
Generalities Implementation OML Qualified types Type classes Design space

Generalities

Implementation strategies

System Oml

Qualified types

Type classes

Design space

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 1 / 47

Modularity, Surcharge
MPRI course 2-4-2, Part 3, Lesson 2

Didier Rémy

INRIA-Rocquencourt

Janvier 27, 2009

http://mpri.master.univ-paris7.fr/
http://mpri.master.univ-paris7.fr/C-2-4-2.html

Generalities Implementation OML Qualified types Type classes Design space

Generalities

Implementation strategies

System Oml

Qualified types

Type classes

Design space

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 3 / 47

Generalities Implementation OML Qualified types Type classes Design space

Overloading Why?

Naming convenience
Avoid suffixing similar names by type information: printing functions;
numerical operations (e.g. plus int, plus float, . . .); numerical values?

Type dependent functions or ad hoc polymorphism
A function defined on τ [α] for all α may have an implementation
depending on the type of α. For instance, a marshaling function of type
∀α.α → string may execute different code for each base type α.

These definitions may be ad hoc (unrelated for each type), or polytypic,
i.e. depending solely on the type structure (is it a sum, a product, etc.)
and thus derived mechanically for all types from the base cases.

A typical example of a polytypic function is the generation of random
values for arbitrary types, e.g. as used in Quickcheck for Haskell.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 4 / 47

http://en.wikipedia.org/wiki/QuickCheck

Generalities Implementation OML Qualified types Type classes Design space

Overloading How?

Common to all forms of overloading
◮ At some program point (static context), an overloaded symbol u has

several visible definitions a1, . . . an.

◮ In a given runtime of the program, only one of them will be used.
Determining which one should be used is called overloading resolution.

Many variants of overloading
◮ How is overloading resolved? (see next slide)

◮ Is resolution done up to subtyping?

◮ Are overloading definitions primitive, automatic, or user-definable?

◮ What are the restrictions in the way definitions can be combined?
◮ Can the definitions overlap? (Then, how is overlapping resolved)
◮ Can overloading be on the return type?

◮ Can overloading definitions have a local scope?

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 5 / 47

Generalities Implementation OML Qualified types Type classes Design space

Overloading Resolution strategies

Static resolution (rather simple)
◮ If every overloaded symbol can be statically replaced by its

implementation at the appropriate type.

◮ This does not increase expressiveness, but may reduce verbosity.

Dynamic resolution (more involved)
◮ Pass types at runtime and dispatch on the runtime type (typecase).

◮ Pass the appropriate implementations at runtime as extra arguments,
eventually grouped in dictionaries.
(Alternatively, one may pass runtime information that designates the
appropriate implementation in a global structure.)

◮ Tag values with their types—or an approximation of their types—and
dispatch on the tags of values.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 6 / 47

Generalities Implementation OML Qualified types Type classes Design space

Overloading Static resolution

In SML
Definitions are primitive (numerical operators, record accesses).

Typechecking fails if overloading cannot be resolved at outermost
let-definitions. For example, let twice x = x + x is rejected in SML, at
toplevel as + could be the addition on either integers or floats.

In Java

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈1〉7 / 47

Generalities Implementation OML Qualified types Type classes Design space

Overloading Static resolution

In SML
Definitions are primitive (numerical operators, record accesses).

Typechecking fails if overloading cannot be resolved at outermost
let-definitions. For example, let twice x = x + x is rejected in SML, at
toplevel as + could be the addition on either integers or floats.

In Java
Overloading is not primitive but automatically generated by subtyping.
When a class extends another one and a method is redefined, the older
definition is still visible, hence the method is overloaded.

Overloading is resolved at compile time by choosing the most specific
definition. There is always a best choice—according to current knowledge.

An argument may have a runtime type that is a subtype of the best known
compile-time type, and perhaps a more specific definition could have been
used if overloading were resolved dynamically.
Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈2〉7 / 47

Generalities Implementation OML Qualified types Type classes Design space

Overloading Static resolution

Limits
Static overloading does not fit well with first-class functions and
polymorphism.

Indeed, functions such as λ(x) x + x are rejected and must therefore be
manually specialized at every type for which + is defined.

This argues in favor of some form of dynamic overloading that allows to
delay resolution of overloaded symbols at least until polymorphic functions
have been sufficiently specialized.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 8 / 47

Generalities Implementation OML Qualified types Type classes Design space

Overloading Dynamic resolution

Runtime type dispatch

◮ Use an explicitly typed calculus (i.e. Church style System F)

◮ Add a typecase function.

◮ Type matching may be expensive, unless type patterns are restricted.

◮ By default one pays even when overloading is not used.

◮ Monomorphization may be used to reduce type matching statically.

◮ Ensuring exhaustiveness of type matching is difficult.

ML& (Castagna)

◮ System F + instersection types + subtyping + type matching

◮ An expressive type system: it keeps track of exhaustiveness; type
matching functions as first-class and can be extended or overriden.

◮ Best match resolution strategy.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 9 / 47

Generalities Implementation OML Qualified types Type classes Design space

Overloading Dynamic resolution

Pass unresolved implementations as extra arguments
◮ Abstract over unresolved overloaded symbols and pass them later

when then can be resolved.
In short, let f = λ(x) x + x can be elaborated into
let f = λ(+) λ(x) x + x and its application to a float f 1.0 elaborated
into f (+.) 1.0.

◮ This can be done based on the typing derivation.

◮ After elaboration, types may be erased (Curry’s style System F)

◮ Monomorphisation or other simplifications may reduce the number of
abstractions and applications introduced by overloading resolution.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 10 / 47

Generalities Implementation OML Qualified types Type classes Design space

Generalities

Implementation strategies

System Oml

Qualified types

Type classes

Design space

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 11 / 47

Generalities Implementation OML Qualified types Type classes Design space

Dynamic overloading Running example

Untyped code

let rec plus = (+)
and plus = (lor)
and plus = λ(x , y) λ(x ′, y ′) (plus x x ′, plus y y ′) in

let twice = λ(x) plus x x in
twice (1, true)

It should indeed evaluate to (1 + 1, true lor true), i.e. (2, true),
whatever the implementation strategy.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈1〉12 / 47

Generalities Implementation OML Qualified types Type classes Design space

Church style System F with type matching

Syntax

a ::= a
∣

∣ λ(x) a
∣

∣ a (a)
∣

∣ Λ(α) a
∣

∣ a (τ) System F
| match τ with 〈π1 ⇒ a1 . . . | πn ⇒ an〉 Typecase

π ::= τ
∣

∣ ∃(α)π Type patterns

Reduction: as in System F, plus the redex:

τ = τi [τ̄
′

i /ᾱi]

match τ with 〈π1 ⇒ a1 . . . | ∃(ᾱi)τi ⇒ ai . . . | πn ⇒ an〉 ai [τ̄
′

i /ᾱi]

Typing rules: as in System F, plus...

Γ ⊢ τ Γ, ᾱi ⊢ τi Γ, ᾱi ⊢ ai : τ ′

Γ ⊢ match τ with 〈π1 ⇒ a1 . . . | ∃(ᾱi)τi ⇒ ai . . . | πn ⇒ an〉 ai : τ ′

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 13 / 47

Generalities Implementation OML Qualified types Type classes Design space

Church style System F with type matching

Soundness for System F with type matching.

◮ Subject-reduction holds

◮ Progress does not hold in the simplest version: the type system
cannot ensure exhaustiveness of type matching.

◮ Solutions:
◮ add a default case, with a construction, such as

match s with 〈π ⇒ a | a〉
◮ use a richer type system that ensures exhaustiveness.

What to do with overlapping definitions?
◮ Let the reduction be nondeterministic.

◮ Restrict typechecking to disallow overlapping definitions.

◮ Change the semantics to give priority to the first match, or to the
best match (the most precise matching pattern).

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 14 / 47

Generalities Implementation OML Qualified types Type classes Design space

Overloading with typecase Example

Exhaustiveness is not enforced

let rec plus =
Λ(α)

match α with 〈
| int ⇒ (+)
| bool ⇒ (lor)
| ∃(β , γ) β × γ ⇒

λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plus β x x ′, plus γ y y ′

〉 in
let twice = Λ(α) λ(x : α) plus α x x in
twice (int × bool) (1, true)

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈1〉15 / 47

Generalities Implementation OML Qualified types Type classes Design space

Overloading with typecase Example

The domain may be restricted by a type constraint

let rec plus =
Λ(α〈Plus α〉)

match α with 〈
| int ⇒ (+)
| bool ⇒ (lor)
| ∃(β〈Plus β〉, γ〈Plus γ〉) β × γ ⇒

λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plus β x x ′, plus γ y y ′

〉 in
let twice = Λ(α〈Plus α〉) λ(x : α) plus α x x in
twice (int × bool) (1, true)

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈2〉15 / 47

Generalities Implementation OML Qualified types Type classes Design space

Overloading with typecase Example

The type predicate Plus α is defined by induction

Plus int; Plus bool ;
Plus α ⇒ Plus β ⇒ Plus (α × β)
let rec plus =

Λ(α〈Plus α〉)
match α with 〈
| int ⇒ (+)
| bool ⇒ (lor)
| ∃(β〈Plus β〉, γ〈Plus γ〉) β × γ ⇒

λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plus β x x ′, plus γ y y ′

〉 in
let twice = Λ(α〈Plus α〉) λ(x : α) plus α x x in
twice (int × bool) (1, true)

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈3〉15 / 47

Generalities Implementation OML Qualified types Type classes Design space

Typecase Typing rules

Checking for satisfiability
Overloaded declarations are restricted forms of horn clauses. For instance,
the context Γ equal to

Plus int; Plus bool ; Plus α ⇒ Plus β ⇒ Plus (α × β)

can be read as deduction rules:

PlusInt

Plus int
PlusBool

Plus bool

PlusProd

Plus α Plus β

Plus (α × β)

We can build (infer) the following derivation:

PlusProd

PlusInt

Plus int
PlusBool

Plus bool

Plus (int × bool)

△
= PlusProd PlusInt PlusBool

which can be concisely represented as the proof term on the right.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 16 / 47

Generalities Implementation OML Qualified types Type classes Design space

Dictionary passing Running example

In fact, Plus (int × bool) proves that plus is defined for type int × bool .
Partially applying plus to int × bool , and reducing it, we get:

plus (int × bool)
λ(x , y : int × bool) λ(x ′, y ′ : int × bool) plus int x y , plus bool x ′ y ′

λ(x , y : int × bool) λ(x ′, y ′ : int × bool) (+) x y , (lor) x ′ y ′

Unfortunately, this reduction duplicates code. Intsead, we abstract each
definition of plus over the types it depends on types: If plus∃(β,γ)β×γ is

Λ(β) Λ(γ) λ(plusβ : β → β → β) λ(plusγ : γ → γ → γ)
λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plusβ x y , plusγ x ′ y ′

then the last branch of the type case is equal to
plus∃(β,γ)β×γ β γ (plus β) (plus γ) and is

plus (int × bool) plus∃(β,γ)β×γ int bool (plus int) (plusbool)

built by passing arguments to existing functions, without code duplication.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 17 / 47

Generalities Implementation OML Qualified types Type classes Design space

Dictionary passing Running example

let rec plus int= (+)
and plusbool= (lor)
and plus∃βγ.β×γ=

Λ(β) Λ(γ)
λ(plusβ : β → β → β) λ(plusγ : γ → γ → γ)

λ(x : β) λ(y : γ) plusβ x , plusγ y in

let twice =
Λ(α)

λ(plusα: α → α → α) λ(x : α) plusα x x in

let plus int×bool= plus∃(β,γ)β×γ int bool plus int plusbool in

twice plus int×bool (1, true)

◮ overloaded implementations and definitions are abstracted over unresolved
overloaded symbols;

◮ derived implementations are built on demand after type inference.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈1〉18 / 47

Generalities Implementation OML Qualified types Type classes Design space

Dictionary passing Running example

let plus int= (+) in
let plusbool= (lor) in Definitions are non-recursive
let plus∃βγ.β×γ=

Λ(β) Λ(γ)
λ(plusβ : β → β → β) λ(plusγ : γ → γ → γ)

λ(x : β) λ(y : γ) plusβ x , plusγ y in

let twice =
Λ(α)

λ(plusα: α → α → α) λ(x : α) plusα x x in

let plus int×bool= plus∃(β,γ)β×γ int bool plus int plusbool in

twice plus int×bool (1, true)

◮ overloaded implementations and definitions are abstracted over unresolved
overloaded symbols;

◮ derived implementations are built on demand after type inference.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈1〉18 / 47

Generalities Implementation OML Qualified types Type classes Design space

Dictionary passing Example

After type inference, before translation

def Plus α = plus : α → α → α in
let rec plus: int → int → int = (+)

and plus: bool → bool → bool = (lor)
and plus: ∀β〈Plus β〉 ∀γ〈Plus γ〉 (β × γ) → (β × γ) → (β × γ) =

Λ(β〈Plus β〉) Λ(γ〈Plus γ〉)
λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plus β x x ′, plus γ y y ′ in

let twice =
Λ(α〈Plus α〉)

λ(x : α) plus α x x in
twice (int × bool) (1, true)

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 19 / 47

Generalities Implementation OML Qualified types Type classes Design space

Dictionary passing Example

Alternatively, inlining the constraint (running code)

let rec plus: int → int → int = (+)
and plus: bool → bool → bool = (lor)
and plus: ∀β〈plus : β → β → β〉 ∀γ〈plus : γ → γ → γ〉

(β × γ) → (β × γ) → (β × γ) =
Λ(β〈plus : β → β → β〉) Λ(γ〈plus : γ → γ → γ〉)

λ(x , y : β × γ) λ(x ′, y ′ : β × γ) plus β x x ′, plus γ y y ′ in

let twice =
Λ(α〈plus : α → α → α〉)

λ(x : α) plus α x x in
twice plus(int×bool) (1, true)

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈1〉20 / 47

Generalities Implementation OML Qualified types Type classes Design space

Dictionary passing Example

Alternatively, inlining the constraint (source code)

let rec plus: int → int → int = (+)
and plus: bool → bool → bool = (lor)
and plus: ∀β〈plus : β → β → β〉 ∀γ〈plus : γ → γ → γ〉

(β × γ) → (β × γ) → (β × γ) =

λ(x , y) λ(x ′, y ′) plus x x ′, plus y y ′ in

let twice =

λ(x) plus x x in
twice (1, true)

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈1〉20 / 47

Generalities Implementation OML Qualified types Type classes Design space

Generalities

Implementation strategies

System Oml

Qualified types

Type classes

Design space

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 21 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml A restrictive form of overloading

Short description See Odersky et al. (1995)

◮ System Oml is a simple but monolithic system for overloading
◮ Its specification is concise.
◮ It is not a framework, i.e everything is hard-wired in the design.

◮ Non overlapping definitions, hence (quasi)-untyped semantics and
principal types.

◮ Single argument resolution.

◮ Dictionary passing semantics.

◮ Overloaded definitions need not have a common type scheme.
e.g. one may overload u : int → bool and u : string → int → int

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 22 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Syntax

z ::= x | u Symbols
v ::= z | λ(x) a Value forms
a ::= v | a a | let x = a in a Expressions
p ::= a | def u : σ = v in p Overloaded definitions

◮ We distinguish overloaded symbols u from other variables.

◮ Expressions are as usual, but a program p starts with a sequence of
toplevel overloaded definitions:

def u1 : s1 = v1 in . . . def un : sn = vn in a

which should be understood as if recursively defined:

let rec u1 : s1 = v1 and . . . un : sn = vn in a

The notation reflects more the way they will be compiled, by
abstracting over all unresolved overloaded symbols.

◮ Only values can be overloaded.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 23 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Type constraints

Types

τ ::= α | τ → τ | c(τ̄) types

ρα ::= ∅ | u : α → τ ; ρα α-constraints

σ ::= τ | ∀α〈ρα〉 σ type schemes

Comments
◮ Types are as in ML. However, each polymorphic variable of a type

scheme is restricted by a (possibly empty) constraint.

◮ Type constraints ρα are record-like types whose labels are distinct
overloaded symbols. Intuitively, a constraint for α specifies the types
of overloaded symbols that can be applied to a value of type α.

◮ When ρα is empty, we recover ML type schemes.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 24 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Overloaded definitions

Type schemes of overloaded definitions
They must be closed and of the form σc

∀α1〈ρα1〉 . . . ∀αn〈ραn〉 c(ᾱ′

1 . . . α′

2) → τ

where α′
1 . . . α′

n is a permutation of α1 . . . αn.

Important
◮ The choice of an overloaded definition is fully determined by the

topmost constructor of the first argument.

◮ This helps having principal types and a deterministic semantics.

◮ This also facilitates overloading resolution and coverage checking.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 25 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Typing rules

Typing contexts

Γ ::= z : σ | u : σ

The typing relation
Γ ⊢ a : σ

Contain ML typing rules
Var

z : σ ∈ Γ

Γ ⊢ z : σ

Let

Γ ⊢ a : σ Γ, x : σ ⊢ a′ : τ

Γ ⊢ let x = a in a′ : τ

Arrow-Intro

x /∈ Γ Γ, x : τ ⊢ a : τ ′

Γ ⊢ λ(x) a : τ → τ ′

Arrow-Elim

Γ ⊢ a1 : τ2 → τ2 Γ ⊢ a2 : τ2

Γ ⊢ a2 a1 : τ1

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 26 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Typing rules

Overloaded definitions
Def

Γ ⊢ u # σπ Γ ⊢ a : σπ Γ, u : σπ ⊢ p : σ

Γ ⊢ def u : σπ = a in p : σ

We write Γ ⊢ u # σπ to mean that for all u : σ′ ∈ Γ, σ′ and σπ have
different topmost type constructors.

This implies, in particular, that overloading definitions of Γ are never
overlapping.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 27 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Typing rules

Introduction and elimination of polymorphism
All-Intro

Γ, ρα ⊢ v : σ

Γ ⊢ ∀α〈ρα〉 σ

All-Elim

Γ ⊢ ∀α〈ρα〉 σ Γ ⊢ ρα[τ/α]

Γ ⊢ a : σ[τ/α]

As in ML, we restrict generalization to value forms.

Overloaded symbols
Overloaded symbols are introduced in Γ by rules Def or All-Intro.
They can be retreived by rule Var and used directly, or indirectly via rule
All-Elim.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 28 / 47

Generalities Implementation OML Qualified types Type classes Design space

Typing Example

An example of typing is given below together with the translation to ML.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 30 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Compilation to ML

Judgment Γ ⊢ p : σ ⊲ M
We compile a program p into an ML expression M (which is also an Oml

expression) based on the typing derivation.

The definition of the translation is by an instrumenting the typing rules.

Easy cases
Var

z : σ ∈ Γ

Γ ⊢ x : σ ⊲ x

Let

Γ ⊢ a : σ ⊲ M Γ, x : σ ⊢ a′ : τ ⊲ M′

Γ ⊢ let x = a in a′ : τ ⊲ let x = M in M′

Arrow-Intro

x /∈ Γ Γ, x : τ ⊢ a : τ ′ ⊲ M

Γ ⊢ λ(x) a : τ → τ ′ ⊲ λ(x) M

Arrow-Elim

Γ ⊢ a1 : τ2 → τ1 ⊲ M1

Γ ⊢ a2 : τ2 ⊲ M2

Γ ⊢ a1 a2 : τ1 ⊲ M1 M2

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 31 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Compilation to ML

Introducing and using overloaded definitions
Def

Γ ⊢ u # σπ

Γ ⊢ a : σπ ⊲ Mπ Γ, u : σπ ⊢ p : σ ⊲ M

Γ ⊢ def u : σπ = a in p : σ ⊲ let xu
σπ

= Mπ in M

Var-Over

u : σ ∈ Γ

Γ ⊢ u : σ ⊲ xu
σ

Introducing and using polymorphism
All-Intro

Γ, u1 : τ1, . . . un : τn ⊢ a : σ ⊲ M α /∈ Γ

Γ ⊢ ∀α〈u1 : τ1, . . . un : τn〉 σ ⊲ λ(xu
τ1

) . . . λ(xu
τn

) M

All-Elim

Γ ⊢ a : ∀α〈u1 : τ1, . . . un : τn〉 σ ⊲ M Γ ⊢ (u1 : τ1, . . . un : τn)[τ/α]

Γ ⊢ a : σ[τ/α] ⊲ M xu1

τ1[τ/α] . . . xun

τn[τ/α]

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 32 / 47

Generalities Implementation OML Qualified types Type classes Design space

Compilation of Oml Example

The previous example, twice
The typing derivation is as follows. We write τ1 for τ and τn+1 for
τ → τn; Γ for x : α, plus: α3; and Γ0 for some non conflicting context.

Γ0Γ ⊢ plus : α3 ⊲ xplus
α3 Γ0Γ ⊢ x : α ⊲ x

Γ0Γ ⊢ plus x x : α ⊲ xplus
α3 x x

Γ0, plus: α3 ⊢ λ(x) plus x x : α → α ⊲ λ(x) xplus
α3 x x

Γ0 ⊢ λ(x) plus x x : ∀α〈plus: α3〉 α → α ⊲ λ(xplus
α3) λ(x) xplus

α3 x x

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 33 / 47

Generalities Implementation OML Qualified types Type classes Design space

Compilation of Oml Example (Cont.)

Let Γ0 stand for

plus: int3, plus: bool3, plus: ∀β〈plus : β3〉 ∀γ〈plus: γ3〉 (β × γ)3

and Γ1 be Γ0, twice : ∀α〈plus: α3〉 α → α. We have:

All-Elim

Γ1 ⊢ plus: ∀β〈plus : β3〉 ∀γ〈plus: γ3〉 (β × γ)3 ⊲ xplus
σ

Γ1 ⊢ plus: int3 ⊲ xplus
int3 Γ1 ⊢ plus: bool3 ⊲ xplus

bool3

Γ1 ⊢ plus: (int × bool)3 ⊲ xplus
σ xplus

int3 xplus
bool3

Therefore,
All-Elim

Γ0 ⊢ twice : (int × bool)2 ⊲ twice (xplus
σ xplus

int3 xplus
bool3

)

Γ0 ⊢ twice (1, true) : (int × bool) ⊲ twice (xplus
σ xplus

int3 xplus
bool3

) (1, true)

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 34 / 47

Generalities Implementation OML Qualified types Type classes Design space

Properties

Type preservation
The translation is type preserving. This result is easy to establish.

Coherence
The translation is based on derivations and returns different programs for
different derivations. Does the semantics depend on the typing derivation?

Fortunately, this is not the case. Two translations of the same program
based on two different typing derivations are observationally equivalent.
We say that the semantics is coherent.

This result is difficult and tedious and has in fact only been proved for
variants of the language. So far, it is only a conjecture for Oml.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 35 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Type inference

Principal types
There are principal types in Oml, thanks to the restriction on the type
schemes of overloaded functions.

Monolithic type inference
Principal types can be inferred by solving unification constraints on the fly
as in Damas-Milner. The main difference is to treat applications of
overloaded functions by generating a fresh overloaded asumption (an
overoaded variable with a type constraint) in the typing environment.

The non-overlapping of typing assumptions on overloaded variables implies
that the overloaded assumptions may have to be transformed when a
variable is instantiated during unification: assumptions may have to be
merged triggering further unifications, or to be resolved and removed from
the typing environment, but perhaps introducing other asumptions.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 36 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Type inference by example

Asume Γ0 is neg: int2, neg: bool2, neg: ∀β〈neg : β2〉 (β list)2.
To solve the typing contraint Γ0 ⊢ (λ(x) neg x) 1 : τ , we infer

Γ0, neg: α → β, x : α ⊢ neg x : β

Γ0, neg: α → β ⊢ λ(x) neg x : α → β

◮ The most general judgment uses the asumption neg: α → β.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈1〉37 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Type inference by example

Asume Γ0 is neg: int2, neg: bool2, neg: ∀β〈neg : β2〉 (β list)2.
To solve the typing contraint Γ0 ⊢ (λ(x) neg x) 1 : τ , we infer

Γ0, neg: int → β, x : int ⊢ neg x : β

Γ0, neg: int → β ⊢ λ(x) neg x : int → β
(Informally)

◮ The most general judgment uses the asumption neg: int → β.

◮ We must unify int with int in order to type the application.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈2〉37 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Type inference by example

Asume Γ0 is neg: int2, neg: bool2, neg: ∀β〈neg : β2〉 (β list)2.
To solve the typing contraint Γ0 ⊢ (λ(x) neg x) 1 : τ , we infer

Γ0, neg: int → int, x : int ⊢ neg x : int

Γ0, neg: int → int ⊢ λ(x) neg x : int → int
(Informally)

◮ The most general judgment uses the asumption neg: int → int.

◮ We must unify int with int in order to type the application.

◮ There is a hidden well-formedness constraint: Since Γ0 contains a
asumption neg : int2, it must be merged with the other asumption
neg : int → int ′, which forces the unification of int ′ with int,

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈3〉37 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Type inference by example

Asume Γ0 is neg: int2, neg: bool2, neg: ∀β〈neg : β2〉 (β list)2.
To solve the typing contraint Γ0 ⊢ (λ(x) neg x) 1 : τ , we infer

Γ0, x : int ⊢ neg x : int

Γ0 ⊢ λ(x) neg x : int → int

◮ The most general judgment

◮ We must unify int with int in order to type the application.

◮ There is a hidden well-formedness constraint: Since Γ0 contains a
asumption neg : int2, it must be merged with the other asumption
neg : int → int ′, which forces the unification of int ′ with int,

◮ Removing repeated typing asumptions from the typing environment

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈4〉37 / 47

Generalities Implementation OML Qualified types Type classes Design space

System Oml Type inference by example

Asume Γ0 is neg: int2, neg: bool2, neg: ∀β〈neg : β2〉 (β list)2.
To solve the typing contraint Γ0 ⊢ (λ(x) neg x) 1 : τ , we infer

Γ0, x : int ⊢ neg x : int

Γ0 ⊢ λ(x) neg x : int → int Γ0 ⊢ 1 : int

Γ0 ⊢ (λ(x) neg x) 1 : int

◮ The most general judgment

◮ We must unify int with int in order to type the application.

◮ There is a hidden well-formedness constraint: Since Γ0 contains a
asumption neg : int2, it must be merged with the other asumption
neg : int → int ′, which forces the unification of int ′ with int,

◮ Removing repeated typing asumptions from the typing environment

◮ Finally...

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 〈5〉37 / 47

Generalities Implementation OML Qualified types Type classes Design space

Generalities

Implementation strategies

System Oml

Qualified types

Type classes

Design space

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 38 / 47

Generalities Implementation OML Qualified types Type classes Design space

Qualified types

A general framework See Jones (1992)

Qualified types are a general framework for inferring types of partial
functions. Overloading is just a particular case of qualified types.

Idea: introduce predicates that restrict the set of types a variable may

range over. For instance, Plus α means that α can only be instantiated at
a type τ such that there exists a definition for plus of type τ → τ → τ .

Parameterize over the constraint domain
◮ Typing rules use a separate judgement to state when constraints are

satisfied, which depends on the constraint domain.

◮ This separates the resolution of constraints from their generation.

◮ It also internalizes simplification and optimization of constraints.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 39 / 47

Generalities Implementation OML Qualified types Type classes Design space

Generalities

Implementation strategies

System Oml

Qualified types

Type classes

Design space

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 40 / 47

Generalities Implementation OML Qualified types Type classes Design space

Types classes

What are they?
A mechanism for building overloaded definitions is a more structured way.

◮ Overloaded definitions are grouped into type classes.

◮ A type class defines a set of identifiers that belong to that class.

◮ An instance of a type class provides, for a specific type, definitions for
all elements of the class.

◮ A type class may have default definitions, which are not overloaded
definitions, but defaults for overloaded definitions when taking
instances of that class.

Type classes are more convenient to use than plain unstructured
overloading and keep types more concise, both for defining new
implementations and writing asumptions.

Type classes can be compiled away into qualified types.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 41 / 47

Generalities Implementation OML Qualified types Type classes Design space

Module-based overloading

Modules can be used instead type classes to group overloaded definitions.

◮ A type component distinguishes the type at which overloaded
instances are provided.

◮ Basic instances are basic modules.

◮ Derivable instances are defined as functors.

◮ Modules can be declared as overloading their definitions.

◮ The basic overloaded mechanism can then be used to resolved
overloaded names.

◮ Functor application is implicitly used to generate derived instances.

The advantage of module-based overloading over type classes is that
modules already organize name scoping and type abstraction.

However, the underlying overloading engine is essentially the same.
See Dreyer et al. (2007)

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 42 / 47

Generalities Implementation OML Qualified types Type classes Design space

Generalities

Implementation strategies

System Oml

Qualified types

Type classes

Design space

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 43 / 47

Generalities Implementation OML Qualified types Type classes Design space

Problems and challenges

Simplification and optimizations
Because generalization and instantiation induces additional abstractions
and applications, it is important to use them as little as necessary, while
retaining principal types. This constrats with ML where it does not matter.
(Coherence implies that the semantics does not depend on the derivation,
but the efficiency does, indeed.)

Efficiency of implementation techniques
The pros and cons of the different implementation techniques are
well-understood, but they is no available detailed comparison of their
respective performance, with different optimization techniques.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 44 / 47

Generalities Implementation OML Qualified types Type classes Design space

Remaining problems and challenges

Overlapping instances
The semantics depend on types. This does not work well with type
inference. Type inference (checking coverage) may also become expensive
or even undecidable.

Overloaded on return types
The semantics depends on types and type inference.

Overloading with local scope
This introduced a potential conflict in the resolution: An overloaded
symbol with a local implementation can either be resolved immediately or
left generic to be resolved later, in the context of use, perhaps with
another implementation. This choice cannot be left implicit.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 45 / 47

Generalities Implementation OML Qualified types Type classes Design space

Remaining problems and challenges

Design space
Because some restrictions must be imposed on the shape and overlapping
of type definitions, there are many variations in the design space.

See Jones et al. (1997)

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 46 / 47

Generalities Implementation OML Qualified types Type classes Design space

Ideas to bring back home

Overloading is quite useful
◮ Static overloading may already significantly alleviate the notations

◮ However, it is too strong a restriction, which may often be frustating

◮ Dynamic overloading enables polytypic programming

Overloading is well-understood
◮ Long, positive experience with Haskell.

◮ Perhaps, more restrictive forms of overloading would be acceptable.

It always require some compromises
◮ When definitions are overlapping, the semantics depends on

typechecking. With powerful type inference, the semantics may not
always be obvious to the programmer.

◮ There is still place for other, perhaps better compromises.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 47 / 47

Bibliography References

Bibliography I

⊲ Lennart Augustsson. Implementing Haskell overloading. In FPCA ’93:
Proceedings of the conference on Functional programming languages and
computer architecture, pages 65–73, New York, NY, USA, 1993. ACM. ISBN
0-89791-595-X.

Giuseppe Castagna. Object-Oriented Programming: A Unified Foundation.
Progress in Theoretical Computer Science Series. Birkäuser, Boston, 1997.

⊲ Derek Dreyer, Robert Harper, Manuel M. T. Chakravarty, and Gabriele Keller.
Modular type classes. In POPL ’07: Proceedings of the 34th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
63–70, New York, NY, USA, 2007. ACM. ISBN 1-59593-575-4.

Jun Furuse. Extensional polymorphism by flow graph dispatching. In Ohori
(2003), pages 376–393. ISBN 3-540-20536-5.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 49 / 47

http://doi.acm.org/10.1145/165180.165191
http://doi.acm.org/10.1145/1190216.1190229

Bibliography References

Bibliography II

⊲ Mark P. Jones. Simplifying and improving qualified types. In FPCA ’95:
Proceedings of the seventh international conference on Functional
programming languages and computer architecture, pages 160–169, New York,
NY, USA, 1995. ACM. ISBN 0-89791-719-7.

Mark P. Jones. Typing Haskell in Haskell. In In Haskell Workshop, 1999.

Mark P. Jones. A theory of qualified types. In In Fourth European Symposium on
Programming, pages 287–306. Springer-Verlag, 1992.

⊲ Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration
of the design space. In Haskell workshop, 1997.

⊲ Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael Sperber.
Functional logic overloading. pages 233–244, 2002. doi:
http://doi.acm.org/10.1145/565816.503294.

⊲ Martin Odersky, Philip Wadler, and Martin Wehr. A second look at overloading.
In FPCA ’95: Proceedings of the seventh international conference on
Functional programming languages and computer architecture, pages 135–146,
New York, NY, USA, 1995. ACM. ISBN 0-89791-719-7.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 50 / 47

http://doi.acm.org/10.1145/224164.224198
http://research.microsoft.com/en-us/um/people/simonpj/papers/type-class-design-space/multi.ps.gz
http://www.informatik.uni-freiburg.de/~neubauer/papers/popl02.ps.gz
http://doi.acm.org/10.1145/224164.224195

Bibliography References

Bibliography III

Atsushi Ohori, editor. Programming Languages and Systems, First Asian
Symposium, APLAS 2003, Beijing, China, November 27-29, 2003,
Proceedings, volume 2895 of Lecture Notes in Computer Science, 2003.
Springer. ISBN 3-540-20536-5.

Geoffrey S. Smith. Principal type schemes for functional programs with
overloading and subtyping. In Science of Computer Programming, 1994.

⊲ Peter J. Stuckey and Martin Sulzmann. A theory of overloading. In ICFP ’02:
Proceedings of the seventh ACM SIGPLAN international conference on
Functional programming, pages 167–178, New York, NY, USA, 2002. ACM.
ISBN 1-58113-487-8.

Didier Rémy (INRIA-Rocquencourt) Modularity, Surcharge MPRI 2007-2008, 2-4-2 51 / 47

http://doi.acm.org/10.1145/581478.581495

	Generalities
	Implementation strategies
	System Oml
	Qualified types
	Type classes
	Design space
	Appendix
	Bibliography
	References

