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Towards typed closure conversion Existential types Typed closure conversion

Type-preserving compilation

Compilation is type-preserving when each intermediate language is
explicitly typed, and each compilation phase transforms a typed
program into a typed program in the next intermediate language.

Why preserve types during compilation?

• it can help debug the compiler;

• types can be used to drive optimizations;

• types can be used to produce proof-carrying code;

• proving that types are preserved can be the first step towards
proving that the semantics is preserved [Chlipala, 2007].
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Type-preserving compilation

Type-preserving compilation exhibits an encoding of programming
constructs into programming language with usually richer type
systems.

The encoding may be sometimes be used directly as a programming
idioms in the source language. For Example:

• Closure conversion requires an extension of the language with
existential types, which happens to very useful on their own.

• Closures themselves are themselves a simple form of objects.

• Defunctionalization may be done manually on some particular
program, e.g. in web applications to monitor the computation.
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Type-preserving compilation

A classic paper by Morrisett et al. [1999] shows how to go from
System F to Typed Assembly Language, while preserving types along
the way. Its main passes are:

• CPS conversion fixes the order of evaluation, names intermediate
computations, and makes all function calls tail calls;

• closure conversion makes environments and closures explicit, and
produces a program where all functions are closed;

• allocation and initialization of tuples is made explicit;

• the calling convention is made explicit, and variables are replaced
with (an unbounded number of) machine registers.
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Translating types

In general, a type-preserving compilation phase involves not only a
translation of terms, mapping t to JtK, but also a translation of
types, mapping T to JTK, with the property:

Γ Ø t � T implies JΓK Ø JtK � JTK

The translation of types carries a lot of information: examining it is
often enough to guess what the translation of terms will be.
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Closure conversion

First-class functions may appear in the body of other functions.
hence, their own body may contains free variables that will be bound
to values during the evaluation in the execution environment.

Because they can be returned as values, and thus used outside of
their definition environment, they must store their execution
environment in their value.

A closure is the packaging of the code of a first-class function with
its runtime environment, so that it becomes closed, i.e. independent of
the runtime environment and can be moved and applied in another
runtime environment.

Closures can also be used to represent recursive functions and
objects (in the object-as-record-of-methods paradigm).
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Source and target

In the following,

• the source calculus has unary λ-abstractions, which can have free
variables;

• the target calculus has binary λ-abstractions, which must be
closed.

Closure conversion can be easily extended to n-ary functions, or n-ary
functions may be uncurried in a separate type-preserving compilation
pass.
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Variants of closure conversion

There are at least two variants of closure conversion:

• in the closure-passing variant, the closure and the environment
are a single memory block;

• in the environment-passing variant, the environment is a separate
block, to which the closure points.

The impact of this choice on the term translations is minor.

Its impact on the type translations is more important: the
closure-passing variant requires more type-theoretic machinery.
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Closure-passing closure conversion

The closure-passing variant is as follows:

Jλx. tK � let code � λ�clo, x�.
let � , x1, . . . , xn� � clo in
JtK in�code, x1, . . . , xn�

Jt1 t2K � let clo � Jt1K in
let code � proj0 clo in
code �clo, Jt2K�

where �x1, . . . , xn� � fv�λx. t�.
Important! Note that the layout of the environment must be known
only at the closure allocation site, not at the call site. In particular,
proj0 clo need not know the size of clo.

(The variables code and clo must be suitably fresh.)
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Environment-passing closure conversion

The environment-passing variant is as follows:

Jλx. tK � let code � λ�env, x�.
let �x1, . . . , xn� � env in
JtK in�code, �x1, . . . , xn��

Jt1 t2K � let �code, env� � Jt1K in

code �env, Jt2K�
where �x1, . . . , xn� � fv�λx. t�.

13 86



Towards typed closure conversion Existential types Typed closure conversion

Towards type-preserving closure conversion

Let us first focus on the environment-passing variant.

How can closure conversion be made type-preserving?

The key issue is to find a sensible definition of the type translation.
In particular, what is the translation of a function type, JT1 � T2K?
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Towards type-preserving closure conversion

Let us examine the closure allocation code again:

Jλx. tK � let code � λ�env, x�.
let �x1, . . . , xn� � env in
JtK

in �code, �x1, . . . , xn��
Suppose Γ Ø λx. t � T1 � T2.

Suppose, without loss of generality, dom�Γ� � fv�λx. t� � �x1, . . . , xn�.
Overloading notation, if Γ is x1 � T1; . . . ; xn � Tn, write JΓK for the tuple
type T1 � . . . � Tn.

By hypothesis, we have JΓK, x � JT1K Ø JtK � JT2K, so env has type JΓK,
code has type �JΓK � JT1K� � JT2K, and the entire closure has type��JΓK � JT1K�� JT2K� � JΓK.

Now, what should be the definition of JT1 � T2K?
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A weakening rule

(Parenthesis.)

In order to support the hypothesis dom�Γ� � fv�λx. t� at every
λ-abstraction, it is possible to introduce an (admissible) weakening rule:

Weakening

Γ1; Γ2 Ø t � T x # t

Γ1; x � T �; Γ2 Ø t � T
If the weakening rule is applied eagerly at every λ-abstraction, then
the hypothesis is met, and closures have minimal environments.

(In some cases, one may not use minimal environments, e.g. to allow
sharing of environments between several closures.)
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Towards a type translation

Can we adopt this as a definition?

JT1 � T2K � ��JΓK � JT1K� � JT2K� � JΓK
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Towards a type translation

Can we adopt this as a definition?

JT1 � T2K � ��JΓK � JT1K� � JT2K� � JΓK

Naturally not. This definition is mathematically ill-formed: we cannot
use Γ out of the blue.

Hmm... Do we really need to have a uniform translation of types?
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Towards a type translation

Yes, we do. We need a uniform translation of types, not just because
it is nice to have one, but because it describes a uniform calling
convention.

If closures with distinct environment sizes or layouts receive distinct
types, then we will be unable to translate this well-typed code:

if . . . then λx. x � y else λx. x

Furthermore, we want function invocations to be translated uniformly,
without knowledge of the size and layout of the closure’s environment.

So, what could be the definition of JT1 � T2K?
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The type translation

The only sensible solution is:

JT1 � T2K � §X.��X � JT1K�� JT2K� � X

An existential quantification over the type of the environment
abstracts away the differences in size and layout.

Enough information is retained to ensure that the application of the
code to the environment is valid: this is expressed by letting the
variable X occur twice on the right-hand side.
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The type translation

The existential quantification also provides a form of security. The
caller cannot do anything with the environment except pass it as an
argument to the code. In particular, it cannot inspect or modify the
environment.

For instance, in the source language, the following coding style
guarantees that x remains even, no matter how f is used:

let f � let x � ref 0 in λ��. x �� �x � 2�; !x
After closure conversion, the reference x is reachable via the closure
of f . A malicious, untyped client could write an odd value to x.
However, a well-typed client is unable to do so.

This encoding is not just type-preserving, but also fully abstract: it
preserves (a typed version of) observational equivalence [Ahmed and
Blume, 2008].
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Existential types

One can extend System F with existential types, in addition to
universals:

T ��� . . . S §X.T
As in the case of universals, there are type-passing and type-erasing
interpretations of the terms and typing rules... and in the latter
interpretation, there are explicit and implicit versions.

Let’s just look at the type-erasing interpretation, with an explicit
notation for introducing and eliminating existential types.
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Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ Ø t � �X ( T ��T
Γ Ø pack T �, t as §X. T � §X. T Unpack

Γ Ø t1 � §X.T1
Γ, X, x � T1 Ø t2 � T2
Γ Ø let X, x � unpack t1 in t2 � T2
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Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ Ø t � �X ( T ��T
Γ Ø pack T �, t as §X. T � §X. T Unpack

Γ Ø t1 � §X.T1
Γ, X, x � T1 Ø t2 � T2
Γ Ø let X, x � unpack t1 in t2 � T2

Anything wrong?
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Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ Ø t � �X ( T ��T
Γ Ø pack T �, t as §X. T � §X. T Unpack

Γ Ø t1 � §X.T1
Γ, X, x � T1 Ø t2 � T2 X # T2

Γ Ø let X, x � unpack t1 in t2 � T2
The side condition X # T2 is mandatory here to ensure well-formedness
of the conclusion. If well-formedness conditions were explicit in
judgments, then Γ Ø T2 would suffice, as it would imply X # T2, since
the last premise implies X # Γ.
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Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack

Γ Ø t � �X ( T ��T
Γ Ø pack T �, t as §X. T � §X. T Unpack

Γ Ø t1 � §X.T1
Γ, X, x � T1 Ø t2 � T2 X # T2

Γ Ø let X, x � unpack t1 in t2 � T2
The side condition X # T2 is mandatory here to ensure well-formedness
of the conclusion. If well-formedness conditions were explicit in
judgments, then Γ Ø T2 would suffice, as it would imply X # T2, since
the last premise implies X # Γ.

Note the imperfect duality between universals and existentials:

TAbs

Γ, X Ø t � T
Γ Ø ΛX.t � �X. T TApp

Γ Ø t � �X. T
Γ Ø t T � � �X ( T ��T
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On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

Γ, X Ø t � §X.T
Γ, X Ø unpack t � T

Informally, this could mean that, it t has type T for some unknown X,
then it has type T , where X is “fresh”...

Why is this broken?
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On existential elimination

It would be nice to have a simpler elimination form, perhaps like this:

Γ, X Ø t � §X.T
Γ, X Ø unpack t � T

Informally, this could mean that, it t has type T for some unknown X,
then it has type T , where X is “fresh”...

Why is this broken?

We can immediately universally quantify over X, and conclude that
Γ Ø t � �X. T . This is nonsense!

Replacing the premise Γ, X Ø t � §X.T by the conjunction Γ Ø t � §X.T and
X > dom�Γ� would make the rule even more permissive, so it wouldn’t
help.
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On existential elimination

A correct elimination rule must force the existential package to be
used in a way that does not rely on the value of X.

Hence, the elimination rule must have control over the user of the
package – that is, over the term t2.

Unpack

Γ Ø t1 � §X.T1
Γ, X; x � T1 Ø t2 � T2 X # T2

Γ Ø let X, x � unpack t1 in t2 � T2
The restriction X # T2 prevents writing “let X, x � unpack t1 in x”, which
would be equivalent to the unsound “unpack t” of the previous slide.

The fact that X is bound within t2 forces it to be treated abstractly.

In fact, t2 must be . . . in the type-variable X.
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On existential elimination

In fact, t2 must be polymorphic in X. The rule could be written:

Γ Ø t1 � §X.T1 Γ Ø ΛX.λx. t2 � �X. T1 � T2 X # T2

Γ Ø let X, x � unpack t1 in t2 � T2
or, more economically:

Γ Ø t1 � §X.T1 Γ Ø t2 � �X. T1 � T2 X # T2

Γ Ø unpack t1 t2 � T2
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On existential elimination

In fact, t2 must be polymorphic in X. The rule could be written:

Γ Ø t1 � §X.T1 Γ Ø ΛX.λx. t2 � �X. T1 � T2 X # T2

Γ Ø let X, x � unpack t1 in t2 � T2
or, more economically:

Γ Ø t1 � §X.T1 Γ Ø t2 � �X. T1 � T2 X # T2

Γ Ø unpack t1 t2 � T2
One could even view “unpack§X.T ” as a constant, equipped with an
appropriate type:
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On existential elimination

In fact, t2 must be polymorphic in X. The rule could be written:

Γ Ø t1 � §X.T1 Γ Ø ΛX.λx. t2 � �X. T1 � T2 X # T2

Γ Ø let X, x � unpack t1 in t2 � T2
or, more economically:

Γ Ø t1 � §X.T1 Γ Ø t2 � �X. T1 � T2 X # T2

Γ Ø unpack t1 t2 � T2
One could even view “unpack§X.T ” as a constant, equipped with an
appropriate type:

unpack§X.T � §X.T � �Y. ���X. �T � Y�� � Y�
The variable Y , which stands for T2, is bound prior to X, so it
naturally cannot be instantiated to a type that refers to X. This
reflects the side condition X # T2.
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On existential introduction

Pack

Γ Ø t � �X ( T ��T
Γ Ø pack T �, t as §X. T � §X.T

If desired, “pack§X.T ” could also be viewed as a constant:

pack§X.T � �X. �T � §X.T�
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Existentials as constants

In summary, System F with existential types can also be presented as
follows:

pack§X.T � �X. �T � §X.T�
unpack§X.T � §X. T � �Y. ���X. �T � Y�� � Y�

These can be read as follows:

• for any X, if you have a T , then, for some X, you have a T ;

• if, for some X, you have a T , then, (for any Y ,) if you wish to
obtain a Y out of it, then you must present a function which, for
any X, obtains a Y out of a T .

This is somewhat reminiscent of ordinary first-order logic: §x.F is
equivalent to, and can be defined as,  ��x. F�.
Is there an encoding of existential types into universal types?
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Encoding existentials into universals

The type translation is double negation:

J§X.TK � �Y. ���X. �JTK � Y�� � Y� if Y # T

The term translation is:

Jpack§X.TK � �X. �JTK � J§X.TK�� ?

Junpack§X.TK � J§X.TK� �Y. ���X. �JTK � Y�� � Y�� ?
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Encoding existentials into universals

The type translation is double negation:

J§X.TK � �Y. ���X. �JTK � Y�� � Y� if Y # T

The term translation is:

Jpack§X.TK � �X. �JTK � J§X.TK�� ΛX.λx �JTK.ΛY.λk ��X. �JTK � Y�. ? � Y
Junpack§X.TK � J§X.TK� �Y. ���X. �JTK � Y�� � Y�� ?
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Encoding existentials into universals

The type translation is double negation:

J§X.TK � �Y. ���X. �JTK � Y�� � Y� if Y # T

The term translation is:

Jpack§X.TK � �X. �JTK � J§X.TK�� ΛX.λx �JTK.ΛY.λk ��X. �JTK � Y�. k X x

Junpack§X.TK � J§X.TK � �Y. ���X. �JTK � Y�� � Y�� ?
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Encoding existentials into universals

The type translation is double negation:

J§X.TK � �Y. ���X. �JTK � Y�� � Y� if Y # T

The term translation is:

Jpack§X.TK � �X. �JTK � J§X.TK�� ΛX.λx �JTK.ΛY.λk ��X. �JTK � Y�. k X x

Junpack§X.TK � J§X.TK � �Y. ���X. �JTK � Y�� � Y�� λx �J§X.TK. x

There is little choice, if the translation is to be type-preserving.

What is the computational content of this encoding?

29`4e 86



Towards typed closure conversion Existential types Typed closure conversion

Encoding existentials into universals

The type translation is double negation:

J§X.TK � �Y. ���X. �JTK � Y�� � Y� if Y # T

The term translation is:

Jpack§X.TK � �X. �JTK � J§X.TK�� ΛX.λx �JTK.ΛY.λk ��X. �JTK � Y�. k X x

Junpack§X.TK � J§X.TK � �Y. ���X. �JTK � Y�� � Y�� λx �J§X.TK. x

There is little choice, if the translation is to be type-preserving.

What is the computational content of this encoding?

A continuation-passing transform.

This encoding is due to Reynolds [1983], although it has more
ancient roots in logic.
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The semantics of existential types as constants

pack§X.T and unpack§X.T can be treated as a unary constructor and
as a binary destructor, respectively, with the following reduction rule:

unpack§X.T �pack§X.T �T � v� �ΛY.λy ��X. T � Y. t� �� t T � v
Exercise

Show that they satisfy the progress and subject reduction assumptions
for constants.
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The semantics of existential types as primitive

We extend values and evaluation contexts as follows:

v ��� . . . pack T �, v as T
E ��� . . . pack T �, E as T S let X, x � unpack E in t

We add the reduction rule:

let X, x � unpack �pack T �, v as T� in t �� �X ( T ���x ( v�t
Exercise

Show that subject reduction and progress holds.
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The semantics of existential types beware!

The reduction rule for existential destructs its arguments. Hence,
let X, x � unpack t1 in t2 cannot be reduced unless t1 is itself a packed
expression, which is indeed the case when t1 is value (or in head
normal form).

This contrasts with let x � T � t1 in t2 where t1 need not be evaluation
and may be an application (e.g. in call by name or with strong
reduction).
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The semantics of existential types beware!

Exercise

Find an example that illustrates why the reduction of
let X, x � unpack t1 in t2 could be problematic when t1 is not a value.
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The semantics of existential types beware!

Exercise

Find an example that illustrates why the reduction of
let X, x � unpack t1 in t2 could be problematic when t1 is not a value.

Need a hint?

Use a conditional
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The semantics of existential types beware!

Exercise

Find an example that illustrates why the reduction of
let X, x � unpack t1 in t2 could be problematic when t1 is not a value.

Solution

Let t1 be if t then v1 else v2 where vi is of the form pack Ti, vi as §XT
and the two witnesses T1 and T2 differ.

There is no common type for the unpacking of the two possible
results v1 and v2. The choice between those two possible results must
be made, by evaluating t1, before unpacking.
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Is pack too verbose?

Exercise

Recall the typing rule for pack:

Γ Ø t � �X ( T ��T
Γ Ø pack T �, t as §X. T � §X.T

Isn’t the witness type T � annotation superfluous?
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Is pack too verbose?

Exercise

Recall the typing rule for pack:

Γ Ø t � �X ( T ��T
Γ Ø pack T �, t as §X. T � §X.T

Isn’t the witness type T � annotation superfluous?

• The type T0 of t is fully determined by t and the given type §X.T
of the packed value. Checking that T0 is of the form �X ( T ��T t

is the matching problem for second-order types, which is simple.
• However, the reduction rule need the witness type T �. If it were
not available, it would have to be computed during reduction. The
reduction rule would then not be pure rewriting.

The explicitly-typed language need the witness type for simplicity, while
in the surface language, it could be omitted and reconstructed.
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Implicitly-typed existential types

Intuitively, pack and unpack are just type information and can just be
dropped in the syntax of terms.

There just remains a let-binding form instead of the unpack form.

After type-erasure, the typing rules are:

Unpack

Γ Ø a1 � §X.T1 Γ, X, x � T1 Ø a2 � T2 X # T2

Γ Ø let x � a1 in a2 � T2 Pack

Γ Ø a � �X ( T ��T
Γ Ø a � §X.T

Notice, however, that the let-binding is not typechecked as syntactic
sugar for an immediate application.

The semantics of the let-binding as before:

E ��� . . . let x � E in t let x � v in t�� �x ( v�t
Is the semantics type-erasing?
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Implicitly-typed existential types subtlety

Yes, it is.

But this is a subtlety!
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Implicitly-typed existential types subtlety

Yes, it is.

But this is a subtlety! What about the call-by-name semantics?
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Implicitly-typed existential types subtlety

Yes, it is.

But this is a subtlety! What about the call-by-name semantics?

We chose a call-by-value semantics, but so far, as long as there is no
side-effect, we could have chosen a call-by-name semantics (or even
perform reduction under abstraction).

In call-by-name evaluation the arguments of let-bindings are not
reduced prior to substitution of the argument:

let x � t1 in t2 �� �x ( t1�t2
With existential types, this breaks subject reduction!

Why?

37`3e 86



Towards typed closure conversion Existential types Typed closure conversion

Implicitly-typed existential types subtlety

Let T0 be §X. �X � X� � �X � X�, w0 a value of type bool, w1 and w2
two values of type T0 with incompatible witness types, for instance,
λf. λx.1 � �f �1 � x�� and λf. λx. not �f �not x��. Let w be the function
λb. if b then w1 else w2 of type bool� T0.

a1 � let x � w w0 in x �x �λy. y�� �� w w0 �w w0 �λy. y�� � a2

We have g Ø a1 � §X. X � X while g ~Ø a2 � T .
What happened?
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Implicitly-typed existential types subtlety

Let T0 be §X. �X � X� � �X � X�, w0 a value of type bool, w1 and w2
two values of type T0 with incompatible witness types, for instance,
λf. λx.1 � �f �1 � x�� and λf. λx. not �f �not x��. Let w be the function
λb. if b then w1 else w2 of type bool� T0.

a1 � let x � w w0 in x �x �λy. y�� �� w w0 �w w0 �λy. y�� � a2

We have g Ø a1 � §X. X � X while g ~Ø a2 � T .
The term a1 is well-typed since w w0 has type T0, hence x can be
assumed of type �Y � Y� � �Y � Y� for some unknown type Y and
λy. y is of type Y � Y .

However, without the outer existential type w w0 can only be typed
with ��X. X � X� � §X. �X � X�, because the value returned by the
function need different witnesses for X. This is requiring too much on
its argument and the outer application is ill-typed.
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Implicitly-typed existential types subtlety

One could wonder whether the syntax should not allow the explicit
introduction of unpacking (instead of requesting a let-binding).

One could argue that if some expression is the expansion of a
well-typed let-binding, then it should also be well-typed:

Γ Ø a1 � §X.T1 Γ, X, x � T1 Ø a2 � T2 X # T2

Γ Ø �x ( a1�a2 � T2
Comments?
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Implicitly-typed existential types subtlety

One could wonder whether the syntax should not allow the explicit
introduction of unpacking (instead of requesting a let-binding).

One could argue that if some expression is the expansion of a
well-typed let-binding, then it should also be well-typed:

Γ Ø a1 � §X.T1 Γ, X, x � T1 Ø a2 � T2 X # T2

Γ Ø �x ( a1�a2 � T2
Comments?

• This rule does not have a logical flavor...

• It fixes the previous example, but not the general case
Pick a1 that is not yet a value after one reduction step. Then,
after let-expansion reduce one of the two occurrences of a1. The
result is no longer of the form �x ( a1�a2.
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Implicitly-typed existential types subtlety

Existential types are more tricky than they may appear at first.

The subject reduction property breaks if reduction is not restricted to
expressions in head-normal forms.

Unrestricted reduction is still safe because well-typedness may be
recovered by further reduction steps.
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Implicitly-typed existential types encoding

Notice that the CPS encoding of existential types (1) enforces the
evaluation of the packed value (2) before it can be unpacked (3) and
substituted(4):

Junpack a1 �λx. a2�K � Ja1K �λx. Ja2K� (1)�� �λk. JaK k� �λx. Ja2K� (2)�� �λx. Ja2K� JaK (3)�� �x ( Ja2K�JaK (4)

In the call-by-value setting, λk. JaK k would come from the reduction of
Jpack aK, i.e. is �λk. λx. k x� JaK, so that a is always a value w.

However, a need not be a value. What is essential is that a1 be
reduced to some head normal form λk. JaK k.
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Iso-existential types
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Environment passing
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Iso-existential types in ML

What if one wished to extend ML with existential types?

Full type inference for existential types is undecidable, just like type
inference for universals.

However, introducing existential types in ML is easy if one is willing to
rely on user-supplied annotations that indicate where to pack and
unpack.
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Iso-existential types in ML

This iso-existential approach was suggested by Läufer and
Odersky [1994].

Iso-existential types are explicitly declared:

D ÑX � §Ȳ .T if ftv�T� b X̄ 8 Ȳ and X̄ # Ȳ

This introduces two constants, with the following type schemes:

packD � �X̄Ȳ . T � D ÑX
unpackD � �X̄Z. D ÑX � ��Ȳ . �T � Z�� � Z

(Compare with basic iso-recursive types, where Ȳ � g.)
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Iso-existential types in ML

A few corners have been cut on the previous slide. The “type scheme:”�X̄Z. D ÑX � ��Ȳ . �T � Z�� � Z

is in fact not an ML type scheme. How could we address this?
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Iso-existential types in ML

A few corners have been cut on the previous slide. The “type scheme:”�X̄Z. D ÑX � ��Ȳ . �T � Z�� � Z

is in fact not an ML type scheme. How could we address this?

A solution is to make unpackD a binary construct again (rather than
a constant), with an ad hoc typing rule:

UnpackD

Γ Ø t1 � D ÑT
Γ Ø t2 � �Ȳ . ��ÑX ( ÑT�T � T2� Ȳ # ÑT, T2

Γ Ø unpackD t1 t2 � T2 where D ÑX � §Ȳ .T
We have seen a version of this rule in System F earlier; this in an
ML version. The term t2 must be polymorphic, which Gen can prove.
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Iso-existential types in ML

Iso-existential types are perfectly compatible with ML type inference.

The constant packD admits an ML type scheme, so it is unproblematic.

The construct unpackD leads to this constraint generation rule:

JunpackD t1 t2 � T2K � §X̄.� Jt1 � D ÑXK�Ȳ . Jt2 � T � T2K
�

where D ÑX � §Ȳ .T and, w.l.o.g., X̄Ȳ # t1, t2, T2.

Again, a universally quantified constraint appears where polymorphism
is required.
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Iso-existential types in ML

In practice, Läufer and Odersky suggest fusing iso-existential types
with algebraic data types.

The (somewhat bizarre) Haskell syntax for this is:

data D ÑX � forall Ȳ .ℓ T

where ℓ is a data constructor. The elimination construct becomes:

Jcase t1 of ℓ x � t2 � T2K � §X̄.� Jt1 � D ÑXK�Ȳ .def x � T in Jt2 � T2K �
where, w.l.o.g., X̄Ȳ # t1, t2, T2.
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An example

Define Any � §Y.Y . An attempt to extract the raw contents of a
package fails:

JunpackAny t1 �λx. x� � T2K � Jt1 � AnyK , �Y. Jλx. x � Y � T2Kè �Y. Y � T2� false

(Recall that Y # T2.)
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An example

Define
D X � §Y.�Y � X� � Y

A client that regards Y as abstract succeeds:

JunpackD t1 �λ�f, y�. f y� � TK� §X.�Jt1 � D XK ,�Y. Jλ�f, y�. f y � ��Y � X� � Y� � TK�� §X.�Jt1 � D XK ,�Y.def f � Y � X;y � Y in Jf y � TK�� §X.�Jt1 � D XK ,�Y. T � X�� §X.�Jt1 � D XK , T � X�� Jt1 � D TK
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Existential types calls for universal types!

Exercise Reusing the type D X � §Y.�Y � X� � Y of frozen computations,
assume given a list l of whose of elements of type D T1.

Assume given a function g of type T1 � T2. Transforms the list into a
new list l� of frozen computations of type D T2 (without actually
running any computation).

List .map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

Generalize into a functional that receives g and into a function that
receives g and l and returns l�.
Unfortunately, the following code does not typecheck:

let lift g l =
List.map (λ(z) let D(f, y) = z in D((λ(z) g (f z)), y))

In expression let X, x � unpack t1 in t2, occurrences of x can only be
passed to polymorphic functions so that x does not leek out of its
context.
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Uses of existential types

Mitchell and Plotkin [1988] note that existential types offer a means
of explaining abstract types. For instance, the type:§stack.�empty � stack;

push � int � stack� stack;
pop � stack � option �int � stack��

specifies an abstract implementation of integer stacks.

Unfortunately, it was soon noticed that the elimination rule is too
awkward, and that existential types alone do not allow designing
module systems [Harper and Pierce, 2005].

Montagu and Rémy [2009] make existential types more flexible in
several important ways, and argue that they might explain modules
after all.
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Typed closure conversion

Everything is now set up to prove that, in System F with existential
types:

Γ Ø t � T implies JΓK Ø JtK � JTK
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Environment-passing closure conversion

Assume Γ Ø λx. t � T1 � T2 and dom�Γ� � �x1, . . . , xn� � fv�λx. t�.
Jλx �T1. tK � let code � �

λ�env � , x � �.
let �x1, . . . , xn � � � env in
JtK

in
pack , �code, �x1, . . . , xn��
as

We find JΓK Ø Jλx �T1. tK � JT1 � T2K, as desired.
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Environment-passing closure conversion

Assume Γ Ø λx. t � T1 � T2 and dom�Γ� � �x1, . . . , xn� � fv�λx. t�.
Jλx �T1. tK � let code � �

λ�env � JΓK, x � JT1K�.
let �x1, . . . , xn � JΓK� � env in
JtK

in
pack , �code, �x1, . . . , xn��
as

We find JΓK Ø Jλx �T1. tK � JT1 � T2K, as desired.
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Environment-passing closure conversion

Assume Γ Ø λx. t � T1 � T2 and dom�Γ� � �x1, . . . , xn� � fv�λx. t�.
Jλx �T1. tK � let code � �JΓK � JT1K�� JT2K �

λ�env � JΓK, x � JT1K�.
let �x1, . . . , xn � JΓK� � env in
JtK

in
pack , �code, �x1, . . . , xn��
as

We find JΓK Ø Jλx �T1. tK � JT1 � T2K, as desired.
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Environment-passing closure conversion

Assume Γ Ø λx. t � T1 � T2 and dom�Γ� � �x1, . . . , xn� � fv�λx. t�.
Jλx �T1. tK � let code � �JΓK � JT1K�� JT2K �

λ�env � JΓK, x � JT1K�.
let �x1, . . . , xn � JΓK� � env in
JtK

in
pack JΓK, �code, �x1, . . . , xn��
as §X��X � JT1K� � JT2K� � X

We find JΓK Ø Jλx �T1. tK � JT1 � T2K, as desired.
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Environment-passing closure conversion

Assume Γ Ø t � T1 � T2 and Γ Ø t1 � T1.
Jt t1K � let X, �code � �X � JT1K�� T2, env � X� �

unpack JtK in
code �env, Jt1K�

We find JΓK Ø Jt t1K � JT2K, as desired.
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Environment-passing closure conversion recursion

Recursive functions can be translated in this way, known as the
“fix-code” variant [Morrisett and Harper, 1998]:

Jµf.λx.tK � let rec code �env, x� �
let f � pack �code, env� in
let �x1, . . . , xn� � env in
JtK in

pack �code, �x1, . . . , xn��
where �x1, . . . , xn� � fv�µf.λx.t�.
The translation of applications is unchanged: recursive and
non-recursive functions have an identical calling convention.

What is the weak point of this variant?
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Environment-passing closure conversion recursion

Recursive functions can be translated in this way, known as the
“fix-code” variant [Morrisett and Harper, 1998]:

Jµf.λx.tK � let rec code �env, x� �
let f � pack �code, env� in
let �x1, . . . , xn� � env in
JtK in

pack �code, �x1, . . . , xn��
where �x1, . . . , xn� � fv�µf.λx.t�.
The translation of applications is unchanged: recursive and
non-recursive functions have an identical calling convention.

What is the weak point of this variant?

A new closure is allocated at every call.
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Environment-passing closure conversion recursion

Instead, the “fix-pack” variant [Morrisett and Harper, 1998] uses an
extra field in the environment to store a back pointer to the closure:

Jµf.λx.tK � let code � λ�env, x�.
let �f, x1, . . . , xn� � env in
JtK

in
let rec clo � �code, �clo, x1, . . . , xn�� in
clo

where �x1, . . . , xn� � fv�µf.λx.t�.
This requires general, recursively-defined values. Closures are now cyclic
data structures.
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Environment-passing closure conversion

Here is how the “fix-pack” variant is type-checked. Assume
Γ Ø µf.λx.t � T1 � T2 and dom�Γ� � �x1, . . . , xn� � fv�µf.λx.t�.

Jµf .λx.tK �
let code � �

λ�env � , x � �.
let �f, x1, . . . , xn� � � env in
JtK in

let rec clo � �
pack , �code, �clo, x1, . . . , xn��
as

in clo

Problem?
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Environment-passing closure conversion

Here is how the “fix-pack” variant is type-checked. Assume
Γ Ø µf.λx.t � T1 � T2 and dom�Γ� � �x1, . . . , xn� � fv�µf.λx.t�.

Jµf � T1 � T2.λx.tK �
let code � �

λ�env � Jf � T1 � T2,ΓK, x � JT1K�.
let �f, x1, . . . , xn� � Jf � T1 � T2,ΓK � env in
JtK in

let rec clo � �
pack Jf � T1 � T2,ΓK, �code, �clo, x1, . . . , xn��
as

in clo

Problem?
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Environment-passing closure conversion

Here is how the “fix-pack” variant is type-checked. Assume
Γ Ø µf.λx.t � T1 � T2 and dom�Γ� � �x1, . . . , xn� � fv�µf.λx.t�.

Jµf � T1 � T2.λx.tK �
let code � �Jf � T1 � T2; ΓK � JT1K�� JT2K �

λ�env � Jf � T1 � T2,ΓK, x � JT1K�.
let �f, x1, . . . , xn� � Jf � T1 � T2,ΓK � env in
JtK in

let rec clo � �
pack Jf � T1 � T2,ΓK, �code, �clo, x1, . . . , xn��
as

in clo

Problem?
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Environment-passing closure conversion

Here is how the “fix-pack” variant is type-checked. Assume
Γ Ø µf.λx.t � T1 � T2 and dom�Γ� � �x1, . . . , xn� � fv�µf.λx.t�.

Jµf � T1 � T2.λx.tK �
let code � �Jf � T1 � T2; ΓK � JT1K�� JT2K �

λ�env � Jf � T1 � T2,ΓK, x � JT1K�.
let �f, x1, . . . , xn� � Jf � T1 � T2,ΓK � env in
JtK in

let rec clo � JT1 � T2K �
pack Jf � T1 � T2,ΓK, �code, �clo, x1, . . . , xn��
as

in clo

Problem?
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Environment-passing closure conversion

Here is how the “fix-pack” variant is type-checked. Assume
Γ Ø µf.λx.t � T1 � T2 and dom�Γ� � �x1, . . . , xn� � fv�µf.λx.t�.

Jµf � T1 � T2.λx.tK �
let code � �Jf � T1 � T2; ΓK � JT1K�� JT2K �

λ�env � Jf � T1 � T2,ΓK, x � JT1K�.
let �f, x1, . . . , xn� � Jf � T1 � T2,ΓK � env in
JtK in

let rec clo � JT1 � T2K �
pack Jf � T1 � T2,ΓK, �code, �clo, x1, . . . , xn��
as §X��X � JT1K�� JT2K� � X�

in clo

Problem?
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Environment-passing closure conversion

The recursive function may be polymorphic, but recursive calls are
monomorphic...

The problem is that polymorphic functions are indirectly compiled to
polymorphic closures, by compiling the body to a monomorphic closure
and generalizing afterward.

While this is fine without recursion or with monomorphic recursion, it
does not work for polymorphic recursion.

Fortunately, the encoding can be easily adapted to directly compile a
polymorphically recursive function into a polymorphic closure.

60 86



Towards typed closure conversion Existential types Typed closure conversion

Environment-passing closure conversion

Jµf ��ÑY . T1 � T2. λx.tK �
let code � �ÑY . �Jf � �ÑY . T1 � T2; ΓK � JT1K�� JT2K �

λ�env � Jf � �ÑY . T1 � T2,ΓK, x � JT1K�.
let �f, x1, . . . , xn� � Jf � �ÑY . T1 � T2,ΓK � env in
JtK in

let rec clo � J�ÑY . T1 � T2K �
ΛÑY .pack Jf � �ÑY . T1 � T2,ΓK, �code ÑY , �clo, x1, . . . , xn��

as §X��X � JT1K� � JT2K� � X�
in clo

This is still simple.

However, introducing the construct “let rec x = v” requires altering
the operational semantics and updating the type soundness proof.
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Closure-passing closure conversion

Now, recall the closure-passing variant:

Jλx. tK � let code � λ�clo, x�.
let � , x1, . . . , xn� � clo in
JtK

in �code, x1, . . . , xn�
Jt1 t2K � let clo � Jt1K in

let code � proj0 clo in
code �clo, Jt2K�

where �x1, . . . , xn� � fv�λx. t�.
How could we typecheck this? What are the difficulties?
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Closure-passing closure conversion

There are two difficulties:

• a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

• the first field of the closure contains a function that expects the
closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?
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Closure-passing closure conversion

There are two difficulties:

• a closure is a tuple, whose first field should be exposed (it is the
code pointer), while the number and types of the remaining fields
should be abstract;

• the first field of the closure contains a function that expects the
closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

• existential quantification over the tail of a tuple (a.k.a. a row);

• recursive types.
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Tuples, rows, row variables

The standard tuple types that we have used so far are:

T ��� . . . S Π R – types
R ��� ǫ S �T ;R� – rows

The notation �T1 � . . . � Tn� was sugar for Π �T1; . . . ; Tn; ǫ�.
Let us now introduce row variables and allow quantification over them:

T ��� . . . S Π R S �ρ. T S §ρ.T – types
R ��� ρ S ǫ S �T ;R� – rows

This allows reasoning about the first few fields of a tuple whose
length is not known.
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Typing rules for tuples

The typing rules for tuple construction and deconstruction are:

Tuple �i. > �1, n� Γ Ø ti � Ti
Γ Ø �t1, . . . , tn� � Π �T1; . . . ; Tn; ǫ� Proj

Γ Ø t � Π �T1; . . . ; Ti;R�
Γ Ø proj

i
t � Ti

These rules make sense with or without row variables

Projection does not care about the fields beyond i. Thanks to row
variables, this can be expressed in terms of parametric polymorphism:

proj
i
� �X. 1 . . . XiρΠ �X1 ; . . . ;Xi;ρ� � Xi
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About Rows

Rows were invented by Wand and improved by Rémy in order to
ascribe precise types to operations on records.

The case of tuples, presented here, is simpler.

Rows are used to describe objects in Objective Caml [Rémy and
Vouillon, 1998].

Rows are explained in depth by Pottier and Rémy [Pottier and Rémy,
2005].
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Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in
the closure-passing variant:

JT1 � T2K� §ρ. ρ describes the environment

µX. X is the concrete type of the closure

Π � a tuple...�X � JT1K� � JT2K; ...that begins with a code pointer...

ρ ...and continues with the environment�
See Morrisett and Harper’s “fix-type” encoding [1998].
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Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in
the closure-passing variant:

JT1 � T2K� §ρ. ρ describes the environment

µX. X is the concrete type of the closure

Π � a tuple...�X � JT1K� � JT2K; ...that begins with a code pointer...

ρ ...and continues with the environment�
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Why is it §ρ. µX. T and not µX. §ρ. T
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Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in
the closure-passing variant:

JT1 � T2K� §ρ. ρ describes the environment

µX. X is the concrete type of the closure

Π � a tuple...�X � JT1K� � JT2K; ...that begins with a code pointer...

ρ ...and continues with the environment�
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Why is it §ρ. µX. T and not µX. §ρ. T
The type of the environment est fixed once for all and does not change
at each recursive call.
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Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in
the closure-passing variant:

JT1 � T2K� §ρ. ρ describes the environment

µX. X is the concrete type of the closure

Π � a tuple...�X � JT1K� � JT2K; ...that begins with a code pointer...

ρ ...and continues with the environment�
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Notice that ρ appears only once. Any comments?
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Closure-passing closure conversion

Rows and recursive types allow to define the translation of types in
the closure-passing variant:

JT1 � T2K� §ρ. ρ describes the environment

µX. X is the concrete type of the closure

Π � a tuple...�X � JT1K� � JT2K; ...that begins with a code pointer...

ρ ...and continues with the environment�
See Morrisett and Harper’s “fix-type” encoding [1998].

Question: Notice that ρ appears only once. Any comments?

Usually, an existential type variable appears both at positive and
negative occurrences. Here, the variable appear only at a negative
occurrence, but in a recursive part of the type that can be unfolded
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Closure-passing closure conversion

Let Clo�R� abbreviate µX.Π ��X � JT1K� � JT2K;R�.
Let UClo�R� abbreviate its unfolded version,
Π ��Clo�R� � JT1K�� JT2K;R�.
We have JT1 � T2K � §ρ.Clo�ρ�.

Jλx � . tK � let code � �
λ�clo � , x � �.

let � , x1, . . . , xn� � � unfold clo in
JtK in

pack , �fold �code, x1, . . . , xn��
as

Jt1 t2K � let ρ, clo � unpack Jt1K in
let code � �

proj0 �unfold clo� in
code �clo, Jt2K�
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Closure-passing closure conversion

Let Clo�R� abbreviate µX.Π ��X � JT1K� � JT2K;R�.
Let UClo�R� abbreviate its unfolded version,
Π ��Clo�R� � JT1K�� JT2K;R�.
We have JT1 � T2K � §ρ.Clo�ρ�.

Jλx �JT1K. tK � let code � �Clo�JΓK� � JT1K�� JT2K �
λ�clo � Clo�JΓK, x � JT1K�.

let � , x1, . . . , xn� � UCloJΓK � unfold clo in
JtK in

pack JΓK, �fold �code, x1, . . . , xn��
as §ρ. Clo�ρ�

Jt1 t2K � let ρ, clo � unpack Jt1K in
let code � �Clo�ρ� � JT1K�� JT2K �

proj0 �unfold clo� in
code �clo, Jt2K�
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Closure-passing closure conversion recursive functions

In the closure-passing variant, recursive functions can be translated
as follows:

Jµf.λx.tK � let code � λ�clo, x�.
let f � clo in
let � , x1, . . . , xn� � clo in
JtK

in �code, x1, . . . , xn�
where �x1, . . . , xn� � fv�µf.λx.t�.
This untyped code can be easily typechecked—when recursion is
monomorphic. – exercise!

No extra field or extra work is required to store or construct a
representation of the free variable f : the closure itself plays this role.
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Closure-passing closure conversion

This encoding can not be adapted to to allow polymorphic recursion.
The problem is that f is given the type of the closure when called, i.e.
at some specialized type and not when defined at its polymorphic type.

There is not way this can work without changing the type of closures.
JT1 � T2K.

Even changing JT1 � T2K, it does not seem possible to capture the
typing constraints in System F .

Fortunately, we may slightly change the encoding, using a recursive
closure as in the type-passing version, to allow typechecking in
System F .
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Closure-passing closure conversion

Let T be �ÑX. T1 � T2 and Γf be f � T,Γ where ÑY # Γ

Jµf �T. λx.tK � let code �
ΛÑY .λ�clo � CloJΓfK, x � JT1K�.

let � code, f, x1, . . . , xn� � �ÑY . UClo�JΓfK� �
unfold clo in

JtK in
let rec clo � �ÑY .§ρ. Clo�ρ� � ΛÑY .

pack JΓK, �fold �code ÑY , clo, x1, . . . , xn�� as §ρ. Clo�ρ�
in clo

Remind that Clo�R� abbreviates µX.Π ��X � JT1K� � JT2K;R�. Hence, ÑY
are free variables of Clo�R�.
Here, a polymorphic recursive function is directly compiled into a
polymorphic recursive closures. Notice that the type of closures is
unchanged, so the encoding of applications is also unchanged.
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Mutually recursive functions Environment passing

Can we compile recursive functions?

t
Q�� µ�f1, f2�.�λx1. t1, λx2. t2�

Environment passing:

JtK �
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Mutually recursive functions Environment passing

Can we compile recursive functions?

t
Q�� µ�f1, f2�.�λx1. t1, λx2. t2�

Environment passing:

JtK � let codei � λ�env, x�.
let �f1, f2, x1, . . . , xn� � env in
JtiK

in
let rec clo1 � �code1, �clo1, clo2, x1, . . . , xn��

and clo2 � �code2, �clo1, clo2, x1, . . . , xn�� in
clo1, clo2
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Mutually recursive functions Environment passing

Can we compile recursive functions?

t
Q�� µ�f1, f2�.�λx1. t1, λx2. t2�

Environment passing:

JtK � let codei � λ�env, x�.
let �f1, f2, x1, . . . , xn� � env in
JtiK

in
let rec clo1 � �code1, �clo1, clo2, x1, . . . , xn��

and clo2 � �code2, �clo1, clo2, x1, . . . , xn�� in
clo1, clo2
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Mutually recursive functions Environment passing

Can we compile recursive functions?

t
Q�� µ�f1, f2�.�λx1. t1, λx2. t2�

Environment passing:

JtK � let codei � λ�env, x�.
let �f1, f2, x1, . . . , xn� � env in
JtiK

in
let rec clo1 � �code1, �clo1, clo2, x1, . . . , xn��

and clo2 � �code2, �clo1, clo2, x1, . . . , xn�� in
clo1, clo2

Comments?
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Mutually recursive functions Environment passing

Can we compile recursive functions?

t
Q�� µ�f1, f2�.�λx1. t1, λx2. t2�

Environment passing:

JtK � let codei � λ�env, x�.
let �f1, f2, x1, . . . , xn� � env in
JtiK

in
let rec env � �clo1, clo2, x1, . . . , xn�

and clo1 � �code1, env�
and clo2 � �code2, env� in

clo1, clo2
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Mutually recursive functions Closure passing

Encoding
let codei � λ�clo, x�.

let fi � clo in
let � code, f3�i, x1, . . . , xn� � clo in JtiK

in
let rec clo1 � �code1, clo2, x1, . . . , xn�

and clo2 � �code2, clo1, x1, . . . , xn�
in clo1, clo2

Exercise: Is this still well-typed?

Question: Can we share the closures c1 and c2 in case n is large?
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Can we merge the two encodings
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Mutually recursive functions Closure passing

let code1 � λ�clo, x�.
let � code1, code2, f1, f2, x1, . . . , xn� � clo in Jt1K in

let code2 � λ�clo, x�.
let � code2, f1, f2, x1, . . . , xn� � clo in Jt2K in

let rec clo1 � �code1, code2, clo1, clo2, x1, . . . , xn�
and clo2 � c1.tail

in clo1, clo2

Comments

• clo1.tail returns a pointer to the tail �code2, clo1, clo2, x1, . . . , xn�
of clo1 without allocating a new tuple.

• This is only possible with some support from the GC (and
extra-complexity and runtime cost for GC)
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Optimizing representations

Can closure passing and environment passing be mixed?
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Optimizing representations

Can closure passing and environment passing be mixed?

No because the calling-convention (i.e., the encoding of application)
must be uniform.

However, their is some flexibility in the representation of the closure.
For instance, the following change is completely local:

Jλx. tK � let code � λ�clo, x�.
let � , x1, . . . , xn � � clo in
JtK in�code, x1, . . . , xn �

Jt1 t2K � let clo � Jt1K in
let code � proj0 clo in
code �clo, Jt2K�

Applications? When many definitions share the same closure, the
closure (or part of it) may be shared.
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Optimizing representations

Can closure passing and environment passing be mixed?

No because the calling-convention (i.e., the encoding of application)
must be uniform.

However, their is some flexibility in the representation of the closure.
For instance, the following change is completely local:

Jλx. tK � let code � λ�clo, x�.
let � , �x1, . . . , xn�� � clo in
JtK in�code, �x1, . . . , xn��

Jt1 t2K � let clo � Jt1K in
let code � proj0 clo in
code �clo, Jt2K�

Applications? When many definitions share the same closure, the
closure (or part of it) may be shared.
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Encoding of objects

The closure-passing representation of mutually recursive functions is
similar to the representations of objects in the
object-as-record-of-functions paradigm:

A class definition is an object generator:

class c �x1, . . . xq��
meth m1 � t1
. . .

meth mp � tp�
Given arguments for parameter x1, . . . x1, it will build recursive
methods m1, . . .mn.
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Encoding of objects

A class can be compiled into an object closure:

let m �
let m1 � λ�m, x1, . . . , xq�. t1 in
. . .

let mp � λ�m, x1, . . . , xq�. tp in�m1, . . . , mp�
λx1 . . . xq. �m, x1, . . . xq�

Each mi is bound to the code for corresponding method. All codes are
combined into a record of codes.

Then, calling method mi of an object p is�proj0 p�.mi p

How can we type the encoding?
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Typed encoding of objects

Let Ti is the type of ti, and row R describe the types of �x1, . . . xq�.
Let Clo�R� be µX.Π���mi � X � Ti�i>1..n�;R� and UClo�R� its unfolding.

Fields R are hidden in an existential type µX.Π���mi � X � Ti�i>I�;ρ�:
let m � �

m1 � λ�m, x1, . . . xq � UClo�R��. t1
. . .

mp � λ�m, x1, . . . xq � UClo�R��. tp� in

λx1. . . . λxq.pack R, fold �m, x1, . . . xq� as §ρ. �M,ρ�
Calling a method of an object p of type M is

p#mi
Q�� let ρ, z � unpack p in �proj0 unfold z�.mi z

An object has a recursive type but it is not a recursive value.
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Typed encoding of objects

Typed encoding of objects were first studied in the 90’s to
understand what objects really are in a type setting.

These encodings are in fact type-preserving compilation of (primitive)
objects.

There are several variations on these encodings. See [Bruce et al.,
1999] for a comparison.

See [Rémy, 1994] for an encoding of objects in (a small extension of)
ML with iso-existentials and universals.

See [Abadi and Cardelli, 1996, 1995] for more details on primitive
objects.
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Moral of the story

Type-preserving compilation is rather fun. (Yes, really!)

It forces compiler writers to make the structure of the compiled
program fully explicit, in type-theoretic terms.

In practice, building explicit type derivations, ensuring that they remain
small and can be efficiently typechecked, can be a lot of work.
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Optimizations

Because we have focused on type preservation, we have studied only
naı̈ve closure conversion algorithms.

More ambitious versions of closure conversion require program analysis:
see, for instance, Steckler and Wand [1997]. These versions can be
made type-preserving.
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Other challenges

Defunctionalization, an alternative to closure conversion, offers an
interesting challenge, with a simple solution [Pottier and Gauthier,
2006].

Designing an efficient, type-preserving compiler for an object-oriented
language is quite challenging. See, for instance, Chen and
Tarditi [2005].
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Exercise: type-preserving CPS conversion

Here is an untyped version of call-by-value CPS conversion:

JvK � λk. k LvM
Jt1 t2K � λk. Jt1K �λx1. Jt2K �λx2. x1 x2 k��

LxM � x

L��M � ��
L�v1, v2�M � �Lv1M, Lv2M�

Lλx. tM � λx. JtK

Is this a type-preserving transformation?

The answer is in the 2007–2008 exam.
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Another exercise

The 2006–2007 exam discusses a type-preserving translation of
λ-calculus into bytecode.
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Benjamin C. Pierce, editor, Advanced Topics in Types and Programming
Languages, chapter 10, pages 389–489. MIT Press, 2005.P Didier Rémy. Programming objects with ML-ART: An extension to ML
with abstract and record types. In International Symposium on
Theoretical Aspects of Computer Software (TACS), pages 321–346.
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