
MPRI, Typage

Didier Rémy
(With much course meterial from François Pottier)

October 19, 2010

Plan of the course

Introduction

Simply-typed λ-calculus

Polymorphism and System F

Type reconstruction

Existential types

Overloading

Overloading

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

4 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What is overloading?

Overloading occurs when at some program point, several definitions for
a same identifier are visible simultaneously.

An interpretation of the program (and a fortiori a run of the
program) must choose the definition that applies at this point. This
is called overloading resolution, which may use very different strategies
and techniques.

All sorts of identifiers may be subject to overloading: variables, labels,
constructors, types, etc.

Overloading must be distinguished from shadowing of identifiers by
normal scoping rules, where in this case, a definition is just
temporarily inaccessible by another one, but only the last definition is
visible.

5 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Why use overloading?

Naming convenience

It avoids name mangling, such as suffixing similar names by type
information: printing functions, e.g. print int , print string, etc.; numerical
operations, e.g. (+), .+ etc.); or numerical constants e.g. 0, 0., etc.

Modularity

To avoid clashing, the naming discipline (including name mangling
conventions) must be know globally. Isolated identifiers with no
particular naming convention may still interfere between different
developments and cannot be used together unless fully qualified.

To think more abstractly

In terms of operations rather than of particular implementations. For
instance, calling to string conversion lets the system check whether
one definition is available according to the type of the argument.

6 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Why use overloading?

Type dependent functions

A function defined on T�X� for all v may have an implementation
depending on the type of X. For instance, a marshaling function of
type �X. X � string may execute different code for each base type X.

Ad hoc polymorphism

Overloading definitions may be ad hoc, i.e. completely unrelated for
each type, or just share a same type schema.

For example 0 could mean either integer zero or the empty list. �
could mean the either integer product or string concatenation.

7`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Why use overloading?

Type dependent functions

A function defined on T�X� for all v may have an implementation
depending on the type of X. For instance, a marshaling function of
type �X. X � string may execute different code for each base type X.

Polytypic polymorphism

Overloading definitions depend solely on the type structure (on whether
it is a sum, a product, etc.) and thus derived mechanically for all
types from their definitions on base types.

Typical examples of polytypic functions are marshaling functions or the
generation of random values for arbitrary types, e.g. as used in
Quickcheck for Haskell.

7`2e 96

http://en.wikipedia.org/wiki/QuickCheck

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Different forms of overloading

There are many variants of overloading, which can be classified by how
overloading is introduced and resolved.

What are the restrictions on overloading definitions?

• None, i.e. arbitrary definitions can be overloaded!

• Can just functions definitions or any definition be overloaded? e.g.
can numerical values be overloaded?

• Are all overloaded definitions of the same symbol instances of a
common type scheme? Are these type schemes arbitrary?

• Are overloaded definitions primitive (pre-existing), automatic
(generated mechanically from other definitions), or user-defined?

• Can overloaded definitions overlap?

• Can overloaded definitions have a local scope?

8 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

How is overloading tamed?

How is overloading resolution defined?

• up to subtyping?

• static or dynamic?

Static resolution (rather simple)

• Overloaded symbols can/must be statically replaced by their
implementation at the appropriate type.

• This does not increase expressiveness, but may still significantly
reduce verbosity.

9`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

How is overloading tamed?

How is overloading resolution defined?

• up to subtyping?

• static or dynamic?

Dynamic resolution (more involved)

This is required when the choice of the implementation depends on the
dynamic of the program execution. For example, the resolution at a
program point in a polymorphic function may depend on the type of
its arguments so that different calls can make different choices.

The resolution is driven by information made available at runtime:

• this can be full or partial type information, or extra values (tags,
dictionaries, etc.) correlated to types instead of types themselves.

• this information may be attached to normal values or passed as
extra arguments.

9`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Static resolution Examples

In SML

Overloaded definitions are primitive (for numerical operators), and
automatic (for record access).

Typechecking fails if overloading cannot be resolved at outermost
let-definitions. For example, let twice x = x + x is rejected in SML, at
toplevel as + could be the addition on either integers or floats.

10`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Static resolution Examples

In SML

Overloaded definitions are primitive (for numerical operators), and
automatic (for record access).

Typechecking fails if overloading cannot be resolved at outermost
let-definitions. For example, let twice x = x + x is rejected in SML, at
toplevel as + could be the addition on either integers or floats.

In Java?

10`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Static resolution Examples

In Java

Overloading is not primitive but automatically generated by subtyping.
When a class extends another one and a method is redefined, the
older definition is still visible, hence the method is overloaded.

Overloading is resolved at compile time by choosing the most specific
definition. There is always a best choice—according to static
knowledge.

An argument may have a runtime type that is a subtype of the best
known compile-time type, and perhaps a more specific definition could
have been used if overloading were resolved dynamically. This is often a
source of confusion for programmers.

11 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Static resolution Limits

Static overloading does not fit well with first-class functions and
polymorphism.

Indeed, with static overloading, λ(x) x + x is rejected when + is
overloaded as it cannot be resolved. The function must be manually
specialized at every type for which + is defined.

This argues in favor of some form of dynamic overloading that allows
to delay resolution of overloaded symbols at least until polymorphic
functions have been sufficiently specialized.

12 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

How is dynamic resolution implemented?

Three main techniques for dynamic resolution

• Pass types at runtime and dispatch on the runtime type, using a
general typecase construct.

• Tag values with their types—or usually an approximation of their
types—and dispatch on the tags of values.
(This is one possible approach to object-orientation where objects
may be tagged with the class they belong to.)

• Pass the appropriate implementations at runtime as extra
arguments, usually grouped in dictionaries of implementations.

13 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Dynamic resolution Type passing semantics

Runtime type dispatch

• Use an explicitly typed calculus (e.g. System F)
• Add a typecase function.
• The runtime cost of typecase may be high, unless type patterns
are significantly restricted.

• By default, one pays even when overloading is not used.
• Monomorphization may be used to reduce type matching statically.
• Ensuring exhaustiveness of type matching is difficult.

ML& (Castagna)

• System F + intersection types + subtyping + type matching
• An expressive type system that keeps track of exhaustiveness;
type matching functions are first-class and can be extended or
overridden.

• Allows patterns overlapping with a best match resolution strategy.
14 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Dynamic resolution Type erasing semantics

Passing unresolved implementations as extra arguments

• Abstract over unresolved overloaded symbols and pass them
around as extra arguments.
Hopefully, overloaded symbols can be resoled when their types are
sufficiently specialized and before they are actually needed.
In short, let f � λx. x � x in can be elaborated into
let f � λ���. λx. x � x in and its application to a f 1.0 to a float is
elaborated into f (+.) 1.0.

• This can be done based on the typing derivation.

• After elaboration, types are no longer needed and can be erased.

• Monomorphization or other simplifications may reduce the number
of abstractions and applications introduced by overloading
resolution.

15 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Dynamic resolution Type erasing semantics

This has been explored under different facets in the context of ML:

• Type classes, introduced in [1989] by Wadler and Blott are the
most popular and widely framework of this kind.

• Other contemporary proposals were proposed by Rouaix [1990]
and Kaes [1992].

• Tentative simplifications of type classes have been made [Odersky
et al., 1995] but did not take over, because of their restrictions.

• Recent works on type classes is still going [Morris and Jones,
2010]

We present Mini-Haskell that contains the essence on Haskell.

16 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

17 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini-Haskell

Mini Haskell is a simplification of Haskell to avoid most of the
difficulties of type classes but keeping their essence:

• single parameter type classes

• no overlapping instance definitions

It is close in expressiveness and simplicity to A second look at
overloading by Odersky et al. but closer to Haskell in style—it can be
easily generalized by lifting restrictions without changing the
framework.

Our version of Mini-Haskell is explicit typed. We present:

• Some examples in Mini-Haskell

• Elaboration of Mini-Haskell into System F

• An implicitly-typed version with type inference.

18 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini-Haskell Example Simple Classes and instances

Mini-Haskell class declarations and instance definitions

class Eq (X) { equal : X � X � Bool }
inst Eq (Int) { equal = (==) }
inst Eq (Char) { equal = (==) }
inst Eq (X) � Eq (List (X))
{ equal = λ(l1) λ(l2) match l1, l2 with

| [],[] � true | [], | [], � false
| h1::t1, h2::t2 � equal h1 h2 && equal t1 t2 }

This code:

• declares a class (dictionary) of type Eq(X) that contains
definitions for equal : X � X � X

• creates two concrete instances (dictionaries) of type Eq(Int) and
Eq(Char),

• creates a function that given a dictionary for EQ(X) builds a
dictionary for List(X).

19`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini-Haskell Example Simple Classes and instances

Mini-Haskell class declarations and instance definitions

class Eq (X) { equal : X � X � Bool }
inst Eq (Int) { equal = (==) }
inst Eq (Char) { equal = (==) }
inst Λ�X� Eq (X) � Eq (List (X))
{ equal = λ(l1 � List X) λ(l2 � List X) match l1, l2 with

| [],[] � true | [], | [], � false
| h1::t1, h2::t2 � equal X h1 h2 && equal �List X� t1 t2 }

This code:

• declares a class (dictionary) of type Eq(X) that contains
definitions for equal : X � X � X

• creates two concrete instances (dictionaries) of type Eq(Int) and
Eq(Char),

• creates a function that given a dictionary for EQ(X) builds a
dictionary for List(X).

19`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Example Elaboration into explicit dictionaries

class Eq X { equal : X � X � Bool }

inst Eq Int { equal = (==) }
inst Eq Char { equal = (==) }
inst Λ�X� Eq (X) � Eq (List (X))
{ equal = λ(l1 � List X) λ(l2 � List X) match l1, l2 with

| [],[] � true | [], | [], � false
| h1::t1, h2::t2 � equal X h1 h2 && equal �List X� t1 t2 }

Becomes:
type Eq (X) = { equal : X � X � Bool }
let equal X (eqX : Eq X) : X � X � Bool = eqX.equal

let eqInt : Eq Int = { equal = ((==) : int � int � bool) }
let eqChar : Eq Char = { equal = primtEqChar }
let eqList X (eqX : Eq X) : Eq (List X)
{ equal = λ(l1 � List X) λ(l2 � List X)match l1, l2 with

| [],[] � true | [], | [], � false
| h1::t1, h2::t2 �

equal X eqX h1 h2 && equal �List X� (eqList X eqX) t1 t2 }
20 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Example Class Inheritance

Classes may themselves depend on other classes (called superclasses):

class Eq (X) � Ord (X) { lt : X � X � Bool }
inst Ord (Int) { lt = (<) }

This declares a new class (dictionary) Ord (X) that contains a method
Ord(X) that depends on a dictionary Eq(X) and contains a method
lt : X � X � Bool.

This instance definition builds a dictionary Ord(Int) from the existing
dictionary Eq Int and the primitive (<) for lt .

The two declarations are elaborated into:

type Ord (X) = { eq : Eq (X); lt : X � X � Bool }
let eqOrd X (ordX : Ord X) : Eq X = ordX.eq
let lt X (ordX : Ord X) : X � X � Bool = ordX.lt

let ordInt : Ord Int = { eq = EqInt; lt = (<) }

21 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell Overloading

Then, we can define an overloaded function and use it:

let rec search : �(X) Ord X � X � List X � Bool =
Λ(X) λ(x : X) λ(l : List X)

match l with [] � false | h::t � equal x h || search x t

let b = search Int 1 [1; 2; 3];;

This elaborates into:

let rec search X (ordX : Ord X) (x : X) (l : List X) : Bool =
match l with [] � false
| h::t � equal X (eqOrd X ordX) x h || search X ordX x t

let b = search Int ordInt 1 [1; 2; 3];;

22 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

23 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

Class and instance declarations are restricted to the toplevel. Their
scope is the whole program.

In practice, a program p is a sequence of class, instance, and
function definitions given in any order and ending with an expression.
For simplification, we assume that instance declarations do not
depend on function declaration, which may then come last as part of
the expression in a recursive let-binding.

Instance definitions are interpreted recursively and their order do not
matter. We may assume, w.l.o.g., that instance definitions come after
all class declarations. The order or class declaration matters, since
they may only refer to other class constructors that have been
previously defined.

We restrict to single parameter classes.

24 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Mini Haskell

Source programs p are of the form:

p ��� H, . . . H H h . . . h t

H ��� class ÑP � K X �ρ�
h ��� inst �ÑX. ÑP � K �F ÑX� �r� P ��� K X Q ��� K T

ρ ��� g S ρ; u � T
r ��� g S r; u � t

Letter u ranges over overloaded symbols.

Class constructors K may appear in Q but not in T . Only regular type
constructors F may appear in T .

The sequence ÑP in class and instance definitions is called a typing
context. Each clause ÑP is of the form K� X� and can be read as an
assumption given a dictionary of type X. . .

The restriction to types of the form K� X� in typing contexts and
class declarations, and to types of the form K� �F� ÑX�� in instances
are for simplicity. Generalization are discussed later.

25 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Target language

The target language is System F with record types, let-bindings, and
let-rec.

Record types are provided as data types. Record labels are overloaded
identifiers u.

We may use overloaded symbols as variables. This amounts to
reserving a subset of variables xu indexed by overloaded symbols, but
just writing u as a shortcut for xu.

We use letter s instead of t for elaborated terms, to distinguish
them from source terms, but they are really terms of F .

26 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Target language

We use � as an annotated variant of �.

Polymorphic types in the target language are of the form:

S ��� �ÑX.Q� . . . Q� R

R ��� T S Q
For convenience, we may still write Q1, . . . Qn � T to mean
Q1 � . . . Qn � T .

In the target language, record fields are of type R.

27 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations

class K1 X, . . . Kn X� K X �ρ�
A class declaration H defines a class constructor K. Every class
(constructor) K must be defined by one and only one class
declaration. So we may say that H is the declaration of K.

We say that classes Ki’s are superclasses of K and we write Ki h K.
They must have been previously defined. so that the relation h is
acyclic. (Each dictionary of class K will then contain a sub-dictionary
for each superclass Ki.)

We also request that all Ki’s are independent, i.e. there does not
exists i and j such that Kj h Ki. (If Kj h Ki, then Ki dictionary already
contains a sub-dictionary for Kj , to which K has access via Ki so it
does need not have one itself.)

28 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations

class K1 X, . . . Kn X� K X �ρ�
The row type ρ is of the form

u1 � T1, . . . um � Tm
and declares overloaded symbols ui (also called methods) of class K.
An overloaded must not be declared twice in the same class and
must be declared only in one class.

Types Ti’s must be closed with respect to X.

Each dictionary of class will contain a definition for each of its
method.

29 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations Elaboration

class K1 X, . . . Kn X� K X �ρ�
Its elaboration consists in a record type declaration to represent the
dictionary and the definition of accessors for each field of the record.

The row ρ only lists methods. We extend it with all sub-dictionaries
fields and define ρK to be uKK1 � K1 X, . . . uKKn � Kn X, ρ. We introduce:

• a record type definition K X � �ρK�, and
• for each u � Ru in ρK,

• let su be ΛX.λz �K X. �x.u�.
• let Su be �X.K X� Ru, i.e. the type of tu
• let Cu be the program context let u � Su � su in ��.

Then JHK is the composition of all program contexts Cu when u � ρu
ranges in ρ.

30 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Class declarations Elaboration

The elaboration JÑHK of the sequence of class definitions ÑH is the
composition of the elaboration of each.

Record type definitions are collected in the program prelude.

We write ΓÑH for the typing context composed of �u � Su� for all u
appearing in ÑH (which is well-formed).

31 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Instance declarations

inst �ÑY . ÑP � K �F ÑY� �r�
This defines an instance of a class K. The clauses ÑP are called a
typing context. They describe the dictionaries that must be available
on type parameters ÑY so that the dictionary K �F ÑY� can be built.

The typing context ÑP is not related to the superclasses of the class
K: For example, class K� may be a superclass of K, so the creation of
the dictionary K X requires a dictionary K� X while an instance
declaration K F (where F is nullary) need not (and in fact cannot, as
the syntax does not allow it) request a dictionary of type K� F.
Indeed, either such a dictionary can already be built, hence the
instance does not require it, or it will never be possible to build one
(remember that instance definitions are recursively defined so all of
them are already visible) and the program must be rejected.

32 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Instance declarations

inst �ÑY . K1 Y1, . . . Kp Yp � K �F ÑY� �r�
In summary, the typing context describes dictionaries that cannot yet
be built because they depend on some unknown type Y in ÑY .
We assume that the typing context K1 Y1, . . . Kp Yp is such that

• each Yi is in ÑY
• Yi and Yj may be equal, except if Ki h Kj or Kj h Ki or Ki � Kj .

The reason for the latter condition is, as for class declarations, that
it would be useless to require both dictionaries Ki Y and Kj Y when,
e.g., Ki h Kj since the former is contained in the latter.

Such typing contexts are said to be canonical.

33 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Instance declarations Elaboration

inst �ÑY . K1 Y1, . . . Kp Yp � K �F ÑY� �r�
This instance definition h is elaborated into a triple �zh, sh, Sh� where
zh is an identifier to refer to the elaborated body sh of type Sh.

The type Sh is �ÑY .K1 Y1 � . . . Kp Yp � K �F ÑY�
The expression sh builds a dictionary of type K �F ÑY�, given p

dictionaries (which may be none) of respective types K1 Y1, . . . Kp Yp:

λ�z1 �K1 X1� λ�zp �Kp Xp�.�uKK�
1
� q1, . . . u

K
K�
n
� qn, u1 � s1, . . . um � sm�

The types of fields are as prescribed by the class definition K:

• qi is a dictionary of type K�i �F ÑY�
• si is the elaboration of ti where r is u1 � t1, . . . um � tm.

(For clarity, we write z instead of x when it binds a dictionary.)

34 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of whole programs

The elaboration of all class instances JÑhK is the program context

let rec �Ñzh � ÑSh� � Ñsh in ��
The elaboration of the whole program ÑH Ñh t is

JÑH Ñh tK Q�� let Ñu � ÑSu � Ñsu in let rec �Ñzh � ÑSh� � Ñsh in s
Hence, the expression s and all expressions sh are typed (and
elaborated) in the environment Γ0 equal to ΓÑH, ΓÑh where

• [reminder] ΓÑH declares functions to access components of
dictionaries (both sub-dictionaries and definitions of overloaded
symbols).

• ΓÑh equal to �Ñzh � ÑSh� declares functions to build dictionaries.

35 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of expressions

The elaboration of expressions is defined by a judgment

Γ Ø t s � S
where Γ is a System F typing context, t is the source expression,
s is the elaborated expression and S its type in Γ. In particular,
Γ Ø t s � S implies Γ Ø s � S in F .

We write q for dictionary terms, i.e. the following subset of F terms:

q ��� u S z S q T S q q

(u and z are just particular cases of x)

The elaboration of dictionaries is the judgment Γ Ø q � S which is just
typability in System F—but restricted to dictionary expressions.

36 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of expressions

Most rules just wrap the elaboration of their subexpressions:

Var

x � S > Γ
Γ Ø x x � S Inst

Γ Ø t s � �X.S
Γ Ø t T s T � �X (T�S Gen

Γ, X Ø t s � S
Γ Ø ΛX.t ΛX.s � �X.S

Let

Γ Ø t1 s1 � S Γ, x � S Ø t2 s2 � T
Γ Ø let x � S � t1 in t2 let x � S � s1 in s2 � T

App

Γ Ø t1 s1 � T2 � T1 Γ Ø t2 s2 � T2
Γ Ø t1 t2 s1 s2 � T1 Abs

Γ, x � T � Ø t s � T
Γ Ø λx �T �. t λx �T �. s � T � � T

In rule Let, we require S to be canonical, i.e. of the form �ÑX. ÑP � R with ÑP is itself empty or
canonical. See also this restriction.

Rules App and Abs do not applies to overloaded expressions of type S.

37 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of overloaded expressions

The interesting rules are the elaboration of missing abstractions or
applications of dictionaries.

OAbs

Γ, x � Q Ø t s � S x # t

Γ Ø t λx �Q. s � Q� S

OApp

Γ Ø t s � Q� S Γ Ø q � Q
Γ Ø t s q � S

Rule Oabs pushes in the context Γ dictionary abstractions as prescribed by the expected type.
These might be used (in addition to dictionary accessors and instance definitions already in Γ)
to elaborate dictionaries as described by the premise Γ Ø q � Q of rule OAbs.

The judgment Γ Ø q � Q is just well-typedness in System F for dictionary expressions. There is
an algorithmic reading of the rule, described further, where Γ and Q are given and q is inferred.

By construction, elaboration produces well-typed expressions: that is Γ0 Ø t s � T implies that
is Γ0 Ø s � T .

38 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Resuming the elaboration

An instance declaration h of the form:

inst �ÑY . K1 Y1, . . . Kp Yp � K ÑT �u1 � t1, . . . l; um � tm�
is translated into

λ�z1 �K1 X1� λ�zp �Kp Xp�.�uKK�
1
� q1, . . . u

K
K�
n
� qn, u1 � s1, . . . um � sm�

where:

• uKK�
i
� Ti are the superclasses fields

• Γh is ÑY ,K1 Y1, . . . Kp Yp
• Γ0,Γh Ø qi � Ti
• Γ0,Γh Ø ti si � Ti

Finally, given the program p equal to ÑH Ñh t, we elaborate t as s such
that Γ0 Ø t s � �X̄. T .
Notice that �X̄. T is an unconstrained type scheme. Why?

39 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Resuming the elaboration

Otherwise, s could elaborate into an abstraction over dictionaries, i.e.
it would be a value and never applied!

Where else should we be careful that the intended semantics is
preserved?

40`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Let-monomorphization

Otherwise, s could elaborate into an abstraction over dictionaries, i.e.
it would be a value and never applied!

Where else should we be careful that the intended semantics is
preserved?

In a call-by-value setting, we must not elaborate applications into
abstractions, since it would delay and perhaps duplicate the order of
evaluations.

For that purpose, we must restrict rule Let so that either S is of the form�X̄. T or t1 is a value or a variable.

What about call-by-name? and Haskell?

40`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Let-monomorphization

In call-by-name, an application is not evaluated until it is needed.
Hence adding an abstraction in front of an application should not
change the evaluation order t1 t2.

We must in fact compare:

let x1 � λy. let x2 � v1 v2 in t2 in �x1 (x1 q�t1 �1�
let x1 � let x2 � λy. v1 v2 in �x2 (x2 q�t2 in t1 �2�

The order of evaluation of v1 v2 is preserved.

However, Haskell is call-by-need, and not call-by-name! Hence,
applications are delayed as in call-by-name but shared and only
reduced once.

The application v1 v2 will be reduced once in (1), but as many types
as there are occurrences of x2 in t2 in (2).

41 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Let-monomorphization

The final result will still be the same in both cases because Haskell is
pure, but the intended semantics is changed regarding the efficiency.

Hence, Haskell may also use monomorphization in this case. This is a
delicate design choice

(Of course, monomorphization reduces polymorphism, hence the set of
typable programs.)

42 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Resuming the elaboration Sources of failures

The elaboration may fail for several reasons:

• The input expression does not obey one of the restrictions we
have requested.

• A typing may occur during elaboration of an expression.

• The impossibility to build appropriate dictionaries.

If elaboration fails, the program p is rejected, indeed.

43 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

When elaboration succeeds

When the elaboration of p succeeds it returns JpK, well-typed in F .

Then, the semantics of p is given by that of JpK.

44`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

When elaboration succeeds

When the elaboration of p succeeds it returns JpK, well-typed in F .

Then, the semantics of p is given by that of JpK.

Hum. . .

44`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

When elaboration succeeds

When the elaboration of p succeeds it returns JpK, well-typed in F .

Then, the semantics of p is given by that of JpK.

Hum. . . Although terms are explicitly-typed, their elaboration may not
be unique! Indeed, they might be several ways to build dictionaries of
some given type (see below for details).

In the worst case, a source program may elaborate to completely
unrelated programs. In the best case, all possible elaborations are
equivalent programs and we say that the elaboration is coherent: the
programs has a deterministic semantics given by elaboration.

But what does it mean for programs be equivalent?

44`3e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On program equivalence

There are several notions of program equivalence:

• If programs have a denotational semantics, the equivalence of
programs should be the equality of their denotations.

• As a subcase, two programs having a common reduct should
definitely be equivalent. However, this will in general not be
complete: values may contain functions that are not identical,
but perhaps would reduce to the same value whenever applied to
the same arguments.

• This leads to the notion of observational equivalence. Two
expressions are observationally equivalent (at some observable
type, such as integers) if their are indistinguishable whenever they
are put in arbitrary (well-typed) contexts of the observable type.

45 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On program equivalence

For instance, two different elaborations that would just consistently
change the representation of dictionaries (e.g. by ordering records in
reverse order), would be equivalent if we cannot observe the
representation of dictionaries.

46 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Sufficient conditions for coherence

Since terms are explicitly typed, the only source of non-determinism is
the elaboration of dictionaries.

One way to ensure coherence is that two dictionaries values of the
same type are always equal. This does not mean that there is a
unique way of building dictionaries, but that all ways are equivalent as
they eventually return the same dictionary.

Hint: Here is a simple intuition. Consider an occurrence of an overloaded

identifier u in a context C that is elaborated into u ÑT q where q may not be

unique, but of some type K T determined by C. During evaluation, this

expression will eventually reduce to �λz �K T �. z.u� qv where su is the accessors

for u, qv is a dictionary value of type T � and T � is a specialization of T that

is fully determined by C and, in particular, independent of the choice of q.

Since there is a unique dictionary qv of type K T �, the actual code executed

for this occurrence of u is qv .u and independent of the possible choices for q.

47 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionaries

Elaboration of dictionaries is just typechecking in System F .

More precisely, it infers a dictionary q given Γ and Q so that
Γ Ø q � Q holds.

The relevant subset of rules for dictionary expressions are:

D-OVar

u � S > Γ
Γ Ø u � S D-Inst

Γ Ø s � �X.S
Γ Ø s T � �X (T�S D-Var

z � Q > Γ
Γ Ø z � Q

D-App

Γ Ø q1 � Q1 � Q2 Γ Ø q2 � Q1

Γ Ø q1 q2 � Q2

Can we give a type-directed presentation?

48 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionaries

Elaboration is driven by the type of the expected dictionary and the
bindings available in the typing environment, which may be:

• dictionary constructors xh given by instance definitions;

• dictionary accessors uK given by class declarations;

• dictionary arguments, given by the local typing context.

Hence, the typing rules may be factorized as follows:

D-OVar-Inst

x � �ÑY . P1 � . . . Pn � K �F ÑY� > Γ Γ Ø qi � �ÑY (ÑT�Pi
Γ Ø x ÑT Ñq � K �F ÑT�

D-Proj

u � �X.K� X� K X > Γ Γ Ø q � K� T
Γ Ø z T q � K T

D-Var

z � K X > Γ
Γ Ø z � K X

49 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary values

Dictionary values are typed in Γ0, which does not contain free type
variables, hence, only the first rule applies:

D-OVar-Inst

x � �ÑY . P1 � . . . Pn � K �F ÑY� > Γ Γ Ø qi � �ÑY (ÑT�Pi
Γ Ø u ÑT Ñq � K �F ÑT�

This rule for the judgment Γ Ø q � T can be read as an algorithm
where Γ and Q are inputs (and Γ is constant) and q is an output.

Provided there is no choice in finding x � �ÑY . P1 � . . . Pn � K �F ÑY� in Γ.

Since each such clause is coming from an instance definition h, their
is no choice in the application of this rule if instance definitions never
overlap.

This assumption ensures coherence.

50 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overlapping instances

Two instances inst �ÑYi. ÑP � K �Fi ÑYi� �ri� for i in �1,2� of a class K
overlap if the type schemes �ÑYi.K �Fi ÑTi� have a common instance, i.e.
in the present setting, if F1 and F2 are equal.

Overlapping instances are an inherent source of incoherence, it means
that for some type Q (in the common instance), a dictionary of type
Q may (possibly) be built using two different implementations.

51 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments

Dictionary expressions, as opposed to dictionary values, will also be
built by extracting dictionaries from other dictionaries.

Why?

52`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments

Dictionary expressions, as opposed to dictionary values, will also be
built by extracting dictionaries from other dictionaries.

Indeed, in overloaded code, the exact type is not fully known at
compile type, hence dictionaries must be passed as arguments, from
which superclass dictionaries may (and must, as we forbid to pass
both a class and one of its super class dictionary simultaneously) be
extracted.

Technically, they are typed in an extension of the typing context Γ0
which may contain typing assumptions z � K� Y about dictionaries
received as arguments. Hence rules D-Proj and D-Var may also apply.

52`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments

The elaboration of dictionaries uses the three rules:
D-OVar-Inst

x � �ÑY . P1 � . . . Pn � K �F ÑY� > Γ Γ Ø qi � �ÑY (ÑT�Pi
Γ Ø x ÑT Ñq � K �F ÑT�

D-Proj

u � �X.K� X� K X > Γ Γ Ø q � K� T
Γ Ø z T q � K T

D-Var

z � K X > Γ
Γ Ø z � K X

They can be read as a backtracking algorithm.

53 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments Termination

The proof search always terminates, since premises have smaller Q

than the conclusion when using the lexicographic order of first the
height of T , then the reverse order of class inheritance.

If no rule applies, we fail. If rule D-Var applies, the derivation ends with success.

If rule D-Proj applies, the premise is called with a smaller problem since the height is unchanged

and K� ÑT with K� h K.

If D-Ovar-Inst applies, the premises are called at type Ki Tj where Tj is subtype of ÑT , hence of
a strictly smaller height.

54 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Elaboration of dictionary arguments Non determinism

For instance, in the introduction, we defined two instances eqInt and
ordInt, while the later contains an instance of the former.

Hence, a dictionary of type eqInt may be obtained:

• directly as eqInt, or

• indirectly as eq ordInt, by projecting the Eq sub-dictionary of class
Ord Int

In fact, the latter choice could then be reduced at compile time and
be equivalent to the first one.

One may recover determinism by fixing a simple and sensible strategy
for elaboration. Restrict the use of rule D-Proj to cases where Q is P–when

D-OVar-Inst does not apply. However, the extra flexibility is harmless and perhaps useful freedom

for the compiler.

55 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Typing dictionaries Example

In the introductory example Γ0 is:

equal � �X. Eq X� X � X � Bool,

eqInt � EqInt

eqList � �X. Eq X� Eq �List x�
eqOrd � �X.Ord X� Eq X,

lt � �X.Ord X� X � X � Bool,

When typing search, we have to infer a dictionary for equal in the
context Γ, X, ordX � Ord X.

We find:
Γ, X, ordX � Ord X Ø eqOrd X ordX � Eq X

56 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

57 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What can be left implicit?

Class declarations?

58`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What can be left implicit?

Class declarations must remain explicit:

• They define the structure of dictionaries: a record type definition
and its accessors.

• They define the type scheme of overloaded symbols and the class
they belong to.

The type of instance declarations?

58`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What can be left implicit?

Class declarations must remain explicit:

• They define the structure of dictionaries: a record type definition
and its accessors.

• They define the type scheme of overloaded symbols and the class
they belong to.

The type of instance declarations must also remain explicit:

• These are polymorphic recursive definitions, hence their types are
mandatory.

58`3e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

What can be left implicit?

Class declarations must remain explicit:

• They define the structure of dictionaries: a record type definition
and its accessors.

• They define the type scheme of overloaded symbols and the class
they belong to.

The type of instance declarations must also remain explicit:

• These are polymorphic recursive definitions, hence their types are
mandatory.

However, all core language expressions (in instance declarations and
the final one) can be left explicit.

58`4e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Example

class Eq (X) { equal : X � X � Bool }
inst Eq (Int) { equal = (==) }
inst Eq (Char) { equal = (==) }
inst Eq (X) � Eq (List (X))
{ eq = λ(l1) λ(l2) match l1, l2 with

| [],[] � true | [], | [], � false
| h1::t1, h2::t2 � eq h1 h2 && eq t1 t2 }

class Eq (X) � Ord (X) { lt : X � X � Bool }
inst Ord (Int) { lt = (<) }

let rec search =
λ(x) λ(l)

match l with [] � false | h::t � equal x h || search x t

let b = search Int 1 [1; 2; 3];;

59`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Example

class Eq (X) { equal : X � X � Bool }
inst Eq (Int) { equal = (==) }
inst Eq (Char) { equal = (==) }
inst Λ�X� Eq (X) � Eq (List (X))
{ eq = λ(l1 � List X) λ(l2 � List X) match l1, l2 with

| [],[] � true | [], | [], � false
| h1::t1, h2::t2 � eq X h1 h2 && eq �List X� t1 t2 }

class Eq (X) � Ord (X) { lt : X � X � Bool }
inst Ord (Int) { lt = (<) }

let rec search � ��X� Ord X� X � List X� Bool =
Λ�X� λ(x � X) λ(l � ListX)

match l with [] � false | h::t � equal X x h || search X x t

let b = search Int 1 [1; 2; 3];;

59`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type inference

The idea is to see dictionary types K T , which can only appear in type
schemes and not in types, as a type constraint to mean “there exists
a dictionary of type K X”.

Just read �ÑX. ÑP � T a the constraint type scheme �ÑX�ÑP �. T .
We extend constraints with dictionary predicates:

C ��� . . . S K T

On ground types a constraint K t is satisfied if one can build a
dictionary of type K t in the initial environment Γ0 (that contains all
class and instance declarations), i.e. formally, if there exists a
dictionary expression q such that Γ0 Ø q � K t.

The satisfiability of class-membership constraints is thus:

K φT

φ Ø K T
60 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every class declaration class K1 X1, . . . Kn Xn � K X �ρ�,
K X è K1 X1 , . . . Kn Xn �1�

This rule allows to decompose any set of simple constraints into a
canonical one.

Proof of (1).

61`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every class declaration class K1 X1, . . . Kn Xn � K X �ρ�,
K X è K1 X1 , . . . Kn Xn �1�

This rule allows to decompose any set of simple constraints into a
canonical one.

Proof of (1). Assume φ Ø K X, i.e. Γ0 Ø q � K �φX� for some dictionary
q.

From the class declaration, we know that K X is a record type
definition that contains fields uKKi of type Ki Xi. Hence, the dictionary
value q contains field values of types Ki �φX�. Therefore, we have
φ Ø Ki X for all i in 1..n, which implies φ Ø K1 X , . . . Kn X.

61`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every instance definition inst �ÑY . K1 Y1, . . . Kp Yp � K �F Y� �r�,
K �F ÑY� � K1 Y1 , . . . Kp Yp �2�

This rule allows to decompose all class constraints into simple
constraints of the form K X.

Proof of (2) (ê direction). Assume φ Ø Ki Yi. There exists dictionaries
qi such that Γ0 Ø qi � Ki �φYi�. Hence, Γ0 Ø xh ÑY q1 . . . qp � K �F �φÑY ��,
i.e. φ Ø K �F �φÑY��.
(è direction). Assume, φ Ø K �F �φÑY�. i.e. there exists a dictionary q

such that Γ0 Ø q � K �F φÑY�. By non-overlapping of instance declarations,
the only way to build such a dictionary is by an application of xh.
Hence, q must be of the form xh ÑY q1 . . . qp with Γ0 Ø qi � Ki �φYi�, that
is, φ Ø Ki Yi for every i, which implies φ Ø K1 Y1 , . . . Kp Yp .

62`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every instance definition inst �ÑY . K1 Y1, . . . Kp Yp � K �F Y� �r�,
K �F ÑY� � K1 Y1 , . . . Kp Yp �2�

This rule allows to decompose all class constraints into simple
constraints of the form K X.

Notice that the equivalence still holds in an open-world assumption
where new instance clauses may be added later, because another
future instance definition cannot overlap with existing ones.

If overlapping of instances were allowed, the è direction would not
hold. Then, the rewriting rule:

K �F ÑY� �� K1 Y1 , . . . Kp Yp

would still be sound (the right-hand side entails the left-hand side,
and thus type inference would infer sound typings), ı.e. but not
complete (type inference could miss some typings).

62`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Reasoning with class-membership constraints

For every class K and type constructor F for which there is no
instance of K,

K �F ÑY� � false �3�
This rule allows failure to be reported as soon as constraints of the
form K �F ÑT� appear and there is not instance of K for F.

Proof of (3). The ê direction is a tautology, so it suffices to prove
the è direction. By contradiction. Assume φ Ø K �F ÑY�. This implies the
existence of a dictionary q such that Γ0 Ø q � K �F �φÑY ��. Then, there
must be some xh in Γ whose type scheme is of the form�ÑY . ÑP � K �F ÑY�, i.e. there must be an instance of class K for F.

Notice that this rule does not work in an open world assumption. The
rewriting rule

K �F ÑY� �� false

would still remain sound but incomplete.
63 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Typing constraints

Constraint generation is unchanged.

LxM � �X�x j X�. X
Lλx. aM � �X1X2�let x � X1 in LaM j X2�. X1 � X2

if X1, X2 # a

La1 a2M � �X1X2�La1M j X1 � X2 , La2M j X1�. X2
if X1, X2 # a1, a2

Llet x � w in aM � �X�let x � LwM in LaM j X�. X
if w is a value or a variable

A constraint type scheme can always be decomposed into one of the
form �X̄�P1 , P2�. T where ftv�P1� > X̄ and ftv�P2� # X̄.

The constraints P2 can then be extruded in the enclosing context if
any, so we are in general left just with P1.

Remember that Γ Ø a � T iff def Γ in LaM j T .
64 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Checking well-typedness

To check well-typedness of the program p equal to ÑH Ñh a, we must
check that: each expression ahi and the expression a are well-typed, in
the environment used to elaborate them:

This amounts to checking:

• Γ0,Γh Ø ahi � T hi where T hi is given.
Thus, we check that the constraints def Γ0,Γh in Lahi M j T hi � true.

• Γ0 Ø a � T for some T .
Thus, we check that def Γ0 in §X. LaM j X � true.

However, . . .

65`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Checking well-typedness

To check well-typedness of the program p equal to ÑH Ñh a, we must
check that: each expression ahi and the expression a are well-typed, in
the environment used to elaborate them:

This amounts to checking:

• Γ0,Γh Ø ahi � T hi where T hi is given.
Thus, we check that the constraints def Γ0,Γh in Lahi M j T hi � true.

• Γ0 Ø a � T for some T .
Thus, we check that def Γ0 in §X. LaM j X � true.

However, . . . Typechecking is not sufficient!

Type reconstruction should also return an explicitly-typed term t than
can then be elaborated into s. That is Γ Ø a t � T .

65`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction

The resolution strategy for constraints may be tuned to delay garbage
collection of solved constraints, so that the explicitly-typed term can
be read back from the constraint in solved form.

For example, original let-constraints can be kept using the rule

let x � S in C �� let x � S in def y � S in C

to propagate the constraint type scheme S inside C, but keeping the
original binding for elaboration. (Of course, we then also disallow
let-constraints to be discarded.)

Constraints in canonical forms now contain let-bindings let x � S in C
where S is itself in canonical form and x does not appear in C.

From a constraint in canonical form, we can rebuild a term where all
let-bindings and arguments of functions are explicitly typed, from which
type applications for let-bound variables can be easily rebuilt (further
instrumentation of the constraints could also remember those).

66 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Principal

While type inference infers principal types, there may be several
explicitly typed terms of the same type, even if we restrict
instantiation to variables and generalization to let-bound expressions.

An example (in ML)?

67`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Principal

While type inference infers principal types, there may be several
explicitly typed terms of the same type, even if we restrict
instantiation to variables and generalization to let-bound expressions.

An example (in ML)
let x � λy. y in x 1

can be elaborated into either one of:

let x � int� int � λy � int. y in x 1
let x � �X. X � X � Λx.λx � int. x in x int 1

Which one is better?

67`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Principal

While type inference infers principal types, there may be several
explicitly typed terms of the same type, even if we restrict
instantiation to variables and generalization to let-bound expressions.

An example (in ML)
let x � λy. y in x 1

can be elaborated into either one of:

let x � int� int � λy � int. y in x 1
let x � �X. X � X � Λx.λx � int. x in x int 1

Which one is better?

Monomorphic terms can be compiled more efficiently, so removing
useless polymorphism may be useful.

It is best is to leave the choice to the compiler.

67`3e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Principal

Let t and t� be two type reconstructions of a term a. We say that t

is more general than t� if all let-bindings are assigned more general
type schemes in t than in t�, i.e.

for all decompositions of t into C�let x � S � t1 in t2�, then
there is a corresponding decomposition of t� (i.e. one where C

and C� have the same erasure) as C��let x � S� � t�1 in t�2� where
S is more general than S�.

A type reconstruction is principal if it is more general than any other
type reconstruction of the same term.

Core ML admits principal type reconstructions.

68 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Non principal

Exercise

Find extensions of ML that do not have principal type reconstructions.

69`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Non principal

Exercise

Find extensions of ML that do not have principal type reconstructions.

Possible answers:

• ML with modules.

69`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Non principal

Exercise

Find extensions of ML that do not have principal type reconstructions.

Possible answers:

• ML with modules.
Signatures must have closed type schemes.

• ML with dynamic values.

69`3e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Non principal

Exercise

Find extensions of ML that do not have principal type reconstructions.

Possible answers:

• ML with modules.
Signatures must have closed type schemes.

• ML with dynamic values.
A dynamic value is a value package with its type. For example, it
can then be stored on a persistent store and retrieved later in
another session (by checking the dynamic value against its type).

What is the problem?

69`4e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Non principal

Exercise

Find extensions of ML that do not have principal type reconstructions.

Possible answers:

• ML with modules.
Signatures must have closed type schemes.

• ML with dynamic values.
A dynamic value is a value package with its type. For example, it
can then be stored on a persistent store and retrieved later in
another session (by checking the dynamic value against its type).

What is the problem? To be packed into a dynamic, the value
must have a closed type scheme.

69`5e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Non principal

Exercise

Find extensions of ML that do not have principal type reconstructions.

Possible answers:

• ML with modules.
Signatures must have closed type schemes.

• ML with dynamic values.
A dynamic value is a value package with its type. For example, it
can then be stored on a persistent store and retrieved later in
another session (by checking the dynamic value against its type).

What is the problem? To be packed into a dynamic, the value
must have a closed type scheme.
So what should be the type of λx. dynamic x ?

69`6e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction (Minimal)

Question: Does ML admits least general type reconstructions?

70`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction (Minimal)

Question: Does ML admits least general type reconstructions?

No, there are examples where there are two minimal incomparable type
reconstructions and others with smaller and smaller type
reconstructions but no smallest one.

Exercise: Find examples of both kinds!

Answer: See[Bjørner,1994]

70`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Principal elaboration

The constraint framework enforces the inference of principal types,
since it transforms the original constraint into an equivalent
constraint.

However, it does not enforce type reconstruction to be principal.

Why?

71`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type reconstruction Principal elaboration

The constraint framework enforces the inference of principal types,
since it transforms the original constraint into an equivalent
constraint.

However, it does not enforce type reconstruction to be principal.

Indeed, in a constraint §X. C, the existentially bound type variable X

may be instantiated to any type that satisfies the constraint C and
not necessarily the most general one.

Interestingly, however, the default strategy for constraint resolution
always returns principal type reconstructions.

That is, variables are never arbitrarily instantiated, although this
would be allowed by the specification.

71`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Back to coherence

When the source language is implicitly-typed, the elaboration from the
source language into System F code is the composition of type
reconstruction with elaboration of explicitly typed terms.

Hence, even though the elaboration is coherent for explicitly-typed
terms, this may not be true for implicitly-typed terms.

There are two potential problems:

• The language has principal constrained type schemes, but the
elaboration requests unconstrained type schemes.

• Ambiguities could be hidden (and missed) by non principal type
reconstructions.

72 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Toplevel unresolved constraints

Thanks to the several restrictions on class declarations and instance
definitions, the type system has principal constrained schemes (and
principal typing reconstructions). However, this does not imply that
there are principal unconstrained type schemes.

Indeed, assume that the principal constrained type scheme is�X�K X�. X � X and the typing environment contains two instances of
K F1 and K F2 of class K. Constraint-free instances of this type
scheme are F1� F1 and F2� F2 but �X. X � X is certainly not one.

Not only neither choice is principal, but the two choices would
elaborate in expressions with different (non-equivalent) semantics.

We must fail in such cases.

73 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Toplevel unresolved constraints

This problem may appear while typechecking the final expression a in
Γ0 that request an unconstrained type scheme �X. T
It may also occur when typechecking the body of an instance
definition, which requests an explicit type scheme �ÑX� ÑQ�. T in Γ0 or
equivalently that request a type T in Γ0, ÑX, ÑQ.

74 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Example of unresolved constraints

class Num (X) { 0 : X, (+) : X � X � X }
inst Num Int { 0 = Int.(0), (+) = Int.(+} }
inst Num Float { 0 = Float.(0), (+) = Float.(+} }
let zero = 0 + 0;

The type of zero or zero � zero is �X�Num X�. X—and several classes
are possible for Num X. The semantics of the program is undetermined.

class readable (X) { read : descr � X }
inst readable (Int) { read = read int }
inst readable (Char) { read = read char }
let x = read (open in())

The type of x is �X�readable X�.unit� X—and several classes are
possible for readable X. The program is rejected.

75 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence Inaccessible constraint variables

In the previous examples, the incoherence comes from the obligation to
infer type schemes without constraints. A similar problem may occur
with isolated constraints in a type scheme.

Assume, for instance, that the elaboration of let x � a1 in a2 is
let x � �X�K X�. int � int � s1 in s2.

All applications of x in s2 will lead to an unresolved constraint K X

since neither the argument nor the context of this application can
determine the value of the type parameter X. Still, a dictionary of
type K T must be given before s1 can be executed.

Although x may not be used in s2, in which case, all elaborations of
the expression may be coherent, we may still raise an error, since an
unusable local definition is certainly useless, hence probably a
programmer’s mistake. The error may then be raised immediately, at
the definition site, instead of at every use of x.

76 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Coherence The open-world view

When there is a single instance K F for a class K that appears in an
unresolved or isolated constraint K X, the problem formally disappears,
as all possible type reconstructions are coherent.

However, we may still not accept this situation, for modularity reasons,
as an extension of the program with another non-overlapping correct
instance declaration would make the program become ambiguous.

Formally, this amounts to saying that the program must be coherent
in its current form, but also in all possible extensions with well-typed
class definitions. This is taking an open-world view.

77 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On the importance of principal type reconstruction

In the source of incoherence we have seen, some class constraint
remained undetermined.

As noticed earlier some (usually arbitrary) less general elaboration
would cover the problem—but the source program would remain
incoherent.

Hence, in order to detect incoherent (i.e. ambiguous) programs it is
essential that type reconstruction is principal.

Once a program has been checked coherent, i.e. with no undetermined
constraint, based on a principal type reconstruction, can we still use
another non principal type reconstruction for its elaboration?

78`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On the importance of principal type reconstruction

In the source of incoherence we have seen, some class constraint
remained undetermined.

As noticed earlier some (usually arbitrary) less general elaboration
would cover the problem—but the source program would remain
incoherent.

Hence, in order to detect incoherent (i.e. ambiguous) programs it is
essential that type reconstruction is principal.

Once a program has been checked coherent, i.e. with no undetermined
constraint, based on a principal type reconstruction, can we still use
another non principal type reconstruction for its elaboration?

Yes, indeed, this will preserve the semantics.

This freedom may actually be very useful for optimizations.

78`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On the importance of principal type reconstruction

Example

Consider the program

79`1e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On the importance of principal type reconstruction

Example

Consider the program

let twice = λ(x) x + x in twice (twice 1)

Its principal type reconstruction is:

let twice : all (X) [Num X] X � X = Λ(X) [Num X] λ(x) x + x in

twice Int (twice Int) 1

which elaborates into

79`2e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

On the importance of principal type reconstruction

Example

Consider the program

let twice = λ(x) x + x in twice (twice 1)

Its principal type reconstruction is:

let twice : all (X) [Num X] X � X = Λ(X) [Num X] λ(x) x + x in

twice Int (twice Int) 1

which elaborates into

let twice X numX = λ(x : X) x (plus numX) x in

twice Int numInt (twice Int numInt 1)

while, avoiding the generalization of twice, it would elaborate into:

let twice = λ(x : Int) x (plus numInt) x in twice (twice 1)

where moreover, the plus numInt can be statically reduced.

79`3e 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overloading by return types

All previous ambiguous examples are overloaded by return types:

• 0 : X.
The value 0 has an overloaded type that is not constraint by the
argument.

• read : desc � X.
The function read applied to some ground type argument will be
under specified.

Odersky et al. [1995] suggested to prevent overloading by return
types by requesting that overloaded symbols of a class K X have
types of the form X � T .

The above examples are indeed rejected by this definition.

80 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overloading by return types

In fact, disallowing overloading by return types suffices to ensures
that all well-typed programs are coherent.

Moreover, untyped programs can then be given a semantics directly
(which of course coincides with the semantics obtained by elaboration).

Many interesting examples of overloading fits in this schema.

However, overloading by returns types is also found useful in several
cases and Haskell allows it, using default rules to resolve ambiguities.

This is still an arguable design choice in the Haskell community.

81 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Contents

Introduction

Examples in Mini Haskell

Mini Haskell

Implicitly-typed terms

Variations

82 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Changing the representation of dictionaries

An overloaded method call u of a class K is elaborated into an
application u q of u to a dictionary expression q of class K. The
function u and the representation of the dictionary are both defined in
the elaboration of the class K and need not be known at the call site.

This leaves quite a lot of flexibility in the representation of
dictionaries.

For example, we used record data-type definitions to represent
dictionaries, but tuples would have been sufficient.

83 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

An alternative compilation of type classes

The dictionary passing semantics is quite intuitive and very easy to
type in the target language.

However, dictionaries may be replaced by a derivation tree that proves
the existence of the dictionary. This derivation tree can be passed
around instead of the dictionary and at the call site be used to
dispatch to the appropriate implementation of then method.

This has been studied in [Furuse, 2003b].

This can also elegantly be explained as a type preserving compilation
of dictionaries called concretization and described in [Pottier and
Gauthier, 2006]. It is somehow similar to defunctionalization and also
requires that the target language is equipped with GADT (Guarded
Abstract Data Types). See the following course.

84 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Multi-parameter type classes

Multi-parameter type classes are of the form

class ÑP � K ÑX �ρ�
where free variables of ÑP are in ÑX.
The current framework can easily be extended to handle
multi-parameter type classes.

Example

Collections represented by type C whose elements are of type E can
be defined as follows:

class Collection C E { find : C � E � Option(E), add : C � E � C }
inst Collection (List X) X { find = List.find, add = λ(c)λ(e) e::c }
inst Collection (Set X) X { ... }

85 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type dependencies

However, the class Collection does not provide the intended intuition
that collections be homogeneous:

let add2 c x y = add (add c x) y
add2 : all(C, E, E’) Collection C E, Collection C E’ � C � E � E’ � C

This definition assumes that collections may be heterogeneous. This
may not be intended, and perhaps no instance of heterogeneous
collections may ever be provided will ever be provided.

To statically enforce collections to be homogeneous in types, the
definition can add a clause to say that the parameter C determines
the parameter E:

class Collection C E | C � E { ... }

Then, add2 would enforce E and E� to be equal.

86 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Type dependencies

Type dependencies also reduce overlapping between class declarations.

Hence they allow example that would have to be rejected if type
dependencies could not be expressed.

87 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Associated types

Functional dependencies are beeing replaced by the notion of
associated types.

Associated types allow a class to declare its own type function.

Correspondingly, instance definitions must provide a definition for
associated type (in addition to values for overloaded symbols as
before).

For example, the Collection class becomes a single paramter class with
an associated type definition:

class Collection E {
type C : ∗ � ∗

find : C � E � Option E
add : C � E � C

}
inst Collection Eq X � Collection X {type C = List E, ... }
inst Collection Eq X � Collection X {type C = Set E, ... }

88 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Associated types

Associated types increase the expressivity of type classes.

89 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overlapping instances Example

In practice, overlapping instances may be desired! For example, one
could provide a generic implementation of sets provided an ordering
relation on elements, but also provide a more efficient version for bit
sets.

If overlapping instances are allowed, further rules are needed to
disambiguate the resolution of overloading, such as giving priority to
rules, or using the most specific match.

However, the semantics depend on some particular resolution strategy
and becomes more fragile. See [Jones et al., 1997] for a discussion.

See also [Morris and Jones, 2010] for a recent new proposal.

90 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Overlapping instances Example

inst Eq(X) { equal = (=) }
inst Eq(Int) { equal = (==) }

This elaborates into the creation of a generic dictionary

let eq X : Eq X= { equal = (=) }
let eqInt : Eq Int = { equal = (==) }

Then, eqInt or eq Int are two dictionaries of type Eq Int but with
different implementations.

91 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Restriction that are harder to lift

One may consider removing other restrictions on the class declarations
or instance definitions. While some of these generalizations would make
sense in theory, they may raise serious difficulties in practice.

For example:

• If constrained type schemes are of the form K T instead of K X?
(which affects all aspects of the language), then it becomes
difficult to control the termination of constrained resolution and
of the elaboration of dictionaries.

• If a class instances inst �ÑY . ÑP � K T �ρ� could be such that T is
F ÑT and not F ÑY , then it becomes difficult to check
non-overlapping of class instances.

92 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Methods as overloading functions

One approach to object-orientation is to see methods as over as
overloaded functions.

Object then carry class tags that can be used at runtime to find the
best matching definition.

This approach has been studied in detail by [Millstein and Chambers,
1999]. See also [Bonniot, 2002, 2005].

93 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Summary

Static overloading is not a solution for polymorphic languages,
Dynamics overloading must be used instead.

Dynamics overloading is a powerful mechanism.

Haskell type classes are a practical, general and powerful solution to
dynamic overloading,

Dynamic overloading works relatively well in combination with ML-like
type inference.

However, besides the simplest case where every one agrees, useful
extensions often come with some drawbacks, and they is not yet a
agreement on the best design choices.

The design decisions are often in favor of expressiveness, but loosing
some of the properties and the canonicity of the minimal design.

94 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Summary

Dynamic overloading is a typical and very elegant use of elaboration.

The programmer could in principle write the elaborated program, build
and pass dictionaries explicitly, but this would be cumbersome, tricky,
error prone, and it would obfuscate the code.

The elaboration does this automatically, without arbibrary choices (in
the minimal design) and with only local transformations that preserve
the structure of the source.

95 96

Introduction Examples in Mini Haskell Mini Haskell Implicitly-typed terms Variations

Further Reading

For an all-in-one explanation of Haskell-like overloading, see The
essence of Haskell by Odersky et al.

See also the Jones’s monograph Qualified types: theory and practice.

For a calculus of overloading see ML& [Castagna, 1997]

Type classes have also been added to Coq [Sozeau and Oury, 2008].
Interestingly, the elaboration of proof terms need not be coherent
which makes it a simpler situation for overloading.

96 96

Bibliography

Bibliography I

(Most titles have a clickable mark “P” that links to online versions.)P Lennart Augustsson. Implementing Haskell overloading. In FPCA ’93:
Proceedings of the conference on Functional programming languages
and computer architecture, pages 65–73, New York, NY, USA, 1993.
ACM. ISBN 0-89791-595-X.

Nikolaj Skallerud Bjørner. Minimal typing derivations. In In ACM
SIGPLAN Workshop on ML and its Applications, pages 120–126,
1994.

Daniel Bonniot. Typage modulaire des multi-méthodes. PhD thesis, École
des Mines de Paris, November 2005.P Daniel Bonniot. Type-checking multi-methods in ML (a modular
approach). In Workshop on Foundations of Object-Oriented Languages
(FOOL), January 2002.

97 96

http://doi.acm.org/10.1145/165180.165191
http://cristal.inria.fr/~bonniot/bonniot02.ps

Bibliography

Bibliography II

Giuseppe Castagna. Object-Oriented Programming: A Unified Foundation.
Progress in Theoretical Computer Science Series. Birkäuser, Boston,
1997.

Jun Furuse. Extensional polymorphism by flow graph dispatching. In
Ohori [2003], pages 376–393. ISBN 3-540-20536-5.P Jun Furuse. Extensional polymorphism by flow graph dispatching. In
Asian Symposium on Programming Languages and Systems (APLAS),
volume 2895 of Lecture Notes in Computer Science. Springer,
November 2003b.P Mark P. Jones. Simplifying and improving qualified types. In FPCA ’95:
Proceedings of the seventh international conference on Functional
programming languages and computer architecture, pages 160–169,
New York, NY, USA, 1995a. ACM. ISBN 0-89791-719-7.

Mark P. Jones. Typing Haskell in Haskell. In In Haskell Workshop, 1999.

98 96

http://cristal.inria.fr/~furuse/publications/flowgraph.ps.gz
http://doi.acm.org/10.1145/224164.224198

Bibliography

Bibliography III

Mark P. Jones. Qualified types: theory and practice. Cambridge
University Press, New York, NY, USA, 1995b. ISBN 0-521-47253-9.P Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an
exploration of the design space. In Haskell workshop, 1997.

Stefan Kaes. Type inference in the presence of overloading, subtyping
and recursive types. In LFP ’92: Proceedings of the 1992 ACM
conference on LISP and functional programming, pages 193–204, New
York, NY, USA, 1992. ACM. ISBN 0-89791-481-3. doi:
http://doi.acm.org/10.1145/141471.141540.

Todd D. Millstein and Craig Chambers. Modular statically typed
multimethods. In ECOOP ’99: Proceedings of the 13th European
Conference on Object-Oriented Programming, pages 279–303, London,
UK, 1999. Springer-Verlag. ISBN 3-540-66156-5.

99 96

http://research.microsoft.com/en-us/um/people/simonpj/papers/type-class-design-space/multi.ps.gz

Bibliography

Bibliography IV

J. Garrett Morris and Mark P. Jones. Instance chains: type class
programming without overlapping instances. In ICFP ’10: Proceedings
of the 15th ACM SIGPLAN international conference on Functional
programming, pages 375–386, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-794-3. doi:
http://doi.acm.org/10.1145/1863543.1863596.P Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael
Sperber. Functional logic overloading. pages 233–244, 2002. doi:
http://doi.acm.org/10.1145/565816.503294.P Martin Odersky, Philip Wadler, and Martin Wehr. A second look at
overloading. In FPCA ’95: Proceedings of the seventh international
conference on Functional programming languages and computer
architecture, pages 135–146, New York, NY, USA, 1995. ACM. ISBN
0-89791-719-7.

100 96

http://www.informatik.uni-freiburg.de/~neubauer/papers/popl02.ps.gz
http://doi.acm.org/10.1145/224164.224195

Bibliography

Bibliography V

Atsushi Ohori, editor. Programming Languages and Systems, First Asian
Symposium, APLAS 2003, Beijing, China, November 27-29, 2003,
Proceedings, volume 2895 of Lecture Notes in Computer Science,
2003. Springer. ISBN 3-540-20536-5.P François Pottier and Nadji Gauthier. Polymorphic typed
defunctionalization and concretization. Higher-Order and Symbolic
Computation, 19:125–162, March 2006.

François Rouaix. Safe run-time overloading. In Proceedings of the 17th
ACM Conference on Principles of Programming Languages, pages
355–366, 1990. doi: http://doi.acm.org/10.1145/96709.96746.

Geoffrey S. Smith. Principal type schemes for functional programs with
overloading and subtyping. In Science of Computer Programming,
1994.

101 96

http://cristal.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.ps.gz

Bibliography

Bibliography VIP Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In
Sofiène Tahar, Otmame Ait-Mohamed, and César Muñoz, editors,
TPHOLs 2008: Theorem Proving in Higher Order Logics, 21th
International Conference, Lecture Notes in Computer Science.
Springer, August 2008.P Peter J. Stuckey and Martin Sulzmann. A theory of overloading. In
ICFP ’02: Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, pages 167–178, New York,
NY, USA, 2002. ACM. ISBN 1-58113-487-8.P Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism
less ad-hoc. In ACM Symposium on Principles of Programming
Languages (POPL), pages 60–76, January 1989.

102 96

http://www.lri.fr/~sozeau/research/publications/First-Class_Type_Classes.pdf
http://doi.acm.org/10.1145/581478.581495
http://homepages.inf.ed.ac.uk/wadler/papers/class/class.ps.gz

	Overloading
	Introduction
	Examples in Mini Haskell
	Mini Haskell
	Implicitly-typed terms
	Variations

	Appendix
	Bibliography

