx l1,assocx l2)
One may anticipate that assocx receives a polymorphic type scheme, which is instantiated
twice at different types. Let Γ stand for x ∶ α0; l1 ∶ α1; l2 ∶ α2. Then, the constraint ⟪a ∶ α⟫ is,
after a few minor simplifications:

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in

let assocx ∶ ∀γ1 [∃γ2.( assoc ⪯ γ2 → γ1
x ⪯ γ2

)] . γ1 in
∃β1β2.( β = β1 × β2∀i ∈ {1,2}, ∃γ2.(assocx ⪯ γ2 → βi ∧ li ⪯ γ2) )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Constraint solving can be viewed as a rewriting process that exploits equivalence laws. Be-
cause equivalence is, by construction, a congruence, rewriting is permitted within an arbitrary
context. For instance, environment access is allowed by the law

let x ∶ σ inR[x ⪯ τ] ≡ let x ∶ σ inR[σ ⪯ τ]
where R is a context that does not bind x. Thus, within the context def Γ0; Γ in [], we have
the following equivalence:

assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2 ≡ ∃αβ.(α → list (α × β)→ β = γ2 → γ1) ∧ α0 = γ2

By first-order unification, we have the following sequence of simplifications:

∃γ2.(∃αβ. (α →list (α × β)→ β = γ2→γ1) ∧α0 = γ2)
≡ ∃γ2. (∃αβ. (α = γ2 ∧ list (α × β)→ β = γ1) ∧α0 = γ2)
≡ ∃γ2. (∃β.(list (γ2 × β)→ β = γ1) ∧α0 = γ2)
≡ ∃β.(list (α0 × β)→ β = γ1)

Hence,

∀γ1[∃γ2.(assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2)]. γ1 ≡ ∀γ1[∃β.(list (α0 × β)→ β = γ1)]. γ1
≡ ∀γ1β[list (α0 × β)→ β = γ1]. γ1
≡ ∀β.list (α0 × β)→ β
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We have used the rule:

∀α[∃β.C]. τ ≡ ∀αβ[C]. τ if β # τ

The initial constraint has now been simplified down to:

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in
let assocx ∶ ∀β. list (α0 × β)→ β in

∃β1β2.( β = β1 × β2∀i ∈ {1,2}, ∃γ2.(assocx ⪯ γ2 → βi ∧ li ⪯ γ2) )

⎞⎟⎟⎟⎟⎟⎟⎠
The simplification work spent on assocx’s type scheme was well worth the trouble, because
we are now going to duplicate the simplified type scheme.

The subconstraint ∃γ2. (assocx ⪯ γ2 → βi ∧ li ⪯ γ2) where i ∈ {1,2}, is rewritten:
∃γ2. (∃β. (list (α0 × β)→ β = γ2 → βi) ∧ αi = γ2)

≡ ∃β. (list (α0 × β)→ β = αi → βi)
≡ ∃β. (list (α0 × β) = αi ∧ β = βi)
≡ list (α0 × βi) = αi

The initial constraint has now been simplified down to:

∃α0α1α2β.
⎛⎜⎝
α = α0 → α1 → α2 → β

def Γ in let assocx ∶ ∀β. list (α0 × β)→ β in ∃β1β2. (β = β1 × β2∀i ∈ {1,2}, list (α0 × βi) = αi)
⎞⎟⎠

Now, the context def Γ in let assocx ∶ . . . in [] can be dropped, because the constraint that it
applies to contains no occurrences of x, l1, l2, or assocx. The constraint becomes:

∃α0α1α2β.
⎛⎜⎝
α = α0 → α1 → α2 → β

∃β1β2. ( β = β1 × β2∀i ∈ {1,2}, list (α0 × βi) = αi )
⎞⎟⎠

that is, by extrusion:

∃α0α1α2ββ1β2.
⎛⎜⎝
α = α0 → α1 → α2 → β

β = β1 × β2
∀i ∈ {1,2}, list (α0 × βi) = αi

⎞⎟⎠
Finally, by eliminating a few auxiliary variables:

∃α0β1β2. (α = α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2)
We have shown the following equivalence between constraints:

def Γ0 in ⟪a ∶ α⟫ ≡ ∃α0β1β2. (α = α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2)
That is, the principal type scheme of a relative to Γ0 is

La M = ∀α[⟪a ∶ α⟫]. α ≡ ∀α0β1β2. α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2
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Again, constraint solving can be explained in terms of a small-step rewrite system. Again,
one checks that every step is meaning-preserving, that the system is normalizing, and that
every normal form is either literally “false” or satisfiable.

Rewriting strategies Different constraint solving strategies lead to different behaviors
in terms of complexity, error explanation, etc. See Pottier and Rémy (2005) for details on
constraint solving. See Jones (1999b) for a different presentation of type inference, in the
context of Haskell.

In all reasonable strategies, the left-hand side of a let constraint is simplified before the
let form is expanded away. This corresponds, in Algorithm J , to computing a principal type
scheme before examining the right-hand side of a let construct.

Complexity Type inference forML is DEXPTIME-complete (Kfoury et al., 1990; Mairson,
1990), so any constraint solver has exponential complexity. This is assuming that types are
printed as trees. If one allows to return types are dags graphs instead of types, the complexity
is EXPTIME-complete.

This is, of course, worse case complexity, which does not contradict the observation that
ML type inference works well in practice.

If fact, this good behavior can be explain by the results of McAllester (2003): under
the hypotheses that types have bounded size and let forms have bounded left-nesting depth,
constraints can be solved in linear time, or in quasi-linear time if recursive types are allowed.

When the size of types in unbounded, one may reach worst case complexity but right-
nesting let-bindings as in Mairson original example:

let mairson =
let f = fun x → (x, x) in
(∗ ... n times ... ∗)
let f = fun x → f (f x) in
f (fun z → z)

This term can be placed in the context let x = ... in () to ignore the time spent outputing
the result type.

However, this right-nesting of let-bindings is not a problem if types remain bounded,
because each let-bound expression can be simplified to a type of bounded size before being
duplicated.

On the opposite, in a left-nesting of let-binding local variables may have to be extruded
step by step from the inner bindings to its enclosing binding, sometimes all the way up to
the root, leading to a quadratic complexity when the nesting is proportional to the size of
the program.

Principal constraint type schemes In constraint generation, we introduced principal
constraint type scheme La M as an abbreviation for ∀α[⟪a ∶ α⟫]. α. However, using the equiv-
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Lx M = ∀α[x ⪯ α]. α
Lλx. a M = ∀α1α2[def x ∶ α2 in La M ⪯ α1]. α2 → α1

if α1, α2 # a

La1 a2 M = ∀α1α2[La1 M ⪯ α2 → α1 ∧ La2 M ⪯ α2]. α1

if α1, α2 # a1, a2

L let x = a1 in a2 M = ∀α[let x ∶ La1 M in La2 M ⪯ α]. α
Figure 5.6: Constraint generation with principal constraint type schemes

alence between ⟪a ∶ τ⟫ and La M ⪯ τ , we may conversely use principal constraint type schemes
in place of program constraints. This leads to an alternative presentation of constraint
generation described in Figure 5.6. (Compare it with the previous definition in Figure 5.5).

5.3.4 Type reconstruction

Type inference should not just return a principal type for an expression; it should also
perform type reconstruction, i.e. elaborate the implicitly-typed input term into an explicitly-
typed one.

The elaborated term is not unique, since redundant type abstractions and type applica-
tions may always be used. Moreover, some non principal type schemes may also be used for
local let-bindings—even if the final type is principal.

For example the implicitly-typed term let x = λy. y in x 1 may be explicitly typed as
either one of

let x ∶ int→ int = λy ∶ int. y in x 1 let x ∶ ∀α.α→ α = Λx.λx ∶ int. x in x int 1

Which one is better? Monomorphic terms can be compiled more efficiently, so removing
useless polymorphism may be useful.

However, one usually infers more general explicitly-typed terms. Given explicitly-typed
terms M and M ′ with the same type erasure, we say that M is more general than M ′ if all
let-bindings are assigned more general type schemes in M than in M ′, i.e.:

for all decompositions of M into C[let x ∶ σ = M1 in M2], then there is a corre-
sponding decomposition of M ′ (i.e. one where C and C ′ have the same erasure)
as C ′[let x ∶ σ′ =M ′

1 inM
′
2] where σ is more general than σ′.

A type reconstruction is principal if it is more general than any other type reconstruction of
the same term. Core ML admits principal type reconstructions. A principal typing derivation
can be seeked for in canonical form, as defined in 4.6.2.

A term in canonical form is uniquely determined up to reordering of type abstractions
and type applications by the type schemes of bound program variables and of how they are
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instanced. We may keep track of such information during constraint resolution by keeping
the binding constraints def x ∶ C in C and its derived form let x ∶ C in C, and the instantiation
constraints x ⪯ τ of the original constraint—instead of removing them once solved. We call
them persistent constraints. We thus forbid the removal, as well as the extrusion of persistent
constraints by restricting the equivalence of constraints accordingly.

Rewriting rules used for constraint resolution can easily be adapted to retain the persis-
tent constraints—and thus preserve the restricted notion of equivalence. Then, the binding
structure of the constraint remains unchanged during simplification and is isomorphic to the
binding structure of the expression it came from. (Persistent nodes could actually be labeled
by their corresponding nodes in the original expression.)

In practice, we mark nodes of the persistent constraints as resolved when they could
have been dropped in the normal resolution process—so that they need not be considered
anymore during the resolution. For example, we use the rule

def x ∶ σ inR[x ⪯ τ] ≡ def x ∶ σ inR[x ⪯ τ ∧ σ ⪯ τ]
for environment access, where the original constraint x ⪯ τ is kept and marked as resolved
but is not removed. Similarly, a constraint def x ∶ σ in C can be marked as resolved, which
we write def x ∶ σ in C, whenever x may only appears free in removable constraints of C. A
resolved form of a constraint is an equivalent persistent constraint, such that dropping all
persistent nodes is an equivalent constraint in solved forms.

For example, reusing the running example and notations of the previous section, let us
find a term M whose erasure a is defined as:

λx.λl1. λl2. let assocx = assoc x in (assocx l1,assocx l2)
The principal type scheme La M is, by definition:

∀α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in

let assocx ∶ ∀γ1 [∃γ2.( assoc ⪯ γ2 → γ1
x ⪯ γ2

)] . γ1 in
∃β1β2.( β = β1 × β2∀i ∈ {1,2}, ∃γ2.(assocx ⪯ γ2 → βi ∧ li ⪯ γ2) )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. α

Since x ∶ α9 is in Γ, the inner constraint can be resolved as follows:

∃γ2.(assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2)
≡ ∃γ2.(assoc ⪯ γ2 → γ1 ∧ x ⪯ γ2 ∧α0 ⪯ γ2) ≡ assoc ⪯ α0 → γ1 ∧ x ⪯ α0

The other instantiation may be solved similarly, leading to the equivalent constraints:

assoc ⪯ α0 → γ1 ∧ ∀αβ.α→ list (α × β)→ β ⪯ α0 → γ1 ∧ x ⪯ α0

≡ assoc ⪯ α0 → γ1 ∧ ∃αβ.(α = α0 ∧ list (α × β)→ β = γ1) ∧ x ⪯ α0

≡ ∃β.(assoc ⪯ α0 → list (α0 × β)→ β ∧ list (α0 × β)→ β = γ1 ∧ x ⪯ α0)
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Hence, the type scheme of assoc is equivalent to

∀β[assoc ⪯ α0 → list (α0 × β)→ β ∧ x ⪯ α0]. list (α0 × β)→ β

and La1 M is equivalent to:

∀α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∃α0α1α2β.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α = α0 → α1 → α2 → β

def Γ in

let assocx ∶ ∀β [ assoc ⪯ α0 → list (α0 × β)→ β ∧ x ⪯ α0 ] .
list (α0 × β)→ β in

∃β1β2.( β = β1 × β2∀i ∈ {1,2}, ∃γ2.(assocx ⪯ γ2 → βi ∧ li ⪯ γ2) )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. α

Simplifying the remaining instantiation constraints in a similar way, we end up with the
following resolved type scheme for La M:

∀α0β1β2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

def Γ in

let assocx ∶ ∀γ [ assoc ⪯ α0 → list (α0 × γ)→ γ

x ⪯ α0
] . list (α0 × γ)→ γ in

∀i ∈ {1,2}, assocx ⪯ list (α0 × βi)→ βi ∧ li ⪯ list (α0 × βi)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

α0 → list (α0 × β1)→ list (α0 × β2)→ β1 × β2

This is a resolved form, from which we may build the elaboration of a1:

Λα0β1β2.λx ∶α0. λl1 ∶ list (α0 × β1). λl2 ∶ list (α0 × β2).
let assocx = Λγ.assoc α0 γ x in (assocx β1 l1,assocx β2 l2)

Type abstractions are determined by their corresponding type scheme in the resolved con-
straint; for instance, the type abstraction for the let-bound variable assocx is γ while the
toplevel type abstraction is α0α1β2. Type annotations on abstractions are determined by
Γ, which here contains x ∶ α0; l1 ∶ list (α0 × α1); l2 ∶ list (α0 × α2). Type applications are
inferred locally by looking at their corresponding type instantiations in the resolved con-
straints. For instance, we read from the constraint that assocx is let-bound with the type
scheme ∀γ. list (α0 × γ) → γ (we dropped the constraint which is solved and equivalent to
true) and that its i-th occurrence is used at type list (α0 × βi) → βi. Matching the former
against the latter gives the substitution γ ↦ βi. Thefefore, the type application for the i’s
occurrence is be βi.

Principal type reconstruction Notice that while the constraint framework enforces the
inference of principal types, since it transforms the original constraint into an equivalent
constraint, it does not enforce type reconstruction to be principal. Indeed, in a constraint
∃α.C, the existentially bound type variable α may be instantiated to any type that satisfies
the constraint C and not necessarily the most general one.

Interestingly, however, the default strategy for constraint resolution always returns prin-
cipal type reconstructions. That is, variables are never arbitrarily instantiated, although this



5.4. TYPE ANNOTATIONS 105

would be allowed by the specification.

Exercise 32 (Minimal derivations) On the opposite, one may seek for less general typ-
ing derivations where all let-expressions are as instantiated as possible. Do such derivations
exists? In fact no: there are examples where there are two minimal incomparable type re-
constructions and others with smaller and smaller type reconstructions but no smallest one.
Find examples of both kinds. (Solution p. 121)

Exercise 33 (Closed types) Explain why ML modules in combination with the value-
restriction break the principal type property: that is, there are programs that are typable
but that do not have a principal type. Hint: ML signatures of ML modules must be closed.

(Solution p. 121)

5.4 Type annotations

Damas and Milner’s type system has principal types: at least in the core language, no type
information is required. This is very lightweight, but a bit extreme: sometimes, it is useful
to write types down, and use them as machine-checked documentation. Let us, then, allow
programmers to annotate a term with a type:

a ∶∶= . . . ∣ (a ∶ τ)
Typing and constraint generation are obvious:

Annot

Γ ⊢ a ∶ τ

Γ ⊢ (a ∶ τ) ∶ τ ⟪(a ∶ τ) ∶ τ ′⟫ = ⟪a ∶ τ⟫ ∧ τ = τ ′
Type annotations are erased prior to runtime, so the operational semantics is not affected.
In particular, it is still type-erasing.

Notice that annotations here do not help type more terms, as erasure of type annotations
preserves well-typedness: Indeed, the constraint ⟪(a ∶ τ) ∶ τ ′⟫ implies the constraint ⟪a ∶ τ ′⟫.
That is, in terms of type inference, type annotations are restrictive : they lead to a principal
type that is less general, and possibly even to ill-typedness. For instance, λx.x has principal
type scheme ∀α.α → α, whereas (λx.x ∶ int → int) has principal type scheme int → int, and(λx.x ∶ int → bool) is ill-typed.

5.4.1 Explicit binding of type variables

We must be careful with type variables within type annotations, as in, say:

(λx.x ∶ α→ α) (λx.x + 1 ∶ α → α) let f = (λx.x ∶ α→ α) in (f 0, f true)
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Does it make sense, and is so, what does it mean? A short answer is that it does not mean
anything, because α is unbound. “There is no such thing as a free variable” (Alan Perlis).
A longer answer is that it is necessary to specify how and where variables are bound.

How is α bound? If α is existentially bound, or flexible, then both (λx.x ∶ α → α) and(λx.x + 1 ∶ α→ α) should be well-typed. If it is universally bound, or rigid, only the former
should be well-typed.

Where is α bound? If α is bound within the left-hand side of this “let” construct, then
let f = (λx.x ∶ α → α) in (f 0, f true) should be well-typed. On the other hand, if α is bound
outside this “let” form, then this code should be ill-typed, since no single ground value of α
is suitable.

Programmers should explicitly bind type variables. We extend the syntax of expressions
as follows:

a ∶∶= . . . ∣ ∃ᾱ.a ∣ ∀ᾱ.a
It now makes sense for a type annotation (a ∶ τ) to contain free type variables—as long as
these type variables have been introduced in some enclosing term.

Since terms can now contain free type variables, some side conditions have to be updated
(e.g., ᾱ # Γ, a in Gen). The new (and updated) typing rules are as follows:

Exists

Γ ⊢ [α⃗↦ τ⃗]a ∶ τ
Γ ⊢ ∃ᾱ.a ∶ τ

Forall

Γ ⊢ a ∶ τ ᾱ # Γ

Γ ⊢ ∀ᾱ.a ∶ ∀ᾱ. τ

⎛⎜⎜⎝
Gen

Γ ⊢ a ∶ τ ᾱ# Γ, a

Γ ⊢ a ∶ ∀ᾱ. τ

⎞⎟⎟⎠
As type annotations, the introduction of type variables are erased prior to runtime.

Exercise 34 Define the erasure of implicitly-typed terms and show that the erasure of a
well-typed term is well-typed. Use this to justify the soundness of the extension of ML with
type annotations with explicit introduction of type variables.

Constraint generation for the existential form is straightforward:

⟪(∃ᾱ.a) ∶ τ⟫ = ∃ᾱ.⟪a ∶ τ⟫ if ᾱ # τ

The type annotations inside a contain free occurrences of ᾱ. Thus, the constraint ⟪a ∶ τ⟫
contains such occurrences as well, which are bound by the existential quantifier.

For example, the expression λx1. λx2.∃α.((x1 ∶ α), (x2 ∶ α)) has principal type scheme
∀α.α → α → α×α. Indeed, the generated constraint is of the form ∃α.(⟪x1 ∶ α⟫∧⟪x2 ∶ α⟫∧. . .),
which requires x1 and x2 to share a common (unspecified) type.

Perhaps surprisingly, constraint generation for the universal case is more difficult. A
term a has type scheme, say, ∀α.α → α if and only if a has type α → α for every instance of
α, or, equivalently, for an abstract α. To express this in terms of constraints, we introduce
universal quantification in the constraint language:

C ∶∶= . . . ∣ ∀α.C
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Its interpretation is as expected:

∀t, φ[α↦ t], ψ ⊢ C
φ,ψ ⊢ ∀α.C

(To solve these constraints, we will use an extension of the unification algorithm called
unification under a mixed prefix—see §5.4.3.)

The need for universal quantification in constraints arises when polymorphism is required
by the programmer, as opposed to inferred by the system. Constraint generation for the
universal form is somewhat subtle. A naive definition fails :

⟪∀ᾱ.a ∶ τ⟫ = ∀ᾱ.⟪a ∶ τ⟫ if ᾱ# τ Wrong!

This requires τ to be simultaneously equal to all of the types that a assumes when ᾱ varies.
For instance, with this incorrect definition, one would have:

⟪∀α.(λx.x ∶ α → α) ∶ int→ int⟫
= ∀α.⟪(λx.x ∶ α → α) ∶ int→ int⟫
≡ ∀α.(⟪λx.x ∶ α → α⟫ ∧ α = int) ≡ ∀α.(true ∧α = int) ≡ false

A correct definition is:

⟪∀ᾱ.a ∶ τ⟫ = ∀ᾱ.∃γ.⟪a ∶ γ⟫ ∧ ∃ᾱ.⟪a ∶ τ⟫
This requires a to be well-typed for all instances of ᾱ and requires τ to be a valid type for
a under some instance of ᾱ.

However, a problem with this definition is that the term a is duplicated, which can lead
to exponential complexity. Fortunately, this can be avoided modulo a slight extension of the
constraint language (Pottier and Rémy, 2003, p. 112). The solution defines:

⟪∀ᾱ.a ∶ τ⟫ = let x ∶ ∀α⃗, β[⟪a ∶ β⟫]. β in x ⪯ τ

where the new constrain form satisfies the equivalence:

let x ∶ ∀α⃗, β⃗[C1]. τ in C2 ≡ ∀α⃗.∃β⃗.C1 ∧ def x ∶ ∀α⃗, β⃗[C1]. τ in C2

Annotating a term with a type scheme, rather than just a type, is now just syntactic sugar:

(a ∶ ∀ᾱ. τ) △== ∀ᾱ.(a ∶ τ) if ᾱ# a

In that particular case, constraint generation is in fact simpler:

⟪(a ∶ ∀ᾱ. τ) ∶ τ ′⟫ ≡ ∀ᾱ.⟪a ∶ τ⟫ ∧ (∀ᾱ. τ) ⪯ τ ′

Exercise 35 Check this equivalence.



108 CHAPTER 5. TYPE RECONSTRUCTION

Examples Consider the following two examples:

⟪(∃α.(λx.x + 1 ∶ α → α)) ∶ int→ int⟫
≡ ∃α.⟪(λx.x + 1 ∶ α → α) ∶ int→ int⟫
≡ ∃α.(α = int)
≡ true

⟪(∀α.(λx.x + 1 ∶ α → α)) ∶ int → int⟫
⊩ ∀α.∃γ.⟪(λx.x + 1 ∶ α → α) ∶ γ⟫
≡ ∀α.∃γ.(α = int ∧ α → α = γ)
≡ ∀α.α = int
≡ false

The left-hand side example is well-typed: The system infers that α must be int. Because
α is a local type variable, it does not appear in the final constraint. The right-hand side
example is ill-typed: The system checks that α is used in an abstract way, which is not the
case here, since the code implicitly assumes that α is int. By contrast, the following example
is well-typed:

⟪(∀α.(λx.x ∶ α→ α)) ∶ int→ int⟫
= ∀α.∃γ.⟪(λx.x ∶ α→ α) ∶ γ⟫ ∧ ∃α.⟪(λx.x ∶ α → α) ∶ int→ int⟫
≡ ∀α.∃γ.α→ α = γ ∧ ∃α.α = int
≡ true

The system checks that α is used in an abstract way, which is indeed the case here. It also
checks that, if α is appropriately instantiated, the code admits the expected type int→ int.

The two next examples are similar and show the importance of the scope of existential
variables. In the first one, the variable α is bound outside the let construct;

⟪∃α.(let f = (λx.x ∶ α→ α) in (f 0, f true)) ∶ γ⟫
≡ ∃α.(let f ∶ α → α in ∃γ1γ2.(f ⪯ int→ γ1 ∧ f ⪯ bool→ γ2 ∧ γ1 × γ2 = γ))
≡ ∃αγ1γ2.(α → α = int→ γ1 ∧ α → α = bool→ γ2 ∧ γ1 × γ2 = γ)
⊩ ∃α.(α = int ∧ α = bool)
≡ false

Then f receives the monotype α → α and the example is ill-typed. In the other example, α
is bound within the let construct:

⟪let f = ∃α.(λx.x ∶ α→ α) in (f 0, f true) ∶ γ⟫
≡ let f ∶ ∀β[∃α.(α→ α = β)]. β in ∃γ1γ2.(f ⪯ int→ γ1 ∧ f ⪯ bool→ γ2 ∧ γ1 × γ2 = γ)
≡ let f ∶ ∀α.α → α in ∃γ1γ2.(. . .)
≡ ∃γ1γ2.(int = γ1 ∧ bool = γ2 ∧ γ1 × γ2 = γ)
≡ int × bool = γ

Here, the term ∃α.(λx.x ∶ α → α) has the same principal type scheme as λx.x, namely
∀α.α → α, which is the type scheme that f receives.

Type annotations in the real world For historical reasons, type variables are not
explicitly bound in OCaml. (Retrospectively, that’s bad! ) They are implicitly existentially
bound at the nearest enclosing toplevel let construct. In Standard ML, type variables are
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implicitly universally bound at the nearest enclosing toplevel let construct. In Glasgow
Haskell, type variables are implicitly existentially bound within patterns: ‘A pattern type
signature brings into scope any type variables free in the signature that are not already in
scope’ Peyton Jones and Shields (2004). Constraints help understand these varied design
choices uniformly.

5.4.2 Polymorphic recursion

Recall below the typing rule FixAbs for recursive functions, which leads to the derived typing
LetRec for recursive definitions:

FixAbs

Γ, f ∶ τ ⊢ λx. a ∶ τ

Γ ⊢ µf.λx.a ∶ τ

LetRec

Γ, f ∶ τ1 ⊢ λx. a1 ∶ τ1 ᾱ # Γ, a1 Γ, f ∶ ∀ᾱ. τ1 ⊢ a2 ∶ τ2
Γ ⊢ let rec f x = a1 in a2 ∶ τ2

These rules require occurrences of f to have monomorphic type within the recursive definition
(that is, within λx. a1). This is visible also in terms of type inference, as the two following
constraints are equivalent:

⟪let rec f x = a1 in a2 ∶ τ⟫ ≡ let f ∶ ∀αβ[let f ∶ α→ β;x ∶ α in ⟪a1 ∶ β⟫]. α → β in ⟪a2 ∶ τ⟫
On the right-hand side, all occurrences of f within a1 have the same type α → β. This
is problematic in some situations, most particularly when defining functions over nested
algebraic data types (Bird and Meertens, 1998; Okasaki, 1999).

This problem is solved by introducing polymorphic recursion, that is, by allowing µ-bound
variables to receive a polymorphic type scheme, using the following typing rules:

FixAbsPoly

Γ, f ∶ σ ⊢ λx. a ∶ σ

Γ ⊢ µf.λx.a ∶ σ

LetRecPoly

Γ, f ∶ σ ⊢ λx. a1 ∶ σ Γ, f ∶ σ ⊢ a2 ∶ τ

Γ ⊢ let rec f x = a1 in a2 ∶ τ

This extension of ML is due to Mycroft (1984).

In System F, there is no problem to begin with; no extension is necessary. Polymorphic
recursion alters, to some extent, Damas and Milner’s type system. Now, not only let-
bound, but also µ-bound variables receive type schemes. The type system is no longer
equivalent, up to reduction to let-normal form, to simply-typed λ-calculus. This has two
noticeable consequences: monomorphization, a technique employed in some ML compilers
Tolmach and Oliva (1998); Cejtin et al. (2007), is no longer possible; besides, type inference
becomes problematic!

Type inference for ML with polymorphic recursion is undecidable Henglein (1993). It is
equivalent to the undecidable problem of semi-unification. Yet, type inference in the presence
of polymorphic recursion can be made simple by relying on a mandatory type annotation.
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The syntax and typing rules for recursive definitions become:
FixAbsPoly

Γ, f ∶ σ ⊢ λx. a ∶ σ

Γ ⊢ µ(f ∶ σ).λx.a ∶ σ
LetRecPoly

Γ, f ∶ σ ⊢ λx. a1 ∶ σ Γ, f ∶ σ ⊢ a2 ∶ τ

Γ ⊢ let rec (f ∶ σ) = λx. a1 in a2 ∶ τ
The type scheme σ no longer has to be guessed. With this feature, contrary to what was
said earlier (p. 105), type annotations are not just restrictive: they are sometimes required
for type inference to succeed. The constraint generation rule becomes:

⟪let rec (f ∶ σ) = λx. a1 in a2 ∶ τ⟫ = let f ∶ σ in (⟪λx. a1 ∶ σ⟫ ∧ ⟪a2 ∶ τ⟫)
It is clear that f receives type scheme σ both inside and outside of the recursive definition.

5.4.3 Unification under a mixed prefix

Unification under a mixed prefix means unification in the presence of both existential and
universal quantifiers. We extend the basic unification algorithm with support for universal
quantification. The solved forms are unchanged: universal quantifiers are always eliminated.

In short, in order to reduce ∀ᾱ.C to a solved form, where C is itself a solved form—see
(Pottier and Rémy, 2003, p. 109) for details:

• If a rigid variable is equated with a constructed type, fail.
For example, ∀α.∃βγ.(α = β → γ) is false.

• If two rigid variables are equated, fail.
For example, ∀αβ.(α = β) is false.

• If a free variable dominates a rigid variable, fail.
For example, ∀α.∃β.(γ = α → β) is false.

• Otherwise, one can decompose C as ∃β̄.(C1 ∧C2), where ᾱβ̄ # C1 and ∃β̄.C2 ≡ true; in
that case, ∀ᾱ.C reduces to just C1.

For example, ∀α.∃βγ1γ2.(β = α → γ ∧ γ = γ1 → γ2) reduces to just ∃γ1γ2.(γ = γ1 → γ2).
The constraint ∀α.∃β.(β = α→ γ) is equivalent to true.

OCaml implements a form of unification under a mixed prefix. This is illustrated by the
following interactive OCaml session:

let module M : sig val id : ’a → ’a end = struct let id x = x + 1 end in M.id

Values do not match: val id : int → int
is not included in val id : ’a → ’a

This gives rise to a constraint of the form ∀α.α = int, while the following example gives rise
to a constraint of the form ∃β.∀α.α = β:
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let r = ref (fun x → x) in
let module M : sig val id : ’a → ’a end = struct let id = !r end in M.id;;

Values do not match: val id : ’ a → ’ a
is not included in val id : ’a → ’a

5.5 Equi- and iso-recursive types

Product and sum types alone do not allow describing data structures of unbounded size, such
as lists and trees. Indeed, if the grammar of types is τ ∶∶= unit ∣ τ × τ ∣ τ + τ , then it is clear
that every type describes a finite set of values. For every k, the type of lists of length at
most k is expressible using this grammar. However, the type of lists of unbounded length is
not: “A list is either empty or a pair of an element and a list.” We need something like this:

list α ◇ unit + α × list α

But what does ◇ stand for? Is it equality, or some kind of isomorphism?
There are two standard approaches to recursive types, dubbed the equi-recursive and

iso-recursive approaches. In the equi-recursive approach, a recursive type is equal to its
unfolding. In the iso-recursive approach, a recursive type and its unfolding are related via
explicit coercions.

5.5.1 Equi-recursive types

In the equi-recursive approach, the usual syntax of types:

τ ∶∶= α ∣ F τ⃗

is no longer interpreted inductively. Instead, types are the regular trees built on top of this
signature. If desired, it is possible to use finite syntax for recursive types:

τ ∶∶= α ∣ µα.(F τ⃗)
We do not allow the seemingly more general µα.τ , because µα.α is meaningless, and µα.β
or µα.µβ.τ are useless. If we write µα.τ , it should be understood that τ is contractive, that
is, τ is a type constructor application. For instance, the type of lists of elements of type α
is:

µβ.(unit + α × β)
Each type in this syntax denotes a unique regular tree, sometimes known as its infinite
unfolding. Conversely, every regular tree can be expressed in this notation (possibly in more
than one way).

If one builds a type-checker on top of this finite syntax, then one must be able to decide
whether two types are equal, that is, have identical infinite unfoldings.
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This can be done efficiently, either via the algorithm for comparing two DFAs, or by uni-
fication. (The latter approach is simpler, faster, and extends to the type inference problem.)

One can also prove Brandt and Henglein (1998) that equality is the least congruence
generated by the following two rules:

Fold/Unfold

µα.τ = [α ↦ µα.τ]τ
Uniqueness

τ1 = [α ↦ τ1]τ τ2 = [α↦ τ2]τ
τ1 = τ2

In both rules, τ must be contractive. This axiomatization does not directly lead to an efficient
algorithm for deciding equality, though. In the presence of equi-recursive types, structural
induction on types is no longer permitted—but we never used it anyway. It remains true that
F τ⃗1 = F τ⃗2 implies τ⃗1 = τ⃗2—this was used in our Subject Reduction proofs. It remains true
that F1 τ⃗1 = F2 τ⃗2 implies F1 = F2—this was used in our Progress proofs. So, the reasoning
that leads to type soundness is unaffected.

Exercise 36 Prove type soundness for the simply-typed λ-calculus in Coq. Then, change
the syntax of types from Inductive to CoInductive.

How is type inference adapted for equi-recursive types? The syntax of constraints is
unchanged: they remain systems of equations between finite first-order types, without µ’s.
Their interpretation changes: they are now interpreted in a universe of regular trees. As
a result, constraint generation is unchanged ; constraint solving is adapted by removing the
occurs check.

Exercise 37 Describe solved forms and show that every solved form is either false or satis-
fiable.

Here is a function that measures the length of a list:

µ(length).λx.case x of λ().0 ◇ λ(y, z).1 + length z
Type inference gives rise to the cyclic equation β = unit+α×β, where length has type β → int.
That is, length has principal type scheme: ∀α. (µβ.unit+α×β)→ int or, equivalently, principal
constrained type scheme: ∀α[β = unit+α×β]. β → int. The cyclic equation that characterizes
lists was never provided by the programmer, but was inferred.

OCaml implements equi-recursive types upon explicit request, launching the interactive
session with the command “ocaml -rectypes”:

type (’a, ’b) sum = Left of ’a | Right of ’b

type (’a, ’b) sum = Left of ’a | Right of ’b

let rec length x = function Left () → 0 | Right (y, z) → 1 + length z

val length : ((unit, ’b ∗ ’a) sum as ’a) → int = ⟨fun⟩
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Notice that -rectypes is only an option which is not on by default. Equi-recursive types
are simple and powerful, but in practice, they are perhaps too expressive. Continuing with
in the -rectype option:

let rec map f = function [] → [] | y :: z → map f y :: map f z

val map : ’a → (’b list as ’b) → (’c list as ’c) = ⟨fun⟩

map (fun x → x + 1) [ 1; 2 ]

This expression has type int but is used with type ’a list as ’a

map () [[]; [[]]]

− : ’a list as ’a = [[]; [[]]]

Equi-recursive types allow this nonsensical version of map to be accepted, thus delaying
the detection of a programmer error. Hence, by default, OCaml typechecker reject type
cycles that do not involve an object type or a variant type. In a normal OCaml session (no
-rectypes), the following is still accepted, though:

let f x = x#hello x;;

val f : (< hello : ’a → ’b; .. > as ’a) → ’b = ⟨fun⟩

OCaml implements a partial occurs check that stops at object and variant types: equi-
recursive types are allowed provided every infinite path crosses an object or a variant type.

5.5.2 Iso-recursive types

In the iso-recursive approach, the user is allowed to introduce new type constructors D via
(possibly mutually recursive) declarations:

D α⃗ ≈ τ (where ftv(τ) ⊆ ᾱ)
Each such declaration adds a unary constructor foldD and a unary destructor unfoldD with
the following types and the new reduction rule:

foldD ∶ ∀ᾱ. τ →D α⃗ unfoldD ∶ ∀ᾱ.D α⃗ → τ unfoldD (foldD v)Ð→ v

Ideally, iso-recursive types should not have any runtime cost. One solution is to compile
constructors and destructors away into a target language with equi-recursive types. Another
solution is to see iso-recursive types as a restriction of equi-recursive types where the source
language does not have equi-recursive types but instead two unary destructors foldD and
unfoldD with the semantics of the identity function. Subject reduction does not hold in
the source language, but only in the full language with iso-recursive types. Applications of
destructors can also be reduced at compile time.

Note that iso-recursive types are less expressive than equi-recursive types, as there is no
counter-part to the Uniqueness typing rule.
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For, example iso-recursive lists can be defined as follows. A parametrized, iso-recursive
type of lists is: list α ≈ unit + α × list α. The empty list is: foldlist (inj1 ()) ∶ ∀α. list α. A
function that measures the length of a list is:

µ(length).λxs.case (unfoldlist xs) of λ().0 ◇ λ(x, xs).1 + length xs ∶ ∀α. list α → int

One folds upon construction and unfolds upon deconstruction.

In the iso-recursive approach, types remain finite. The type list α is just an application
of a type constructor to a type variable. As a result, type inference is unaffected. The occurs
check remains.

5.5.3 Algebraic data types

Algebraic data types result of the fusion of iso-recursive types with structural, labeled prod-
ucts and sums. This suppresses the verbosity of explicit folds and unfolds as well as the
fragility and inconvenience of numeric indices—instead, named record fields and data con-
structors are used. For instance,

foldlist (inj1 ()) is replaced with Nil ()
An algebraic data type constructor D is introduced via a record type or variant type defini-
tion:

D α⃗ ≈∏
ℓ∈L

ℓ ∶ τℓ or D α⃗ ≈ ∑
ℓ∈L

ℓ ∶ τℓ

The set L denotes a finite set of record labels or data constructors {ℓ1 . . . ℓn}, which is fixed
for a given definition. Algebraic data type definitions can be mutually recursive.

The record type definition D α⃗ ≈ ∏ℓ∈L ℓ ∶ τℓ introduces a record n-ary constructor and n
record unary destructors with the following types:

C ∶∶= . . . ∣ {ℓ1 = ⋅ , . . . ℓn = ⋅ } d ∶∶= . . . ∣ ( ⋅ .ℓ1) ∣ . . . ( ⋅ .ℓn)
{ℓ1 = ⋅ , . . . ℓn = ⋅ } ∶ ∀α⃗. τℓ1 → . . . τℓn →D α⃗ ⋅ .ℓ ∶ ∀α⃗.D α⃗ → τℓ

The variant type definition D α⃗ ≈ ∑ℓ∈L ℓ ∶ τℓ introduces unary variant constructors and
variant destructor of arity n + 1 with the following types:

C ∶∶= . . . ∣ (ℓ ⋅) d ∶∶= . . . ∣ case ⋅ of [ℓ1 ∶ ⋅ ◇ . . . ℓn ∶ ⋅] ⋅ .ℓ ∶ ∀α⃗. τℓ →D α⃗

case ⋅ of [ℓ1 ∶ ⋅ ◇ . . . ℓn ∶ ⋅] ∶ ∀α⃗β.D α⃗ → (τℓ1 → β)→ . . . (τℓn → β)→ β

For example, an algebraic data type of lists is list α ≈ Nil ∶ unit+Cons ∶ α× list α gives rise to:

case ⋅ of [Nil ∶ ⋅ ◇ . . .Cons ∶ ⋅] ∶ ∀αβ. list α → (unit → β)→ ((α × list α)→ β)→ β

Nil ∶ ∀α.unit→ list α
Cons ∶ ∀α. (α × list α)→ list α
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hm-Var

σ = Γ(x) C ⊩ ∃σ

C,Γ ⊢ x ∶ σ

hm-Abs

C, (Γ, x ∶ τ0) ⊢ a ∶ τ
C,Γ ⊢ λx. a ∶ τ0 → τ

hm-App

C,Γ ⊢ a1 ∶ τ2 → τ1 C,Γ ⊢ a2 ∶ τ2

C,Γ ⊢ a1 a2 ∶ τ1

hm-Let

C,Γ ⊢ a1 ∶ σ C, (Γ, x ∶ σ) ⊢ a2 ∶ τ
C,Γ ⊢ let x = a1 in a2 ∶ τ

hm-Gen

C ∧C0,Γ ⊢ a ∶ τ α⃗ # C,Γ

C ∧ ∃α⃗.C0,Γ ⊢ a ∶ ∀ᾱ[C0]. τ
hm-Inst

C,Γ ⊢ a ∶ ∀α⃗[C0]. τ
C ∧C0,Γ ⊢ a ∶ τ

hm-Sub

C,Γ ⊢ a ∶ τ1 C ⊩ τ1 ≤ τ2
C,Γ ⊢ a ∶ τ2

hm-Exists

C,Γ ⊢ a ∶ τ α⃗ # Γ, τ

∃α⃗.C,Γ ⊢ a ∶ τ

Figure 5.7: Typing rules for HM(X)

A function that measures the length of a list is:

µ(length).λx.case x of Nil ∶ λ().0 ◇ Cons ∶ λ(y, z).1 + length z ∶ ∀α. list α → int

Mutable record fields In OCaml, a record field can be marked mutable. This introduces
an extra binary destructor for writing this field: ( ⋅ .ℓ ← ⋅) of type ∀α⃗.D τ⃗ → τℓ → unit.
However, this also makes record construction a destructor since, when fully applied it is not
a value but it allocates a piece of store and returns its location. Thus, due to the value
restriction, the type of such expressions cannot be generalized.

5.6 HM(X)

Soundness and completeness of type inference are in fact easier to prove if one adopts a
constraint-based specification of the type system, as in the language HM(X) introduced by
Odersky et al. (1999).

In HM(X), judgments take the form C,Γ ⊢ a ∶ τ , called a constrained typing judgments.
Read under the assumption C and typing environment Γ, the program a has type τ . Here
C constrains free type variables of the judgment while Γ provides the type of free program
variables of a. The constraint C ranges over first-order typing constraints—except that we
require type constraints to have no free program variables. In a constrained typing judgment
C,Γ ⊢ a ∶ τ ,

The parameter X in HM(X) stands for the logic of the constraint language. We have so
far only consider constraints with an equality predicate. However, the equality replaced may
be by an asymmetric subtyping predicate ≤, which makes the language of constraints richer.

The typing rules also use an entailment predicate C ⊩ C ′ between constraints that is
more general than constraint equivalence. Entailment is defined as expected: C ⊩ C ′ if and
only if any ground assignment that satisfies C also satisfies C ′.
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Typing rules for HM(X) are presented in Figure 5.7. Moreover, judgment are taken up to
constraint equivalence. The constraint ∃σ in the premise of Rule hm-Var is an abbreviation
for ∃ᾱ.C0 where σ is ∀ᾱ[C0]. τ . A valid judgment is one that has a derivation with those
typing rules. In a valid judgment, C may not be satisfiable. A program is well-typed in
environment Γ if it has a valid judgment C,Γ ⊢ a ∶ τ for some τ and satisfiable constraint C.

When considering equality only constraints, HM(=) is in fact equivalent to ML: if Γ and τ
contain only Damas-Milner’s type schemes, then Γ ⊢ a ∶ τ in ML if and only if true,Γ ⊢ a ∶ τ
in HM(X). Moreover, if C,Γ ⊢ a ∶ τ in HM(X) and ϕ is an idempotent solution of C, we
have true,Γϕ ⊢ a ∶ τϕ in HM(X) where (⋅)ϕ translates HM(X) type schemes into ML type
schemes—applying the substitution ϕ on the fly.

As for ML, there is an equivalent syntax-directed presentation of the typing rules. How-
ever, we may take advantage of program variables in constraints to go one step further and
mix the constraint C (without free program variables) and the typing environment Γ into
a single constraint C now with possibly free program variables. Judgments take the form
C ⊢ a ∶ τ where C constrains type variables and assign constrained type schemes to program
variables. The type system, called PCB(X), is described on Figure 5.8. It is equivalent to
HM(X)—see (Pottier and Rémy, 2005) for the precise comparison.

For example of a derivation in PCB(X), let a be let y = λx.x in y y:

Let

Fun

Var

x ⪯ α ⊢ x ∶ α

let x ∶ α0 in x ⪯ α ⊢ λx.x ∶ α0 → α
App

Var

y ⪯ β2 → β1 ⊢ y ∶ β2 → β1

Var

y ⪯ β2 ⊢ y ∶ β2
y ⪯ β2 → β1 ∧ y ⪯ β2 ⊢ y y ∶ β1

Exists
C ⊢ a ∶ β1

∃β2.C ⊢ a ∶ β1

where C is
let y ∶ ∀αα0[let x ∶ α0 in x ⪯ α]. α0 → α in y ⪯ β2 → β1 ∧ y ⪯ β2

The constraint C can be simplified as follows:

∃β2.C = ∃β2. let y ∶ ∀αα0[α0 = α]. α0 → α in y ⪯ β2 → β1 ∧ y ⪯ β2
≡ ∃β2. let y ∶ ∀α.α → α in y ⪯ β2 → β1 ∧ y ⪯ β2
≡ ∃β2α1α2. α1 → α1 = β2 → β1 ∧ α2 → α2 = β2
≡ ∃α. β1 = α→ α

Hence, we also have ∃α. β1 = α → α ⊢ a ∶ β1. This is a valid judgment, but not a satisfiable
one. However, by rule pcb-Sub and pcb-Exists, we have ∃β1. (∃α. β1α → α)∧β1 = β → β) ⊢
a ∶ β → β, which is equivalent to true ⊢ a ∶ β → β and is both valid and satisfiable.

The type inference algorithm for ML is sound and complete for PCB(X):

– Soundness: ⟪a ∶ τ⟫ ⊢ a ∶ τ . The constraint inferred for a typing validates the typing.

– Completeness: If C ⊢ a ∶ τ then C ⊩ ⟪a ∶ τ⟫. The constraint inferred for a typing is
more general than any constraint that validates the typing.
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pcb-Var

C ⊩ x ⪯ τ

C ⊢ x ∶ τ

pcb-Abs

C ⊢ a ∶ τ

let x ∶ τ0 in C ⊢ a ∶ τ0 → τ

pcb-App

C1 ⊢ a1 ∶ τ2 → τ1 C2 ⊢ a2 ∶ τ2

C1 ∧C2 ⊢ a1 a2 ∶ τ1

pcb-Let

C1 ⊢ a1 ∶ τ1 C2 ⊢ a2 ∶ τ2

let x ∶ ∀V[C1]. τ1 in C2 ⊢ let x = a1 in a2 ∶ τ2

pcb-Sub

C ⊢ a ∶ τ1

C ∧ τ1 ≤ τ2 ⊢ a ∶ τ2

pcb-Exists

C ⊢ a ∶ τ α # τ

∃α.C ⊢ a ∶ τ

Figure 5.8: Typing rules for PCB(X)

Note Our presentation of HM(X) is incomplete. See also Skalka and Pottier (2002) for a
more recent presentation of HM(X) and Pottier and Rémy (2005) for a detailed presentation
of several variants of HM(X).

Our proof of type soundness for ML only applies for HM(=). One may prove type
soundness for HM(X) in the general case for some logic X, under the axiom that the arrow
type constructor is contra-variant for subtyping. See Pottier and Rémy (2005).

5.7 Type reconstruction in System F

Type checking in explicitly-typed System F is easy. Still, an implementation must carefully
deal with variable bindings and renaming when applying type substitutions. However, as we
have seen, programming with fully-explicit types is unpractical.

Full type inference in System F has long been an open problem, until Wells (1999) proved
it undecidable by showing that it is equivalent to the semi-unification problem which was
earlier proved undecidable. (Notice that the full type-inference problem is not directly related
to second-order unification but rather to semi-unification.)

Hence, we must perform partial type inference in System F. Either type inference is
incomplete, or some amount of type annotations must be provided. Several solutions are
used in practice. They alleviate the need for a lot of redundant type annotations.

5.7.1 Type inference based on Second-order unification

Full type inference is equivalent to semi-unification. However, type inference becomes equiv-
alent to second-order unification if all the positions of type abstractions and type applications
are explicit, while types are themselves left implicit. That is, terms are

M ∶∶= x ∣ λx ∶?.M ∣M M ∣ Λ?.M ∣M ?

where the question marks stand for type variables and types to be inferred. Although, the
problem of second-order unification is undecidable, there are semi-algorithms that often work
well in common cases. This method was proposed by Pfenning (1988).
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Var-I

τ = Γ(x)
Γ ⊢ x ⇑ τ

Abs-C

Γ, x ∶ τ0 ⊢ a ⇓ τ

Γ ⊢ λx. a ⇓ τ0 → τ

App-I

Γ ⊢ a1 ⇑ τ2 → τ1 Γ ⊢ a2 ⇓ τ2

Γ ⊢ a1 a2 ⇑ τ1

I-C

Γ ⊢ a ⇑ τ

Γ ⊢ a ⇓ τ

Annot-I

Γ ⊢ a ⇓ τ

Γ ⊢ (a ∶ τ) ⇑ τ
Abs-I

Γ, x ∶ τ0 ⊢ a ⇑ τ

Γ ⊢ λx ∶τ0. a ⇑ τ0 → τ

Figure 5.9: Bidirectional type checking for the simply-typed λ-calculus .

In fact, partial type inference based on second-order unification can be mixed with type
checking. Explicit polymorphism may be reintroduced as in explicitly-typed System F while
explicitly-controlled implicit instantiation can be performed as above by second-order unifi-
cation. The source language is:

M ∶∶= x ∣ λx ∶τ.M ∣M M ∣ Λα.M ∣M τ ∣ λx ∶?.M ∣M ? ∣ let f = Λ?α1. . . .Λ
?αn.M inM

The new let-binding form is used to declare type arguments that will be made implicit.
Then, every occurrence of such a variable automatically adds type-application holes at the
corresponding positions and type parameters will be inferred using second-order unification.
This amounts to understanding the new let-binding form as follows:

let f = Λ?α1. . . .Λ
?αn.M1 inM2

△== let f = Λα1. . . .Λαn.M1 in [f ↦ f ? . . . ?]M2

Type inference in this language still reduces to second-order unification.

5.7.2 Bidirectional type inference

Type-checking in explicit simply-typed λ-calculus is easy because typing rules have an algo-
rithmic reading. This implies that they are syntax directed, but also that judgments can be
read as functions where some arguments are inputs and others are output. In the implicit
calculus, the rules are still syntax-directed, but some of them do not have an obvious algo-
rithmic reading. Typically, Γ and a would be inputs and τ is an output in the judgment
Γ ⊢ a ∶ τ , which we may represent as Γ↑ ⊢ a↑ ∶ τ ↓. However, in the rule for abstraction:

Abs

Γ, x ∶ τ0 ⊢ a ∶ τ

Γ ⊢ λx. a ∶ τ0 → τ

the type τ0 is used both as input (in the premise) and as an output in the conclusion. Hence,
type-checking the implicit simply-typed λ-calculus is not straightforward. In some cases, the
type of the function may be known, e.g. when the function is an argument to an expression
of a known type. Then, it suffices to check the proposed type is indeed correct.

Formally, we need algorithmic reading of the typing judgment, depending on whether
the return type is known or unknown. We may split the typing judgment Γ ⊢ a ∶ τ into two
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App-I

Var-I
Γ ⊢ f ⇑ τ

Γ, x ∶ τ1 ⊢ x ⇑ τ1

Γ, x ∶ τ1 ⊢ x ⇓ τ1
C-I

Var-I

Γ ⊢ λx.x ⇓ τ1 → τ1
Abs-C

Abs-C

I-C
Γ ⊢ f (λx.x) ⇑ τ2
Γ ⊢ f (λx.x) ⇓ τ2

∅ ⊢ λf ∶τ. f (λx.x) ⇓ τ → τ2

Figure 5.10: Example of bidirectional derivation

judgments Γ ⊢ a ⇓ τ to check that a may be assigned the type τ and Γ ⊢ a ⇑ τ to infer the
type τ of a (or with information flows Γ↑ ⊢ a↑ ⇓ τ ↑ and Γ↑ ⊢ a↑ ⇑ τ ↓. Both judgments are
recursively defined by the rules of Figure ??: the checking mode can call the inference mode
when needed; conversely, annotations may be used to turn inference mode into checking
mode. (As a particular case, annotations on type abstractions enable the inference mode.)

An example of bidirectional derivation is given on Figure 5.10. The type τ stands for(τ1 → τ1)→ τ2 and the environment Γ is f ∶ τ .

The bidirectional method can be extended to deal with polymorphic types, but it is more
complicated. The idea, due to Cardelli (1993), was popularized by Pierce and Turner (2000),
and Odersky et al. (2001) and is still being improved Dunfield (2009).

Predicative polymorphism Predicative polymorphism is an interesting subcase of bidi-
rectional type inference in the presence of predicative polymorphism. Predicative polymor-
phism is a restriction of impredicative polymorphism as can be found in System F. With
predicative polymorphism, types are stratified so that polymorphic types can only be in-
stantiated with simple types.

Interestingly, partial type inference can then still reduced to typing constraints under a
mixed prefix (Rémy, 2005; Jones et al., 2006). Unfortunately, predicative polymorphism is
too restrictive for use in programming languages: as polymorphic values often need to be
put in data-structures whose constructors are polymorphic but impredicative polymorphism
does not allow implicit instantiation of polymorphic constructors by polymorphic types.

One may also use a hierarchy of types where polymorphic types of rank n can be instan-
tiated with polymorphic types of a strictly lower rank. This increases expressiveness but F
is still more expressive than the union of all Fn.

Type inference with first-order constraints does not work for higher ranks.

Local type inference A simpler approach than global bidirectional type inference pro-
posed by Pierce and Turner and improved by Odersky et al. is to perform bidirectional type
inference locally, i.e. by considering for each node only a small context surrounding it.
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Subtyping Interestingly, bidirectional type inference can easily be extended to work in the
presence of subtyping, which is not the case for methods based on second order unification.

5.7.3 Partial type inference in MLF

The language MLF (Le Botlan and Rémy, 2009; Rémy and Yakobowski, 2008) is an exten-
sion of System F especially designed for partial type inference—in fact for type inference
a la ML within System F. That is, the inference algorithm performs first-order unification
and aggressive ML-style let-generalization, but in the presence of second-order types. Inter-
estingly, only parameters of functions that are used polymorphically need to be annotated
in MLF; type abstractions and type annotation are always left implicit. However, for the
purpose of type inference, MLF introduces richer types that enable to write “more principal
types”, but that are also harder to read. The type inference method for MLF can be seen
as a generalization of the constraint-based type inference for ML that handles polymorphic
types.

5.8 Proofs and Solution to Exercises

Proof of Theorem 15

We proof φ ⊢ ⟪Γ ⊢ a ∶ τ⟫ if and only if φΓ ⊢ a ∶ φτ by induction on a. We prove both implica-
tions independently because reasoning with equivalence is error-prone, since the arguments
are similar but often not quite the same in both directions. The proof is thus a bit lengthy,
but all cases are easy.

Case a is x: Assume φΓ ⊢ a ∶ φτ . By inversion of typing, this judgment must be derived by
rule Var. Hence, φτ = φΓ(x). By definition of satisfiability this implies φ ⊢ τ = Γ(x). By
definition of typing constraint, this is φ ⊢ ⟪Γ ⊢ a ∶ τ⟫.
Conversely, assume φ ⊢ ⟪Γ ⊢ a ∶ τ⟫. By definition of typing constraint, this is φ ⊢ τ = Γ(x).
By inversion of satisfiability we must have φτ = φΓ(x). Hence, by rule Var, we have φΓ ⊢
a ∶ φτ .

Case a is a1 a2: Assume φΓ ⊢ a ∶ φτ . By rule App, there exists τ2 such that φΓ ⊢ a1 ∶ τ2 → φτ

and φΓ ⊢ a2 ∶ τ2. Let β # Γ and φ′ be φ,β ↦ τ2. We have φ′Γ ⊢ a1 ∶ φ′β → τ and φ′Γ ⊢ a2 ∶ β.
Hence, by induction hypothesis φ′ ⊢ ⟪Γ ⊢ a1 ∶ β → τ⟫ and φ′ ⊢ ⟪Γ ⊢ a2 ∶ β⟫. Thus,
φ ⊢ ∃β.⟪Γ ⊢ a1 ∶ β → τ⟫ ∧ ⟪Γ ⊢ a2 ∶ β⟫. i.e. φ ⊢ ⟪Γ ⊢ a ∶ τ⟫.
Conversely, assume φ ⊢ ⟪Γ ⊢ a ∶ τ⟫. We have φ ⊢ ∃β.⟪Γ ⊢ a2 ∶ β⟫ ∧ ⟪Γ ⊢ a1 ∶ β → τ⟫.
We may assume w.l.o.g. that β # φ. There must exist φ′ of the form φ,β ↦ τ2 such that
φ′ ⊢ ⟪Γ ⊢ a2 ∶ β⟫ ∧ ⟪Γ ⊢ a1 ∶ β → τ⟫. By induction hypothesis, this implies φ′Γ ⊢ a2 ∶ φ′β
and φ′Γ ⊢ a1 ∶ φ′β → τ , i.e. φΓ ⊢ a2 ∶ τ2 and φΓ ⊢ a1 ∶ φτ2 → τ . By rule App, we have
φΓ ⊢ a1 a2 ∶ φτ .
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Case a is λx. a1: Assume φΓ ⊢ a ∶ φτ . We may assume w.l.o.g. that x # Γ. By rule Fun,
there must exist τ1 and τ2 such that φΓ, x ∶ τ2 ⊢ a1 ∶ τ1 and φτ = τ2 → τ1. Let β1 and β2 be
disjoint from Γ and φ′ be φ,β2 ↦ τ2, β1 ↦ τ1. Then, both φ′(Γ, x ∶ β2) ⊢ a1 ∶ φ′β1 and φ′τ =
φ′(β2 → β1) hold. By induction hypothesis, φ′ ⊢ ⟪Γ, x ∶ β2 ⊢ a1 ∶ τ1⟫ and φ′ ⊢ τ = β2 → β1
Therefore, φ ⊢ ∃β1β2.⟪Γ, x ∶ β2 ⊢ a1 ∶ β1⟫ ∧ τ = β2 → β1. That is, φ ⊢ ⟪Γ ⊢ a ∶ τ⟫.
Conversely, assume φ ⊢ ⟪Γ ⊢ a ∶ τ⟫. By definition of constraints, we have φ ⊢ ∃β1β2.⟪Γ, x ∶
β2 ⊢ a1 ∶ β1⟫∧τ = β2 → β1 for some x disjoint from Γ. We may assume w.l.o.g. that β1, β2 # φ.
There must exist φ′ of the form φ,β2 ↦ τ2, β1 ↦ τ1 such that φ′ ⊢ ⟪Γ, x ∶ β2 ⊢ a1 ∶ τ1⟫ and
φ′ ⊢ τ = β2 → β1. By induction hypothesis, φ′(Γ, x ∶ β2) ⊢ a1 ∶ φ′β1 and φ′τ = φ′(β2 → β1).
That is, φΓ, x ∶ τ2 ⊢ a1 ∶ τ1 and φτ = τ2 → τ1. Hence, by rule Fun, we have φΓ ⊢ a ∶ φτ .

Solution of Exercise 32

See Bjørner (1994).

Solution of Exercise 33

Consider the module struct f = let f = λx.x in f f end. In core ML, the expression has
principal type α → α—but α cannot be generalized. Hence, sig f ∶ ∀α.α → α end is not a
signature for this module; nor is sig f ∶ α → α end since it is not a well-formed one. Correct
signatures are sig f ∶ τ → τ end for any τ , but they do not have a best element.
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▷ Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-oriented extension to
ML. Theory and Practice of Object Systems, 4(1):27–50, 1998.
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