
MPRI, Typage

Didier Rémy
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Functional programming Types

Online material

Course material (notes, slides and other information) are available at
http://gallium.inria.fr/~remy/mpri/.

You are very welcome to ask questions!

• during the lesson

• at the end of the lesson

• by email

Please don’t wait the end of the course to raise problems.

You may send me mail at Didier.Remy@inria.fr
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Functional programming Types

What is functional programming?

The term “functional programming” means various things. Functional
programming views functions as ordinary data—which, in particular can
be passed as argument to other functions and stored in data
structures.

Functional programming often loosely or strongly discourages the use
of modifiable data, in favor of effect-free transformations of data.

(In contrast, the mainstream object-oriented programming languages,
view objects as the primary kind of data, and encourage the use of
modifiable data.)

A common idea behind functional programming is that repetitive
patterns can be abstracted away as functions that are called multiple
times so avoidnig code duplication.
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Functional programming Types

What are functional programming?

Functional programming languages are traditionally typed (Scheme and
Erlang are exceptions) and have close connections with logic. We will
focus on typed langages. In fact types will play a central role as
explained below.

Functional programming languages are usually given a precise and
formal semantics derived from the one of the lambda-calculus.

Functional programming languages differ in that some are strict (ML)
and some are lazy (Haskell) [Hughes, 1989]. This difference has a
large impact on the language design and on the programming style,
but has usually little impact on typing.

Functional languages are usually sequential languages, whose model of
evaluation is not concurrent, even if core languages may then be
extended with primitives to support concurrency.
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Functional programming Types

What are types?

A type is a concise, formal description of the behavior of a program
fragment.

For instance, the following are types:

int an integer

int� bool a function that maps an integer argument
to a Boolean result�int� bool� ��list int� list int� a function that maps an integer predicate
to an integer list transformer

Types must be sound. That is, programs must behave as prescribed by
their types. Hence, types must be checked and ill-typed programs
must be rejected.
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Functional programming Types

What are they useful for?

Types are useuful for several reasons:

• Types serve as machine-checked documentation.
• Types provide a safety guarantee.

“Well-typed expressions do not go wrong.” [Milner, 1978]

Advanced type systems can also guarantee various forms of
security, resource usage, complexity, ...

• Types can be used to drive compiler optimizations.
• Types encourage separate compilation, modularity, and abstraction.

“Type structure is a syntactic discipline for enforcing
levels of abstraction.” [Reynolds, 1983]

Type-checking is compositional. Types can be abstract. Even
seemingly non-abstract types offer a degree of abstraction
(e.g., a function type does not tell how a function is represented
at the machine level)
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Functional programming Types

Type-preserving compilation

Types make sense in low-level programming languages as well—even
assembly languages can be statically typed! [Morrisett et al., 1999]

In a type-preserving compiler, every intermediate language is typed, and
every compilation phase maps typed programs to typed programs.

Preserving types provides insight into a transformation, helps debug it,
and paves the way to a semantics preservation proof [Chlipala, 2007].

Interestingly enough, lower-level programming languages often require
richer type systems than their high-level counterparts.

11 110



Functional programming Types

Typed or untyped?

Reynolds [1985] nicely sums up a long and rather acrimonious debate:

“One side claims that untyped languages preclude compile-time
error checking and are succinct to the point of unintelligibility,
while the other side claims that typed languages preclude a
variety of powerful programming techniques and are verbose to
the point of unintelligibility.”

The issues are safety, expressiveness, and type inference.

A sound type system with decidable type-checking (and possibly
decidable type inference) must be conservative.
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Functional programming Types

Typed, Sir! with better types.

In fact, Reynolds settles the debate:

“From the theorist’s point of view, both sides are right, and
their arguments are the motivation for seeking type systems
that are more flexible and succinct than those of existing
typed languages.”
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Functional programming Types

Explicit v.s. implicit types?

Annotating programs with types can lead to redundancy. Types can
even become extremely cumbersome when they have to be explicitly and
repeatedly provided.

This creates a need for a certain degree of type reconstruction (also
called type inference), where the source program may contain some
but not all type information.

In principle, types could be entirely left implicit, even if the language is
typed. A well-typed program is then one that is the type erasure of
a (well-typed) explicitly-typed program.

Because type systems are compositional, a type inference problem can
often be expressed as a constraint solving problem, where constraints
are made up of predicates about types, conjunction, and existential
quantification.

Full type reconstruction is undecidable for expressive type systems.
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Functional programming Types

Outline of the course

This course is structured in seven 21~2-hour lectures.

1 Simple types:
• Type soundness
• Unit, Pairs, Sums, Recursion
• Normalization
• Exceptions, References

2 Polymorphism
• System F, ML
• Type soundness
• Polymorphism and references.

3 Type reconstruction
• Simple types. ML.
• System F

4,5 Extistential types. Type-preserving closure conversion.

6,7 Overloading. Type classes
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Simply-typed λ-calculus Type soundness Normalization Extensions Exceptions References

Why λ-calculus?

In this course, the programming language is λ-calculus.

λ-calculus supports natural encodings of many programming
languages [Landin, 1965], and as such provides a suitable setting for
studying type systems.

Following Church’s thesis, any Turing-complete language can be used to
encode any programming language. However, these encodings might not
be natural or simple enough to help us in understanding their typing
discipline.

Using λ-calculus, most of our results can also be applied to other
languages (Java, assembly language, etc.).
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Syntax

Types are given by
T ��� X S T � T S . . .

where X denotes a type variable.

λ-terms, also known as terms and expressions, are given by:

t ��� x S λx �T. t S t t S . . .
where x denotes a (value) variable.

We assume given denumerable sets of type variables and value
variables.

More term- and type-level constructs will be introduced later on, as
suggested by the “. . . ” in the definitions.
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Dynamic semantics

We use a small-step operational semantics.

We choose a call-by-value variant. When explaining references,
exceptions, or other forms of side effects, this choice matters.
Otherwise, most of the type-theoretic machinery applies to
call-by-name or call-by-need just as well.
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Dynamic semantics

In the pure λ-calculus, the values are the functions:

v ��� λx �T. t S . . .
The reduction relation t1 �� t2 is inductively defined:

βv�λx �T. t� v �� �x ( v�t Context

t�� t�
E�t� �� E�t��

Evaluation contexts are defined as follows:

E ��� �� t S v �� S . . .
We only need evaluation contexts of depth one, using repeated
applications of Rule Context.

An evaluation context of arbitrary depth can be defined as:E ��� �� S E�E�
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Static semantics

Technically, the type system is a 3-place predicate, whose instances
are called judgments. Judgments take the form:

Γ Ø t � T
where a typing context Γ is a finite sequence of bindings of variables
to types.
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Typing context

A typing context (also called a type environment) Γ binds program
variables to types. It can be extended with the notation Γ, x � T .
To avoid confusion between the new binding and any other binding that
may appear in Γ, we disallow type environments to bind the same
variable several times. This is not restrictive because bound variables
can be renamed in source programs to avoid name clashes.

A typing context can then be thought of as a finite function from
program variables to their types. We write dom�Γ� for the set of
variables bound by Γ.
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Static semantics

Judgments are defined inductively:

Var

Γ Ø x � Γ�x� Abs

Γ, x � T1 Ø t � T2
Γ Ø λx �T1. t � T1 � T2

App

Γ Ø t1 � T1 � T2 Γ Ø t2 � T1
Γ Ø t1 t2 � T2

Notice that the specification is extremely simple.

In the simply-typed λ-calculus, the definition is syntax-directed. This is
not true of all type systems.
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Example

The following is a valid type derivation:

App

Var
Γ Ø f � T1 � T2

Var
Γ Ø x � T1

Γ Ø f x � T2 Γ Ø f � T1 � T2
Var

Γ Ø y � T1 Var

Γ Ø f y � T2 App

f � T1 � T2; x, y � T1 Ø �f x, f y� � T2 � T2
Pairg Ø λf �T1 � T2. λx �T1. λy �T1 . �f x, f y� � �T1 � T2�� T1 � T1 � �T2 � T2� Abs3

Γ stands for �f � T1 � T2; x, y � T1�. Rule Pair is introduced later on.

This is in fact, the only typing derivation (in the empty environment).
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Inversion of typing rules

This informal reasoning that was used to build the previous typing
derivation is stated formally in the inversion Lemma, which describes
how the subterm of a well-typed term can be typed.

Lemma (Inversion of typing rules)

Assume Γ Ø t � T .
• If t is a variable x, then x > dom�Γ� and Γ�x� � T .

• If t is t1 t2 then Γ Ø t1 � T1 � T and Γ Ø t2 � T1 for some type T1.

• If t is λx �T1. t1, then T is of the form T1 � T2 and
Γ, x � T1 Ø t1 � T2 � T1.

The inversion lemma is a basic property that is used in many places
when reasoning by induction on terms. Although trivial in our simple
setting, stating it explicitly avoids informal reasoning in proofs.
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Uniqueness of typing derivations

Since typing rules are syntax-directed, the shape of the derivation
tree is fully determined by the shape of the term.

In our simple setting, each term has actually a unique type.
Hence, typing derivations are unique, up to (weakening of) the typing
context. The proof, by induction on the structure of terms, is
straightforward.

Explicitly-typed terms can thus be used to describe typing derivations
(up to weakening of the typing context) in a precise and concise way,
because terms of the language have a concrete syntax.

Lacking this convenience, typing derivations must otherwise be
described in the meta-language of mathematics.

This also enables reasoning by induction on terms instead of on typing
derivations, which is often lighter.
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Explicitly v.s. implicitly typed?

Our presentation of simply-typed λ-calculus is explicitly typed (we also
say in church-style), as parameters of abstractions are annotated
with their types.

Simply-typed λ-calculus can also be implicitly typed (we also say in
curry-style) when parameters of abstractions are left unannotated, as
in the pure λ-calculus.
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Type erasure

We may translate explicitly-typed expressions into implicitly-typed ones
by dropping type annotations. This is called type erasure.

We write �t� for the type erasure of t, which is defined by structural
induction on t: �x� Q�� x�λx �T. �t Q�� λx. �t��t1 t2� Q�� �t1� �t2�
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Type reconstruction

Conversely, can we convert implicitly-typed expressions back into
explicitly-typed ones, that is, can we reconstruct the missing type
information?

This is equivalent to finding a typing derivation for implicitly-typed
terms. It is called type reconstruction (or type inference).
(See the course on type reconstruction.)
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Type erasure semantics

Observe that although the reduction carries types at runtime, types
do not actually contribute to the reduction.

Intuitively, the semantics of terms is the same as that of their type
erasure. This is an important property for a language to have, called
type-erasing semantics.

However, how can we say that the semantics of typed and untyped
terms coincide when these terms do not live in the same world?
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Type erasure semantics

Observe that although the reduction carries types at runtime, types
do not actually contribute to the reduction.

Intuitively, the semantics of terms is the same as that of their type
erasure. This is an important property for a language to have, called
type-erasing semantics.

However, how can we say that the semantics of typed and untyped
terms coincide when these terms do not live in the same world?

By showing that the reductions in the two languages can be put in
correspondence.
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Type-erasing semantics

On the one hand, type erasure preserves reduction.

Lemma

If t1 �� t2 then �t1� �� �t2�.
Conversely, a reduction steps after type erasure could also have been
performed on the term before type erasure.

Lemma

If �t� �� a then there exists t� such that t�� t� and �t�� � a.

What we have established is a bisimulation between explicitly-typed
terms and implicitly-typed ones.

In general, they may be reduction steps on source terms that involved
only types and that have no counter-part (and disappear) on compiled
terms.
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Type-erasing semantics

Whether a language has a type-erasing semantics is an important
property about the language.

The metatheoretical study is often easier with explicitly-typed terms.

the properties of an implicitly-typed language can often be indirectly
proved via an explicitly-typed presentation of the language.

This is the path we choose in this course.
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Stating type soundness

What is a formal statement of Milner’s slogan?

“Well-typed expressions do not go wrong”

By definition, a closed term t is well-typed if it admits some type T

in the empty environment.

By definition, a closed, irreducible term is either a value or stuck.

A closed term must converge to a value, diverge, or go wrong by
reducing to a stuck term.
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Stating type soundness

Milner’s slogan now has formal meaning:

Theorem (Type Soundness)

Well-typed expressions do not go wrong.

Proof.

By Subject Reduction and Progress.
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Establishing type soundness

Type soundness follows from two properties:

Theorem (Subject reduction)

Reduction preserves types: if t1 �� t2 then for any type T such thatg Ø t1 � T , we also have g Ø t2 � T .
Theorem (Progress)

A well-typed, irreducible term is a value: if g Ø t � T and t ~�� , then t

is a value.

This syntactic proof method is due to Wright and Felleisen [1994].
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Establishing subject reduction

Subject reduction is proved by induction over the hypothesis t1 �� t2.
Thus, there is one case per reduction rule.

In the pure simply-typed λ-calculus, there are just two such rules:
β-reduction and reduction under an evaluation context.

βv�λx �T. t� v �� �x ( v�t Context

t�� t�
E�t� �� E�t��
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Establishing subject reduction Case β

In the β-reduction case, the first hypothesis is�λx �T. t� v �� �x ( v�t �1�
the second hypothesis is g Ø �λx �T. t� v � T0 �2�
and the goal is g Ø �x ( v�t � T0 �3�
How do we proceed?
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Establishing subject reduction Case β

We decompose the hypothesis.

By inversion of the typing rules, the derivation of (2) must be:

App

Abs
x � T Ø t � T0 �4�g Ø �λx �T. t� � T � T0 g Ø v � T �5�g Ø �λx �T. t� v � T0 �2)

Where next?
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Establishing subject reduction Value substitution

To conclude, we only need the following lemma:

Lemma (Value substitution)

If x � T Ø t � T0 and g Ø v � T , then g Ø �x ( v�t � T0.
In plain words, replacing a formal parameter with a type-compatible
actual argument preserves types.

How do we prove this lemma?
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Establishing subject reduction Value substitution

The lemma must be suitably generalized so that it can be proved by
structural induction over the typing derivation for t:

Lemma (Value substitution, strengthened)

If x � T,Γ Ø t � T0 and g Ø v � T , then Γ Ø �x ( v�t � T0.
The proof is now straightforward, and, at variables, exploits another
lemma:

Lemma (Weakening)

If g Ø v � T1 then Γ Ø v � T1.
This closes the case of the β-reduction rule.
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Establishing subject reduction Weakening

The weakening lemma need only add one binding at a time, the general
case follows as a corollary. However, it must be strengthened...

Lemma (Weakening, strengthened)

If Γ Ø t � T and x ¶ dom�Γ�, then Γ, y � T � Ø t � T .
The proof is by induction and cases on t applying the inversion lemma:

Case t is x: Then x must be bound to T in Γ. Hence, it is also bound
to T in �Γ, y � T �. We conclude by rule Var.

Case t is λx �T2 . t1 : W.l.o.g, we may choose x ¶ dom�Γ� and x ~� y. We have Γ, x � T2 Ø t1 � T1 with
T2 � T1 equal to T . By induction hypothesis, we have Γ, x � T2 , y � T � Ø t1 � T1 . Thanks to a
permutation lemma, we have Γ, y � T �, x � T2 Ø t1 � T1 and we conclude by Rule Abs.

Case t is t1 t2 : easy.
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Establishing subject reduction Permutation

Lemma (Permutation lemma)

If Γ Ø t � T and Γ� is a permutation of Γ, then Γ� Ø t � T .
The result is obvious since a permutation of Γ does not change its
interpretation as a finite function, which is all what is needed in the
typing rules so far (this will no more be the case when we later
extend Γ with type variables declarations).

Formally, the proof is by induction on t.
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Establishing subject reduction Case Context

In the context case, the first hypothesis is

t�� t� �1�
where, by induction hypothesis, this reduction preserves types (2).

The second hypothesis is g Ø E�t� � T �3�
where E is an evaluation context (E ��� �� t S v �� S . . .).
The goal is g Ø E�t�� � T �4�
How do we proceed?
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Establishing subject reduction

Type-checking is compositional: only the type of the sub-expression “in
the hole” matters, not its exact form. The context case immediately
follows from compositionality, which closes the proof of subject
reduction.

Lemma (Compositionality)

If g Ø E�t� � T , then, there exists T � such that:

• g Ø t � T �,
• for every t�, g Ø t� � T � implies g Ø E�t�� � T .

The proof is straightforward, by cases over E.

Informally, T � is the type of the hole in the pseudo judgmentg Ø E�T �� � T . Evaluation contexts do not bind variables, so the hole is
typechecked in an empty environment as well.
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Establishing progress

Progress (“A well-typed term t is either reducible or a value”) is
proved by structural induction over the term t. Thus, there is one
case per construct in the syntax of terms.

In the pure λ-calculus, there are just three cases:

• variable;

• λ-abstraction;

• application.

Two of these are immediate...
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Establishing progress

The case of variables is void, because a variable is never well-typed (it
does not admit a type in the empty environment).

The case of λ-abstractions is immediate, because a λ-abstraction is a
value.

The only remaining case is that of applications and proceeds as
follows.
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Establishing progress

Let us consider a well-typed term t1 t2.

By inversion of typing rules, there exist types T1 and T2 such thatg Ø t1 � T2 � T1 and g Ø t2 � T2. In particular, both t1 and t2 are
well-typed. By the induction hypothesis, t1 is either reducible or a
value v1.
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Establishing progress

Let us consider a well-typed term t1 t2.

By inversion of typing rules, there exist types T1 and T2 such thatg Ø t1 � T2 � T1 and g Ø t2 � T2. In particular, both t1 and t2 are
well-typed. By the induction hypothesis, t1 is either reducible or a
value v1.

If t1 is reducible, then, because �� t2 is an evaluation context, t1 t2 is
reducible as well, and we are done.
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Establishing progress

Let us consider a well-typed term t1 t2.

By inversion of typing rules, there exist types T1 and T2 such thatg Ø t1 � T2 � T1 and g Ø t2 � T2. In particular, both t1 and t2 are
well-typed. By the induction hypothesis, t1 is either reducible or a
value v1.

If t1 is reducible, then, because �� t2 is an evaluation context, t1 t2 is
reducible as well, and we are done.

Otherwise, by the induction hypothesis, t2 is either reducible or a
value v2. If t2 is reducible, then, because v1 �� is an evaluation
context, v1 t2 is reducible as well, and we are done.
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Establishing progress

Let us consider a well-typed term t1 t2.

By inversion of typing rules, there exist types T1 and T2 such thatg Ø t1 � T2 � T1 and g Ø t2 � T2. In particular, both t1 and t2 are
well-typed. By the induction hypothesis, t1 is either reducible or a
value v1.

If t1 is reducible, then, because �� t2 is an evaluation context, t1 t2 is
reducible as well, and we are done.

Otherwise, by the induction hypothesis, t2 is either reducible or a
value v2. If t2 is reducible, then, because v1 �� is an evaluation
context, v1 t2 is reducible as well, and we are done.

Otherwise, because v1 is a value of type T1 � T2, it must be a
λ-abstraction (see next slide), so v1 v2 is a β-redex, and we are
done.
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Classification of values

We have appealed to the following property:

Lemma (Classification)

Assume g Ø v � T . Then,

• if T is an arrow type, then v is a λ-abstraction;

• . . .

Proof.

By cases over v:

• if v is a λ-abstraction, then T must be an arrow type;

• . . .

Because different kinds of values receive types with different head
constructors, this classification is injective, and can be inverted.

50 110



Simply-typed λ-calculus Type soundness Normalization Extensions Exceptions References

Towards more complex type systems

In the pure λ-calculus, classification is trivial, because every value is a
λ-abstraction. Progress holds even in the absence of the
well-typedness hypothesis, i.e. in the untyped λ-calculus, because no
term is ever stuck!

As the programming language and its type system are extended with
new features, however, type soundness is no longer trivial.

Most type soundness proofs are shallow but large. Authors are
tempted to skip the “easy” cases, but these may contain hidden
traps!
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Towards more complex type systems

Sometimes, the combination of two features is unsound, even though
each feature, in isolation, is sound.

This will be illustrated in this course by the interaction between
references and polymorphism in ML.

In fact, a few such combinations have been implemented, deployed, and
used for some time before they were found to be unsound!

• call/cc + polymorphism in SML/NJ [Harper and Lillibridge, 1991]

• mutable records + existential quantification in Cyclone [Grossman,
2006]

52 110



Simply-typed λ-calculus Type soundness Normalization Extensions Exceptions References

Soundness versus completeness

Because the λ-calculus is a Turing-complete programming language,
whether a program goes wrong is an undecidable property.

As a result, any sound, decidable type system must be incomplete,
that is, must reject some valid programs.

Type systems can be compared against one another via encodings, so
it is sometimes possible to prove that one system is more expressive
than another.

However, whether a type system is “sufficiently expressive in practice”
can only be assessed via empirical means.
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Normalization

In general, types also ensure termination of programs—as long as no
form of recursion in types or terms has been added.

Even if one wishes to add recursion explicitly later on, it is an
important property of the design that non-termination is originating
from the new construction and could not occur without it.

The simply-typed λ-calculus is also lifted at the level of types in
richer type systems such as System Fω; then, the decidability of
type-equality depends on the termination of the reduction at the type
level.

The proof of termination for the simply-typed λ-calculus is simple
enough and interesting to be presented here.

Notice however, that our simply-typed λ-calculus is equipped with a
call-by-value semantics. Proofs of termination are usually done with a
strong evaluation strategy where reduction can occur in any context.
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Normalization

Proving termination of reduction in fragments of the λ-calculus is
often a difficult task because reduction may create new redexes or
duplicate existing ones.

We follow the proof schema of Pierce [2002], which is a modern
presentation in a call-by-value setting of an older proof by Hindley
and Seldin [1986]. The proof method is due to [Tait, 1967]:

• build the set TT of terminating terms of type T and

• show that any term of type T is actually in TT , by induction on
terms.

This hypothesis is however too weak. The difficulty is as usual to find
a strong enough induction hypothesis...
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Normalization

Proving termination of reduction in fragments of the λ-calculus is
often a difficult task because reduction may create new redexes or
duplicate existing ones.

We follow the proof schema of Pierce [2002], which is a modern
presentation in a call-by-value setting of an older proof by Hindley
and Seldin [1986]. The proof method is due to [Tait, 1967]:

• build the set TT of terminating terms of type T and

• show that any term of type T is actually in TT , by induction on
terms.

This hypothesis is however too weak. The difficulty is as usual to find
a strong enough induction hypothesis...

Terms of type T1 � T2 should not only terminate but also terminate
when applied to terms in TT1 ,
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Normalization

Definition

Let TT be defined inductively on T as follows: let TX be the set of
terms that terminates; let TT1�T2 be the set of terms t2 of type T2

that terminates and such that t1 t2 is in TT2 for any term t1 in TT1 .
The set TT can be seen as a predicate, i.e. a unary relation. It is
called a (unary) logical relation because it is defined inductively on the
structure of types.

The following proofs is then schematic of the use of logical relations.
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Normalization

Reduction of terms of type T preserves membership in TT :
Lemma

If g Ø t � T and t1 �� t2, then t1 > TT iff t2 > TT .
Proof.

By induction on the structure of the type T

All terms in TT are terminating.

Lemma

For any type T , the reduction of any term in TT halts.

The proof is immediate.
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Normalization

Therefore, it just remains to show that any term of type T is in TT :
Lemma

If g Ø t � T , then t > TT .
The proof is by induction on (the typing derivation of) t.

However, the case for abstraction requires some similar statement,
but for open terms. We need to strengthen the Lemma.

A trick to avoid considering open terms is to require the statement
to hold for all closed instances of an open term:

Lemma

If Ñx � ÑT Ø t � T and Ñvi > TTi for all vi in Ñv, then �Ñx ( Ñv�t > TT .
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Normalization

Proof.

By structural induction on t. Assume Ñx � ÑT Ø t � T .
The only interesting case is when t is λx �T1. t2: By inversion of
typing, we know that Ñx � ÑT, x � T1 Ø t2 � T2 where T1 � T2 is T . To show
that �Ñx ( Ñv�t is in TT , we must show that t is terminating, which is
obvious, as it is a value, and also that its application to any t1 inTT1 is in TT2 (1). Let t1 > TT1 . By definition t1 ��� v (2). We have:��Ñx ( Ñv�t� t1 Q�� ��Ñx ( Ñv��λx �T1. t2�� t1 definition of t� �λx �T1. �Ñx ( Ñv�t2� t1 choose x # Ñx����λx �T1. �Ñx ( Ñv�t2� v by (2)�� �x ( v���Ñx ( Ñv�t2� by (β)> TT2 by induction hypothesis

which establishes (1) since TT2 is closed by reduction.
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Unit

The simply-typed λ-calculus is modified as follows. Values and
expressions are extended with “unit”, written ():

v ��� . . . S ��
t ��� . . . S ��

No new reduction rule is introduced.

62 110



Simply-typed λ-calculus Type soundness Normalization Extensions Exceptions References

Unit

Types are extended with a “unit”:

T ��� . . . S unit
A typing rule is introduced:

Unit

Γ Ø �� � unit
Exercise

Check that type soundness is preserved.

Notice that the classification Lemma is no more degenerate.
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Pairs

The simply-typed λ-calculus is modified as follows.

Values, expressions, evaluation contexts are extended:

v ��� . . . S �v, v�
t ��� . . . S �t, t� S proj

i
t

E ��� . . . S ���, t� S �v, ��� S proj
i
��

i > �1,2�
A new reduction rule is introduced:

proj
i
�v1, v2� �� vi
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Pairs

Types are extended:
T ��� . . . S T � T

Two new typing rules are introduced:

Pair

Γ Ø t1 � T1 Γ Ø t2 � T2
Γ Ø �t1, t2� � T1 � T2

Proj

Γ Ø t � T1 � T2

Γ Ø proj
i
t � Ti

Exercise

Check that type soundness is preserved when adding pairs.
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Sums

Values, expressions, evaluation contexts are extended:

v ��� . . . S inji v
t ��� . . . S inji t S case t of v 8 v

E ��� . . . S inji �� S case �� of v 8 v

A new reduction rule is introduced:

case inji v of v1 8 v2 �� vi v

66 110



Simply-typed λ-calculus Type soundness Normalization Extensions Exceptions References

Sums

Types are extended:
T ��� . . . S T � T

Two new typing rules are introduced:

Inj

Γ Ø t � Ti
Γ Ø inji t � T1 � T2

Case

Γ Ø t � T1 � T2

Γ Ø v1 � T1 � T Γ Ø v2 � T2 � T

Γ Ø case t of v1 8 v2 � T
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Sums with unique types

Notice that a property of simply-typed λ-calculus is lost: expressions
do not have unique types anymore, i.e. the type of an expression is no
longer determined by the expression.

Uniqueness of types can be recovered by using a type annotation in
injections:

v ��� . . . S inji v as T
and modifying the typing rules and reduction rules accordingly.
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Modularity of extensions

The three preceding extensions are very similar. Each one introduces:

• a new type constructor, to form types of a new shape;

• new expressions, to construct and destruct values of a new shape.

• new typing rules for new forms of expressions;

• new reduction rules, to specify how values of the new shape can
be destructed;

• new evaluation contexts, but just to propagate reduction under
the new constructors.

Subject reduction is preserved because types of new redexes are
preserved by the new reduction rules.

Progress is preserved because the type system ensures that the new
destructors can only be applied to values such that at least one of
the new reduction rules applies.
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Modularity of extensions

These extensions are independent: they can be added to the
λ-calculus alone or mixed altogether.

Indeed, no assumption about other extensions (the “. . .”) is ever made,
except for the classification lemma which requires, informally, that
“values of other shapes have types of other shapes”.

This is indeed the case in the extensions we have presented: the unit
has the Unit type, pairs have product types, sums have sum types.

In fact, these extensions could have been presented as different
instances of a more general extension of the λ-calculus with
constants, for which type soundness can be established uniformly
under reasonable assumptions relating the given typing rules and
reduction rules for constants [Pottier and Rémy, 2005].

(See also the treatment of data types in System F)
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Recursive functions

The simply-typed λ-calculus is modified as follows.

Values and expressions are extended:

v ��� . . . S µf �T. λx.t
t ��� . . . S µf �T. λx.t

A new reduction rule is introduced:�µf �T. λx.t� v �� �f ( µf �T. λx.t��x ( v�t
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Recursive functions

Types are not extended. We already have function types.

A new typing rule is introduced:

FixAbs

Γ, f � T1 � T2 Ø λx �T1. t � T1 � T2

Γ Ø µf �T1 � T2. λx.t � T1 � T2

In the premise, the type T1 � T2 serves both as an assumption and a
goal. This is a typical feature of recursive definitions.
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A derived construct: let

The construct “let x � T � t1 in t2” can be viewed as syntactic sugar for
the β-redex “�λx �T. t2� t1”.
The latter can be type-checked only by a derivation of the form:

App

Abs
Γ, x � T1 Ø t2 � T2

Γ Ø λx �T1. t2 � T1 � T2 Γ Ø t1 � T1
Γ Ø �λx �T1. t2� t1 � T2

This means that the following derived rule is sound and complete:

LetMono

Γ Ø t1 � T1 Γ, x � T1 Ø t2 � T2
Γ Ø let x � T1 � t1 in t2 � T2

The construct “t1; t2” can in turn be viewed as syntactic sugar for
let x � unit � t1 in t2 where x # t2.
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A derived construct: let

In the derived form let x � T1 � t1 in t2 the type of t1 must be explicitly
given, although by uniqueness of types, it is entirely determined by the
expression t1 itself.

Hence, it seems redundant.

Indeed, we can replace the derived form by a primitive form
let x � t1 in t2 with the following primitive typing rule.

LetMono

Γ Ø t1 � T1 Γ, x � T1 Ø t2 � T2
Γ Ø let x � t1 in t2 � T2

This is fine, but not necessary, because removing redundant type
annotations is the problem of type reconstruction and we should not
bother about it in the explicitly-typed version of the language.

Minimizing the number of language constructs is at least as important
as avoiding extra type annotations in an explicitly-typed language.
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A derived construct: let rec

The construct “let rec �f � T� x � t1 in t2” can be viewed as syntactic
sugar for “let f � µf �T. λx.t1 in t2”. The latter can be type-checked only
by a derivation of the form:

LetMono

FixAbs
Γ, f � T � T1; x � T Ø t1 � T1

Γ Ø µf �T � T1. λx.t1 � T � T1 Γ, f � T � T1 Ø t2 � T2
Γ Ø let f � µf �T � T2. λx.t1 in t2 � T2

This means that the following derived rule is sound and complete:

LetRecMono

Γ, f � T � T1; x � T Ø t1 � T1 Γ, f � T � T1 Ø t2 � T2
Γ Ø let rec �f � T � T1� x � t1 in t2 � T2
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Exceptions Semantics

Exceptions are a mechanism for changing the normal order of
evaluation (usually, but not necessarily, in case something abnormal
occurred).

When an exception is raised, the evaluation does not continue as
usual: Shortcutting normal evaluation rules, the exception is
propagated up into the evaluation context until some handler is found
at which the evaluation resumes with the exceptional value received; if
no handler is found, the exception is reaches to the toplevel and the
result of the evaluation is the exception instead of a value.

We extend the language with a constructor form to raise an exception
and a destructor form to catch an exception; we also extend the
evaluation contexts:

t ��� . . . S raise t S try t with t
E ��� . . . S raise �� S try �� with t
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Exceptions Semantics

However, we do not treat raise v as a value.

This stops the normal order of evaluation,

Instead, three reduction rules propagate and handle exceptions.

Raise

F�raise v� �� raise v
Handle-Val

try v with t�� v

Handle-Raise

try raise v with t �� t v

Rule Raise propagates an exception up the evaluation contexts, but not through a handler.
This is why the rule uses an evaluation context F which stands for any E other than
try �� with t.

The case of the handler is treated by two specific rules:

Rule Handle-Raise passes an exceptional value to its handler;

Rule Handle-Val removes the handler around a value.
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Exceptions Example

For example, assuming that K is λx. λy. y and t�� v, we have the
following reduction:

try K �raise t� with λx. x by Context�� try K �raise v� with λx. x by Raise�� try raise v with λx. x by Handle-Raise�� �λx. x� v by β�� v

In particular, we do not have the following step,

try K �raise v� with λx. x by β��/ try λy. y with λx. x �� λy. y

since raise v is not a value.
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Exceptions Typing rules

We need not add a new type but instead assume given a fixed type
Texn for exceptional values.

Typing rules are:

Raise

Γ Ø t � Texn
Γ Ø raise t � T Try

Γ Ø t1 � T Γ Ø t2 � Texn � T

Γ Ø try t1 with t2 � T
There are some subtleties:

• Raise turns an expression of type Texn into an exception.

• Consistently, the handler has type Texn � T , since it receives the
exception value of type exn as argument;

• Both premises of Rule Try must return values of the same type T .

• raise t can have any type, as the current computation is aborted.
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Exceptions on the type of exception

What can we choose for Texn? Well, any type:

• Choosing unit, exceptions will not carry any information.

• Choosing int, exceptions can report some error code.

• Choosing string, exceptions can report error messages.

• Using a sum type or better a variant type (tagged sum), with
one case to describe each exceptional situation.

This is the approach followed by ML. ML declares a new type exn
for exceptions which is a sum type, except that all cases are not
declared in advance, but when needed.

In all cases, the type of exception must be fixed in the whole program.

This because raise � and try � with � must agree beforehand on the
type of exceptions as this type is not passed around.
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Exceptions Type soundness

How do we state type soundness, since exceptions may be uncaught?
By saying that this is the only “exception” to progress:

Theorem (Progress)

A well-typed, irreducible term is either a value or an uncaught exception.
if g Ø t � T and t ~�� , then t is either v or raise v for some value v.

82 110



Simply-typed λ-calculus Type soundness Normalization Extensions Exceptions References

On uncaught exceptions

An uncaught exception is often a programming error. It may be
surprising that they are not detected by the type system.

Exception may be detected using more expressive type systems.
Unfortunately, the existing solutions are often complicated for some
limited benefit, and are still not often used in practice.

The complication comes from the treatment of functions, which have
some latent effect of possibly raising or catching an exception when
applied. To be precise, the analysis must therefore enrich types of
functions with latent effects, which is quite invasive and obfuscating.

Uncaught exceptions must be declared in the language Java.

See Leroy and Pessaux [2000] for a solution in ML.
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Exceptions small semantic variation

Once raised, exceptions are propagated step-by-step by Rule Raise until
they reach a handler or the toplevel.

We can also describe the semantics by replacing propagation of exceptions by deep handling of
exceptions inside terms.

Repalce the three reduction by:

Handle-Val’
try G�v� with t�� v

Handle-Raise’
try G�raise v� with t�� t v

where G is an evaluation context without handlers of arbitrary depth:

G ��� �� S G t S v G S raise G
This is perhaps a more intuitive, but equivalent, semantics for exceptions.

In this case, uncaught exceptions are of the form G�v�.
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Exceptions small syntax variation

Benton and Kennedy [2001] have argued for merging let and try
constructs into a unique form let x � t1 with t2 in t3.

The expression t1 is evaluated first and if it returns a value it is
substituted for x in t3, as if we had evaluated let x � t1 in t3;
otherwise, i.e., if it raises an exception raise v, then the exception is
handled by t2, as if we had evaluated try t1 with t2.

The main advantage of this combined form is that it captures a
common pattern in programming with no elegant workaround

let rec read config in path filename (dir :: dirs) �
let fd = open in (Filename.concat dir filename)
with Sys error � read config filename dirs in

read config from fd fd

This form is also better suited for program transformations as argued
by Benton and Kennedy [2001].
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Exceptions small syntax variation

Encoding the new form let x � t1 with t2 in t3 with “let” and “try” is
not easy:

In particular, it is not equivalent to: try let x � t1 in t2 with t3. Why?
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Exceptions small syntax variation

Encoding the new form let x � t1 with t2 in t3 with “let” and “try” is
not easy:

In particular, it is not equivalent to: try let x � t1 in t2 with t3. Why?

The continuation t2 could raise an exception that would then be
handled by t2, which is incorrect.
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Exceptions small syntax variation

Encoding the new form let x � t1 with t2 in t3 with “let” and “try” is
not easy:

In particular, it is not equivalent to: try let x � t1 in t2 with t3. Why?

The continuation t2 could raise an exception that would then be
handled by t2, which is incorrect.

There are several encodings:

• Use a sum type to know whether t1 raised an exception:
case �try Val t1 with λy. Exc y� of �Val � λx. t3 8 Exc � t2�

• Freeze the continuation t3 while handling the exception:�try let x � t1 in λ��. t3 with λy. λ��. t2 y� ��
Unfortunately, none of them is very readable.
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References

In the ML vocabulary, a reference cell, also called a reference, is a
dynamically allocated block of memory, which holds a value, and whose
contents can change over time.

A reference can be allocated and initialized (ref), written (:=), and
read (!).

Expressions and evaluation contexts are extended:

t ��� . . . S ref t S t �� t S !t
E ��� . . . S ref �� S �� �� t S v �� �� S !��
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References

A reference allocation expression is not a value. Otherwise, by β, the
program: �λx �T. �x �� 1; !x�� �ref 3�
(which intuitively should yield 1) would reduce to:�ref 3� �� 1; !�ref 3�
(which intuitively yields 3).

How shall we solve this problem?
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References�ref 3� should first reduce to a value: the address of a fresh cell.

Not just the content of a cell matters, but also its address. Writing
through one copy of the address should affect a future read via
another copy.
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References

We extend the simply-typed λ-calculus calculus with memory locations:

v ��� . . . S ℓ
t ��� . . . S ℓ

A memory location is just an atom (that is, a name). The value found
at a location ℓ is obtained by indirection through a memory (or store).

A memory µ is a finite mapping of locations to closed values.
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References

A configuration is a pair t~µ of a term and a store. The operational
semantics (given next) reduces configurations instead of expressions.

The semantics maintains a no-dangling-pointers invariant: the locations
that appear in t or in the image of µ are in the domain of µ.

Initially, the store is empty, and the term contains no locations,
because, by convention, memory locations cannot appear in source
programs. So, the invariant holds.

If we wish to start reduction with a non-empty store, we must check
that the initial configuration satisfies the no-dangling-pointers
invariant.
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References

Because the semantics now reduces configurations, all existing
reduction rules are augmented with a store, which they do not touch:�λx �T. t� v~µ �� �x ( v�t~µ

E�t�~µ �� E�t��~µ� if t~µ�� t�~µ�
Three new reduction rules are added:

ref v~µ �� ℓ~µ�ℓ ( v� if ℓ ~> dom�µ�
ℓ �� v~µ �� ��~µ�ℓ ( v�

!ℓ~µ �� µ�ℓ�~µ
In the last two rules, the no-dangling-pointers invariant guarantees
ℓ > dom�µ�.
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References

The type system is modified as follows. Types are extended:

T ��� . . . S ref T
Three new typing rules are introduced:

Ref

Γ Ø t � T
Γ Ø ref t � ref T Set

Γ Ø t1 � ref T Γ Ø t2 � T
Γ Ø t1 �� t2 � unit Get

Γ Ø t � ref T
Γ Ø !t � T

Is that all we need?
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References

The preceding setup is enough to typecheck source terms, but does
not allow stating or proving type soundness. Indeed, we have not yet
answered these questions:

• What is the type of a memory location ℓ?

• When is a configuration t~µ well-typed?
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When does a location ℓ have type ref T?
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References

When does a location ℓ have type ref T? A possible answer is, when it
points to some value of type T . Intuitively, this could be formalized by
a typing rule of the form:

µ,g Ø µ�ℓ� � T
µ,Γ Ø ℓ � ref T

Comments?

97`2e 110



Simply-typed λ-calculus Type soundness Normalization Extensions Exceptions References

References

When does a location ℓ have type ref T? A possible answer is, when it
points to some value of type T . Intuitively, this could be formalized by
a typing rule of the form:

µ,g Ø µ�ℓ� � T
µ,Γ Ø ℓ � ref T

Comments?

• typing judgments would have the form µ,Γ Ø t � T .
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References

When does a location ℓ have type ref T? A possible answer is, when it
points to some value of type T . Intuitively, this could be formalized by
a typing rule of the form:

µ,g Ø µ�ℓ� � T
µ,Γ Ø ℓ � ref T

Comments?

• typing judgments would have the form µ,Γ Ø t � T .
• typing judgments would no longer be inductively defined (or else,
every cyclic structure would be ill-typed). Instead, co-induction
would be required.
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References

When does a location ℓ have type ref T? A possible answer is, when it
points to some value of type T . Intuitively, this could be formalized by
a typing rule of the form:

µ,g Ø µ�ℓ� � T
µ,Γ Ø ℓ � ref T

Comments?

• typing judgments would have the form µ,Γ Ø t � T .
• typing judgments would no longer be inductively defined (or else,
every cyclic structure would be ill-typed). Instead, co-induction
would be required.

• if the value µ�ℓ� happens to admit two distinct types T1 and T2,
then ℓ admits types ref T1 and ref T2. So, one can write at type
T1 and read at type T2: this rule is unsound!
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A simpler, and sound, approach is to fix the type of a memory
location when it is first allocated. To do so, we use a store typing M,
a finite mapping of locations to types.

So, when does a location ℓ have type ref T? “When M says so.”

Loc

M,Γ Ø ℓ � ref M�ℓ�
Comments:

• Tping judgments now have the form M,Γ Ø t � T .
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References

How do we know that the store typing predicts appropriate types?

This is required by the typing rules for stores and configurations:

Store�ℓ > dom�µ�, M,g Ø µ�ℓ� � M�ℓ�Ø µ � M Config

M,g Ø t � T Ø µ � MØ t~µ � T
Comments:

• This is an inductive definition. The store typing M serves both as
an assumption (Loc) and a goal (Store). Cyclic stores are not a
problem.

• The store typing is used only in the definition of a “well-typed
configuration” and in the typechecking of locations. Thus, it is not
needed for type-checking source programs, since the store is
empty and the empty-store configuration is always well-typed.
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Restating type soundness

The type soundness statements are slightly modified in the presence
of the store, since we now reduce configurations:

Theorem (Subject reduction)

Reduction preserves types: if t~µ �� t�~µ� and Ø t~µ � T , thenØ t�~µ� � T .
Theorem (Progress)

If t~µ is a well-typed, irreducible configuration, then t is a value.
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Restating subject reduction

Inlining Config, subject reduction can also be restated as:

Theorem (Subject reduction, expanded)

If t~µ �� t�~µ� and M,g Ø t � T and Ø µ � M, then there exists M� such that M�,g Ø t� � T andØ µ� � M�.
This statement is correct, but too weak—its proof by induction will fail in one case. (Which?)
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Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

t~µ�� t
�~µ� and M,g Ø E�t� � T and Ø µ � M
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Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

t~µ�� t
�~µ� and M,g Ø E�t� � T and Ø µ � M

Assuming compositionality, there exists T � such that:

M,g Ø t � T � and �t�, �M,g Ø t
� � T ��� �M,g Ø E�t�� � T�
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Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

t~µ�� t
�~µ� and M,g Ø E�t� � T and Ø µ � M

Assuming compositionality, there exists T � such that:

M,g Ø t � T � and �t�, �M,g Ø t
� � T ��� �M,g Ø E�t�� � T�

Then, by the induction hypothesis, there exists M� such that:

M
�
,g Ø t

� � T � and Ø µ
� � M�
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Establishing subject reduction

Let us look at the case of reduction under a context.

The hypotheses are:

t~µ�� t
�~µ� and M,g Ø E�t� � T and Ø µ � M

Assuming compositionality, there exists T � such that:

M,g Ø t � T � and �t�, �M,g Ø t
� � T ��� �M,g Ø E�t�� � T�

Then, by the induction hypothesis, there exists M� such that:

M
�
,g Ø t

� � T � and Ø µ
� � M�

Here, we are stuck. The context E is well-typed under M, but the term
t� is well-typed under M�, so we cannot combine them. How could we
fix this?
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Establishing subject reduction

We are missing a key property: the store typing grows with time. That
is, although new memory locations can be allocated, the type of an
existing location does not change.

This is formalized by strengthening the subject reduction statement:

Theorem (Subject reduction, strengthened)

If t~µ �� t�~µ� and M,g Ø t � T and Ø µ � M, then there exists M� such
that M�,g Ø t� � T and Ø µ� � M� and M b M�.
At each reduction step, the new store typing M� extends the previous
store typing M.
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Establishing subject reduction

Growing the store typing preserves well-typedness:

Lemma (Stability under memory allocation)

If M b M� and M,Γ Ø t � T , then M�,Γ Ø t � T .
(The is a generalization of the weakening lemma.)
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Establishing subject reduction

Stability under memory allocation allows establishing a strengthened
version of compositionality:

Lemma (Compositionality)

Assume M,g Ø E�t� � T . Then, there exists T � such that:

• M,g Ø t � T �,
• for every M� such that M b M�, for every t�,
M�,g Ø t� � T � implies M�,g Ø E�t�� � T .
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Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

M,g Ø E�t� � T and Ø µ � M and t~µ�� t
�~µ�
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Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

M,g Ø E�t� � T and Ø µ � M and t~µ�� t
�~µ�

By compositionality, there exists T � such that:

M,g Ø t � T ��M�,�t�, �M b M��� �M�,g Ø t� � T ��� �M�,g Ø E�t�� � T ��
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Establishing subject reduction

Let us now look again at the case of reduction under a context.

The hypotheses are:

M,g Ø E�t� � T and Ø µ � M and t~µ�� t
�~µ�

By compositionality, there exists T � such that:

M,g Ø t � T ��M�,�t�, �M b M��� �M�,g Ø t� � T ��� �M�,g Ø E�t�� � T ��
By the induction hypothesis, there exists M� such that:

M�,g Ø t� � T � and Ø µ� � M� and M b M�
The goal follows immediately.
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Exercise

Exercise (Recommended)

Prove subject reduction and progress for simply-typed λ-calculus
equipped with unit, pairs, sums, recursive functions, exceptions, and
references.
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On memory deallocation

In ML, memory deallocation is implicit. It must be performed by the
runtime system, possibly with the cooperation of the compiler.

The most common technique is garbage collection. A more ambitious
technique, implemented in the ML Kit, is compile-time region
analysis [Tofte et al., 2004].

References in ML are easy to type-check, thanks in large part to the
no-dangling-pointers property of the semantics.

Making memory deallocation an explicit operation, while preserving type
soundness, is possible, but difficult. This requires reasoning about
aliasing and ownership. See Charguéraud and Pottier [2008] for
citations.
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Further reading

For a textbook introduction to λ-calculus and simple types, see Pierce
[2002].

For more details about syntactic type soundness proofs, see Wright
and Felleisen [1994].
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