
MPRI course 2-4-2

�Programmation fonctionnelle et systèmes de types�

Programming project

Giuseppe Castagna François Pottier Didier Rémy

2009�2010

An up-to-date version of this document can be found at http://gallium.inria.fr/~remy/mpri/.

1 Summary

The purpose of this programming project is to implement the mid-course �partiel� exam, more precisely
to implement :

1. a type-checker for System F η, with existential types and record types ;

2. a type-preserving translation from System F η into System F .

The type-checker will be used to check the program before and after the translation. The following compo-
nents of the system are provided : de�nitions of the syntaxes of terms, coercions, and types ; a lexer, parser,
a pretty-printer, and support code for dealing with binders and reporting errors.

2 Required software

To use the sources that we provide, you will need :

Objective Caml Any version ≥ 3.0 should do, but in doubt install version 3.11 from http://caml.inria.

fr/ocaml/release.en.html or from the packages available in your Linux distribution.

The Menhir parser generator Available at http://gallium.inria.fr/~fpottier/menhir/. This tool
is required in order to produce parser.mli and parser.ml out of parser.mly.

Linux, FreeBSD, MacOSX, or some other Unix-like system The Makefile that we distribute has
not been tested under Microsoft Windows. You are on your own if you insist on using Windows.

3 Overview of the provided sources

In order to make this a reasonably nice type-checker (with good error messages, etc.), we have provided
a lot of support code. This code is brie�y described in the list below. The modules at the beginning of the
list, up to pprint are generic, and could be used as such in type-checkers for other languages. The rest of
the modules, beginning with syntax, are speci�c to our little language.

The �les that you should study �rst are probably types.mli, terms.mli, and coercions.mli. These �les
de�ne the internal representations of types, terms, and coercions. You will work with these representations.

In the src/ directory, you will �nd the following �les :

identi�erChop.mll, identi�er.{ml, mli} Identi�ers. An identi�er is essentially a pair of a sort and a
string. Each sort de�nes a disjoint namespace.

1

http://gallium.inria.fr/~remy/mpri/
http://caml.inria.fr/ocaml/release.en.html
http://caml.inria.fr/ocaml/release.en.html
http://gallium.inria.fr/~fpottier/menhir/

atom.{ml, mli} Atoms. An atom is the internal object used to represent a name.

error.{ml, mli} Generic error reporting facilities.

import.{ml, mli} Generic facilities for converting identi�ers to atoms and detecting unbound identi�ers.

export.{ml, mli} Generic facilities for converting atoms back to identi�ers, while avoiding unintentional
capture.

lexerUtil.{ml, mli} Generic utilities for lexical analysis.

pprint.{ml, mli} Generic pretty-printing facilities.

syntax.ml Abstract syntax for the types, coercions, and terms of System F η. This syntax is produced by
the parser. In this version of the syntax, names are represented as identi�ers. Here, there are three
sorts of identi�ers, for term variables, type variables, and record labels.

parser.mly, lexer.mll Together, the lexer and parser de�ne the concrete syntax for the language.

types.{ml, mli} Internal representation for the types of System F , up to α-conversion. This representation
is used directly by the type-checker and translator. Informally, the abstract syntax of types is :

T ::= X | T → T | {~̀ : ~T} | ∀X.T | ∃X.T

terms.{ml, mli} Internal representation for the terms of System F η. This representation is used directly by
the type-checker. It also serves as both the source and target languages of the translation. Informally,
the abstract syntax of terms is :

t ::= x
| fun f (x : T) : T = t
| fun (x : T) : T = t
| t t
| let x = t in t
| fun X → t
| t [T]
| {~̀ : ~t}
| t.`
| pack t : ∃X.T
| unpackX,x = t in t
| 〈c〉 t

In this representation, all atoms are unique � that is, a term variable or a type variable is never bound
twice in di�erent places. This assumption can be exploited in the type-checker. Hence, this invariant
must be carefully preserved when generating new terms. By comparison with the exam and the course,
parameters of functions are explicitly annotated, so that typechecking is decidable. The return type of
recursive functions is also required, but it is optional for non recursive functions fun (x : T) : T = t.

coercions.{ml, mli} Internal representation for the coercions. This representation is used by the typeche-

2

cker and translator. The abstract syntax of coercions is :

π ::= . | /
c ::= #

| c; c
| c→ c
| distrib

| ∀X.c
| +∀
| −∀π T

| +∃π T
| −∃
| ∃X.c

| {~̀ : ~c}
| distrib .`

As for terms, all atoms are unique in this representation.

There are several changes in notation by comparison with the exam and new coercion forms for exis-
tentials and products :
� The identity coercion id is written #.
� The intro and elim T forms for the ∀-quanti�er are written +∀ and −∀π T . The + and − signs
replace the intro and elim keywords for brevity. We added quanti�ers in the notation to use a
similar notation for existentials. The π �ag in the forall elimination form is there to distinguish the
direct −∀. T and indirect −∀/ T forms and emphasize the di�erent meaning of T in these two forms.
This distinction is necessary for type inference and explained in Section ??.

� In coercion forms for existential types, the role of introduction and elimination are inverted by
comparison with universal types : there is one introduction form +∃π T with explicit type information
and one elimination form −∃ with no type information.

� For records, we introduced the congruence form {~̀ : ~c} where each coercion applies to the correspon-
ding record �eld and the distrib.` coercion that pushes a toplevel universal quanti�er inside �eld
`, while retaining the toplevel quanti�er for other �elds.

� Although not apparent in the syntax, we choose the distrib-right version of rule distrib that pushes
the universal quanti�er on the right-hand side of an arrow type provided the universal variable does
not appear free on the left-hand side.

See the appendix for the typing and translation rules for coercions.

internalize.{ml, mli} Checks that all identi�ers are bound, and replaces identi�ers with unique atoms, so
as to produce an internal representation of types and terms. This code comes after the parser.

print.{ml, mli} Pretty-printers for the types and terms of System F .

typerr.ml Some functions to report type errors during typechecking or elaboration. You can add more
functions there.

typematch.{ml, mli} Functions to deconstruct types of some expected shape.

translate.{ml, mli} A type-checker and translator for coercions. This �le is incomplete.

typecheck.{ml, mli} A type-checker for System F η. This �le is incomplete.

main.ml This driver interprets the command line and invokes the above modules as required.

Make�le, Make�le.auto, Make�le.shared, ocamldep.wrapper Build instructions. Issue the command
�make� in order to generate the executable.

joujou The executable �le for the program. Type �./joujou �lename� to process the program stored in
�lename. This typechecks and translates the expression and retypechecks the translated expression to

3

verify that both types are equal. By default, this does not print anything to stdout and only reports type
errors to stderr. Use the options �-pty� to print the inferred type or �-pterm� to print the translated
program.

In the test/ directory are small programs written in our functional language, which you can give as
arguments to joujou. The programs in the test/good subdirectory are well-typed and should pass type-
checking. The programs in the test/bad subdirectory contain type errors and should fail type-checking. Just
run �make test� to make sure that these �les are properly processed or rejected, as appropriate.

4 Tasks

We recommend completing task 1 before doing task 2. Only examples pre�xed with "co_" require task 2

to be implemented.

Task 1 Implement a type-checker for System F . The �le to modify is typecheck.ml. Follow Pottier's
second lecture for directions. To prepare for task 2, the typechecker will return both a type and a term of
that type, which may be a copy of the original term for the moment. The typechecker should fail if coercions
are used and Task 2 is not yet implemented.

Task 2 Extend the type-checker to support coercions and to return a translation of terms with coercions
into terms of System F. The source and target languages are identical, although translated programs should
not contain coercions any more. The �le to modify is translate.ml.

For extra credit If you wish to go further, you can extend the coercion language, the typechecker and
translator (for instance) one or several of the following features :

� an option to allow the coercion of a record with more �elds into a record with fewer �elds.
� an option to allow the de�nition of coercions by a well-typed term of System F whose type-erasure is,
after let-reduction, an η-expansion of the identity.

Advice The implementation of both tasks 1 and 2 could be split into 3 successive subtasks by

1. restricting to core System F (without existential types and records) ;

2. adding support for existential types ;

3. treating the full language with records.

We strongly recommend that you take checkpoints after completion of each subtasks so that you can later
easily roll back to a previous consistent state in case you fail implementing the next task. Using a versioning
tool such as cvs or svn is recommended.

5 Evaluation

Assignments will be evaluated by a combination of :
� Testing : your program will be run on the examples provided (in directory test/) and on additional
examples. Be sure to run �make test� !

� Reading your source code, for correctness and elegance.

6 What to turn in

When you are done, please e-mail Francois.Pottier@inria.fr and Didier.Remy@inria.fr and
Giuseppe.Castagna@pps.jussieu.fr a .tar.gz archive containing :

� All your source �les.

4

� Additional test �les written in the small programming language, if you wrote any.
� If you implemented �extra credit� features, a README �le (written in French or English) describing these
additional features, how you implemented them, and where we should look in the source code to see
how they are implemented.

7 Deadline

Please turn in your assignment on or before Sunday, 21 February 2010.

8 Typing and translation of coercions

The typechecking and translation of coercions can be de�ned simultaneously in the same judgment
c . T1 T2, ϕ, which speci�es that coercion c of type T1 → T2 translates to ϕ where ϕ is a function that
maps a term t of type T1 to an η-equivalent term of type T2

1. We use the mathematical notation τ 7→ t to
de�ne functions ϕ where the meta-variable τ ranges over terms t and reuse juxtaposition ϕ t for mathematical

1. For record coercions, we use a let-binding let x = τ in {~̀ = ~x.`} to avoid duplication of the record expression to be

coerced. So the resulting term is not per se an η-expansion of the coerced term. However, this is a restricted form of let-binding

that could be written as a record pattern matching let {~̀= ~x} = t in {~̀= ~x} and arguably seen as an η-expansion form for

records.

5

application. The translation rules are given below :

Refl

: T ⇒ T τ 7→ τ

Trans

c1 : T1 ⇒ T2 ϕ1 c2 : T2 ⇒ T3 ϕ2

(c1; c2) : T1 ⇒ T3 τ 7→ ϕ2 (ϕ1 τ)

Congr-Arrow

c1 : T1
′ ⇒ T1 ϕ1 c2 : T2 ⇒ T2

′ ϕ2

c1 → c2 : T1 → T2 ⇒ T1
′ → T2

′ τ 7→ fun x : T1
′ = ϕ2(τ (ϕ1 x))

Congr-Forall

c : T1 ⇒ T2 ϕ

∀X.c : ∀X.T1 ⇒ ∀X.T2 τ 7→ fun X → ϕ (τ X)

Congr-Exists

c : T1 ⇒ T2 ϕ

∃X.c : ∃X.T1 ⇒ ∃X.T2 τ 7→ unpackx,X = τ in packϕx : ∃X.T2

Intro-Forall

X # T

+∀ : T ⇒ ∀X.T τ 7→ fun X → τ

Elim-Exists

X # T

−∃ : ∃X.T ⇒ T τ 7→ unpackx,X = τ in x

Elim-Forall-Pos

−∀. T1 : ∀X.T ⇒ [X 7→ T1]T τ 7→ τ T1

Intro-Exists-Neg

+∃/ T1 : [X 7→ T1]T ⇒ ∃X.T τ 7→ pack τ : ∃X.T

Elim-Forall-Neg

−∀/ ∀X.T : ∀X.T ⇒ [X 7→ T1]T τ 7→ τ T1

Intro-Exists-Pos

+∃. ∃X.T : [X 7→ T1]T ⇒ ∃X.T τ 7→ pack τ : ∃X.T

Distrib-Right

X # T1

distrib : ∀X.(T1 → T2)⇒ T1 → (∀X.T2) τ 7→ fun (x : T1) = fun X → (τ X) x

Distrib-Label

distrib .`0 : ∀X.{`0 : T0; ~̀ : ~T} ⇒ ∀X.{`0 : ∀X.T0; ~̀ : ~T}
τ 7→ let x = τ in fun X → {`0 = (fun Y → (x Y).`0); ~̀= (x X).~̀}

Record

~c : ~T ⇒ ~T ′ ~ϕ

{~̀ : ~c} : {~̀ : ~T} ⇒ {~̀ : ~T ′} τ 7→ let x = τ in {~̀= ~ϕ (x.~̀)}

The rules are deterministic and de�ne an algorithm if c and both the domain and the codomain of c are
given and ϕ is returned. However, these asumptions would imply a lot of redundant type information in the
source program. Since a term has a unique type in System F η, the domain of a coercion is always known
from the term to which it is applied.

In some cases (such as #) the codomain of the coercion is also fully determined by the coercion and its
domain. In other cases, some type information is still needed to reconstruct the codomain of the coercion. For
example, the ∀ elimination form −∀. T must provide the type T to instantiate the domain of the coercion.
Moreover, to translate the arrow coercion c1 → c2 with domain T1 → T2 we must translate the coercion c1
with codomain T1 but with unknown domain : the arrow coercion inverts the �ow of information. This is
why the translation algorithm must be called in one of two modes with either the domain or the codomain
of the coercion given. When called with the codomain, the ∀ elimination form −∀/ T provides the domain

6

of the coercion (as can be read from the typing rules). The situation is similar, but with opposite cases, for
existential coercions.

The translation algorithm can be described as a deterministic judgment cπ T T ′, ϕ where the coercion
c, the �ag π, the type T that is the domain of the coercion when π is . and its codomain when π is / are
inputs and the type T ′ and ϕ are outputs. The type T ′ is the codomain of the coercion when π is . and its
domain when π is /.

Of course, the algorithm is tightly related to the typing rules above by the following soundness properties :
c . T T ′, ϕ implies c : T ⇒ T ′ ϕ and c / T T ′, ϕ implies c : T ′ ⇒ T ϕ. Conversely, c : T ⇒ T ′ ϕ

implies both
� if c . . T, T0 ϕ0 then T0 si T ′ and ϕ0 is ϕ, and
� if c / T /, T0 ϕ0 then T0 si T ′ and ϕ0 is ϕ.

However, this is only a partial statement of completeness as it does not specify when both algorithms are
de�ned. To state full completeness, we de�ne positive coercions and negative coercions where . and / appears
only at positive and negative occurrences, respectively. Notice that some coercions such as # are both positive
and negative, as they appear at anywhere, and others, such as +∀. T → +∀. T ′, are ill-de�ned. Then, if
c : T ⇒ T ′ ϕ, we have c . T T ′, ϕ whenever c is positive and c / T ′ T, ϕ whenever c is negative.

7

