
MPRI, Typage

Didier Rémy
(With much course meterial from François Pottier)

September 28, 2010

Plan of the course

Introduction

Simply-typed λ-calculus

Polymorphism and System F

Type reconstruction

Type reconstruction

Introduction Simple types Core ML Type annotations Recursive Types System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

System F

4 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Logical versus algorithmic properties

We have viewed a type system as a 3-place predicate over a type
environment, a term, and a type.

So far, we have been concerned with logical properties of the type
system, namely subject reduction and progress.

However, one should also study its algorithmic properties: is it
decidable whether a term is well-typed?

5 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Logical versus algorithmic properties

We have seen three different type systems, simply-typed λ-calculus,
ML, and System F , of increasing expressiveness.

In each case, we have presented an explicitly-typed and an
implicitly-typed version of the language and show a close
correspondence between the two views, thanks to a type-passing
semantics.

We argued that the explicitly-typed version is often more convenient
for studying the meta-theoretical properties of the language.

Which one should we used for checking well-typedness? That is, in
which language should we write programs?

6 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Checking type derivations

The typing judgment is inductively defined, so that, in order to prove
that a particular instance holds, one exhibits a type derivation.

A type derivation is essentially a version of the program where every
node is annotated with a type.

Checking that a type derivation is correct is usually easy: it basically
amounts to checking equalities between types.

However, type derivations are so verbose as to be intractable by
humans! Requiring every node to be type-annotated is not practical.

7 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Bottom-up type-checking

A more practical, and quite common, approach consists in requesting
just enough annotations to allow types to be reconstructed in a
bottom-up manner.

In other words, one seeks an algorithmic reading of the typing rules,
where, in a judgment Γ Ø t � T , the parameters Γ and t are inputs,
while the parameter T is an output.

Moreover, typing rules should be such that a type appearing as
output in a conclusion should also appear as output in a premise or
as input in the conclusion and input in the premises should be input
of the conclusion or output of other premises.

This way, types need never be guessed, just looked up into the typing
context, instantiated, or checked for equality.

8 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Bottom-up type-checking

This is exactly the situation with explicitly-typed presentations of the
typing rules.

This is also the traditional approach of Pascal, C, C++, Java, . . . :
formal procedure parameters, as well as local variables, are assigned
explicit types. The types of expressions are synthesized bottom-up.

9 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Bottom-up type-checking

However, this implies a lot of redundancies:

• Parameters of all functions need to be annotated, even when
their types are obvious from context.

• Let-expressions (when not primitive), recursive definitions, Injection
into sum types need to be annotated.

• As the language grows, more and more constructs require type
annotations, e.g. type applications and type abstractions.

Type annotations may quickly obfuscate the code and large
explicitly-typed terms are so verbose that they become intractable by
humans!

Hence, programming in the implicitly-typed version is more appealing.

10 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type inference

For simply-typed λ-calculus and ML, it turns out that this is possible:
whether a term is well-typed is decidable, even when no type
annotations are provided!

For System F , this is however undecidable. Since programming in
explicitly-typed System F is not practically feasible, some amount of
type reconstruction must still be done. Typically, the algorithm is
incomplete, i.e. it rejects terms that are perhaps well-typed, but the
user may always provide more annotations and at worse, the
explicitly-typed version is never rejected if well-typed.

11 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

System F

12 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type inference

The type inference algorithm for simply-typed λ-calculus, is due to
Hindley [1969]. The idea behind the algorithm is simple.

Because simply-typed λ-calculus is a syntax-directed type system, an
unannotated term determines an isomorphic candidate type derivation,
where all types are unknown: they are distinct type variables.

For a candidate type derivation to become an actual, valid type
derivation, every type variable must be instantiated with a type,
subject to certain equality constraints on types.

For instance, at an application node, the type of the operator must
match the domain type of the operator.

13 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type inference

Thus, type inference for the simply-typed λ-calculus decomposes into
constraint generation followed by constraint solving.

Simple types are first-order terms. Thus, solving a collection of
equations between simple types is first-order unification.

First-order unification can be performed incrementally in quasi-linear
time, and admits particularly simple solved forms.

14 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraints

At the interface between the constraint generation and constraint
solving phases is the constraint language.

It is a logic: a syntax, equipped with an interpretation in a model.

15 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraints

There are two syntactic categories: types and constraints.

T ��� X S F ÑT
C ��� true S false S T � T S C , C S §X.C

A type is either a type variable X or an arity-consistent application of
a type constructor F .

(The type constructors are unit, �, �, �, etc.)

An atomic constraint is truth, falsity, or an equation between types.

Compound constraints are built on top of atomic constraints via
conjunction and existential quantification over type variables.

16 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraints

Constraints are interpreted in the Herbrand universe, that is, in the
set of ground types:

t ��� F Ñt
Ground types contain no variables. The base case in this definition is
when F has arity zero.

A ground assignment φ is a total mapping of type variables to ground
types.

A ground assignment determines a total mapping of types to ground
types.

17 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraints

The interpretation of constraints takes the form of a judgment, φ Ø C,
pronounced: φ satisfies C, or φ is a solution of C.

This judgment is inductively defined:

φ Ø true
φT1 � φT2
φ Ø T1 � T2 φ Ø C1 φ Ø C2

φ Ø C1 , C2 φ�X (t� Ø C
φ Ø §X.C

A constraint C is satisfiable if and only if there exists a ground
assignment φ that satisfies C.

We write C1 � C2 when C1 and C2 have the same solutions.

The problem: “given a constraint C, is C satisfiable?” is first-order
unification.

18 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint generation

Type inference is reduced to constraint solving by defining a mapping
of candidate judgments to constraints.

JΓ Ø x � TK � Γ�x� � T
JΓ Ø λx. a � TK � §X1X2.�JΓ, x � X1 Ø a � X2K , X1 � X2 � T�

if X1, X2 # Γ, a, T

JΓ Ø a1 a2 � TK � §X.�JΓ Ø a1 � X � TK , JΓ Ø a2 � XK�
if X # Γ, a1, a2, T

Thanks to the use of existential quantification, the names that occur
free in JΓ Ø a � TK are a subset of those that occur free in Γ or T .

This allows the freshness side-conditions to remain local – there is no
need to informally require “globally fresh” type variables.

19 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example

Let us perform type inference for the closed term

λfxy. �f x, f y�
The problem is to construct and solve the constraint

Jg Ø λfxy. �f x, f y� � X0K
It is possible (and, for a human, easier) to mix these tasks. A
machine, however, could generate and solve in two successive phases.

Solving the constraint means to find all possible ground assignments
for X0 that satisfy the constraint.

Typically, this is done by transforming the constraint into successive
equivalent constraints until some constraint that is obviously
satisfiable and from which solutions may be directly read.

20 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example

Jg Ø λfxy. �f x, f y� � X0K� §X1X2.� Jf � X1 Ø λxy. . . . � X2K
X1 � X2 � X0 �� §X1X2.��� §X3X4.� Jf � X1; x � X3 Ø λy. . . . � X4K

X3 � X4 � X2 �
X1 � X2 � X0 ���� §X1X2.����� §X3X4.��� §X5X6.� Jf � X1; x � X3; y � X5 Ø �f x, f y� � X6K

X5 � X6 � X4 �
X3 � X4 � X2 ���

X1 � X2 � X0 �����
We have performed constraint generation for the 3 λ-abstractions.

21 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example

§X1X2.����� §X3X4.��� §X5X6.� Jf � X1; x � X3; y � X5 Ø �f x, f y� � X6K
X5 � X6 � X4 �

X3 � X4 � X2 ���
X1 � X2 � X0 ������ §X1X2X3X4X5X6.����� Jf � X1; x � X3; y � X5 Ø �f x, f y� � X6K

X5 � X6 � X4
X3 � X4 � X2
X1 � X2 � X0 �����

We have hoisted up several existential quantifiers:�§X.C1� , C2 � §X.�C1 , C2� if X # C2

22 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example

§X1X2X3X4X5X6.����� Jf � X1; x � X3;y � X5 Ø �f x, f y� � X6K
X5 � X6 � X4
X3 � X4 � X2
X1 � X2 � X0 ������ §X1X2X3X5X6.��� Jf � X1; x � X3;y � X5 Ø �f x, f y� � X6K

X3 � X5 � X6 � X2
X1 � X2 � X0 ���

We have eliminated a type variable (X4) with a defining equation:§X.�C , X � T� � �X (T�C if X # T

23 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example§X1X2X3X5X6.��� Jf � X1; x � X3;y � X5 Ø �f x, f y� � X6K
X3 � X5 � X6 � X2
X1 � X2 � X0 ���� §X1X3X5X6.� Jf � X1; x � X3;y � X5 Ø �f x, f y� � X6K

X1 � X3 � X5 � X6 � X0 �
We have again eliminated a type variable (X2) with a defining equation.

In the following, let Γ stand for �f � X1; x � X3;y � X5�.
24 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example §X1X3X5X6.� JΓ Ø �f x, f y� � X6K
X1 � X3 � X5 � X6 � X0 �� §X1X3X5X6X7X8.����� JΓ Ø f x � X7K

JΓ Ø f y � X8K
X7 � X8 � X6
X1 � X3 � X5 � X6 � X0 ������ §X1X3X5X7X8.��� JΓ Ø f x � X7K

JΓ Ø f y � X8K
X1 � X3 � X5 � X7 � X8 � X0 ���

We have performed constraint generation for the pair, hoisted the
resulting existential quantifiers, and eliminated a type variable (X6).

Let us now focus on the first application...
25 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example

JΓ Ø f x � X7K� §X9.� JΓ Ø f � X9 � X7K
JΓ Ø x � X9K �� §X9.� X1 � X9 � X7
X3 � X9 �� X1 � X3 � X7

We have performed constraint generation for the variables f and x,
and eliminated a type variable (X9).

Recall that Γ stands for �f � X1; x � X3;y � X5�.
Now, back to the big picture...

26 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example §X1X3X5X7X8.��� JΓ Ø f x � X7K
JΓ Ø f y � X8K
X1 � X3 � X5 � X7 � X8 � X0 ���� §X1X3X5X7X8.��� X1 � X3 � X7
JΓ Ø f y � X8K
X1 � X3 � X5 � X7 � X8 � X0 ���� §X1X3X5X7X8.��� X1 � X3 � X7
X1 � X5 � X8
X1 � X3 � X5 � X7 � X8 � X0 ���

We have applied the previous simplification under a context:

C1 � C2 � C�C1� � C�C2�
We have simplified the right-hand application analogously.

27 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example §X1X3X5X7X8.��� X1 � X3 � X7
X1 � X5 � X8
X1 � X3 � X5 � X7 � X8 � X0 ���� §X1X3X5X7X8.����� X1 � X3 � X7
X3 � X5
X7 � X8
X1 � X3 � X5 � X7 � X8 � X0 ������ §X3X7. � �X3 � X7�� X3 � X3 � X7 � X7 � X0 �

We have applied transitivity at X1, structural decomposition, and
eliminated three type variables (X1, X5, X8).

We have now reached a solved form.

28 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example

We have checked the following equivalence:

Jg Ø λfxy. �f x, f y� � X0K� §X3X7. � �X3 � X7�� X3 � X3 � X7 � X7 � X0 �
The ground types of λfxy. �f x, f y� are all ground types of the form�t3 � t7� � t3 � t3 � t7 � t7.�X3 � X7� � X3 � X3 � X7 � X7 is a principal type for λfxy. �f x, f y�.

29 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example

Objective Caml implements a form of this type inference algorithm:

fun f x y -> (f x, f y);;

- : (’a -> ’b) -> ’a -> ’a -> ’b * ’b = <fun>

This technique is used also by Standard ML and Haskell.

30 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example

In the simply-typed λ-calculus, type inference works just as well for
open terms. Consider, for instance:

λxy. �f x, f y�
This term has a free variable, namely f .

The type inference problem is to construct and solve the constraint

Jf � X1 Ø λxy. �f x, f y� � X2K
We have already done so... with only a slight difference: X1 and X2
are now free, so they cannot be eliminated.

31 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example

One can check the following equivalence:

Jf � X1 Ø λxy. �f x, f y� � X2K� §X3X7.� X3 � X7 � X1
X3 � X3 � X7 � X7 � X2 �

In other words, the ground typings of λxy. �f x, f y� are all ground
typings of the form:��f � t3 � t7�, t3 � t3 � t7 � t7�
Remember that a typing is a pair of an environment and a type.

32 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Typings

Definition�Γ, T� is a typing of a if and only if dom�Γ� � fv�a� and the judgment
Γ Ø a � T is valid.

The type inference problem is to determine whether a term a admits
a typing, and, if possible, to exhibit a description of the set of all of
its typings.

Up to a change of universes, the problem reduces to finding the
ground typings of a term. (For every type variable, introduce a nullary
type constructor. Then, ground typings in the extended universe are in
one-to-one correspondence with typings in the original universe.)

33 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint generation

Theorem (Soundness and completeness)

φ Ø JΓ Ø a � TK if and only if φΓ Ø a � φT .
Proof.

By structural induction over a. (Recommended exercise.)

In other words, assuming dom�Γ� � fv�a�, φ satisfies the constraint
JΓ Ø a � TK if and only if �φΓ, φT� is a (ground) typing of a.

34 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint generation

Corollary

Let fv�a� � �x1, . . . , xn�, where n C 0. Let X0, . . . , Xn be pairwise distinct
type variables. Then, the ground typings of a are described by��xi � φXi�i>1..n, φX0�
where φ ranges over all solutions of J�xi � Xi�i>1..n Ø a � X0K.
Corollary

Let fv�a� � g. Then, a is well-typed if and only if §X.Jg Ø a � XK � true.

35 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint solving

A constraint solving algorithm is typically presented as a
(non-deterministic) system of constraint rewriting rules.

The system must enjoy the following properties:

• reduction is meaning-preserving: C1 �� C2 implies C1 � C2;
• reduction is terminating;

• every normal form is either “false” (literally) or satisfiable.

The normal forms are called solved forms.

36 155

Introduction Simple types Core ML Type annotations Recursive Types System F

First-order unification as constraint solving

Following Pottier and Rémy [2005, §10.6], we extend the syntax of
constraints and replace ordinary binary equations with multi-equations:

U ��� true S false S ǫ S U , U S §X̄.U
A multi-equation ǫ is a multi-set of types. Its interpretation is:�T > ǫ, φT � t

φ Ø ǫ
That is, φ satisfies ǫ if and only if φ maps all members of ǫ to a
single ground type.

37 155

Introduction Simple types Core ML Type annotations Recursive Types System F

First-order unification as constraint solving�§X̄.U1� , U2 �� §X̄.�U1 , U2� (extrusion)

if X̄ # U2

X � ǫ , X � ǫ� �� X � ǫ � ǫ� (fusion)

F ÑX � F ÑT � ǫ �� ÑX � ÑT , F ÑX � ǫ (decomposition)

F T1 . . . Ti . . . Tn � ǫ �� §X.�X � Ti , F T1 . . . X . . . Tn � ǫ� (naming)

if Ti is not a variable , X # T1, . . . , Tn , ǫ

F ÑT � F� ÑT � � ǫ �� false (clash)

if F x F�
U �� false (occurs check)

if U is cyclicU�false� �� false (error propag.)

See [Pottier and Rémy, 2005, §10.6] for additional administrative
rules.

38 155

Introduction Simple types Core ML Type annotations Recursive Types System F

The occurs check

X dominates Y (with respect to U) iff U contains a multi-equation of
the form F T1 . . . Y . . . Tn � X � . . .
U is cyclic iff its domination relation is cyclic.

A cyclic constraint is unsatisfiable: indeed, if φ satisfies U and if X
is a member of a cycle, then the ground type φX must be a strict
subterm of itself, a contradiction.

39 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Solved forms

A solved form is either false or §X̄.U, where U is a conjunction of
multi-equations, every multi-equation contains at most one non-variable
term, no two multi-equations share a variable, and the domination
relation is acyclic.

Every solved form of that is not false is satisfiable – indeed, a
solution is easily constructed by well-founded recursion over the
domination relation.

40 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Implementation

Viewing a unification algorithm as a system of rewriting rules makes it
easy to explain and reason about.

In practice, following Huet [1976], first-order unification is
implemented on top of an efficient union-find data structure [Tarjan,
1975]. Its time complexity is quasi-linear.

41 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Closing remarks

Thanks to type inference, conciseness and static safety are not
incompatible.

Furthermore, an inferred type is sometimes more general than a
programmer-intended type. Type inference helps reveal unexpected
generality.

42 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

System F

43 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Two presentations

Two presentations of type inference for Damas and Milner’s type
system are possible:

• one of Milner’s classic algorithms [1978], W or J ; see Pottier’s
old course notes for details [Pottier, 2002, §3.3];

• a constraint-based presentation [Pottier and Rémy, 2005];

We favor the latter, but quickly review the former first.

44 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Preliminaries

This algorithm expects a pair Γ Ø a, produces a type T , and uses two
global variables, V and ϕ.

V is an infinite fresh supply of type variables:

fresh � do X > V
do V � V � �X�
return X

ϕ is an idempotent substitution (of types for type variables), initially
the identity.

45 155

Introduction Simple types Core ML Type annotations Recursive Types System F

The algorithm

Here is the algorithm in monadic style:J �Γ Ø x� � let �X1 . . . Xn.T � Γ�x�
do X�1, . . . , X�n � fresh, . . . , fresh
return �Xi (X�i �ni�1�T� – take a fresh instanceJ �Γ Ø λx. a1� � do X � fresh
do T1 � J �Γ; x � X Ø a1�
return X � T1 – form an arrow type

. . .

46 155

Introduction Simple types Core ML Type annotations Recursive Types System F

The algorithm

. . .J �Γ Ø a1 a2� � do T1 � J �Γ Ø a1�
do T2 � J �Γ Ø a2�
do X � fresh
do ϕ� mgu�ϕ�T1� � ϕ�T2 � X�� Xϕ
return X – solve T1 � T2 � XJ �Γ Ø let x � a1 in a2� � do T1 � J �Γ Ø a1�
let σ � �� ftv�ϕ�Γ��.ϕ�T1� – generalize
return J �Γ; x � σ Ø a2�

(��X̄. T quantifies over all type variables other than X̄.)

47 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Some weaknesses

Algorithm J mixes generation and solving of equations. This lack of
modularity leads to several weaknesses:

• proofs are more difficult;

• correctness and efficiency concerns are not clearly separated
(if implemented literally, the algorithm is exponential in practice);

• adding new language constructs duplicates solving of equations;

• generalizations, such as the introduction of subtyping, are not
easy.

48 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Some weaknesses

Algorithm J works with substitutions, instead of constraints.

Substitutions are an approximation to solved forms for unification
constraints.

Working with substitutions means using most general unifiers,
composition, and restriction.

Working with constraints means using equations, conjunction, and
existential quantification.

49 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

System F

50 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Road map

Type inference for Damas and Milner’s type system involves slightly
more than first-order unification: there is also generalization and
instantiation of type schemes.

So, the constraint language must be enriched.

We proceed in two steps:

• still within simply-typed λ-calculus, we present a variation of the
constraint language;

• building on this variation, we introduce polymorphism.

51 155

Introduction Simple types Core ML Type annotations Recursive Types System F

A variation on constraints

How about letting the constraint solver, instead of the constraint
generator, deal with environment access and construction?

Let’s enrich the syntax of constraints:

C ��� . . . S x � T S def x � T in C

The idea is to interpret constraints in such a way as to validate the
equivalence law:

def x � T in C � �x (T�C
The def form is an explicit substitution form.

52 155

Introduction Simple types Core ML Type annotations Recursive Types System F

A variation on constraints

More precisely, here is the new interpretation of constraints.

As before, a valuation φ maps type variables X to ground types.

In addition, a valuation ψ maps term variables x to ground types.

The satisfaction judgment now takes the form φ,ψ Ø C. The new rules
of interest are:

ψx � φT
φ,ψ Ø x � T φ,ψ�x (φT� Ø C

φ,ψ Ø def x � T in C

(All other rules are modified to just transport ψ.)

53 155

Introduction Simple types Core ML Type annotations Recursive Types System F

A variation on constraints

Constraint generation is now a mapping of an expression a and a type
T to a constraint Ja � TK. There is no longer a need for the
parameter Γ.

Jx � TK � x � T
Jλx. a � TK � §X1X2.�def x � X1 in Ja � X2K , X1 � X2 � T�

if X1, X2 # a, T

Ja1 a2 � TK � §X.�Ja1 � X � TK , Ja2 � XK�
if X # a1, a2, T

Look ma, no environments!

54 155

Introduction Simple types Core ML Type annotations Recursive Types System F

A variation on constraints

Theorem (Soundness and completeness)

Assume fv�a� � dom�Γ�. Then, φ,φΓ Ø Ja � TK if and only if
φΓ Ø a � φT .
Corollary

Assume fv�a� � g. Then, a is well-typed if and only if §X.Ja � XK � true.

55 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Summary

This variation shows that there is freedom in the design of the
constraint language, and that altering this design can shift work from
the constraint generator to the constraint solver, or vice-versa.

56 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Enriching constraints

To permit polymorphism, we must extend the syntax of constraints so
that a variable x denotes not just a ground type, but a set of ground
types.

However, these sets cannot be represented as type schemes �X̄. T ,
because constructing these simplified forms requires constraint solving.

To avoid mingling constraint generation and constraint solving, we use
type schemes that incorporate constraints: constrained type schemes.

57 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Enriching constraints

The syntax of constraints and of constrained type schemes is:

C ��� T � T S C , C S §X.CS x j TS σ j TS def x � σ in C
σ ��� �X̄�C�. T

x j T and σ j T are instantiation constraints. The latter form is
introduced so as to make the syntax stable under substitutions of
constrained type schemes for variables.

As before, def x � σ in C is an explicit substitution form.

58 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Enriching constraints

The idea is to interpret constraints in such a way as to validate the
equivalence laws:

def x � σ in C � �x (σ�C��X̄�C�. T� j T � � §X̄.�C , T � T �� if X̄ # T �
Using these laws, a closed constraint can be rewritten to a unification
constraint (with a possibly exponential increase in size).

The new constructs do not add much expressive power. They add just
enough to allow a stand-alone formulation of constraint generation.

59 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Interpreting constraints

A type variable X still denotes a ground type.

A variable x now denotes a set of ground types.

Instantiation constraints are interpreted as set membership.

φT > ψx
φ,ψ Ø x j T φT > �φψ�σ

φ,ψ Ø σ j T φ,ψ�x (�φψ�σ� Ø C
φ,ψ Ø def x � σ in C

60 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Interpreting constrained type schemes

The interpretation of �X̄�C�. T under φ and ψ is the set of all φ�T ,
where φ and φ� coincide outside X̄ and where φ� and ψ satisfy C.�φψ���X̄�C�. T� � �φ�T S �φ� � X̄ � φ � X̄� , �φ�, ψ Ø C��
For instance, the interpretation of �X�§Y.X � Y � Z�. X � X under φ
and ψ is the set of all ground types of the form�t � φZ� � �t� φZ�, where t ranges over ground types.

This is also the interpretation of �Y. �Y � Z� � �Y � Z�.
In fact, every constrained type scheme is equivalent to a standard
type scheme.

If X̄ and C are empty, then �φψ�T is φT .

61 155

Introduction Simple types Core ML Type annotations Recursive Types System F

A derived form

Notice that if x does not appear free in C, def x � σ in C is equivalent
to C—whether or not of the constraints appearing in σ are solvable.

To enforce the constraints in σ to be solvable, we use a variant of
the def construct:

let x � σ in C � def x � σ in ��§X.x j X� , C�
Expanding σ

Q�� �X̄�C�. T and simplifying, an equivalent definition is:

let x � �X̄�C�. T in C� � §X̄.C , def x � �X̄�C�. T in C�
It would also be equivalent to provide a direct interpretation of it:�φψ�σ ~� g φ,ψ�x (�φψ�σ� Ø C

φ,ψ Ø let x � σ in C

62 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint generation

Constraint generation is now as follows:

Jx � TK � x j T
Jλx. a � TK � §X1X2.�def x � X1 in Ja � X2K , X1 � X2 � T�

if X1, X2 # a, T

Ja1 a2 � TK � §X.�Ja1 � X � TK , Ja2 � XK�
if X # a1, a2, T

Jlet x � a1 in a2 � TK � let x � La1M in Ja2 � TK
LaM � �X�Ja � XK�. X

LaM is a principal constrained type scheme for a: its intended
interpretation is the set of all ground types that a admits.

63 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Properties of constraint generation

Lemma§X.�Ja � XK , X � T� � Ja � TK if X # T .

Lemma

LaM j T � Ja � TK.
Lemma�x (La1M�Ja2 � TK � J�x (a1�a2 � TK.
Lemma

Jlet x � a1 in a2 � TK � Ja1; �x (a1�a2 � TK.
The constraint associated with a let construct is equivalent to the
constraint associated with its let-normal form.

64 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Complexity

Lemma

The size of Ja � TK is linear in the sum of the sizes of a and T .

Constraint generation can be implemented in linear time and space.

65 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Soundness and completeness

The statement keeps its previous form, back but Γ now contains
Damas-Milner type schemes. Since Γ binds variables to type schemes,

we define φ�Γ� as the point-wise mapping of �φg� to Γ.

Theorem (Soundness and completeness)

Let fv�a� � dom�Γ�. Then, φ,φΓ Ø Ja � TK if and only if φΓ Ø a � φT .
66 155

Introduction Simple types Core ML Type annotations Recursive Types System F

A word about HM(X)

Soundness/completeness of type inference are in fact easier to prove
if one adopts a constraint-based specification of the type system.

In HM(X), typing judgments take the form C,Γ Ø a � T . The system
includes a subtyping rule:

Sub

C,Γ Ø a � T1 C è T1 B T2
C,Γ Ø a � T2

This generalizes Damas and Milner’s type system.

See Odersky et al. [1999], Pottier and Rémy [2005], Skalka and
Pottier [2002].

67 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Summary

Note that

• constraint generation has linear complexity;

• constraint generation and constraint solving are separate;

• the constraint language remains small as the programming
language grows.

This makes constraints suitable for use in an efficient and modular
implementation.

68 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

System F

69 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An initial environment

Let Γ0 stand for assoc � �XY. X � list �X � Y� � Y .

We take Γ0 to be the initial environment, so that the constraints
considered next are implicitly wrapped within the context def Γ0 in ��.

70 155

Introduction Simple types Core ML Type annotations Recursive Types System F

A code fragment

Let a stand for the term

λx.λl1.λl2.

let assocx � assoc x in�assocx l1,assocx l2�
One anticipates that assocx receives a polymorphic type scheme, which
is instantiated twice at different types...

71 155

Introduction Simple types Core ML Type annotations Recursive Types System F

The generated constraint

Let Γ stand for x � X0; l1 � X1; l2 � X2. Then, the constraint Ja � XK is
(with a few minor simplifications):§X0X1X2Y.����������

X � X0 � X1 � X2 � Y

def Γ in

let assocx � �Z1�§Z2.� assoc j Z2 � Z1
x j Z2 ��. Z1 in§Y1Y2.� Y � Y1 � Y2�i §Z2.�assocx j Z2 � Yi , li j Z2� � ����������

(The index i ranges over �1,2�.)
72 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Simplification

Constraint solving can be viewed as a rewriting process that exploits
equivalence laws. Because equivalence is, by construction, a congruence,
rewriting is permitted within an arbitrary context.

For instance, environment access is allowed by the law

let x � σ in C�x j T� � let x � σ in C�σ j T�
where C is a context that does not bind x.

73 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Simplification, continued

Thus, within the context def Γ0; Γ in ��, the constraint:� assoc j Z2 � Z1
x j Z2 �

is equivalent to:� §XY.�X � list �X � Y� � Y � Z2 � Z1�
X0 � Z2 �

74 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Simplification, continued

By first-order unification, the constraint:§Z2. �§XY. �X � list �X � Y��Y � Z2�Z1� , X0 � Z2�
simplifies down successively to:§Z2. �§XY. �X � Z2 , list �X � Y� � Y � Z1� , X0 � Z2�§Z2. �§Y. �list �Z2 � Y� � Y � Z1� , X0 � Z2�§Y. �list �X0 � Y� � Y � Z1�

75 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Simplification, continued

The constrained type scheme:�Z1�§Z2.�assoc j Z2 � Z1 , x j Z2��. Z1
is thus equivalent to:�Z1�§Y. �list �X0 � Y� � Y � Z1��. Z1
which can also be written:�Z1Y �list �X0 � Y� � Y � Z1�. Z1�Y.list �X0 � Y� � Y

76 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Simplification, continued

The initial constraint has now been simplified down to:§X0X1X2Y.�������� X � X0 � X1 � X2 � Y

def Γ in
let assocx � �Y. list �X0 � Y� � Y in§Y1Y2.� Y � Y1 � Y2�i §Z2.�assocx j Z2 � Yi , li j Z2� � ��������

The simplification work spent on assocx’s type scheme was well worth
the trouble, because we are now going to duplicate the simplified type
scheme.

77 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Simplification, continued

The sub-constraint:§Z2. �assocx j Z2 � Yi , li j Z2�
where i > �1,2�, is rewritten:§Z2. �§Y. �list �X0 � Y� � Y � Z2 � Yi� , Xi � Z2�§Y. �list �X0 � Y� � Y � Xi � Yi�§Y. �list �X0 � Y� � Xi , Y � Yi�

list �X0 � Yi� � Xi
78 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Simplification, continued

The initial constraint has now been simplified down to:§X0X1X2Y.�������� X � X0 � X1 � X2 � Y

def Γ in
let assocx � �Y. list �X0 � Y� � Y in§Y1Y2. � Y � Y1 � Y2�i list �X0 � Yi� � Xi � ��������

Now, the context def Γ in let assocx � . . . in �� can be dropped, because
the constraint that it applies to contains no occurrences of x, l1, l2,
or assocx.

79 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Simplification, continued

The constraint becomes:§X0X1X2Y.��� X � X0 � X1 � X2 � Y§Y1Y2. � Y � Y1 � Y2�i list �X0 � Yi� � Xi � ���
that is: §X0X1X2YY1Y2.��� X � X0 � X1 � X2 � Y

Y � Y1 � Y2�i list �X0 � Yi� � Xi ���
and, by eliminating a few auxiliary variables:§X0Y1Y2. �X � X0 � list �X0 � Y1� � list �X0 � Y2� � Y1 � Y2�

80 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Simplification, the end

We have shown the following equivalence between constraints:

def Γ0 in Ja � XK� §X0Y1Y2. �X � X0 � list �X0 � Y1� � list �X0 � Y2� � Y1 � Y2�
That is, the principal type scheme of a relative to Γ0 is

LaM � �X�Ja � XK�. X� �X0Y1Y2. X0 � list �X0 � Y1� � list �X0 � Y2� � Y1 � Y2
81 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Rewriting strategies

Again, constraint solving can be explained in terms of a small-step
rewrite system. Again, one checks that every step is
meaning-preserving, that the system is normalizing, and that every
normal form is either literally “false” or satisfiable.

Different constraint solving strategies lead to different behaviors in
terms of complexity, error explanation, etc.

See ATTAPL for details on constraint solving [Pottier and Rémy,
2005]. See Jones [1999] for a different presentation of type
inference, in the context of Haskell.

82 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Rewriting strategies

In all reasonable strategies, the left-hand side of a let constraint is
simplified before the let form is expanded away.

This corresponds, in Algorithm J , to computing a principal type
scheme before examining the right-hand side of a let construct.

83 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Complexity

Type inference for ML is DEXPTIME-complete [Kfoury et al., 1990;
Mairson, 1990], so any constraint solver has exponential complexity.

Nevertheless, under the hypotheses that types have bounded size and
let forms have bounded left-nesting depth, constraints can be solved
in linear time [McAllester, 2003].

This explains why ML type inference works well in practice.

84 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An alternative presentation of constraint generation

Using principal contrained type schemes and the following equivalence

LaM
Q�� �X�Ja � XK�. X Ja � TK � LaM j T

we call also present contraints as follows:

LxM � �X�x j X�. X
Lλx. aM � �X1X2�def x � X1 in LaM j X2�. X1 � X2

if X1, X2 # a

La1 a2M � �X1X2�La1M j X1 � X2 , La2M j X1�. X2
if X1, X2 # a1, a2

Llet x � a1 in a2M � �X�let x � La1M in La2M j X�. X
85 155

Introduction Simple types Core ML Type annotations Recursive Types System F

From implicitly-typed to explicitly-typed terms

Every node of the source program is thus mapped to a principal type
scheme relative to its program context.

By default, constraint resolution removes solved contains.

However, solved constraints may be kept: principal constrained type
schemes become principal type schemes which points back to source
program nodes and may used to build a decorated source term.

86 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

System F

87 155

Introduction Simple types Core ML Type annotations Recursive Types System F

On type annotations

Damas and Milner’s type system has principal types: at least in the
core language, no type information is required.

This is very lightweight, but a bit extreme: sometimes, it is useful to
write types down, and use them as machine-checked documentation.

88 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Syntax for type annotations

Let us, then, allow programmers to annotate a term with a type:

a ��� . . . S �a � T�
Typing and constraint generation are obvious:

Annot

Γ Ø a � T
Γ Ø �a � T� � T J�a � T� � T �K � Ja � TK , T � T �

Type annotations are erased prior to runtime, so the operational
semantics is not affected.

(Erasure of type annotations preserves well-typedness.)

89 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type annotations are restrictive

The constraint J�a � T� � T �K implies the constraint Ja � T �K.
That is, in terms of type inference, type annotations are restrictive:
they lead to a principal type that is less general, and possibly even
to ill-typedness.

For instance, λx. x has principal type scheme �X. X � X, whereas�λx. x � int� int� has principal type scheme int� int, and�λx. x � int� bool� is ill-typed.

90 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type variables within type annotations?

Does it make sense for a type annotation to contain a type variable,
as in, say: �λx. x � X � X��λx. x � 1 � X � X�

let f � �λx. x � X � X� in �f 0, f true�
If so, what does it mean?

Short answer: it does not mean anything, because X is unbound.
“There is no such thing as a free variable” (Alan Perlis).

91`1e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

How and where

Does it make sense for a type annotation to contain a type variable, as in,
say: �λx. x � X � X��λx. x � 1 � X � X�

let f � �λx. x � X � X� in �f 0, f true�
If so, what does it mean?

A longer answer:

It is necessary to specify how and where type variables are bound.

91`2e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type variables within type annotations?

Does it make sense for a type annotation to contain a type variable, as in,
say: �λx. x � X � X��λx. x � 1 � X � X�

let f � �λx. x � X � X� in �f 0, f true�
If so, what does it mean?

How is X bound?

If X is existentially bound, or flexible, then both �λx. x � X � X� and�λx. x � 1 � X � X� should be well-typed.

If it is universally bound, or rigid, only the former should be well-typed.

91`3e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Where

Does it make sense for a type annotation to contain a type variable, as in,
say: �λx. x � X � X��λx. x � 1 � X � X�

let f � �λx. x � X � X� in �f 0, f true�
If so, what does it mean?

Where is X bound?

If X is bound within the left-hand side of this “let” construct, then
this code:

let f � �λx. x � X � X� in �f 0, f true�
should be well-typed.

On the other hand, if X is bound outside this “let” form, then this
code should be ill-typed, since no single ground value of X is suitable.

91`4e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Binding type variables

Let’s allow programmers to explicitly bind type variables:

a ��� . . . S §X̄.a S �X̄.a
It now makes sense for a type annotation �a � T� to contain free type
variables.

Terms a can now contain free type variables, so some side conditions
have to be updated (e.g., X̄ # Γ, a in Gen).

92 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Binding type variables

The typing rules are as follows:

Exists

Γ Ø �ÑX (ÑT�a � T
Γ Ø §X̄.a � T Forall

Γ Ø a � T X̄ # Γ

Γ Ø �X̄.a � �X̄. T ���� Gen

Γ Ø a � T X̄ # Γ, a

Γ Ø a � �X̄. T ����
Again, these constructs are erased prior to runtime.

(Why is this sound? Easy exercise: define the erasure of a term, and
prove that the erasure of a well-typed term is well-typed.)

93 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint generation: existential case

Constraint generation for the existential form is straightforward:

J�§X̄.a� � TK � §X̄.Ja � TK if X̄ # T

The type annotations inside a contain free occurrences of X̄. Thus, the
constraint Ja � TK contains such occurrences as well. They are bound
by the existential quantifier.

94 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint generation: existential case

For instance, the expression:

λx1. λx2.§X.��x1 � X�, �x2 � X��
has principal type scheme �X. X � X � X � X. Indeed, the generated
constraint contains the pattern:§X.�Jx1 � XK , Jx2 � XK , . . .�
which requires x1 and x2 to share a common (unspecified) type.

95 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint generation: universal case

A term a has type scheme, say, �X. X � X if and only if a has type
X � X for every instance of X, or, equivalently, for an abstract X.

To express this in terms of constraints, we introduce universal
quantification in the constraint language:

C ��� . . . S �X.C
Its interpretation is standard.

(To solve these constraints, we will use an extension of the unification
algorithm called unification under a mixed prefix—see forward .)

The need for universal quantification in constraints arises when
polymorphism is required by the programmer, as opposed to inferred by
the system.

96 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint generation: universal case

Constraint generation for the universal form is somewhat subtle. A
naive definition fails (why?):

J�X̄.a � TK � �X̄.Ja � TK if X̄ # T (Wrong)

97`1e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint generation: universal case

Constraint generation for the universal form is somewhat subtle. A
naive definition fails:

J�X̄.a � TK � �X̄.Ja � TK if X̄ # T (Wrong)

This requires T to be simultaneously equal to all of the types that a
assumes when X̄ varies.

For instance, with this incorrect definition, one would have:

J�X.�λx. x � X � X� � int� intK � �X.J�λx. x � X � X� � int� intK� �X.�Jλx. x � X � XK , X � int�� �X.�true , X � int�� false

97`2e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint generation: universal case

A correct definition is:

J�X̄.a � TK � �X̄.§Z.Ja � ZK , §X̄.Ja � TK
This requires a to be well-typed for all instances of X̄ and requires T

to be a valid type for a under some instance of X̄.

A problem with this definition is...

98`1e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Constraint generation: universal case

A correct definition is:

J�X̄.a � TK � �X̄.§Z.Ja � ZK , §X̄.Ja � TK
This requires a to be well-typed for all instances of X̄ and requires T

to be a valid type for a under some instance of X̄.

A problem with this definition is...

The term a is duplicated! This can lead to exponential complexity.
Fortunately, this can be avoided modulo a slight extension of the
constraint language [Pottier and Rémy, 2003, p. 112].

The solution defines:

J�X̄.a � TK � let x � �ÑX, Y �Ja � YK�. Y in x j T
where the new constrain form satisfies the equivalence:

let x � �ÑX, ÑY �C1�. T in C2 � �ÑX.§ÑY . C1 , def x � �ÑX, ÑY �C1�. T in C2

98`2e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type schemes as annotations

Annotating a term with a type scheme, rather than just a type, is
now just syntactic sugar:�a � �X̄. T� stands for �X̄.�a � T� if X̄ # a

In that particular case, constraint generation is in fact simpler:

J�a � �X̄. T� � T �K � �X̄.Ja � TK , ��X̄. T� j T �
(Exercise: check this equivalence.)

99 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Examples

A correct example:

J�§X.�λx. x � 1 � X � X�� � int� intK� §X.J�λx. x � 1 � X � X� � int� intK� §X.�X � int�� true

The system infers that X must be int. Because X is a local type
variable, it does not appear in the final constraint.

100 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Examples

An incorrect example:

J��X.�λx. x � 1 � X � X�� � int� intKè �X.§Z.J�λx. x � 1 � X � X� � ZK� �X.§Z.�X � int , X � X � Z�� �X.X � int� false

The system checks that X is used in an abstract way, which is not
the case here, since the code implicitly assumes that X is int.

101 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Examples

A correct example:

J��X.�λx. x � X � X�� � int� intK� �X.§Z.J�λx. x � X � X� � ZK , §X.J�λx. x � X � X� � int� intK� �X.§Z.X � X � Z , §X.X � int� true

The system checks that X is used in an abstract way, which is indeed
the case here.

It also checks that, if X is appropriately instantiated, the code
admits the expected type int� int.

102 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Examples

An incorrect example:

J§X.�let f � �λx. x � X � X� in �f 0, f true�� � ZK� §X.�let f � X � X in §Z1Z2.�f j int� Z1 , f j bool � Z2 , Z1 � Z2 � Z��� §XZ1Z2.�X � X � int� Z1 , X � X � bool � Z2 , Z1 � Z2 � Z�è §X.�X � int , X � bool�� false

X is bound outside the let construct; f receives the monotype X � X.

103 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Examples

A correct example:

Jlet f � §X.�λx. x � X � X� in �f 0, f true� � ZK� let f � �Y �§X.�X � X � Y��. Y in§Z1Z2.�f j int� Z1 , f j bool � Z2 , Z1 � Z2 � Z�� let f � �X. X � X in§Z1Z2.�. . .�� §Z1Z2.�int � Z1 , bool � Z2 , Z1 � Z2 � Z�� int � bool � Z
X is bound within the let construct; the term §X.�λx. x � X � X� has
the same principal type scheme as λx. x, namely �X. X � X; f receives
the type scheme �X. X � X.

104 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type annotations in the real world

For historical reasons, in Objective Caml, type variables are not
explicitly bound. (Retrospectively, that’s bad!) They are implicitly
existentially bound at the nearest enclosing toplevel let construct.

In Standard ML, type variables are implicitly universally bound at the
nearest enclosing toplevel let construct.

In Glasgow Haskell, type variables are implicitly existentially bound
within patterns: ‘A pattern type signature brings into scope any type
variables free in the signature that are not already in scope’ [Peyton
Jones and Shields, 2004].

Constraints help understand these varied design choices uniformly.

105 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

System F

106 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Monomorphic recursion

Recall the typing rule for recursive functions:

FixAbs

Γ, f � T Ø λx. a � T
Γ Ø µf.λx.a � T

It leads to the following derived typing rule:

LetRec

Γ, f � T1 Ø λx. a1 � T1 X̄ # Γ, a1
Γ, f � �X̄. T1 Ø a2 � T2

Γ Ø let rec f x � a1 in a2 � T2
Any comments?

107 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Monomorphic recursion

These rules require occurrences of f to have monomorphic type within
the recursive definition (that is, within λx. a1).

This is visible also in terms of type inference. The constraint

Jlet rec f x � a1 in a2 � TK
is equivalent to

let f � �XY �let f � X � Y ; x � X in Ja1 � YK�. X � Y in Ja2 � TK
108 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Monomorphic recursion

This is problematic in some situations, most particularly when defining
functions over nested algebraic data types [Bird and Meertens, 1998;
Okasaki, 1999].

109 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Polymorphic recursion

This problem is solved by introducing polymorphic recursion, that is, by
allowing µ-bound variables to receive a polymorphic type scheme:

FixAbsPoly

Γ, f � S Ø λx. a � S
Γ Ø µf.λx.a � S LetRecPoly

Γ, f � S Ø λx. a1 � S Γ, f � S Ø a2 � T
Γ Ø let rec f x � a1 in a2 � T

This extension of ML is due to Mycroft [1984].

In System F , there is no problem to begin with; no extension is
necessary.

110 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Polymorphic recursion

Polymorphic recursion alters, to some extent, Damas and Milner’s type
system.

Now, not only let-bound, but also µ-bound variables receive type
schemes. The type system is no longer equivalent, up to reduction to
let-normal form, to simply-typed λ-calculus.

This has two consequences:

• monomorphization, a technique employed in some ML compilers
[Tolmach and Oliva, 1998; Cejtin et al., 2007], is no longer
possible;

111`1e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Polymorphic recursion

Polymorphic recursion alters, to some extent, Damas and Milner’s type
system.

Now, not only let-bound, but also µ-bound variables receive type
schemes. The type system is no longer equivalent, up to reduction to
let-normal form, to simply-typed λ-calculus.

This has two consequences:

• monomorphization, a technique employed in some ML compilers
[Tolmach and Oliva, 1998; Cejtin et al., 2007], is no longer
possible;

• type inference becomes problematic!

111`2e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Polymorphic recursion

Type inference for ML with polymorphic recursion is undecidable
[Henglein, 1993]. It is equivalent to the undecidable problem of
semi-unification.

112 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Polymorphic recursion

Yet, type inference in the presence of polymorphic recursion can be
made simple. (How?)

113`1e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Polymorphic recursion

Yet, type inference in the presence of polymorphic recursion can be
made simple. (How?)

By relying on a mandatory type annotation. The rules become:

FixAbsPoly

Γ, f � S Ø λx. a � S
Γ Ø µ�f � S�.λx.a � S LetRecPoly

Γ, f � S Ø λx. a1 � S Γ, f � S Ø a2 � T
Γ Ø let rec �f � S� � λx. a1 in a2 � T

The type scheme S no longer has to be guessed.

With this feature, contrary to what was said earlier back , type
annotations are not just restrictive: they are sometimes required for
type inference to succeed.

113`2e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Polymorphic recursion

The constraint generation rule becomes:

Jlet rec �f � S� � λx. a1 in a2 � TK � ?

114`1e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Polymorphic recursion

The constraint generation rule becomes:

Jlet rec �f � S� � λx. a1 in a2 � TK � let f � S in �Jλx. a1 � SK , Ja2 � TK�
It is clear that f receives type scheme S both inside and outside of
the recursive definition.

114`2e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

System F

115 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Unification under a mixed prefix

Unification under a mixed prefix means unification in the presence of
both existential and universal quantifiers.

We extend the basic unification algorithm with support for universal
quantification.

The solved forms are unchanged: universal quantifiers are always
eliminated.

116 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Unification under a mixed prefix

In short, in order to reduce �X̄.C to a solved form, where C is itself
a solved form:

• if a rigid variable is equated with a constructed type, fail;

• if two rigid variables are equated, fail;

• if a free variable dominates a rigid variable, fail;

• otherwise, one can decompose C as §Ȳ .�C1 , C2�, where X̄Ȳ # C1
and §Ȳ .C2 � true; in that case, �X̄.C reduces to just C1.

See [Pottier and Rémy, 2003, p. 109] for details.

117 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Unification under a mixed prefix

Here are examples of the situations described on the previous slide:

• �X.§YZ.�X � Y � Z� is false;

• �XY.�X � Y� is false;

• �X.§Y.�Z � X � Y� is false;

• �X.§YZ1Z2.�Y � X � Z , Z � Z1 � Z2� reduces to just§Z1Z2.�Z � Z1 � Z2�. The constraint �X.§Y.�Y � X � Z� is
equivalent to true.

118 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Examples

Objective Caml implements a form of unification under a mixed prefix:

bash$ ocaml
let module M : sig val id : ’a � ’a end

= struct let id x = x + 1 end

in M.id;;

Values do not match: val id : int � int
is not included in val id : ’a � ’a

This example gives rise to a constraint of the form �X.X � int.

119 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Examples

Here is another example:

bash$ ocaml
let r = ref (fun x � x) in

let module M : sig val id : ’a � ’a end

= struct let id = !r end

in M.id;;

Values do not match: val id : ’ a � ’ a
is not included in val id : ’a � ’a

This example gives rise to a constraint of the form §Y.�X.X � Y .
120 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

System F

121 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Recursive types

Product and sum types alone do not allow describing data structures
of unbounded size, such as lists and trees.

Indeed, if the grammar of types is T ��� unit S T � T S T � T , then it is
clear that every type describes a finite set of values.

For every k, the type of lists of length at most k is expressible using
this grammar. However, the type of lists of unbounded length is not.

122 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Equi- versus iso-recursive types

The following definition is inherently recursive:

“A list is either empty or a pair of an element and a list.”

We need something like this:

list X l unit � X � list X

But what does l stand for? Is it equality, or some kind of
isomorphism?

123 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Equi- versus iso-recursive types

There are two standard approaches to recursive types, dubbed the
equi-recursive and iso-recursive approaches.

In the equi-recursive approach, a recursive type is equal to its
unfolding.

In the iso-recursive approach, a recursive type and its unfolding are
related via explicit coercions.

124 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Equi-recursive types

In the equi-recursive approach, the usual syntax of types:

T ��� X S F ÑT
is no longer interpreted inductively. Instead, types are the regular
trees built on top of this signature.

125 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Finite syntax for equi-recursive types

If desired, it is possible to use finite syntax for recursive types:

T ��� X S µX.�F ÑT�
We do not allow the seemingly more general µX.T , because µX.X is
meaningless, and µX.Y or µX.µY.T are useless. If we write µX.T , it
should be understood that T is contractive, that is, T is a type
constructor application.

For instance, the type of lists of elements of type X is:

µY.�unit � X � Y�
126 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Finite syntax for equi-recursive types

Each type in this syntax denotes a unique regular tree, sometimes
known as its infinite unfolding. Conversely, every regular tree can be
expressed in this notation (possibly in more than one way).

If one builds a type-checker on top of this finite syntax, then one
must be able to decide whether two types are equal, that is, have
identical infinite unfoldings.

This can be done efficiently, either via the algorithm for comparing two
DFAs, or by unification. (The latter approach is simpler, faster, and
extends to the type inference problem.)

127 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Finite syntax for equi-recursive types

One can also prove [Brandt and Henglein, 1998] that equality is the
least congruence generated by the following two rules:

Fold/Unfold

µX.T � �X (µX.T�T Uniqueness

T1 � �X (T1�T T2 � �X (T2�T
T1 � T2

In both rules, T must be contractive.

This axiomatization does not directly lead to an efficient algorithm for
deciding equality, though.

128 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type soundness for equi-recursive types

In the presence of equi-recursive types, structural induction on types
is no longer permitted – but we never used it anyway.

It remains true that F ÑT1 � F ÑT2 implies ÑT1 � ÑT2 – this was used in
our Subject Reduction proofs.

It remains true that F1 ÑT1 � F2 ÑT2 implies F1 � F2 – this was used in
our Progress proofs.

So, the reasoning that leads to type soundness is unaffected.

(Exercise: prove type soundness for the simply-typed λ-calculus in Coq.
Then, change the syntax of types from Inductive to CoInductive.)

129 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type inference for equi-recursive types

How is type inference adapted for equi-recursive types?

The syntax of constraints is unchanged: they remain systems of
equations between finite first-order types, without µ’s. Their
interpretation changes: they are now interpreted in a universe of
regular trees.

As a result,

• constraint generation is unchanged;

• constraint solving is adapted by removing the occurs check.

(Exercise: describe solved forms and show that every solved form is
either false or satisfiable.)

130 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type inference for equi-recursive types

Here is a function that measures the length of a list:

µlength.λxs.case xs of
λ��.0

8 λ�x, xs�.1 � length xs

Type inference gives rise to the cyclic equation:

Y � unit � X � Y
where length has type Y � int.

131 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type inference for equi-recursive types

That is, length has principal type scheme:�X. �µY.unit � X � Y� � int

or, equivalently, principal constrained type scheme:�X�Y � unit � X � Y �. Y � int

The cyclic equation that characterizes lists was never provided by the
programmer, but was inferred.

132 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type inference for equi-recursive types

Objective Caml implements equi-recursive types upon explicit request:

bash$ ocaml �rectypes
type (’a, ’b) sum = Left of ’a | Right of ’b;;

type (’a , ’b) sum = Left of ’a | Right of ’b

let rec length xs =
match xs with

| Left () � 0
| Right (x, xs) � 1 + length xs ;;

val length : ((unit , ’b ∗ ’a) sum as ’a) � int = `fune
Quiz: why is -rectypes only an option?

133 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Drawbacks of equi-recursive types

Equi-recursive types are simple and powerful. In practice, however, they
are perhaps too expressive:

bash$ ocaml �rectypes
let rec map f = function

| [] � []
| x :: xs � map f x :: map f xs;;

val map : ’a � (’b list as ’b) � (’c list as ’c) = `fune
map (fun x � x + 1) [1; 2];;

This expression has type int but is used with type ’a list as ’a

map () [[];[[]]];;� : ’a list as ’a = [[]; [[]]]

Equi-recursive types allow this nonsensical version of map to be
accepted, thus delaying the detection of a programmer error.

134 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Half a pint of equi-recursive types

Quiz: why is this accepted?

bash$ ocaml
let f x = x#hello x;;

val f : (< hello : ’a � ’b; .. > as ’a) � ’b = `fune

135 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Iso-recursive types

In the iso-recursive approach, the user is allowed to introduce new
type constructors D via (possibly mutually recursive) declarations:

D ÑX � T (where ftv�T� b X̄)
Each such declaration adds a unary constructor foldD and a unary
destructor unfoldD with the following types:

foldD � �X̄. T � D ÑX
unfoldD � �X̄. D ÑX � T

and the reduction rule:

unfoldD �foldD w� �� w

136 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Iso-recursive types

Ideally, iso-recursive types should not have any runtime cost.

One solution is to compile constructors and destructors away into a
target language with equi-recursive types.

Another solution is to see iso-recursive types as a restriction of
equi-recursive types where the source language does not have
equi-recursive types but instead two unary destructors foldD and
unfoldD with the semantics of the identity function.

Subject reduction does not hold in the source language, but only in
the full language with iso-recursive types. Applications of destructors
can also be reduced at compile time.

Note that iso-recursive types are less expressive than equi-recursive
types, as there is no counter-part to the Uniqueness typing rule.

137 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Iso-recursive lists

A parametrized, iso-recursive type of lists is:

list X � unit � X � list X

The empty list is:
foldlist �inj1 ��� � �X. list X

A function that measures the length of a list is:��� µlength.λxs.case �unfoldlist xs� of
λ��.0

8 λ�x, xs�.1 � length xs

��� � �X. list X � int

One folds upon construction and unfolds upon deconstruction.

138 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type inference for iso-recursive types

In the iso-recursive approach, types remain finite. The type list X is
just an application of a type constructor to a type variable.

As a result, type inference is unaffected. The occurs check remains.

139 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Algebraic data types

Algebraic data types result of the fusion of iso-recursive types with
structural, labeled products and sums.

This suppresses the verbosity of explicit folds and unfolds as well as
the fragility and inconvenience of numeric indices – instead, named
record fields and data constructors are used.

For instance,

foldlist �inj1 ��� is replaced with Nil ��
140 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Algebraic data type declarations

An algebraic data type constructor D is introduced via a record type
or variant type definition:

D ÑX �M
ℓ>L ℓ � Tℓ or D ÑX �Q

ℓ>L ℓ � Tℓ
L denotes a finite set of record labels or data constructors.

Algebraic data type definitions can be mutually recursive.

141 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Effects of a record type declaration

The record type definition D ÑX �Lℓ>L ℓ � Tℓ introduces syntax for
constructing and deconstructing records:

C ��� . . . S �ℓ � ��ℓ>L d ��� . . . S �.ℓ
With the following types�ℓ1 � �, . . . , ℓn� � �ÑX. Tℓ1 � . . . Tℓn � D ÑX�.ℓ � �ÑX.D ÑX � Tℓ

142 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Effects of a variant type declaration

The variant type definition D ÑX � Pℓ>L ℓ � Tℓ introduces syntax for
constructing and deconstructing variants:

C ��� . . . S ℓ d ��� . . . S case � of �ℓ � ��ℓ>L
With the following types:

case � of �ℓ1 � � 8 . . . ℓn � �� � �ÑXY.D ÑX � �Tℓ1 � Y� � . . . �Tℓn � Y� � Y�.ℓ � �ÑX. Tℓ � D ÑX
143 155

Introduction Simple types Core ML Type annotations Recursive Types System F

An example: lists

Here is an algebraic data type of lists:

list X � Nil � unit � Cons � X � list X

This gives rise to:

case � of �Nil � � 8 . . . Cons � �� � �XY. list X � �unit� Y� ���X � list X� � Y� � Y

Nil � �X.unit� list X
Cons � �X. �X � list X� � list X

A function that measures the length of a list is:��� µlength.λxs.case xs of
Nil � λ��.0

8 Cons � λ�x, xs�.1 � length xs

��� � �X. list X � int

144 155

Introduction Simple types Core ML Type annotations Recursive Types System F

A word on mutable fields

In Objective Caml, a record field can be marked mutable. This
introduces an extra binary destructor for writing this field:��.ℓ � �� � �ÑX.D ÑT � Tℓ � unit

This also makes record construction a destructor since, when fully
applied it is not a value but it allocates a piece of store and returns
its location.

Thus, due to the value restriction, the type of such expressions
cannot be generalized.

145 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Contents

Introduction

Type inference for simply-typed λ-calculus

Type inference for ML

Constraint-based type inference for ML

Constraint solving by example

Type annotations

Polymorphic recursion

Unification under a mixed prefix

Equi- and iso-recursive types

System F

146 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Full type inference

Type inference has long been an open problem for System F , until
Wells [1999] showed that it is in fact undecidable by showing it is
equivalent to the semi-unification problem which was earlier proved
undecidable.

Type-checking in explicitly-typed System F is indeed feasible and easy
(still, an implementation must be careful with renaming of variables
when applying substitutions).

However, we have seen that programming with fully-explicit types is
unpractical.

Several solutions for partial type inference are used in practice. They
may alleviate the need for a lot of redundant type annotations.
However, none of them is fully satisfactory.

147 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Type inference and second-order unification

The full type-inference problem is not directly related to second-order
unification but rather to semi-unification.

However, it becomes equivalent to second-order unification if the
positions of type abstractions and type applications are explicit. That
is, terms are

t ��� x S λx �?. t S t t S Λ?.t S t ?
where the question marks stand for type variables names and types
to infer.

Second-order unification is still undecidable, but their are
semi-algorithms that often work well in some cases.

This method was proposed by Pfenning [1988].

148 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Implicit type arguments

Derived from this solution, one can add decorations to let-bindings to
indicate that some type arguments are left implicit.

Then, every occurrence of such a variable automatically adds type
applications holes at the corresponding positions and type parameters
will be inferred using second-order unification.

Other type applications must be passed explicitly.

149 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Bidirectional type inference

What makes type-checking easy is that typing rules have an
algorithmic reading. This implies that they are syntax directed, but
also that judgments can be read as functions where some arguments
are inputs and others are output.

Typically, Γ and a would be inputs and T is an ouput in the
judgement Γ Ø a � T .
However, althiough the rules for simply-typed λ-calculus are syntax
directed they do not have an algorithmic reading;

The rule for abstraction is
Abs

Γ, x � T0 Ø a � T
Γ Ø λx. a � T0 � T

Then T0 is used both as input and output in the premise.

150 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Bidirectional type inference

However, in some cases, the type of the function may be known, e.g.
when the function is an argument to an expression of a known type.

In such cases, it suffices to check the proposed type is indeed
correct.

Formally, the typing judgment Γ Ø a � T may be split into two
judgments Γ Ø a � T to check that a may be assigned the type T and
Γ Ø a 	 T to infer the type T of a.

151 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Bidirectional type inference simple types

Var-I

T � Γ�x�
Γ Ø x 	 T Abs-C

Γ, x � T0 Ø a � T
Γ Ø λx. a � T0 � T

App-I

Γ Ø a1 	 T2 � T1 Γ Ø a2 � T2
Γ Ø a1 a2 	 T1

152`1e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Bidirectional type inference simple types

Var-I

T � Γ�x�
Γ Ø x 	 T Abs-C

Γ, x � T0 Ø a � T
Γ Ø λx. a � T0 � T

App-I

Γ Ø a1 	 T2 � T1 Γ Ø a2 � T2
Γ Ø a1 a2 	 T1

I-C

Γ Ø a 	 T
Γ Ø a � T

Checking mode can use inference mode.

152`2e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Bidirectional type inference simple types

Var-I

T � Γ�x�
Γ Ø x 	 T Abs-C

Γ, x � T0 Ø a � T
Γ Ø λx. a � T0 � T

App-I

Γ Ø a1 	 T2 � T1 Γ Ø a2 � T2
Γ Ø a1 a2 	 T1

I-C

Γ Ø a 	 T
Γ Ø a � T Annot-I

Γ Ø a � T
Γ Ø �a � T� 	 T

Checking mode can use inference mode.

Annotations turn inference mode into checking mode.

152`3e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Bidirectional type inference simple types

Var-I

T � Γ�x�
Γ Ø x 	 T Abs-C

Γ, x � T0 Ø a � T
Γ Ø λx. a � T0 � T

App-I

Γ Ø a1 	 T2 � T1 Γ Ø a2 � T2
Γ Ø a1 a2 	 T1

I-C

Γ Ø a 	 T
Γ Ø a � T Annot-I

Γ Ø a � T
Γ Ø �a � T� 	 T Abs-I

Γ, x � T0 Ø a 	 T
Γ Ø λx �T0. a 	 T0 � T

Checking mode can use inference mode.

Annotations turn inference mode into checking mode.

Annotations on type abstractions enable the inference mode.

152`4e 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Bidirectional type inference Simple types

Example: Let T be �T1 � T1� � T2. and Γ be f � T
App-I

Var-I
Γ Ø f 	 T Γ, x � T1 Ø x 	 T1

Γ, x � T1 Ø x � T1 C-I

Var-I

Γ Ø λx. x � T1 � T1
Abs-C

Abs-C

I-C
Γ Ø f �λx. x� 	 T2
Γ Ø f �λx. x� � T2g Ø λf �T. f �λx. x� � T � T2

153 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Bidirectional type inference Polymorphic types

The method can be extended to deal with polymorphic types.

The idea is due to [Cardelli, 1993] and is still being
improved [Dunfield, 2009]. However, it is quite complicated.

Predicative polymorphism is an interesting subcase where partial type
inference can be reduced to typing constraints under a mixed prefix.
Unfortunately, predicative polymorphism is too restrictive for
programing languages (See [Rémy, 2005]).

A simpler approach proposed by Pierce and Turner [2000] and
improved by Odersky et al. [2001] is perform bidirectional type
inference but only from a small context surounding each node.

Interestingly, bidrectional type inference can easily be extended to work
in the presence of subtyping.

154 155

Introduction Simple types Core ML Type annotations Recursive Types System F

Partial type inference MLF

MLF follows another approach that amounts to performing first-order
unification of higher-order types.

• only parameters of functions that are used polymorphically need
to be annotated.

• type abstractions and type annotation are always implicit

However, MLF goes beyond System F : for the purpose of type
inference, it introduces richer types that enable to write “more
principal types”, but that are also harder to read. See [Rémy and
Yakobowski, 2008].

The type inference method for MLF can be seen as a generalization of
type constraints for ML to handle polymorphic types—still with
first-order unification.

155 155

Bibliography

Bibliography I

(Most titles have a clickable mark “P” that links to online versions.)P Richard Bird and Lambert Meertens. Nested datatypes. In
International Conference on Mathematics of Program Construction
(MPC), volume 1422 of Lecture Notes in Computer Science, pages
52–67. Springer, 1998.P Michael Brandt and Fritz Henglein. Coinductive axiomatization of
recursive type equality and subtyping. Fundamenta Informaticæ, 33:
309–338, 1998.

Luca Cardelli. An implementation of f¡:. Technical report, DEC Systems
Research Center, 1993.P Henry Cejtin, Matthew Fluet, Suresh Jagannathan, and Stephen Weeks.
The MLton compiler, 2007.

156 155

ftp://ftp.kestrel.edu/pub/papers/meertens/nest5.ps
ftp://ftp.diku.dk/diku/semantics/papers/D-353.ps.gz
http://mlton.org/

Bibliography

Bibliography II

Joshua Dunfield. Greedy bidirectional polymorphism. In ML ’09:
Proceedings of the 2009 ACM SIGPLAN workshop on ML, pages
15–26, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-509-3.
doi: http://doi.acm.org/10.1145/1596627.1596631.P Fritz Henglein. Type inference with polymorphic recursion. ACM
Transactions on Programming Languages and Systems, 15(2):
253–289, April 1993.P J. Roger Hindley. The principal type-scheme of an object in
combinatory logic. Transactions of the American Mathematical
Society, 146:29–60, 1969.

Gérard Huet. Résolution d’équations dans des langages d’ordre 1, 2, . . .,
ω. PhD thesis, Université Paris 7, September 1976.P Mark P. Jones. Typing Haskell in Haskell. In Haskell workshop, October
1999.

157 155

http://doi.acm.org/10.1145/169701.169692
http://dx.doi.org/10.2307/1995158
http://web.cecs.pdx.edu/~mpj/thih/

Bibliography

Bibliography IIIP Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is
DEXPTIME-complete. In Colloquium on Trees in Algebra and
Programming, volume 431 of Lecture Notes in Computer Science,
pages 206–220. Springer, May 1990.P Harry G. Mairson. Deciding ML typability is complete for deterministic
exponential time. In ACM Symposium on Principles of Programming
Languages (POPL), pages 382–401, 1990.P David McAllester. A logical algorithm for ML type inference. In
Rewriting Techniques and Applications (RTA), volume 2706 of Lecture
Notes in Computer Science, pages 436–451. Springer, June 2003.P Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17(3):348–375, December 1978.P Alan Mycroft. Polymorphic type schemes and recursive definitions. In
International Symposium on Programming, volume 167 of Lecture
Notes in Computer Science, pages 217–228. Springer, April 1984.

158 155

http://dx.doi.org/10.1007/3-540-52590-4_50
http://doi.acm.org/10.1145/96709.96748
http://www.autoreason.com/rta03.ps
http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://dx.doi.org/10.1007/3-540-12925-1_41

Bibliography

Bibliography IVP Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference
with constrained types. Theory and Practice of Object Systems, 5(1):
35–55, 1999.P Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local
type inference. In ACM Symposium on Principles of Programming
Languages (POPL), pages 41–53, 2001.P Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1999.P Simon Peyton Jones and Mark Shields. Lexically-scoped type variables.
Manuscript, April 2004.

Frank Pfenning. Partial polymorphic type inference and higher-order
unification. In LFP ’88: Proceedings of the 1988 ACM conference
on LISP and functional programming, pages 153–163, New York, NY,
USA, 1988. ACM. ISBN 0-89791-273-X. doi:
http://doi.acm.org/10.1145/62678.62697.

159 155

http://eprints.kfupm.edu.sa/73647/1/73647.pdf
http://lampwww.epfl.ch/papers/clti-colored.ps.gz
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504
http://www.cse.ogi.edu/~mbs/pub/scoped/

Bibliography

Bibliography VP Benjamin C. Pierce and David N. Turner. Local type inference. ACM
Transactions on Programming Languages and Systems, 22(1):1–44,
January 2000.P François Pottier. Notes du cours de DEA “Typage et Programmation”,
December 2002.P François Pottier and Didier Rémy. The essence of ML type inference. In
Benjamin C. Pierce, editor, Advanced Topics in Types and Programming
Languages, chapter 10, pages 389–489. MIT Press, 2005.P François Pottier and Didier Rémy. The essence of ML type inference.
Draft of an extended version. Unpublished, September 2003.P Didier Rémy. Simple, partial type-inference for System F based on
type-containment. In Proceedings of the tenth International
Conference on Functional Programming, September 2005.

160 155

http://doi.acm.org/10.1145/345099.345100
http://cristal.inria.fr/~fpottier/mpri/dea-typage.ps.gz
http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf
http://cristal.inria.fr/attapl/preversion.ps.gz
http://gallium.inria.fr/~remy/work/fml/fml-icfp.pdf

Bibliography

Bibliography VI

Didier Rémy and Boris Yakobowski. Efficient Type Inference for the MLF
language: a graphical and constraints-based approach. In The 13th
ACM SIGPLAN International Conference on Functional Programming
(ICFP’08), pages 63–74, Victoria, BC, Canada, September 2008.
doi: http://doi.acm.org/10.1145/1411203.1411216.P Christian Skalka and François Pottier. Syntactic type soundness for
HM�X�. In Workshop on Types in Programming (TIP), volume 75 of
Electronic Notes in Theoretical Computer Science, July 2002.

Robert Endre Tarjan. Efficiency of a good but not linear set union
algorithm. Journal of the ACM, 22(2):215–225, April 1975.P Andrew Tolmach and Dino P. Oliva. From ML to Ada: Strongly-typed
language interoperability via source translation. Journal of Functional
Programming, 8(4):367–412, July 1998.

161 155

http://cristal.inria.fr/~fpottier/publis/skalka-fpottier-tip-02.ps.gz
http://dx.doi.org/10.1017/S0956796898003086

Bibliography

Bibliography VIIP J. B. Wells. Typability and type checking in system F are equivalent
and undecidable. Annals of Pure and Applied Logic, 98(1–3):
111–156, 1999.

162 155

http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz

	Type reconstruction
	Introduction
	Type inference for simply-typed lambda-calculus
	Type inference for ML
	
	Constraint-based type inference for ML
	Constraint solving by example

	Type annotations
	Polymorphic recursion
	Unification under a mixed prefix

	Equi- and iso-recursive types
	System F

	Appendix
	Bibliography

