
Functional programming and type systems (MPRI 2-4)
Mid-term exam 2010-2011

Yann Régis Gianas and Didier Rémy

Duration 2h30

Section 1 is independent of other sections and must be written on a separate sheet.

1 GADTs

In our formal presentation of GADTs, we restricted the syntax of patterns to flatten patterns
only, that is, data constructors applied exclusively to variables. The purpose of this exercise is
the extension of this formalization to nested patterns p whose syntax is defined below together
with that of values v:

p ::= x | K (p1, . . . , pn) | (p1, p2)
v ::= λx. t | K (v1, . . . , vn) | (v1, v2) | 0 | 1 | 2 | . . .

A notion of extended substitution is convenient to define the reduction rules for pattern match-
ing with nested patterns. In the following grammar, the metavariable S denotes an extended
substitution, φ denotes a simple substitution and Es denotes an evaluation context for extended
substitutions.

S ::= ⊥ | {p 7→ v} | S ⊗ S
Es ::= [] | Es ⊗ S | φ⊗ Es
φ ::= {x 7→ v} | φ⊗ φ

A reduction relation
m−→ is defined by the following reduction rules. This relation computes the

simple substitution φ that can be applied to a pattern to match a particular value, or returns
the undefined substitution ⊥ if no such simple substitution exists.

{(p1, p2) 7→ (v1, v2)}
m−→ {p1 7→ v1} ⊗ {p2 7→ v2}

{K (p1, . . . , pn) 7→ K (v1, . . . , vn)} m−→ {p1 7→ v1} ⊗ . . .⊗ {pn 7→ vn}
{K (p1, . . . , pn) 7→ K ′ (v1, . . . , vm)} m−→ ⊥ if K 6= K ′ or n 6= m

⊥⊗ S m−→ ⊥
φ⊗⊥ m−→ ⊥
Es[S]

m−→ Es[S
′] if S

m−→ S′

The new reduction rules for pattern matching with nested patterns are:

match vwith p⇒ t | ~b −→ φ t if {p 7→ v} m−→
?
φ

match vwith p⇒ t | ~b −→ match vwith~b if {p 7→ v} m−→
?
⊥

Question 1 Let IsInt and IsPair be data constructors. Consider the following two terms:

t1
def
= match (IsInt, 42) with (IsPair(r1, r2), (x1, x2))⇒ v1 | (IsInt, x)⇒ v2

t2
def
= match (42, IsInt) with ((x1, x2), IsPair(r1, r2))⇒ v1 | (x, IsInt)⇒ v2

Give their sequence of reductions.

1

Question 2 Characterize the normal forms of the reduction
m−→. (No justification is needed.)

Question 3 Devise a conversion rule for patterns and extend the existing typing rules for pat-
terns and branches to handle nested patterns.

2 Polymorphic records

We consider an extension F{{}} of explicitly typed System F with polymorphic records. We
introduce kinds to allow variables to range over regular types or over records of a certain type.
The syntactic definition of the language is:

R ::= ` : T, . . . ` : T

κ ::= ∗ | {{R}}
T ::= α | T → T | ∀(α :: κ)T | {R}
t ::= x | λ(x : T) t | t t | Λ(α :: κ) t | t T | t.` | {` = t, . . . ` = t}
Γ ::= ∅ | Γ, α :: κ | Γ, x : T

Judgments for well-formedness of environments ` Γ, kinds Γ ` κ, and types Γ ` T :: κ are:

E-Empty
` ∅

E-Tvar
` Γ Γ ` κ α /∈ domΓ

` Γ, α :: κ

E-Var
` Γ Γ ` T :: ∗ x /∈ domΓ

` Γ, x : T

K-Type
Γ ` ∗

K-Record
i 7→ `i injective
(Γ ` Ti :: ∗)i∈I

Γ ` {{(`i : Ti)
i∈I}}

T-Tvar
` Γ α :: κ ∈ Γ

Γ ` α :: κ

T-Arrow
Γ ` T1 :: ∗ Γ ` T2 :: ∗

Γ ` T1 → T2 :: ∗

T-All
Γ, α :: κ ` T :: ∗

Γ ` ∀(α :: κ)T :: ∗

T-Record
Γ ` {{R}}

Γ ` {R} :: {{R}}

T-Sub-Record
Γ ` T :: {{(`i : Ti)

i∈I}} J ⊆ I
Γ ` T :: {{(`j : Tj)

j∈J}}

T-Sub-Type
Γ ` T :: {{R}}

Γ ` T :: ∗

The interesting rules are T-Record, T-Sub-Record, and T-Sub-Type for record kinds. The
typing rules are:

Var
` Γ x : T ∈ Γ

Γ ` x : T

Fun
Γ, x : T2 ` t : T1

Γ ` λ(x : T2) t : T2 → T1

App
Γ ` t1 : T2 → T1 Γ ` t2 : T2

Γ ` t1 t2 : T1

Gen
Γ, α :: κ ` t : T

Γ ` Λ(α :: κ) t : ∀(α :: κ)T

Inst
Γ ` t : ∀(α :: κ)T Γ ` T0 :: κ

Γ ` t T0 : [α 7→ T0]T

Proj
Γ ` t : T Γ ` T :: {{`1 : T1}}

Γ ` t.`1 : T1

Record
(Γ ` ti : Ti)

i∈I i 7→ `i injective

Γ ` {(`i = ti)
i∈I} : {(`i : Ti)

i∈I}

Typing rules may be inverted as usual; you may invoke the inversion lemma in proofs without
stating it formally nor proving it. You may also admit that Γ ` t : T implies Γ ` T : ∗.
Type erasure is defined as usual. The language is equipped with a call-by-value type-erasing
semantics. In examples, we assume an extension of the language with primitive booleans, but
you may ignore booleans in formal developments.

2

Question 4 Is the term λ(x : bool) if x then {` = true} else {` = true, `0 = false}
well-typed? (Give the full typing derivation of t or explain why there is none.)

Question 5 Give a well-typed term t5, without its typing derivation, whose erasure is

a5
def
= (λ(f) f {` = f {` = true}, `0 = false}) (λ(x)x.`).

Question 6 What can you say about T when Γ ` T :: {{R}}? Verify that terms have unique
types, i.e. Γ ` t : T1 and Γ ` t : T2 implies T1 = T2? (Justify briefly, without a formal proof.)

3 Representation of records

Question 7 Describe a simple implementation of record operations where record creation is in
n log n and record access is in log n where n is the size of the domain of the record.

We consider the language F{} obtained from F{{}} by replacing rules T-Record and Proj by
R-Record’ and Proj’ given below and by disallowing the use of record kinds everywhere. (As a
consequence, rules K-Record, T-Sub-Record, and T-Sub-Type become useless and could also
be removed).

T-Record’
(Γ ` Ti :: ∗)i∈I i 7→ `i injective

Γ ` {(`i : Ti)
i∈I} :: ∗

Proj’
Γ ` t : {R, ` : T,R′}

Γ ` t.` : T

Question 8 Show that F{} is a subset of F{{}}.

Question 9 Is the term t5 found at question 5 (or another elaboration of a5) well-typed in F{}?
(Answer precisely, but do not prove anything.)

Question 10 Describe a more efficient implementation of records in F{}. (Justify briefly, but
no formal proof of correction is needed.)

4 Compiling polymorphic access away

In this section, we define a translation of F{{}} into F{} that eliminates the need for polymorphic
record access. We use the following “row folding” notations:

(α→ (`1 : T1, . . . `n : Tn))→ T = (α→ T1)→ . . . (α→ Tn)→ T

xα : α→ (`1 : T1, . . . `n : Tn) = xα`1 : α→ T1, . . . x
α
`n

: α→ Tn
λ(x : α→ (`1 : T1, . . . `n : Tn)) t = λ(xα`1 : α→ T1) . . . λ(xα`n : α→ Tn) t

t (α.(`1 : T1, . . . `n : Tn)) = t xα`1 . . . x
α
`n

t ({R}.(`1 : T1, . . . `n : Tn)) = t (λ(x : {R})x.`1) . . . (λ(x : {R})x.`n)

The translation of types is:
[[α]] = α

[[T1 → T2]] = [[T1]]→ [[T2]]
[[{(`i : Ti)

i∈I}]] = {(`i : [[Ti]])
i∈I}

[[∀(α :: ∗)T]] = ∀(α :: ∗) [[T]]
[[∀(α :: {{R}})T]] = ∀(α :: ∗) (α→ [[R]])→ [[T]]

[[(`i : Ti)
i∈I]] = (`i : [[Ti]])

i∈I

The translation of typing contexts is the concatenation of the translation of their bindings,
defined as:

[[x : T]] = x : [[T]] [[α :: ∗]] = α :: ∗ [[α :: {{R}}]] = α :: ∗, xα : α→ [[R]]

3

You may admit that ` Γ implies ` [[Γ]] and Γ ` T :: κ implies [[Γ]] ` [[T]] :: ∗.
Expressions are elaborated as follows:

E-Var
` Γ x : T ∈ Γ

Γ ` x : T . x

E-Fun
Γ, x : T2 ` t : T1 . t

′

Γ ` λ(x : T2) t : T2 → T1 . λ(x : [[T2]]) t
′

E-App
Γ ` t2 : T2 . t2

′

Γ ` t1 : T2 → T1 . t1
′

Γ ` t1 t2 : T1 . t1
′ t2
′

E-Record
(Γ ` ti : Ti . t

′
i)
i∈I i 7→ `i injective

Γ ` {(`i = ti)
i∈I} : {(`i : Ti)

i∈I} . {(`i = t′i)
i∈I}

E-Gen-Type
Γ, α :: ∗ ` t : T . t′

Γ ` Λ(α :: ∗) t : ∀(α :: ∗)T . Λ(α :: ∗) t′

E-Inst-Type
Γ ` t : ∀(α :: ∗)T . t′ Γ ` T0 :: ∗

Γ ` t T0 : [α 7→ T0]T . t
′ [[T0]]

E-Gen-Record
Γ, α :: {{R}} ` t : T . t′

Γ ` Λ(α :: {{R}}) t : ∀(α :: {{R}})T
. Λ(α :: ∗)λ(x : α→ [[R]]) t′

E-Inst-Record
Γ ` t : ∀(α :: {{R}})T . t′ Γ ` T0 :: {{R}}

Γ ` t β : [α 7→ T0]T . t [[T0]] ([[T0]].[[R]])

E-Proj-Var
Γ ` t : α . t′ Γ ` α :: {{` : T}}

Γ ` t.` : T . xα` t
′

E-Proj-Record
Γ ` t : {R} . t′ Γ ` {R} :: {{` : T}}

Γ ` t.` : T . t′.`

If Γ ` t : T . t′, we write [[Γ ` t : T]] for the judgment [[Γ]] ` t′ : [[T]]. You may admit that the
translation is well-defined, i.e. if Γ ` t : T holds then there exists a unique t′ so that Γ ` t : T .t′.

Question 11 Give the translation t′5 of the elaboration of a5 of question 5 and the type erasure
a′5 of t′5.

Question 12 Show that Γ ` α :: {{` : T}} implies xα` : α→ [[T]] in [[Γ]].

Question 13 (long) Prove that the translation is type preserving, i.e. if Γ ` t : T holds then
[[Γ ` t : T]] also holds. (The proof structure should be very clear. You only need to treat the cases
related to rules E-Gen-Record, E-Inst-Record, and E-Proj-*.)

Question 14 Does Γ ` t : T . t′ imply t′ in F{}? (Justify briefly.)

Question 15 Can you give one simple optimization to the compilation schema?

Question 16 Access functions λ(x : {R} → T)x.` introduced during the translation by rule
E-Inst-Record may be passed around (via rules E-Gen-Record and E-Inst-Record) and used
by rule E-Proj-Var. Since their introduction and elimination sites are statically known, there
is an opportunity for an optimization in their compilation. Which one?

Question 17 If we extend the language with fix points or references, the translation would not
always preserve the semantics. Give an example. Could the source language be restricted to rule
out such programs?

4

Solutions

Question 1, page 1

t1 −→ match (IsInt, 42) with (IsInt, x)⇒ v2

Since: {(IsPair(r1, r2), (x1, x2)) 7→ (IsInt, 42)}
m−→ {IsPair(r1, r2) 7→ IsInt} ⊗ {(x1, x2) 7→ 42}
m−→ ⊥⊗ {(x1, x2) 7→ 42}
m−→ ⊥

−→ {x 7→ 42} v2
Since: {(IsInt, x) 7→ (IsInt, 42)}

m−→ {IsInt 7→ IsInt} ⊗ {x 7→ 42}
m−→ {x 7→ 42}

t2 6−→
Since: {((x1, x2), IsPair(r1, r2)) 7→ (42, IsInt)}

m−→ {(x1, x2) 7→ 42} ⊗ {IsPair(r1, r2) 7→ IsInt}
6 m−→

So, t1 evaluates into {x 7→ 42}v2 whereas t2 is stuck.

Question 2, page 2

If S 6 m−→ then one of the following assertion holds: (i) S ≡ ⊥, (ii) S ≡ φ, or (iii) there exists Es
such that S ≡ Es[{K (p1, . . . , pn) 7→ v}] with v ≡ 0, 1, . . . or v ≡ λx. t.

Question 3, page 2

Pat-Conv

∆ ` p : τ ′ (~β,∆′,Γ) ∆ |= τ = τ ′

∆ ` p : τ (~β,∆′,Γ)

Pat

K � ∀~β.τ1 × . . .× τn → ε ~τ1 ~τ

∀i ∈ 1..n,∆ ∧ ~τ = ~τ2 ∧∆1 ∧ . . .∆i−1 ` pi : τi (~βi,∆i,Γi)

∆ ` K (p1 . . . pn) : ε ~τ1 ~τ2 (~β~β1 . . . ~βn, ~τ = ~τ2 ∧∆1 ∧ . . . ∧∆n,Γ1 . . .Γn)

Branch

∆ ` p : τ (~β′,∆′,Γ′) ∆ ∧∆′,ΓΓ′ ` t : τ ′

∆,Γ ` p⇒ t : τ → τ ′

5

Question 4, page 3

t is ill-typed because the two branches of the conditional cannot be given a common type: the
records {` = true} and {` = true, `0 = false} have types {{` : bool}} and {{` : bool, `0; bool}}.

Question 5, page 3

The term t5 is the erasure of the application t1 t2 where:

t1
def
= (λ(f : T2) f T0 {` = f T {` = true}, `0 = false})

t2
def
= Λ(α :: {{` : bool}})λ(x : α)x.`

T2
def
= ∀(α :: {{` : bool}})α→ bool

T
def
= {` : bool}

T0
def
= {` : bool, `0 : bool}

Question 6, page 3

A derivation of Γ ` T :: {{R}} must start with either T-Var or T-Record and may continue with
a sequence of rule R-Sub-Record, which may always be replaced by a single one. Hence, either
T is a variable α with α :: {{R′}} in Γ or T is a record {R′} and, in both cases, R ⊆ R′.
Terms have unique types. The proof is by induction on the term t and inversion of typing.
Only case Proj could be problematic, as several types T1 could perhaps be used. However, the
previous remark implies that T1 is uniquely dertermined by the judgment Γ ` t : T which by
induction is unique.

Question 7, page 3

We may represent records as heterogeneous maps, implemented as balanced trees, with labels
as keys.

Question 8, page 3

Rule T-Record’ is derivable in F{{}} by K-Record, T-Record, and T-Sub-Type.

Rule T-Proj’ is admissible (but not derivable) in F{{}}: Assume Γ ` t : {R, ` : T,R′}. Since
Γ ` {R, ` : T,R′} : ∗ (admitted), it must come from a use of T-Record concluding Γ `
{R, ` : T,R′} :: {{R, ` : T : R′}} followed by a sequence of Rule T-Sub-Record and ending with
T-Sub-Type. By T-Sub-Record, we have Γ ` {R, ` : T,R′} :: {{` : T}}. Hence, by Proj we may
conclude Γ ` t.` : T .

Therefore, adding these rules to F{{}} increases derivations, but does change its judgments. Then,
the removal of record kinds may only restrict the set of derivations and of valid judgments in
F{}.

Question 9, page 3

t5 is ill-typed and there is no other well-typed term in F{} whose erasure is a5: the two occurrences
of f have arguments of different domains, but a well-typed term whose erasure is λ(x)x.` only
accepts records of a fix domain.

Question 10, page 3

Since domain of records are ordered and known from their types (records with different domains
or with the same domain but in different order have different types), we may drop labels, see
records as tuples, and record projection at a label ` as the i’th projection of a tuple where i is
the position of ` in the record domain. Schematically, [[{`1 = t1, . . . `n = tn}]] is ([[t1]], . . . [[tn]])
and [[t.`i]] is [[t]].i where {`1 : T1, . . . `i : Ti, . . .} is the type of t.

6

Question 11, page 4

The term t′5 is equal to t′1 t
′
2 where:

t′1 = (λ(f : T ′2) f T0 (λ(z : T0) z.`) {` = f T (λ(z : T) z.`) {` = true}, `0 = false})
t′2 = Λ(α :: ∗)λ(xα` : α→ bool)λ(x : α)xα` x
T ′2 = ∀(α :: ∗) (α→ bool)→ α→ bool
T = {` : bool}
T0 = {` : bool, `0 : bool}

The erasure a′5 of t′5 is:

(λ(f) f (λ(z) z.`) {` = f (λ(z) z.`) {` = true}, `0 = false}) (λ(x`)λ(x)x` x)

Question 12, page 4

Assume Γ ` α :: {{` : T}}. From question 6, we know that there is α :: {{R}} in Γ with ` : T in R.
By definition, [[Γ]] contains [[α :: {{R}}]], which contains xα : α→ [[R]] and in turn, expansing the
notation, contains xα` : α→ [[T]], as expected.

Question 13, page 4

Since the translation is well-defined, it suffices to show that if Γ ` t : T . t′ (H) holds then
[[Γ ` t : T]] also holds, which we do by induction on the derivation (H):

Case E-Gen-Record. The conclusion is Γ ` Λ(α :: {{R}}) t : ∀(α :: {{R}})T . Λ(α :: ∗)λ(xα :
α → [[R]]) t′. The premisse is Γ, α :: {{R}} ` t : T . t′. By induction hypothesis, we have
[[Γ]], [[α :: {{R}}]] ` t′ : [[T]], i.e., [[Γ]], α :: ∗, xα : α → [[R]] ` t′ : [[T]]. A sequence of rules Fun,
followed by rule Gen gives [[Γ]] ` Λ(α :: ∗)λ(xα : α → [[R]]) t′ : ∀(α :: ∗) (α → [[R]]) → [[T]], as
expected.

Case E-Inst-Record. The conclusion is Γ ` t T : [α 7→ T0]T . t
′ [[T0]] ([[T0]].[[R]]). The premisses

are Γ ` t : ∀(α :: {{R}})T . t′ and Γ ` T0 :: {{R}}. By induction on the former, we have
[[Γ]] ` t′ : [[∀(α :: {{R}})T]], i.e. [[Γ]] ` t′ : ∀(α :: ∗) (α → [[R]]) → [[T]]. The later implies that
α cannot occur in R. It also implies [[Γ]] ` [[T0]] : ∗ (admitted). Hence, by rule Inst, we have
[[Γ]] ` t′ T0 : T ′ where T ′ is [α 7→ [[T0]]](α → {{R}}) → [[T]], i.e. ([[T0]] → [[T1]]) → . . . ([[T0]] →
[[Tn]])→ [α 7→ [[T0]]][[T]] where R is (`1 : T1, . . . `n : Tn).

The later premisse also implies that T0 is one of two forms: it may be a record type {R′} with
R′ ⊆ R. Thus, [[R′]] ⊆ [[R]] and, for all `i : Ti in R, rules Proj’ and Fun give [[Γ]] ` λ(x :
[[T0]])x.`i : [[T0]] → [[Ti]] (notice that [[T0]] is {[[R′]]}). Otherwise, T0 must be a variable β with
β :: {{R′}} in Γ and R ⊆ R′. Thus, for all `i : Ti in R, we have Γ ` β :: {{`i : Ti}}, which by

question 12 implies [[Γ]] ` xβ`i : β → [[Ti]]. Notice that β is also equal to [[T0]].

In both cases, a sequence of rule App gives [[Γ]] ` t [[T0]] ([[T0]].[[R]]) : [α 7→ [[T0]]][[T]], as expected.

Case E-Proj-Var. The conlusion is Γ ` t.` : T . xαl t
′. The premisses are Γ ` t : α . t′ and

Γ ` α :: {{` : T}}. By induction, the former implies [[Γ]] ` t′ : α. By question 12, the latter
implies [[Γ]] ` xα` : α→ [[T]]. Hence, by Rule App, we get [[Γ]] ` xα` t′ : [[T]], as expected.

Case E-Proj-Record. The conclusion is Γ ` t.` : T . t′.`. The premisses are Γ ` t : {R} . t′ and
Γ ` {R} : {{` : T}}. By induction, the former implies [[Γ]] ` t′ : [[{R}]]. By question 6 The later

implies that ` : T is in R. Hence, ` : [[T]] is in [[{R}]]. By Proj’, which is admissible in F{{}}, we
conclude that [[Γ]] ` t′.` : [[T]], as expected.

Other cases are omitted.

7

Question 14, page 4

Yes, it does. From the proof of question 13, observe that in a derivation of [[Γ]] ` t′ : [[T]],
we have never needed Rule Proj but only its restricted form Proj’ in cases Proj-Record and
Inst-Record, since record access is always performed at a known domain. Moreover, we have
never used record kinds.

Question 15, page 4

The translation inserts extractors for every field of record kinds, but perhaps only some of these
extractors are never applied. The translation could insert extractors only if they are actually
needed (applied or passed to other functions). This could be done by finding minimal kinds for
type variables.

Question 16, page 4

There is some liberty in the representation of extractors, provided the creation and the elim-
ination sites agree. Currentlty, in F{}, the acccess function is compiled into the function that
access the tuple field and its elimination applies the function. Instead, the introduction could
be just return the position of the field to be accessed as an integer and the elimination would
project the argument at that position received as argument—this would save the creation and
application of the access function.

Question 17, page 4

The translation may insert abstraction in front of expressions that are not values. It may thus
change the order of evaluation and turn a diverging expression into a converging one. Take for
example Λ(α :: {{`1 : T1}}) t0 where t0 diverges. Its translation is Λ(α :: {{`1 : T1}})λ(xα` : [[)]] t0
which is a value and converges.

Since the translation may only insert extra abstractions next to polymorphism (over record
kinds), it would suffice to restrict (record kind) polymorphism to value-forms, as in ML with
references, to reject such obviously erroneous translations.

8

	GADTs
	Polymorphic records
	Representation of records
	Compiling polymorphic access away

