
Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Introduction

Simple Modules

Advanced aspects of modules

Recursive and mixin modules

Open Existential Types

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 1 / 146

Modularity, Module Systems
MPRI course 2-4-2, Part 3, Lesson 1-3

Didier Rémy

INRIA-Rocquencourt

January 2010

http://mpri.master.univ-paris7.fr/
http://mpri.master.univ-paris7.fr/C-2-4-2.html

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Note

This course is largely based on the description and the implementation
of module the OCaml module system, and on the formalisation of ML
modules in the litterature, especially in the following papers:

2 , 3 Leroy (1994).

4 Dreyer and Rossberg (2008); Hirschowitz and Leroy (2005).

5 Montagu and Rémy (2009).
(see also related work by Dreyer (2007))

Other pointers will also be provided along the course when necessary.

The formal treatment varies between the different parts. Parts 2 , 3 ,
4 contain formal definitions, but no formal result. For part 5 ,
complete formal definitions and all results can be found in Montagu and
Rémy (2009).

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 3 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Modular programming

What is it about?

◮ Split large monolithic programs into an assembling of smaller
pieces, called components

Why?

◮ Understand components independently of one another
(enforce their invariants, verify or prove them)

◮ Hide low-level details and implementations of components

◮ Maintain programs component by component

◮ Facilitate reusability of components

◮ Compile components separately

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 4 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Modular programming

Modularity is not specific to computer science

◮ Compare with mechanics: Large systems in mechanics (airplanes,
power plants, etc.) are also large and complex, and usually
decomposed into small units for very similar reasons.

However, modular programming is peculiar in two ways

◮ Programs are fragile because their behavior is not continuous: a
bogus program may crashe all at once without any prior notice.

◮ Programs can be dupplicated at (almost) no costs.
This favors the generation, specialization, adaptation of components
even further.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 5 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Modular programming

How?

◮ Poor man’s modular programming.

◮ No specific support, but a lot of discipline, which is not enforced by
the language.

◮ Limited expressiveness, may require acrobatics. (e.g. use base
language records to group related definitions, emulate objects, etc.),
especially if the language does not have good support for records,
subtyping, type abstraction, etc.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉6 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Modular programming

How?

◮ Poor man’s modular programming.
◮ Object-oriented paradigm.

◮ Data-centric approach: data (objects) with similar structure and
behavior are created from a class that groups all functions that
operate on similar data.

◮ Abstraction by hiding the representation of objects and exposing
only some functions to operate on them.

◮ Emphasis is put on reusability via inheritance, but it often lacks a
good abstraction mechanism.

◮ Module systems
◮ Group base-language definitions into modules
◮ Provide a small calculus to combine modules together.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉6 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Hiding mecanism (parenthesis)

By lexical scoping
Keep some definitions local (private) and only export public definitions.

let monotonic int ref() =
let r = ref 0 in

let setter n = if n > !r then r := n in

let getter () = !r in

setter, getter

This is typically the object oriented style.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉7 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Hiding mecanism (parenthesis)

By lexical scoping
Keep some definitions local (private) and only export public definitions.

By type abstraction
Make types of critical parts of values abstract to prevent forgery.

module Unsafe mref = struct

type α mref = α ref
let mref = ref
let set r n = if !r > n then r := n
let get r = !r

end

module Mref : sig
type α mref
val mref : α → α mref
val set : α mref → α → unit
val get : α mref → α
end = Unsafe mref

This is more typical of modules systems.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉7 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Hiding mecanism (parenthesis)

By lexical scoping
Keep some definitions local (private) and only export public definitions.

By type abstraction
Make types of critical parts of values abstract to prevent forgery.
This is more typical of modules systems.

Comparison

◮ Hiding by abstraction is more flexible: it allows to return values of
which some parts are private.

◮ Both forms can be combined, which is typical of module systems.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈3〉7 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Modules The different eras

◮ Modular 3, CamlLight (later), Java packages (much later)
Name space control No type generativity

◮ ML modules at their early stage (effectful stamp semantics)
SML, functors, higher-order functors Introduction of type generativity

◮ Syntactic approach to type generativity
SML (in theory), OCaml Type checking, no subject reduction

◮ Syntactic type soundness with heavy mathematics:
A sophisticated core language (with dependent types and singleton kinds)
+ Elaboration of the surface language into the core language.

Subject reduction only for the core language

◮ Syntactic type soundness with lighter mathematics
A simpler, more expressive core language with a reduction semantics +

Elaboration Subject reduction only for the core language

◮ Expressive core language, first-class modules, mixins, no elaboration
Goal, ongoing research

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 8 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Modules The key ingredients

Common features for assembling components

◮ Record-like structure of base-language values

◮ Modules may be hierarchical

◮ Modules may take other modules as arguments or return them as
results (functors)

Already present in the base-language.

The essential features, specific to modules
◮ Abstract types and type generativity

◮ Type definitions and their propagation

Also the source of most difficulties. . . as it introduces

◮ type fields in record-like structures

◮ sharing of abstract types

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 9 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Modules Abstract types

Why?
◮ Hide the differences between related components, showing them

with a compatible interface and making them interchangeable.

◮ Allow for better access control to selected parts of data, which
helps preserve finer invariants.

◮ Hide details of the implementation, which increases readability.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉10 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Modules Abstract types

Why?
◮ Hide the differences between related components, showing them

with a compatible interface and making them interchangeable.

◮ Allow for better access control to selected parts of data, which
helps preserve finer invariants.

◮ Hide details of the implementation, which increases readability.

Why not?
◮ Perhaps surprisingly, abstract types in modules systems are not

primarily used for mixing data with different representation but
accessible via a common interface, which is not permitted by
second-class module systems.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉10 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Modules Abstract types

Why?
◮ Hide the differences between related components, showing them

with a compatible interface and making them interchangeable.

◮ Allow for better access control to selected parts of data, which
helps preserve finer invariants.

◮ Hide details of the implementation, which increases readability.

How?
◮ Several solutions, but no definite answer yet

◮ Type abstraction is one of the main difficulties of module systems

◮ Existential types model type abstraction but not in a modular way

◮ An ad hoc solution, based on paths, traces type identities

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈3〉10 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Abstract types Why not existential types?

Existential types

M ::= . . . | pack τ,M as ∃α. τ′ | unpack M as α, x in M′ Expressions
τ ::= . . . | ∃α. τ Types

Typing rules

Exists

Γ ⊢ M : τ′[τ/α]

Γ ⊢ pack τ,M as ∃α. τ′ : ∃α. τ′

Exists

Γ ⊢ M : ∃α. τ Γ, x : τ ⊢ M′ : τ′ α /∈ ftv(Γ, τ′)

Γ ⊢ unpack M as α, x in M′ : τ′

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 11 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Abstract types Why not existential types?

unpack M as α, x in M′

◮ Models type abstraction:
Occurrences of x within M are seen abstractly with type α,
of which nothing can be assumed.

◮ Lacks modular structure:
Type variable α cannot occur free in the type τ′ of M′.

Problem
◮ Existential types only model abstract types in monolithic programs.

◮ Their uses cannot be spread in different program components—a
key pattern of modular programming.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 12 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Abstract types Path-based approach

A1A2

B

C

D

t1t2

t1

t1

Modules (represented by boxes) are assembled in complex
ways. Typically, types are defined in one module and used
in other ones. Imported types or modules may also be reex-
ported (e.g. t1 in B) to be used in other modules (e.g. in
C). (These dependencies are represented by arrows, labeled
with type identities.)

The whole program is well-typed if it can be checked that,
e.g. the type t1 defined in A seen from B and seen from C
are actually the same type, i.e. that they originate from the
same module A1 and not from a different module A2 that
just looks like A1.

Modules are bound to variables (e.g. XA binds A). Their
imports and exports are named with labels (e.g. t, M). Type
definition t1 coming from A is seen in module B as the path
XA.t where t is the named under which t1 is exported from
A. B may reexport module A under the name M. Then t1
may be seen in C under the path B.M.t

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉13 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Abstract types Path-based approach

A1A2

B

C

D

t1t2

t1

t1

Paths are used in a critical way
◮ to identify abstract types by where they have

been defined.

Paths are also used (in a not so critical way)

◮ to access other definitions
(expressions, submodules).

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉13 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Abstract types Path-based approach

Dépendencies for the small programming project

Atom

Identifier

Coercions

Types

Error

Syntax

Export

Import

Internalize

Terms

LexerUtil

Main

Typecheck

Print

Translate

Typematch

Typerr

Pprint

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈3〉13 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Introduction

Simple Modules
Syntax
Typing
Subtyping
Strengthening
Type inference

Advanced aspects of modules

Recursive and mixin modules

Open Existential Types

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 14 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Syntax Example (1) in OCaml syntax

module type INT = sig

type t
val zero : t
val succ : t → t

end

module Int1 : INT = struct

type t = int
let zero = 0
let succ = λ(x) x+1

end

module Int2 : INT = Int1;

let rejected = Int1 . succ Int2 . zero

The application is ill-typed because
Int1 . succ and Int2 . zero

have types
Int1 . t→Int1 . t and Int2 . t,

which are incompatible, because of
the signature constrained

Int1 : INT and Int2 : INT.

This is type generativity.

Abstract types preserve accidental merging
of two identical concrete types that are
semantically different.

For instance Int1 and Int2 represents two
different currencies.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 15 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Syntax Simplified

◮ Structures and signatures use record
notation (ϕ){. . .}.

◮ Variable ϕ is used to refer to previous
definitions of the same structure (or
signature).

◮ Field names cannot be renamed.

◮ For brevity, we omit qualifiers (type,
val, module) of field names.

◮ Syntactic sugar may be used.

(ϕ){
INT = (ψ){

t : ∗;
zero : ψ.t;
succ : ψ.t → ψ.t

}
Int1 = (ψ){

t = int;
zero = 0;
succ = λ(x) x+1

} : ϕ.INT;
Int2 = ϕ.Int1 : ϕ.INT;
rejected = ϕ.Int1 . succ ϕ.Int2 . zero

}

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 16 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Syntax Sugared

We use syntactic sugar to recover lighter syntax, while retaining a
clear distinction between fields (which cannot be renamed) and variables:

{ INT = { t : ∗; zero : t; succ : t → t };
Int1 : INT = { t = int; zero = 0; succ = λ(x) x+1 };
Int2 : INT = Int1;
rejected = Int1 . succ Int2 . zero }

The meaning is by desugaring
◮ {d̄} stands for (ϕ){d̄} when ϕ does not appear in d̄.

◮ A label ℓ stands for ϕ.ℓ where ϕ is the variable binding the
enclosing structure or signature.

◮ For example, {ℓ1 = 0; ℓ2 = ℓ1+1} means (ϕ){ℓ1 = 0; ℓ2 = ϕ.ℓ1+1}.

◮ Additional syntactic sugar, such as ℓ : S = M for ℓ = (M : S) may
be used for convenience.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 17 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Syntax Paths

Identifiers
ϕ ::= ϕ1 | ϕ2 | . . . Variables
ℓ ::= ℓ1 | ℓ2 | . . . Labels
π ::= ϕ | π.ℓ Paths

Remarks
◮ For brevity, we use a single collection of variables and a single

collection of labels for naming expressions, types, and modules.

◮ Bound variables can be freely renamed, but labels cannot.

◮ Paths are used to designate components of a structure bound to
a (module) variable that is projected along a sequence of labels.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 18 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Syntax Base language

Types
ρ ::= π | ρ→ ρ | ρ(ρ) | int | . . . Simple types
τ ::= π | λ(ᾱ) ρ Type functions†

σ ::= ∀ᾱ.ρ Type schemes†

Expressions
v ::= π | λ(ϕ) a | 0 | 1 | . . . Value forms
a ::= v | a(a) Expressions

Kinds of types
κ ::= ∗ | ∗ → κ

† We write ρ for λ(∅) ρ or ∀∅.ρ when ā is empty.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 19 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type functions

We allow type functions λ(ᾱ) τ of kind ∗̄ → ∗ (i.e. ∗ → ∗ . . . → ∗), as in
Fω. This is to model type definitions such as in

struct type α t = α list end : sig type α t = α list end

that defines a type module with a type component t of kind ∗ → ∗ In
our syntax, we write (ϕ){t = λ(α) list(α)} : (ϕ){t = λ(α) list(α)} (for
both the structure and its signature).

However, type functions only take types of kind ∗ as arguments and
can only appear in signature definitions.

At first reading, one may ignore type functions by assuming that all
type definitions are of kind ∗, which still retains most technicalities.

As an alternative, we could allow type functions anywhere, as in Fω,
and treat types up β-conversion in any context.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 20 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Syntax Module language

Definitions Specifications

d ::=
| ℓ : κ = τ
| ℓ = a
| ℓ = M

s ::= ℓ : κ Abstract type
| ℓ : κ = τ Type definition
| ℓ : σ Expression
| ℓ : S Module

Modules Signatures

M ::= π
| (ϕ){d; . . . d}
| M (M)
| λ(ϕ : S) M

S ::= π
| (ϕ){s; . . . s} Submodules

Applications
| (ϕ : S)→ S Functors

We assume that no label is repeated in submodules and their signatures.

For conciseness, we may write ℓ = τ instead of ℓ : κ = τ leaving κ
implicit from context.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 21 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Syntax Naming convention

Although we formally have a single set of variables and of a single set
of labels, in examples, we often (but not always) distinguish the
category of objects that they bind or name by using different letters
for variables and labels as described below (or use extended names
following the conventions of OCaml)

Category expression variable label

type τ α, β s, t, u lowercase

signature S − S,T,U UPPERCASE

expression a x, y m, n, v, f, lowercase

module M X, Y M,N,V,F, Capitalized

any ϕ,ψ ℓ

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 22 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Typechecking Contexts

Typing contexts Γ ::= ∅ | Γ, π : κ | Γ, π : κ = τ | Γ, π : σ | Γ, π : S

◮ We assume that Γ never binds the same path twice.

◮ If path π starts with variable ϕ and π ∈ dom Γ, then we write ϕ ∈ dom Γ.

◮ We allow projection on paths when reading Γ:

Hyp
π : b ∈ Γ

Γ ⊢ π : b
Proj

Γ ⊢ π : (ϕ){s̄1; ℓ : b; s̄2}

Γ ⊢ π.ℓ : b[π/ϕ]
where b stands
for κ, τ′, or SRemarks

◮ Signature variable ϕ in b has no identity, but path π originating from a
value variable has one.

◮ Substitution b[π/ϕ] forces references to previous components to go via
path π so as to preserve sharing of identities.

◮ Elininating the free references to ϕ inside b by unfolding ϕ as
(ϕ){s̄1; ℓ : b; s̄2} would loose sharing of abstract types—and could be
ill-formed since submodule signatures cannot be projected.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 23 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Typechecking Example

Let M be (ϕ){t = int; u = ϕ.t;m = 1}. A possible signature S for
for M is (ϕ){t = int; u = ϕ.t;m : ϕ.u}.

Assume that X : S ∈ Γ. We then have Γ ⊢ X : S.

By projection we also have Γ ⊢ X.m : X.u.

Notice that the signature of X.m still refers to X, but not to ϕ.
That is, occurrences of X have not been recursively eliminated.

In particular, we do not have Γ ⊢ X.m : int by projection alone.

However, this judgment holds by equivalence.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 24 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Typechecking Type equivalence

Type equivalence ≈ is generated from type definitions
that are directly or indirectly bound in Γ.

π : κ = τ ∈ Γ

Γ ⊢ π ≈ τ : κ

Γ ⊢ π : (ϕ){d̄1 ; ℓ : κ = τ; d̄2}

Γ ⊢ π.ℓ ≈ τ[π/ϕ] : κ

Γ ⊢ π ≈ λ(ā) ρ′ : ∗̄ → ∗

Γ ⊢ π(ρ̄) ≈ ρ′[ρ̄/ā]

Type equivalence is congruent for all type and module type constructors
(Equivalence rules (Ref, Sym, Trans) and congruence rules are omitted)

Type equivalence of type definitions is also extensional:

Γ ⊢ ρ ≈ ρ′ ᾱ disjoint ᾱ /∈ Γ

Γ ⊢ λ(ᾱ) ρ ≈ λ(ᾱ) ρ′ : ∗̄ → ∗

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 25 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Typechecking Type equivalence

Type equivalence is used with the following conversion rules

Γ ⊢ a : σ Γ ⊢ σ ≈ σ′

Γ ⊢ a : σ′
Γ ⊢ M : S Γ ⊢ S ≈ S′

Γ ⊢ M : S′

Example (continued)
We had Γ ⊢ X.m : X.u. By type equivalence rules, we have Γ ⊢ X.u ≈ X.t
and Γ ⊢ X.t ≈ int, thus Γ ⊢ X.u ≈ int. Finally, Γ ⊢ X.m : int follows by the
conversion rule.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 26 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Typechecking Modules

Structures
Γ ⊢ ϕ.d̄ : ϕ.s̄ ϕ /∈ dom Γ

Γ ⊢ (ϕ){d̄} : (ϕ){s̄}

where ϕ. lifts a sequence mapping ℓi to qi to one mapping ϕ.ℓi to qi.
We still write s and d for lifted declarations and specifications.

Sequences of declarations are typed by folding typing of individual
declarations, making previous declarations visible to the current one.

Γ ⊢ ∅ : ∅

Γ ⊢ d : s Γ, s ⊢ d̄ : s̄

Γ ⊢ (d; d̄) : (s; s̄)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 27 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Typechecking Declarations

Individual declarations

Γ ⊢ (ϕ.ℓ : κ) : (ϕ.ℓ : κ)
Γ ⊢ τ : κ

Γ ⊢ (ϕ.ℓ : κ = τ) : (ϕ.ℓ : κ = τ)

Γ ⊢ a : σ

Γ ⊢ (ϕ.ℓ = a) : (ϕ.ℓ : σ)

Γ ⊢ M : S

Γ ⊢ (ϕ.ℓ = M) : (ϕ.ℓ : S)

Typing rules for the base-language are omitted:

◮ Well-formedness of types Γ ⊢ ρ is straightforward; we write
Γ ⊢ λ(ᾱ) ρ : ∗̄ → ∗ if Γ ⊢ ρ and ᾱ is a sequence of distinct type variables
of the same length as ∗̄.

◮ Typing of expressions, Γ ⊢ a : σ is as in ML (see previous lessons).

In fact, the module language can be parametrized by typing rules for
the base language. See Leroy (2000)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 28 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Typechecking Modules

Functors
Γ ⊢ S1 ϕ /∈ dom Γ Γ, ϕ : S1 ⊢ M : S2

Γ ⊢ λ(ϕ : S1)M : (ϕ : S1)→ S2

Applications

Γ ⊢ M1 : (ϕ : S2)→ S1 Γ ⊢ M2 : S2

Γ ⊢ M1(M2) : S1[M2/ϕ]

Typing rule for module application is the standard rule for elimination of
dependent types, but restricted to path-dependent types. Thus:

S1[M2/ϕ] is ill-defined and M1 (M2) is ill-typed if M2 is not a path
and ϕ occurs free in S1.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 29 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Typechecking Signatures

Signatures

π ∈ dom Γ

Γ ⊢ π

Γ ⊢ S1 Γ, ϕ : S1 ⊢ S2

Γ ⊢ (ϕ : S1)→ S2

Γ ⊢ ϕ.(s̄)

Γ ⊢ (ϕ){s̄}

Declarations (we fold well-formedness of individual)

Γ ⊢ ∅
Γ ⊢ s Γ, s ⊢ s̄

Γ ⊢ s; s̄

Γ ⊢ (ϕ.ℓ : κ)
Γ ⊢ τ : κ

Γ ⊢ (ϕ.ℓ : κ = τ)

Γ ⊢ σ

Γ ⊢ (ϕ.ℓ : σ)

Γ ⊢ S

Γ ⊢ (ϕ.ℓ : S)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 30 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Subtyping What is missing?

(ϕ){
t = int
zero = 0;
one = 1;
succ = λ(x) x + ϕ.one;

}

has type?

(ϕ){
t : ∗;
zero : int;

succ : int→int
}

So far, we do not have subtyping, hence module components cannot be
hidden and cannot be given abstract types.

The solution is to permit hiding by subtyping:

◮ a structure with more components can always be seen as if it had
fewer components.

◮ a concrete type definition can be seen as an abstract type.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 31 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Subtyping At the leaves

Abstract types. (See following exercise)

Γ ⊢ (ϕ.ℓ : κ) <: (ϕ.ℓ : κ)
Γ ⊢ ϕ.ℓ ≈ τ

Γ ⊢ (ϕ.ℓ : κ) <: (ϕ.ℓ : κ = τ)

Type definitions. Subtyping contains the equivalence of type definitions
and allows to turn concrete type definitions into abstract ones.

Γ ⊢ τ1 ≈ τ2 : κ

Γ ⊢ (ϕ.ℓ : κ = τ1) <: (ϕ.ℓ : κ = τ2)
Γ ⊢ (ϕ.ℓ : κ = τ) <: (ϕ.ℓ : κ)

Value declarations.

Subtyping contains the equivalence and instantiation of type schemes:

Γ ⊢ σ1 ≈ σ2

Γ ⊢ σ1 <: σ2

Γ ⊢ σ <: ∀ᾱ.τ0 β̄ 6∈ fv(∀ᾱ.τ0)

Γ ⊢ σ <: ∀β̄.τ0[τ̄/ᾱ]

Γ ⊢ σ1 <: σ2

Γ ⊢ (ϕ.ℓ : σ1) <: (ϕ.ℓ : σ2)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 32 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Subtyping For structures

Subtyping allows to omit and reorder components

Γ ⊢ (ϕ){s̄1} Γ ⊢ (ϕ){s̄2}

∀s2 ∈ s̄2,∃s1 ∈ s̄1, Γ, ϕ.s1 ⊢ ϕ.s1 <: ϕ.s2

Γ ⊢ (ϕ){s̄1} <: (ϕ){s̄2}

Key ideas
◮ each component of the result signature must be also be defined in

the original signature, but it may be a subtype of the original.

◮ type definitions of the original signature may be used to check
subtyping of retained components (even if they are not retained).

◮ components that are referred from retained components must also
be retained (so that the resulting signature is well-formed).

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 33 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Subtyping Exercise

Exercise

Show that (ϕ){t : ∗; u = t} <: (ϕ){u : ∗; t = u} Answer

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 34 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Subtyping Submodules and functors

Propagation
Subtyping of signatures propagates contravariantly on the left of
functors and covariantly everywhere else:

Γ ⊢ S1 <: S2

Γ ⊢ (ϕ.ℓ : S1) <: (ϕ.ℓ : S2)

Γ ⊢ S′1 <: S1 Γ, ϕ : S′1 ⊢ S2 <: S
′
2

Γ ⊢ (ϕ : S1)→ S2 <: (ϕ : S′1)→ S
′
2

Subtyping for non-dependent types
If ϕ appears neither in S2 nor in S′2, the subtyping rules looks familiar:

Γ ⊢ S′1 <: S1 Γ ⊢ S2 <: S
′
2

Γ ⊢ S1 → S2 <: S
′
1 → S

′
2

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 35 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Subtyping Comparison with F:>

Remark
The subtyping rule for functor looks similar to the subtyping rule for
bounded quantification in the language F:> (read Fsub), but it is in fact
quite different: ϕ is a module variable and not a signature variable
which is assumed to have exactly (and not be in a subtype relationship
with) the signature S1 or S′1.

In particular, we cannot reason under subtyping assumptions as in F:>.

Checking subtyping for modules remains decidable (and relatively easy)
while checking subtyping for (the most permissive version of) F:> is not.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 36 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Subtyping Sealing

Subtyping is implicit and can be used anywhere:

Γ ⊢ M : S Γ ⊢ S <: S′

Γ ⊢ M : S′

Although this may turn manifest type definitions into abstract ones,
abstraction is not performed unless explicitly required, since principal
signatures are always inferred.

Therefore, we introduce a construct to enforce subtyping, called sealing:

M ::= . . . | (M : S)
Γ ⊢ M : S

Γ ⊢ (M : S) : S
Do not be fooled: implicit subtyping permits the principal signature of M
to be a proper subsignature S′ of the principal signature S of (M : S).

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 39 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Subtyping Sealing

Sealing is generative
If S is a module signature with an abstract type t, then M and
(M : S) have incompatible views of t. (See example (1))

Example
Let MIN be {t = int;m = 1} and SIN be (ϕ){t : ∗;m : ϕ.t}.
Then, the following definition fails:

(ϕ)







M = MIN;
N = (ϕ.M : SIN);
m = (ϕ.M.m = ϕ.N.m) �� here







because ϕ.M.m and ϕ.N.m have different abstract types ϕ.M.t and
ϕ.N.t

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 40 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Subtyping Subsumption

Instead of implicit subtyping which may float anywhere, we may restrict
uses of subtyping at functor applications and sealings:

Γ ⊢ M1 : (ϕ : S2)→ S1 Γ ⊢ M2 : S′2 Γ ⊢ S′2 <: S2

Γ ⊢ M1(M2) : S1[M2/ϕ]

Γ ⊢ M : S Γ ⊢ S <: S′

Γ ⊢ (M : S′) : S′

Note that subtyping is not performed on the result of functor
application.

This is in fact more restrictive as it disallows the use of subtyping to
avoid ill-formed applications (see the avoidance problem below).

This limitation is also needed for type inference.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 41 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Typing rules Modules

Example (2)
Give the best type to the following declarations














F = λ(X : SIN) X;
M = MIN;
N = F (M);
m = N.m + 1;















Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉42 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Typing rules Modules

Example (2)
Give the best type to the following declarations














F = λ(X : SIN) X;
M = MIN;
N = F (M);
m = N.m + 1;















:















F = (X : SIN)→ SIN;
M = {t = int;m : int};
N = SIN
m is ill-typed















(The typing of applications will be improved later with strengthening)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉42 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening What is missing?

Problem

The following example fails, as before,

(ϕ)







M = (M : S);
N = ϕ.M;
m = (ϕ.M.m = ϕ.N.m) �� here







because ϕ.M.m and ϕ.N.m have different abstract types ϕ.M.t and
ϕ.N.t.

Solution
◮ What is the type of ϕ.N?

◮ Asume ϕ.M can be given type {t = ϕ.M;m : ϕ.t}. Is ϕ.m
well-typed?

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 43 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening Solution

Intuitively, we add

Γ ⊢ π : (ϕ){d̄1 ; ℓ : κ; d̄2}

Γ ⊢ π : (ϕ){d̄1 ; ℓ : κ = π.ℓ; d̄2}

More generally, we allow strengthening of type definitions and
submodules as follows:

Γ ⊢ π : S

Γ ⊢ π : S/π

where:

(ϕ){s1, ...sn}/π
△
= (ϕ){s1/π, ...sn/π}

π′/π
△
= π′

(ϕ : S1)→ S2/π
△
= (ϕ : S1)→ S2

ℓ : σ/π
△
= ℓ : σ

ℓ : M/π
△
= ℓ : (M/π.ℓ)

ℓ : κ/π
△
= ℓ : κ = π.ℓ

ℓ : κ = τ/π
△
= ℓ : κ = π.ℓ

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 44 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening Exercise

Exercise

Explain (informally) why Γ ⊢ p : S implies Γ ⊢ S/p <: S. Answer

Why is this important?

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉45 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening Exercise

Exercise

Explain (informally) why Γ ⊢ p : S implies Γ ⊢ S/p <: S. Answer

Why is this important?

This ensures that the strengthening rule can be applied
aggressively, since the weaker type may always be recovered by
subtyping.
This is used by type inferrence to infer principal signatures.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉45 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening Exercise

Exercise

Consider the program:

{ F = λ(X : {t : ∗}) λ(Y : {t = X . t}) {};
A : { t : ∗ };
B : { t = A . t };
M0 = F (A) (B);
M1 = F (B) (A);
M2 = F (A) (A);

}

Which of the applications are well-typed without strengthening?

With strengthening?

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉46 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening Exercise

Exercise

Consider the program:

{ F = λ(X : {t : ∗}) λ(Y : {t = X . t}) {};
A : { t : ∗ };
B : { t = A . t };
M0 = F (A) (B); ok
M1 = F (B) (A); fails
M2 = F (A) (A); fails

}

Which of the applications are well-typed without strengthening? In both
cases, f requires its second argument to be concrete, but it is abstract.
With strengthening?

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉46 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening Exercise

Exercise

Consider the program:

{ F = λ(X : {t : ∗}) λ(Y : {t = X . t}) {};
A : { t : ∗ };
B : { t = A . t };
M0 = F (A) (B); ok
M1 = F (B) (A); ok
M2 = F (A) (A); ok

}

Which of the applications are well-typed without strengthening?

With strengthening? They all succeed.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈3〉46 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening just strong enough

It preserves equalities for aliases:

(ϕ)















M = (MIN : SIN);

N = ϕ.M;
m = (ϕ.M.m = ϕN.m);















It preserves generativity for sealing:

(ϕ)























M = (MIN : SIN);

N = (ϕ.M : SIN);

m = (ϕ.M.m = ϕN.m);























Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉47 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening just strong enough

It preserves equalities for aliases:

(ϕ)















M = (MIN : SIN);

N = ϕ.M;
m = (ϕ.M.m = ϕN.m);















:















M = (ψ){t = ∗;m : ψ.t};
ϕ.M : (ψ){t = ϕ.M.t;M : ψ.t}
N = (ψ){t = ϕ.M.t;M : ψ.t}
m : bool















It preserves generativity for sealing:

(ϕ)























M = (MIN : SIN);

N = (ϕ.M : SIN);

m = (ϕ.M.m = ϕN.m);























:























M = (ψ){t = ∗;m : ψ.t};
ϕ.M : (ψ){t = ϕ.M.t;M : ψ.t}
N = (ψ){t : ∗;m : ψ.t};
ϕ.N : (ψ){t = ϕ.N.t;M : t}
fails























Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉47 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening Exercise

Consider again the example (2): what is the best type of














F = λ(X : SIN) X;
M = MIN;
N = F (M);
m = N.m + 1;















Why is this a justification of sealing?
◮ Without strengthening, an application of λ(X : S) X to M would be

equivalent to sealing M with S and sealing would be useless.

◮ With strengthening, an abstract type in a functor parameter
signature is only seen abstract in the body of the functor, but is
not made abstract in the result of a functor application.
Informally, it is as if

λ(X : S) M meant Λ(ϕ <: S) λ(X : ϕ) M

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉48 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening Exercise

Consider again the example (2): what is the best type of














F = λ(X : SIN) X;
M = MIN;
N = F (M);
m = N.m + 1;















:















F = (X : SIN)→ (ϕ){t = X.t;M : ϕ.t};
M = {t = int;m : int};
N = (ϕ){t = M.t;M : ϕ.t};
m : int















Why is this a justification of sealing?
◮ Without strengthening, an application of λ(X : S) X to M would be

equivalent to sealing M with S and sealing would be useless.

◮ With strengthening, an abstract type in a functor parameter
signature is only seen abstract in the body of the functor, but is
not made abstract in the result of a functor application.
Informally, it is as if

λ(X : S) M meant Λ(ϕ <: S) λ(X : ϕ) M

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉48 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Strengthening Summary

Strengthening plays a key role in typing of modules
◮ It is at the very heart of the propagation of type equalities.

◮ It enhances functor application in an essential way, by specializing
the abstract signature of the formal parameters to that of the
actual arguments, performing a form of implicit type instantiation.

◮ Thanks to strengthening, functors are parametric in all specialized
versions of the signature of the arguments.

However
◮ Strengthening proceeds by replacing type definitions (concrete or

abstract) by new type aliases (indirections) to previous definitions
rather than adding new type equations to already existing ones.

◮ Strengthening remains somewhat an ad hoc treatment of some
underlying equational theory on paths.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 49 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type inference

Signatures for modules may be inferred
◮ In ML, base-language definitions have principal types which may be

inferred.

◮ Sequences of definitions may also be inferred.

◮ Signatures of functors must be provided, indeed.

Potential problems for inference (discussed next)

◮ Non-regular datatype definitions.

◮ Value restriction and non closed signatures.

◮ Local module definitions and the avoidance problem.

◮ If subtyping were used instead of subsumption.

It is conjectured that type inference returns a principal signature when
it succeeds. However, type inference might fail when sometimes more
specific type annotations would make it succeed.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 50 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type inference Non-regular datatypes

If the host language has non-regular type definitions, checking for
equivalence of type definitions becomes undecidable.

type α term =

Var of α | App (α term ∗ α term) | Abs of (α bind) term
and α bind = Zero | Succ of α

This is not a problem for the host language since, there is no need to
test for the equality of type definitions.

However, this is a potential problem for a module language.

A solution is to compare datatype definitions syntactically instead of
semantically.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 51 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type inference Value restriction

In OCaml, well-formed signatures must be closed, i.e. have no free type
variables. This is usually fine with ML style polymorphism since
expressions can be generalized at toplevel, hence at the module level.

However, the value-restriction prohibits generalization of non value forms.
For example, {id = (λ(x) x) (λ(x) x)} can be typed with {id : α→ α} but
not with {id : ∀α.α→ α}.

The common solution (also followed in OCaml) is to reject such
programs, although they could also be ascribed legal but non-principal
signatures.

In our example, {id : τ→ τ} would be a correct signature for any
ground type τ, such as int, bool → bool, etc.

Note: there are solutions that allow signatures with free type variables,
but they require mixing base-language level and module level type
inference and are also more involved. See Dreyer and Blume (2007)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 52 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type inference The avoidance problem

This is a general problem when mixing subtyping and abstract types.

It is incorrect for an abstract type to escape its scope. When
subtyping is allowed, it is sometimes possible to use subtyping to hide
components that would otherwise lead to ill-formed types. The question
is whether this can be done in a principal manner.

The problem arises with local module definitions. For example, if module
expressions can be of the form let m = M in M. Then, the module

let X : (ϕ){M : {t = int};N : {m : ϕ.M.t}} =
{M = {t = int};N = {m = 1}}

in X.N.m

has principal but ill-formed signature {m : X.M.t} as X is not in scope.

Here, the module can also be given the equivalent signature {m : int}
that avoids X, by conversion. However, this is not always possible.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 53 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type inference The avoidance problem

For example, this is no more the case if X.N.t is abstract, as in:

let X : (ϕ){M : {t : ∗};N : {m : ϕ.M.t}} =
{M = {t = int};N = {m = 1}}

in X.N.m

The principal signature is still {m : X.M.t} but now X cannot be avoided,
except by subtyping, leading to the empty signature {}. In this case,
this signature is still a principal type for M.

Unfortunately, this is not always always the case.

With subsumption instead of subtyping (see above) this example is
rejected (because subtyping cannot be used implicitly).

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 54 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type inference The avoidance problem

Exercise

Consider the signature S equal to (ψ){t : ∗;M : {u = λ(α) ψ.t; s = ψ.t}}.
Asume that a module M bound to X has signature S. What is the type
of X.M? Answer

What could be the signature of let X = M in X.M if this expression were
allowed and subtyping were implicit? Answer

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 55 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type inference Can make the difference!

Reduces verbosity
With all explicit type information as in System F, i.e. all type
abstraction and type applications written, programs become verbose.

In ML, the size of principal types may grow up exponentially.

Even if the size of types remains bounded by k, type information may
be k times larger than the program. (Consider for example, large tuples
encoded with pairs.)

Increases maintainability
Not writing all type information often keeps the source program more
manageable.

It also avoids duplicating type information which increases maintanability

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉56 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type inference Can make the difference!

Reduces verbosity

Increases maintainability

Increases modularity
There are also examples where a small change in the source program
may induce a much larger change in the typing derivation, hence in the
explicitly typed term, while the type erasure of the program need only a
very small change. In such cases, type inference increases modularity.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉56 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type inference Can make the difference!

Reduces verbosity

Increases maintainability

Increases modularity
There are also examples where a small change in the source program
may induce a much larger change in the typing derivation, hence in the
explicitly typed term, while the type erasure of the program need only a
very small change. In such cases, type inference increases modularity.

May increase reusability
Inferring principal types lead to principal signatures, i.e. which may be
more general than the signature the user had in mind (this is perhaps
more true when programming in the small than when programming in the
large).

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈3〉56 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

To remember

The basic ingredients
◮ Path in types.
◮ Type definitions in signatures (module types)
◮ Equivalence to propagate type definitions through types
◮ Subtyping to forget and reorder components, allow abstraction.
◮ Strengthening to propagate sharing of abstract types
◮ Sealing to enforce abstraction, i.e. break sharing of abstract types

Type inference
◮ Application and projection restricted to paths

(all types can be named)
◮ Use subsumption instead of subtyping (avoids the avoidance problem)
◮ Restrict to closed signatures (no free type variables in signatures)
◮ This ensures principal signatures, but

subsumption and strengthening have an algorithmic flavor.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 57 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Introduction

Simple Modules

Advanced aspects of modules
Signature definitions
Type sharing by parametrization
Applicative functors
Abstract signatures
Type Soundness

Recursive and mixin modules

Open Existential Types

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 58 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Signature definitions

A module may also contain (concrete) signature definitions:

d ::= . . . | ℓ = S s ::= . . . | ℓ = S

Typing rules:

Γ ⊢ S

Γ ⊢ (ϕ.ℓ = S) : (ϕ.ℓ = S)

π = S ∈ Γ

Γ ⊢ π ≈ S

This does not increase expressiveness, since as type definitions alone,
signature definitions could always be expanded.

However, this increases conciseness and clarity by avoiding repeating
the same signature several times.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 59 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Signature definitions The with notation

The construction changes some type definition of a signature:

S ::= . . . | S with ℓ̄ = τ

Informally, this refines the type definition (at path) ℓ̄ in S, that must
exist and be compatible with τ, to make it equal to τ.
The with notation is mostly used when S is a path π.S.

It can always be eliminated by inlining S and replacing the component ℓ̄
by τ. For example, the last line of

{

S = {t : ∗;m : t};
M = λ(X : S) λ(Y : S with t = X.t) M

}

could be also be written M = λ(X : S) λ(Y : {t : X.t;m : t}) M.

The with notation does not increase expressiveness.
However, it avoids dupplicating code, hence it increases maintainability.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 60 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Signature definitions The with notation

It may be formalized using the equivalence relation:

Γ ⊢ S ≈ (ϕ){d̄1 ; ℓ : κ; d̄2} Γ ⊢ τ : κ Γ ⊢ (ϕ){d̄1 ; ℓ : κ = τ; d̄2} <: S

Γ ⊢ (S with ℓ = τ) ≈ (ϕ){d̄1 ; ℓ : κ = τ; d̄2}

Γ ⊢ S ≈ (ϕ){d̄1 ; ℓ : κ = τ′; d̄2}
Γ ⊢ τ : κ Γ ⊢ (ϕ){d̄1 ; ℓ : κ = τ; d̄2} <: S

Γ ⊢ (S with ℓ = τ) ≈ (ϕ){d̄1 ; ℓ : κ = τ; d̄2}

The with notation may also operate in submodules:

Γ ⊢ S ≈ (ϕ){d̄1 ; ℓ1 = S1; d̄2}

Γ ⊢ (S with ℓ1.ℓ̄ = τ) ≈ (ϕ){d̄1 ; ℓ1 = (S1 with ℓ̄ = τ); d̄2}

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 61 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Sharing in signatures of functor arguments

With equality constraints
Consider the example:































S = {t : ∗;m : t};
F = λ(X : S) λ(Y : S with t = X.t) M
t = int
M1 = M1[t]
M2 = M2[t]
N = M (M1) (M2)































Can we eliminate the sharing constraint t = X.t between the arguments
(which makes the type of Y depend on the value X)?

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 62 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Sharing in signatures of functor arguments

By parametrization
This is the standard way of doing abstraction for base language values
and types. In modules, we could as well abstract the yet unknown part
of types and provide the exact type later when applying the functor:































S = Λ(α) {t = α;m : t};
F = Λ(α) λ(X : S (α)) λ(Y : S (α)) M
t = int
M1 = M1[t]
M2 = M2[t]
N = F (t) (M1) (M2)































(We used type abstraction Λ(α) S and type application S(τ) in
signatures, which can be encoded.)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 63 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Sharing in signatures of functor arguments

In principle
All sharing in signatures of functor arguments could be by
parametrization.

In practice
Unfortunately, sharing by parametrization does not scale up very well to
large programs, as the number of type parameters quickly blows up.

It also forces programming in a more functorial manner, often using
functors and higher-order functors, were otherwise structures and
first-order functors would suffice.

See also this exercise.

Hence, sharing by equality constraints is the common practice.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 64 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors What are they?

Generative/Applicative functors
A functor is generative if two applications of the functor to the same
argument creates two modules with incompatible signatures.
It is applicative if two applications of the functor to the same
argument always create two modules with compatible signatures.

Generative functors
This is often the desired effect. For example, each application may
create a new database with its own invariants: type generativity
ensures that two databases will not interfere.

The following functor alway returns a new incompatible version of
integers by sealing its argument:

λ(X : SIN) (X : SIN)
It is generative.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 65 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors What are they?

Applicative functors
Applicative functors are sometimes also desired.

For example, a MakeMap functor may create a Map module when given
an ordering structure as argument. Then, two applications of MakeMap
with the very same ordering could produce compatible maps that can
be merged together.

For instance, the following functor renames the labels of its argument

Copy
△
= λ(X : SIN) {u = X.t; n = X.m}

but shares the types of the result with those of the argument. Hence,
two applications of the functor to the same argument have the same,
compatible signature type.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 66 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors Higher-order functors

Problem
Assume: S

△
= {t : ∗}

XIN
△
= {t = int}

Id
△
= λ(X : S) X : (X : S)→ (S with t = X.t)

What is the best type of

(ϕ)















Apply = λ(F : (X : S)→ S) λ(Y : S) F(Y) :

F = Apply(Id) :
N = ϕ.F(XIN) :

Question Can we give type ϕ.Apply so that it is “transparent”, i.e.

ϕ.Apply(F)(Y) is typed as F(Y) and Z.N.t be compatible with int?

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉67 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors Higher-order functors

Problem
Assume: S

△
= {t : ∗}

XIN
△
= {t = int}

Id
△
= λ(X : S) X : (X : S)→ (S with t = X.t)

What is the best type of

(ϕ)















Apply = λ(F : (X : S)→ S) λ(Y : S) F(Y) :
(F : (X : S)→ S)→ (Y : S)→ S

F = Apply(Id) :
N = ϕ.F(XIN) :

Question Can we give type ϕ.Apply so that it is “transparent”, i.e.

ϕ.Apply(F)(Y) is typed as F(Y) and Z.N.t be compatible with int?

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉67 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors Higher-order functors

Problem
Assume: S

△
= {t : ∗}

XIN
△
= {t = int}

Id
△
= λ(X : S) X : (X : S)→ (S with t = X.t)

What is the best type of

(ϕ)















Apply = λ(F : (X : S)→ S) λ(Y : S) F(Y) :
(F : (X : S)→ S)→ (Y : S)→ S

F = Apply(Id) : (Y : S)→ S �� Sharing of result type is lost
N = ϕ.F(XIN) :

Question Can we give type ϕ.Apply so that it is “transparent”, i.e.

ϕ.Apply(F)(Y) is typed as F(Y) and Z.N.t be compatible with int?

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈3〉67 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors Higher-order functors

Problem
Assume: S

△
= {t : ∗}

XIN
△
= {t = int}

Id
△
= λ(X : S) X : (X : S)→ (S with t = X.t)

What is the best type of

(ϕ)















Apply = λ(F : (X : S)→ S) λ(Y : S) F(Y) :
(F : (X : S)→ S)→ (Y : S)→ S

F = Apply(Id) : (Y : S)→ S �� Sharing of result type is lost
N = ϕ.F(XIN) : S �� type t is abstract

Question Can we give type ϕ.Apply so that it is “transparent”, i.e.

ϕ.Apply(F)(Y) is typed as F(Y) and Z.N.t be compatible with int?

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈4〉67 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors Higher-order functors

Solution: extended paths
To model applicative functors, we allow functor applications in paths.

π ::= . . . |π(π)

Then, two applications of the same functor path to the same argument
path are equal paths.

Strengthening strengthening
We also change strengthening for functor types:

(ϕ : S1)→ S2/π
△
= (ϕ : S1)→ S2/π(ϕ)

was (ϕ : S1)→ S2

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 68 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors Example

Does this typecheck?

(ϕ)























Apply = λ(F : (X : S)→ S) λ(Y : S) F(Y)

F = Apply(Id)
N = ϕ.F(XIN)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉69 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors Example

Does this typecheck?
—Yes! F(Y) is a path and can be strengthenned

(ϕ)























Apply = λ(F : (X : S)→ S) λ(Y : S) F(Y) :
(F : (X : S)→ S)→ (Y : S)→ (S with t = F(Y).t)
(F(Y) : S, hence F(Y) : S/F(Y) = (S with t = F(Y).t))

F = Apply(Id)(Y : S)→ S with t = Id(Y).t
N = ϕ.F(XIN) : (S with t = Id(XIN).t)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉69 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors Example

For example, let ϕ be bound to the following module:

{ F = λ(X : {}) ({t = int;m = 1} : {t : ∗;m : t});
V1 = {}; M11 = F (V1); M12 = F (V1);
V2 = {}; M12 = F (V2);
V3 = V2; M12 = F (V3); }

Then:

◮ ϕ.F has type (X : {})→ {t : ∗;m : t}
By strengthening, it also has type (X : {})→ {t : ∗;m : t}/ϕ.F
i.e. (X : {})→ {t = ϕ.F(X).t;m : t}

◮ ϕ.M11 and ϕ.M12 are compatible, both of type ϕ.F(ϕ.V1).t,

◮ they are incompatible with ϕ.M21 , of type ϕ.F(ϕ.V2).t.

◮ ϕ.F(ϕ.V2).t and ϕ.F(ϕ.V3).t are also incompatible even though V3

is just a rebinding of V2.

See Leroy (1995)
Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 70 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors Does it matter?

Should higher-order functors be applicative?

Applicative higher-order functors can type more programs. Moreover, the
application can still be made generative by η-expansion and sealing or
by rebinding the argument before the application.

Conversely, if functors are generative, two applications of the functor
can never be made compatible a posteriori. Instead, the program must
be reorganized. For instance, the application may be performed only
once, if it has no side effect. Otherwise, the reorganization may be
more complex, but it is also likely that the functor should not be
applicative in this case.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 71 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Applicative functors Does it matter?

Conclusions

It is not essential that module systems provide support for applicative
higher-order functors, while they cannot avoid dealing with type
generativity.

Applicative higher-order functors are more expressive than generative
functors. They give higher-order functors a more transparent semantics.

In fact generativity/applicativity should rather be a property of the
functor than the result of a global choice and of rebinding of
arguments.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 72 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Abstract signatures Language Extension

We allow abstract signatures in specifications:

s ::= . . . | ℓ

A type component of a functor parameter may be an abstract
signature, which gets instantiated to a concrete signature when the
functor is applied.

Additional typing rules:

Γ ⊢ϕ (ℓ = S) <: (ℓ)
π ∈ Γ

Γ ⊢ π

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 73 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Abstract signatures Example

The application functor App may be written:

Apply
△
= λ(Z : {A;B}) λ(F : (X : Z.A)→ Z.B) λ(Y : Z.A) F (Y)

Abstract signatures inscrease expressiveness—without them we can
only write specific versions of the application functor.

We may then add signature abstraction and signature application as
syntactic sugar:

Λ(A) M
△
= λ(ZA : {A}) M[ZA.A/A]

M[S]
△
= M({A = S})

Then

Apply
△
= Λ(A) Λ(B) λ(F : (X : A)→ B) λ(Y : A) F (Y)

as in System F.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 74 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Abstract signatures Limitation

Higher-order functors with abstract signatures are not applicative

Apply : Λ(A) Λ(B) (F : (X : A)→ B)→ (Y : A)→ B

Strengthening has no effect on abstract signatures.

ℓ/π
△
= ℓ (Compare with ℓ : κ/π

△
= ℓ : κ = π.ℓ)

Hence, the apply functor cannot tell that the result type B is in fact
the type of application F to X.

This should then be told in the signature of F by making B depend on
(X : A). Unfortunately, abstract signatures cannot be higher-order.

A specialization of Apply λ(F : (X : S)→ S) λ(Y : S) F (Y) where A and B

are some signature St containing some abstract type t can be typed
more precisely if typed directly:

(F : (X : S)→ S)→ (Y : S)→ (S with t = F(Y).t)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 75 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Abstract signatures Limitation

This provides a hint why programming with modules in Fω style does
not scale up well:

◮ strengthening, which plays a key role in transparency works for
concrete signatures but does not permit abstraction.

◮ value-dependent signatures, which also play a key role in
transparency, can only be concrete.

Hence, to keep transparency, one cannot use abstract signatures and
must instead use long concrete signatures which may be quite verbose.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 76 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Abstract signatures Exercises

Exercise

Write Apply in OCaml. Write the identity functor Id in a similar style.
Verify that Apply can be applied to Id specialized at any signature S.

Answer

Bootstrap the example, by writing a second version of Apply that uses
Apply internally instead of the primitive functor application and recheck
the application of Apply to Id. Answer

Exercise

Specialize Apply to the case where Z.A and Z.B are a same signature
containing some abstract type t. Comment.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 77 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type soundness Subject reduction does not hold!

The syntax is not even stable by reduction!

(λ(m : (ϕ){t : ∗;m : ϕ.t}) m.ℓx) ({t = int;m = 1})

reduces to the ill-formed projection

{t = int;m = 1}.m

since only path can be projected! This syntactic limitation (and the
similar one for applications) is essential to trace type identities.
Paths bound to modules are not substitutable.

Otherwise, for instance, if (M : S) were

({t = int;m = 1; n = succ} : (ϕ){t : ∗;m : ϕ.t; n : ϕ.t→ ϕ.t})

then (λ(X : S) X.n X.m) (M : S) would reduce to (M : S).n (M : S).m where
the function and the argument would have incompatible abstract types.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 78 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type soundness By translation to System Fω

Modules are second-class citizen
Modules cannot be manipulated as ordinary values. For instance, it is
not possible to choose between two modules with the same abstract
interface but different implementations, as in if a then M1 else M2.
This is in fact a real limitation of expressiveness.

Revealing abstract types preserves well-typedness
Because modules are second class, an implementation of a signature
cannot be choseen dynamically: any abstract types has a unique
statically known concrete type associated with, which may be safely
revealed, or it appears in the argument of a functor, which is
polymophic in the corresponding type.

(Of course, it may expose type invariants, at the programmer’s risk).

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 79 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type soundness By translation to System Fω

Translation
Formally, ML modules can be translated into System F (with records),
which ensures type soundness.

Of course, as type abstraction is lost during the translation, type
soundness does not ensure by construction that values with compatible
representation but incompatible semantics are never merged, but this
invariant will be preserved after translation.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 80 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type soundness By translation to System Fω

Proceed as follows (assuming no abstract signatures)
1) Transform any sealing that turns a type definition (that does not

contain an abstract type) into an abstract type so that it reveals the
type definition.
All sealing can be transformed this way, in some appropriate order.

2) The remaining abstract types only appear in signatures of functor
parameters. These can be made concrete by adding explicit
parametrization, transforming λ(X : {s̄1; t; s̄2}) M into
λ(α) λ(X : {s̄1; t = α; s̄2}) M and functor applications correspondingly.

3) Type definitions may be inlined and so become unused.
Once all type definitions are unused, they can be removed altogether.
This turns modules into records and functors into functions,

4) Replace uses of subtyping (at sealing and functor applications) by explicit
coercions (much as a compiler does), returning a program in System Fω.

The result is actually in System F if all type components are nullary
(and no abstract signature has been used).
Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 81 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Type soundness Elaboration into a richer language

An indirect solution to type soundness
Use a calculus of dependent types to model modules, enriched with
singleton kinds to abstract type equalities, where subject reduction
holds and elaborate ML modules into this core language

This approach is technically involved.

For instance, see Dreyer et al. (2003)

An abstraction-preserving translation to Fω

In the translation to Fω, existential types may be used to preserve
abstraction. This also preserves well-typedness with first-class modules.

See Rossberg et al. (2010)

Problems

The semantics is given by elaboration, a global translation that does
not provide a good intuition of what modules exactly are.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 82 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

To remember

The path-based approach works fine for the core language, but shows
its limitations for more advanced features:

◮ The ad-hoc algorithmic aspects of strengthening is emphasized by
applicative functors.

◮ Abstract signatures are of very limited uses becomes they cannot
be strengthened.

◮ No direct accound of type soundness.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 83 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Introduction

Simple Modules

Advanced aspects of modules

Recursive and mixin modules
Recursive modules
Double vision problem
Recursive definitions
Mixin modules

Open Existential Types

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 84 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Recursive modules Example

Two recursive modules

module rec A : sig
type t = Leaf of int | Node of ASet . t
val compare : t → t → int

end = struct

type t = Leaf of int | Node of ASet . t
let compare t1 t2 =
match t1, t2 with

| Leaf i1, Leaf i2 → i2 − i1
| Node n1, Node n2 → ASet . compare n1 n2
| Leaf , Node → 1 | Node , Leaf → −1

end

and ASet : Set .S with type elt = A . t = Set .Make(A)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 85 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Recursive modules Example

Their recursive signatures

module rec A : sig
type t = Leaf of int | Node of ASet . t
val compare : t → t → int

end

and ASet : sig
type elt = A . t
type t
val empty : t
val elem : elt → t → bool
. . .

end

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 86 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Recursive modules Difficulties

Typechecking problems

◮ Signatures are recursive and depend on a module that has not yet
been typechecked.

◮ Modules are recursive, but may be generative, i.e. is the recursive
occurrence of the module type the same as the module type itself?

◮ Double vision problem: a type definition of M1 hidden in the
signature of M1 should be seen as abstract from a recursively
defined module M2, but as concrete within M1.

Compilation problems
◮ When are recursive definitions well-formed?

◮ What is their semantics?

◮ How can they be compiled? efficiently?

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 87 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Recursive modules Typechecking

Syntax

M ::= . . . | µ(ψ){M : S = M} S ::= . . . | µ(ψ){M : S}

Notice that all fields of a recursive module must be submodules.
All fields may now refer to one another.

Typechecking signatures

ψ /∈ dom Γ Γ, ψ.M : S ⊢ S̄ acyclic(µ(ψ){M : S})

Γ ⊢ µ(ψ){M : S}

Some extended occur check acyclic(µ(ψ){M : S}) is used to avoid
ill-formed recursive type definitions such as µ(ψ){t = ψ.t} where the
definition of t is not contractive.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 88 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Recursive modules Typechecking

Signatures are provided and not inferred

Naive typing rule

Γ ⊢ µ(ψ){M : S} Γ, ψ.M : S ⊢ M : S

Γ ⊢ µ(ψ){M : S = M} : µ(ψ){M : S}

Limitation
This rule is too weak, since it does not take into account the fact
that ψ.M and M are eventually the very same module.

This is known as the double vision problem.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 89 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Double vision problem Example

Problem
Let S1 be (ϕ){t : ∗;m : ϕ.t} and let M1 be ({t = int;m = 1} : S1).

Let Sψ be {t : ∗;m : ψ.M.t}.

Then, µ(ψ){M : Sψ = M1} is ill-typed because under ψ.M : Sψ, the
signature S1 of M1 is not a subtype of Sψ.

Observe
The strengthened signature S1/ψ.M, which is equal to
(ϕ){t = ψ.M.t;m : ϕ.t}, is a subtype of Sψ.

Indeed, in the context ϕ.t = ψ.M.t;ϕ.m : ϕ.t (used for checking subtyping
of signature declarations), we have ϕ.t ≈ ψ.M.t.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 90 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Double vision problem First attempt

Combine strengthening and subsumption

Γ ⊢ µ(ψ){M : S} Γ, ψ.M : S ⊢ M : S′ Γ ⊢ S′/ψ.M <: S

Γ ⊢ µ(ψ){M : S = M} : µ(ψ){M : S}

That is, S is simultaneously a strengthening (stronger than) and a
subtyping of (weaker than) the inferred signature S′ for M.

Unfortunately...
This form of strengthening breaks the property that strengthening can
always be canceled by subtyping, because S′, the signature of M is
strengthened by ψ.M, which is only assigned a supertype of S′.

This is a problem for type inference, since applying strengthening
immediately may enable new derivations but also disable valid ones.
This solution is too weak.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 91 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Double vision problem Example

The following definition is rejected

µ(ψ)

{

M : {N : S1} = (ϕ){N = M1;m = ψ.F.f (ϕ.N.m)}
F : {f : ψ.M.N.t→ int} = {f = λ(x) 0}

}

The problem is the following:

◮ Field ψ.F is typed with the abstract view {N : S1} of ψ.M.

◮ Hence, the domain of ψ.F.f has type the external type ψ.M.N.t in
ψ.M while the argument ϕ.N.m has the internal type ϕ.N.t.

◮ Hence, the application fails.

Solution
Type the body of ψ.M with the knowledge that the external and internal
types are equal, i.e. with the additional equality ϕ.N.t = ψ.M.N.t.

Notice: while strengthening must chose one view (internal or external),
this equation keeps the two views and makes them locally coincide.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 92 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Double vision problem Solution

Informally

Let Γ′ be Γ, ψ.M : S. Remind that premisses are Γ′ ⊢ M : S for all
recursive definitions M : S.

When M : S is a structure definition (ϕ){d̄} : (ϕ){s̄}, this would amount
to typechecking Γ′ ⊢ ϕ.d̄ : ϕ.s̄.

Instead, typecheck Γ′ ⊢ ϕ.d̄ : ϕ.s̄/ψ.M which is decomposed as follows

Γ′ ⊢ d : s Γ′, d : s/ψ.M ⊢ (d̄) : (s̄)/ψ.M

Γ′ ⊢ (d, d̄) : (s; s̄)/ψ.M
where

◮ d : s/ψ.M is ϕ.t : κ = ψ.M.t = τ (resp. ϕ.t : κ = ψ.M.t) when d is a
type declaration ϕ.t : κ = τ (resp. ϕ.t : κ) and just d : s otherwise;

◮ rules Γ, π : κ = π′ = τ, Γ′ ⊢ π ≈ π′ : κ and Γ, π = π′ = τ, Γ′ ⊢ π ≈ τ : κ
are added to exploit these double-vision asumptions.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 93 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Double vision problem Solution

Comment
This is becoming quite ad hoc and algorithmic, reaching the limits of
the path-based approach.

We should instead really treat paths ϕ and ψ.M as equal and
propagate such equalities on paths to equalities on types, instead of
adding only some equalities only on types to obtain (a sort of)
canonical forms for type definitions.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 94 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Recursive definitions Problem

Examples of well-formed recursive definitions
let s = let rec z = 0 :: z in 3 :: 2 :: 1 :: z

is the infinite stream starting with 3, 2, 1 and followed by infinitely
many 0.

type loop = { left : int; right : loop }
let rec ok = { left = 1; right = { left = 2; right = ok}}

During recursion, recursive values can be used to build other values, but
should never be accessed.

Ill-formed recursive definitions (not specific to modules)

let rec ko = {left = 1; right = { left = 1 + ko.left; right = ko}}

The recursive value is accessed before being defined.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 95 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Recursive definitions Solutions?

Rejected useful forms of recursion

let rec decay x r = if x = 0 then x :: r else x :: decay (x−1) r
let s = let rec z = decay 0 z in decay 3 (decay 2 (decay 1 z))

Although this is safe, this example is rejected because it is difficult to
detect that decay does not access its second argument.

(Replacing decay by (::) gives back the previous example.)

Can we allow more well-formed recursive definitions?
◮ Use more sophisticated type systems.

See Dreyer (2004); Hirschowitz and Leroy (2005)

◮ Use runtime detection of ill-formed recursion.
See Hirschowitz et al. (2003)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 96 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Recursion Compilation

A matter of compromise between
◮ Extra indirections and/or tests at module access.

◮ Easier compilation and dynamic detection of ill-formed recursions.
Larger class of recursive definitions accepted.

The backpatching semantics and compilation schema
◮ A record Ω is allocated with all fields undefined, initially.

◮ Accesses to undefined fields of Ω are detected and raise an error

◮ The definition is evaluated, using Ω for recursive references.

◮ Fields are evaluated in order of definition.

◮ When a field ℓ is evaluated to a value v, Ω.ℓ is backpatched with
v, and Ω.ℓ can now be accessed without an error.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 97 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Mixin modules Limitations of modules

Modules
◮ Split programs into components, but

◮ Components are created as a whole.

◮ Functors allow to program the assembling of components, but
partial components are not permitted, or must explicitly be
represented as functors.

◮ Recursive modules allow smaller grain components that recursively
depend on one another, but all recursive components must still be
created atomically.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 98 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Mixin modules More flexibility

Mixins
◮ Mixins are partial components that may be incomplete. That is,

they may define and export values that depend on missing imports.

◮ Exports of mixins can be recursively defined.

◮ Incomplete mixins cannot be used.

◮ Mixins can be extended by adding new definitions, which may fill in
missing imports or just provide additional exports.

◮ Complete mixins can be used as modules.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 99 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Mixin modules More difficulties

Typechecking and compilation of mixins raise problems that are similar
to but even harder than recursive modules, because recursive definitions
are assembled incrementally as opposed to built atomically.

Below, we only give a brief flavor of what mixin modules could look like.

For design and typechecking issues, see Dreyer and Rossberg (2008).
For compilation issues, see Hirschowitz and Leroy (2005).

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 100 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Mixin modules Example

Consider M defined as:

{(ψ)〈|
Even = (ϕ)〈odd : int→ bool | even = λ(x) (x = 0) or ϕ.odd(x − 1)〉
Odd = (ϕ)〈even : int→ bool | odd = λ(x) (x > 0) and ϕ.even(x − 1)〉
Nat = {ψ.Even O ψ.Odd}
〉}

◮ ψ..Even is a mixin with an import odd and an export even

◮ ψ.Odd is a mixin with an import even and an export odd

◮ Even O Odd is the mixin composition of ψ..Even and ψ..Odd

◮ {Even O Odd} is the module obtained by closing the mixin.

◮ M is itself a module obtained by closing the mixin with no import
and Even, Odd, and Nat as exports.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 101 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Mixin modules Basic ideas

Mixin modules (ϕ)〈I | D〉
They are incomplete modules where D is a sequence of declarations d̄
that may refer to yet undefined, but declared imports I. Import I, i.e.
a sequence s̄ where each si is an abstract type, a value or a
submodule declaration.

Mixin signatures (ϕ)〈I | E〉
They are as module specifications, except that they separate import
from export specifications. An import specification E is a sequence s̄
where each s is a type definition, a value, or a submodule declaration.

As for modules and signatures, fields are referred to one another via
the bound variable ϕ. However, as with recursive modules, fields may
recursively depend on one another.

If subtyping is enabled, mixin signatures are covariant in exports and
contravariant in imports.
Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 102 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Mixin modules Main operations

Mixins composition M1 O M2

This has signature (ϕ)〈I | E〉 whenever

◮ I and E are (I1 ∪ I2) \ E and E1 ∪ E2
(where (ϕ)〈Ii | Ei〉 is the signature of Mi).

◮ Fields in (I1 ∪ E1) ∩ (I1 ∪ E2) must be compatible.
(If subtyping is enabled, it may have been used to strengthen
imports on both sides prior to composition).

◮ Only type definitions can appear in the intersection of exports.

Closing {M}
Assuming that M has no import, i.e. a signature (ϕ)〈| E〉, this returns
a module, of signature (ϕ){E}

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 103 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Mixin modules Other operations

Binding and access
Only components of closed mixins can be accessed.

Deletion
M \ ℓ removes the definition ℓ from M and instead makes field ℓ an
import of the corresponding type.
This is only possible if field ℓ has not been subtyped (either subtyping
is disable, or the type system keeps track of where subtyping has been
used.)
This allows for overriding, as in object-oriented languages.

Renaming
M[ℓ1 ← ℓ2] replaces the label ℓ1 by a (new) label ℓ2 in M.
This might be useful to avoid conflicting names before composition.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 104 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Mixin modules Functors are encodable

Functors can be encoded as mixins

λ(X : S) M
△
= (ϕ)〈M : S | F = M[ϕ.M/X]〉

Then functor application is replaced by composition followed by closing
and projection:

M1 (M2)
△
= {M1 O 〈| M = M2〉}.F

(Auxiliary bindings can be used to avoid the projection on non variables).

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 105 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Mixin modules Typechecking difficulties

Type generativity
As with modules, we need to keep track of type identities. This is the
reason for closing, which besides verifying the absence of imports
generate fresh type components (as a functor application would do).

Components of a mixin cannot be accessed before it is closed.

Recursion and well-foundedness
Recursion is the default. Mixins are open recursive definitions, which
may be ill-founded.

Worse, the composition of independently well-founded recursive definitions
may become ill-founded.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 106 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Mixin modules Hierarchical composition

Example
Is the following composition

〈| M = (ϕ)〈n : int | m = 1〉〉 O 〈| M = (ϕ)〈m : int | n = 2〉〉

well-defined and equal to 〈| M = (ϕ)〈| m = 1; n = 2〉〉 ?

Interest
This operation allows to organize the name space more freely.
In particular, definitions may all be shifted under some prefix to avoid
conflicting with other definitions.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 107 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Mixin modules Summary

Powerful
◮ Many new possibilities: mixin composition, renaming, overriding...

◮ Many resemblances with objects and classes (plus type
components)

◮ Many possible variants in the design.
(More precise, but more complex types allow for more operations)

Difficult
◮ Type generativity

◮ Recursion at the type level and

◮ Recursion at the value level

◮ Incrementality of recursive definitions makes it much harder

Need for strong theoretical basis

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 108 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Introduction

Simple Modules

Advanced aspects of modules

Recursive and mixin modules

Open Existential Types
Splitting unpack (and typechecking)
Splitting pack (and typechecking)
Reduction
Double vision
Avoiding recursive types
Expressiveness

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 109 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Open Existential Types Why?

Path-based syntactic approaches
Reveal a contradiction (and a persistent tension) between apparent
simplicity and actual complexity, on both theoretical and practical levels:

◮ At first glance, they are intuitively simple, but this is only a lure...
◮ Technically they are cumbersome, with ad hoc, unintuitive corners.
◮ Practically, they may also become harder to use and heavy weight.

◮ Theoretically, type soundness and subject reduction require involved
technical machinery which does not yet explain recursive modules.

Sources of problems

◮ Type abstraction and sharing is an obvious source of difficulties.

◮ Technically, putting type components inside structures depart from
the usual approach for core languages, where expressions have (and
may depend on) types but types do not depend on expressions.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 110 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Open Existential Types How?

Most ingredients for modules are already in F:>

◮ Records and functors can model modules and functors.

◮ Subtyping at the level of types.

◮ Existential types for type abstraction

◮ What is missing is a modular treatment of type abstraction.

Can type abstraction be made modular?
◮ Avoid type components, hence path-dependent types.

◮ Use a first-class rather than a stratified approach.

Approach
◮ Start with system F with existential types.

◮ Break existential types into more atomic constructs.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 111 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

System F Core language

Core system F

M ::= x | λ(x : τ) M | M (M) | λ(α) M | M (τ)
τ ::= α | τ→ τ | ∀α.τ

Typing rules

x : τ ∈ Γ

Γ ⊢ x : τ

Γ ⊢ M : τ α /∈ Γ

Γ ⊢ λ(α) M : ∀α.τ

Γ ⊢ M : ∀α.τ0 Γ ⊢ τ

Γ ⊢ M (τ) : τ0[τ/α]

Γ ⊢ τ Γ, x : τ0 ⊢ M : τ

Γ ⊢ λ(x : τ0) M : τ0 → τ

Γ ⊢ M1 : τ2 → τ1 Γ ⊢ M2 : τ2

Γ ⊢ M1(M2) : τ1

Plus existential types

Plus records

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 112 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Into three pieces

unpack M as α, x in M′

△
=

να. let x = open 〈α〉 M in M′

Limits the
scope of α

Uses α for the
abstract type of M

Binds M to x in M′

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉113 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Into three pieces

να. let x = open 〈α〉 M in M′

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉113 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Gain in expressiveness

να. let x = D
{

open 〈α〉 M
}

in M′

M need not be at toplevel.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈3〉113 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Gain in expressiveness

να. C

{

let x = open 〈α〉 M in M′
}

α need not be hidden immediately.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈4〉113 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Gain in expressiveness

C

{

let x = open 〈α〉 M in M′
}

α need not be hidden at all in program components

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈5〉113 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Typechecking

Must forbid incorrect programs such as

να.

let x = open 〈α〉 M1 in

open 〈α〉 M2

M [α] x
X
ok

◮ There must be at most one opening with the same variable α.
◮ There may be any uses of α (after or before the opening).

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉114 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Typechecking

Evaluation contexts:

να
⊗∃α

⊗

∃α

· · ·∀α

⊕ Only one branch
will ever be taken∃α

open
∃α

· · ·
∅

open∃α · · ·
∅

⊗

∀α
· · ·∀α

· · ·∀α

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉114 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Typechecking

Nu

Γ,∃α ⊢ M : τ α /∈ ftv(τ)

Γ ⊢ να.M : τ

The typing environment keeps track of open existentials and enforces
their linear use

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉115 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Typechecking

Open

Γ ⊢ M : ∃α. τ

Γ,∃α ⊢ open 〈α〉 M : τ

Nu

Γ,∃α ⊢ M : τ α /∈ ftv(τ)

Γ ⊢ να.M : τ

The typing environment keeps track of open existentials and enforces
their linear use

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉115 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Typechecking

Open

Γ ⊢ M : ∃α. τ

Γ,∃α ⊢ open 〈α〉 M : τ

Let

Γ1 ⊢ M1 : τ1 Γ2, x : τ1 ⊢ M2 : τ2

Γ1 . Γ2 ⊢ let x = M1 in M2 : τ2
Nu

Γ,∃α ⊢ M : τ α /∈ ftv(τ)

Γ ⊢ να.M : τ

The typing environment keeps track of open existentials and enforces
their linear use with zipping.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈3〉115 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Typechecking

Open

Γ ⊢ M : ∃α. τ

Γ,∃α ⊢ open 〈α〉 M : τ

...

Γ,∀α ⊢ M′ [α] : τ′

Let

Γ1 ⊢ M1 : τ1 Γ2, x : τ1 ⊢ M2 : τ2

Γ1 . Γ2 ⊢ let x = M1 in M2 : τ2
Nu

Γ,∃α ⊢ M : τ α /∈ ftv(τ)

Γ ⊢ να.M : τ

The typing environment keeps track of open existentials and enforces
their linear use with zipping.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈4〉115 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting unpack Zipping of typing assumptions

b ::= ∃α | ∀α | x : τ | ∀(α = τ)

Zipping of two bindings ensures that every existential type
appears in exactly one of the two.

∀α . ∃α = ∃α

∃α . ∀α = ∃α

∀α . ∀α = ∀α
x : τ . x : τ = x : τ

∀(α = τ) . ∀(α = τ) = ∀(α = τ)

but ∃α . ∃α is ill-formed

Zipping extends to typing contexts in the obvious way:

∅ . ∅ = ∅ (Γ1, b1) . (Γ2, b2) = (Γ1 . Γ2), (b1 . b2)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 116 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting pack In two pieces

pack τ,M as ∃α. τ′

△
=

makes α abstract
with witness τ

converts the type of M
using the equation(s)

∃(α = τ) (M : τ′)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉117 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting pack In three pieces

pack τ,M as ∃α. τ′

△
=

closes the abstract type β

defines the open abstract type β

with internal name α and witness τ

converts the type of M

∃β. Σ 〈β〉 (α = τ) (M : τ′)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉117 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting pack Gain in expressiveness

∃β. C

{

Σ 〈β〉 (α = τ) D{ (M : τ′) }

}

The opening may be deeper under C , which sees β abstractly.

The annotation may be deeper (so shorter) at the leaves of D
.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈3〉117 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting pack Gain in expressiveness

Σ 〈β〉 (α = τ) D{ (M : τ′) }

A module with an open abstract type β.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈4〉117 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting pack Gain in expressiveness

C

{

Σ 〈β〉 (α = τ) D{ (M : τ′) }

}

A submodule with an open abstract type β.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈5〉117 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting pack Typechecking

Exists

Γ, ∃β ⊢ M : τ

Γ ⊢ ∃β.M : ∃β. τ

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉118 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting pack Typechecking

Exists

Γ, ∃β ⊢ M : τ

Γ ⊢ ∃β.M : ∃β. τ

Open

Γ ⊢ M : ∃β. τ

Γ, ∃β ⊢ open 〈β〉 M : τ

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉118 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting pack Typechecking

Sigma

Γ, ∀β , Γ′, ∀(α = τ) ⊢ M : τ′

Γ, ∃β , Γ′ ⊢ Σ 〈β〉 (α = τ)M : τ′[α← β]

Exists

Γ, ∃β ⊢ M : τ

Γ ⊢ ∃β.M : ∃β. τ

Open

Γ ⊢ M : ∃β. τ

Γ, ∃β ⊢ open 〈β〉 M : τ

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈3〉118 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Splitting pack Typechecking

Coerce

Γ ⊢ M : τ′ Γ ⊢ τ′ ≡ τ

Γ ⊢ (M : τ) : τ

Sigma

Γ, ∀β , Γ′, ∀(α = τ) ⊢ M : τ′

Γ, ∃β , Γ′ ⊢ Σ 〈β〉 (α = τ)M : τ′[α← β]

uses

Exists

Γ, ∃β ⊢ M : τ

Γ ⊢ ∃β.M : ∃β. τ

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈4〉118 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Summary

Types are unchanged (as in System F with existentials)

τ ::= α | τ→ τ | ∀α. τ | ∃α. τ

Exressions are

M ::= . . .
| ∃α.M | Σ 〈β〉 (α = τ)M | (M : τ)
| να.M | open 〈α〉 M

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 119 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Examples Abstract type

In ML:










t = int
z = 0
s = λ(x : int)x+1







:







t : ∗
z : t
s : t→ t











In Fzip:

let x =Σ 〈β〉 (α = int)

({

z = 0 ;
s = λ(x : int)x+1

}

:

{

z : α ;
s : α→ α

})

in

open 〈β〉 x

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉120 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Examples Abstract type

In ML:










t = int
z = 0
s = λ(x : int)x+1







:







t : ∗
z : t
s : t→ t











In Fzip:

let x = ∃(α = int)

({

z = 0 ;
s = λ(x : int)x+1

}

:

{

z : α ;
s : α→ α

})

in

open 〈β〉 x

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉120 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Examples Type generativity

In ML:

M1 =











t = int
z = 0
s = λ(x : int)x+1







:







t : ∗
z : t
s : t→ t











M2 =



 M :







t : ∗
z : t
s : t→ t











In Fzip:

let x = ∃(α = int)

({

z = 0 ;
s = λ(x : int)x+1

}

:

{

z : α ;
s : α→ α

})

in

let x1 = open 〈β1〉 x in

let x2 = open 〈β2〉 x in

. . .

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈3〉120 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Examples

Functors
◮ Functions must be pure (i.e. not create open abstract types)

◮ Thus, body of functors are closed abstract types

◮ that are opened after each application of the functor.

Example

let MakeSet =
Λα. λ(cmp : α→ α→ bool) ∃(β = set(α)) (. . . : set(β)) in

let s1 = open 〈β1〉 MakeSet [int] (<) in

let s2 = open 〈β2〉 MakeSet [β1] (s1.cmp) in

. . .

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 121 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Reduction

Problem (well-known)
◮ Expressions that create open abstract types can’t be

substituted.

◮ This would duplicate—hence break—the use of linear
resources.

◮ The reduct would thus be ill-typed.

Solution
◮ Extrude Σ’s whenever needed (when reduction would block).

◮ This safely enlarges the scope of identities,

◮ moving the Σ’s outside of redexes, and

◮ Allowing further reduction to proceed.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 122 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Reduction Example

let x= Σ〈β〉 (α= int) (1 : α) in {ℓ1 = x ; ℓ2 = (λ(y : β)y) x}
�

�

�(extrude)

Σ 〈β〉 (α = int) let x = (1 : α) in {ℓ1 = x ; ℓ2 = (λ(y : β)y) x}
�

�

�
(reduce)

Σ 〈β〉 (α = int)
{

ℓ1 = (1 : α) ; ℓ2 = (λ(y : β)y) (1 : α)
}

�

�

�(reduce)

Σ 〈β〉 (α = int) {ℓ1 = (1 : α) ; ℓ2 = (1 : α)}

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 123 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Reduction Results and Values

Informally
◮ Results are non erroneous expressions that cannot be reduced.
◮ Some results cannot be duplicated and are not values.
◮ Values are results that can be duplicated.

Formally

Values
v ::= u | (u : τ)
u ::= x | λ(x : τ)M | Λα.M | ∃β. Σ 〈β〉 (α = τ) v

Results
w ::= v | Σ 〈β〉 (α = τ)w

Note
◮ Abstractions λ’s and Λ’s are always values because they are pure,

i.e. typechecked in a context Γ without ∃α’s.
◮ Otherwise, impure abstractions should be treated linearly.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 124 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Reduction Call-by-value small-step reduction semantics

Elimination rules: Usual reduction rules (for λ and Λ, records) plus,

open 〈β〉 ∃α. M M[α ← β]

νβ. Σ 〈β〉 (α = τ) w w[β ← α][α← τ]

+ Extrusion rule applies for all extrusion contexts E (definition
omitted)

E
[

Σ 〈β〉 (α = τ) w
]

 Σ 〈β〉 (α = τ) E [w]

+ Propagation of coercions (uninteresting reduction rules, see sample)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 125 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Reduction Type soundness

Theorem (Subject reduction)

If Γ ⊢ M : τ and M M′, then Γ ⊢ M′ : τ.

Theorem (Progress)

If Γ ⊢ M : τ and Γ does not contain value variable bindings, then either
M is a result, or it is reducible.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 126 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Double vision

This example is rejected

let f = λ(x : β)x in Σ 〈β〉 (α = int) f (1 : α)

We do not know that the external type β in the type of f
is equal to the internal view α also equal to int.

Keep this information in the context and use it whenever needed

Sigma

Γ,∀β, Γ′,∀(α ⊳ β = τ′) ⊢ M : τ

Γ,∃β, Γ′ ⊢ Σ 〈β〉 (α = τ′)M : τ[α← β]

Sim

Γ ⊢ M : τ′ Γ ⊢ τ ⊳ τ′

Γ ⊢ M : τ

Rules for Γ ⊢ · ⊳ · are omitted—it is a congruence generated
by the equalities between internal and external names in Γ.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 127 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Avoiding recursive types Why?

Internal recursion, through openings:
let x = ∃(α = β → β)M in open 〈β〉 x

∃(α = τ)M stands for
∃γ. Σ 〈γ〉 (α = β → β)M

reduces to: open 〈β〉 ∃(α = β→ β)M
which leads to the recursive equation β = β → β.

External recursion, through open witness definitions:

{ℓ1 = Σ 〈β1〉 (α1 = β2 → β2)M1 ;
ℓ2 = Σ 〈β2〉 (α2 = β1 → β1)M2 }

already contains the recursive equations β1 = β2 → β2 and β2 = β1 → β1

Why may we wish to reject these examples?
◮ Without recursive types, their evaluation would block.

◮ They cannot be translated to System F.

◮ Implicit recursive types may hide users type errors.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 128 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Avoiding recursive types Why?

Origin of the problem
Sigma

Γ, ∀β , Γ′,∀(α ⊳ β = τ) ⊢ M : τ′

Γ, ∃β , Γ′ ⊢ Σ 〈β〉 (α = τ)M : τ′[α← β]

β may appear in τ which is later meant to be equated with β.

Solutions
1. Remove ∀β from the premise:

◮ requires that Γ′ does not depend on β either.
◮ too strong:

◮ at least requires some special case for let-bindings.
◮ some useful cases would still be eliminated.

2. Keep a more precise track of dependencies.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 129 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Avoiding recursive types How? ◮

Traditional view
◮ Γ is a mapping together with a total ordering on its domain.

Generalization
◮ Organize the context as a strict partial order, where bindings b

depends on type variable bindings ∀α or ∃α.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 130 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Avoiding recursive types How? ◭ ◮

Traditional view
◮ Γ is a mapping together with a total ordering on its domain.

Generalization
◮ Organize the context as a strict partial order.

◮ A binding b may depend on type variables bindings ∃α, ∀α, ∀(α = τ)

◮ Γ is a pair (E,≺) where E is a set of bindings ordered by ≺.
◮ We write Γ, (b ≺ D), Γ′ when

◮ dom Γ 6≺ b and b 6≺ dom Γ′ and D is the set b depends on.

Zipping of contexts is redefined
◮ (E1,≺1) . (E2,≺2) =

(

(E1 . E2), (≺1 ∪ ≺2)+
)

◮ E1 . E2 = {b1 . b2 | b1 ∈ E1, b2 ∈ E2, dom b1 = dom b2} ∪ {∃β̄}
where {∃β̄} = domE1 ∆ dom E2

(weakening to remove unnecessary dependencies)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 131 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Avoiding recursive types How? ◭ ◮

Sigma

D′ ⊆ D

Γ, (∀β � D), Γ′, (∀(α = τ′) � D′) ⊢ M : τ

Γ, (∃β � D), Γ′ ⊢ Σ 〈β〉 (α = τ′)M : τ[α← β]

In particular,

◮ Free variables of the witness type τ′ are in D′ (by well-formedness).

◮ Bindings that D′ depends on are also in D′ (by transitivity of ≺).

◮ Bindings of D′ (the witness type τ′ depends on) must be in D
(bindings β depends on).

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉132 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Avoiding recursive types How? ◭ ◮

Sigma

D′ ⊆ D

Γ, (∀β � D), Γ′, (∀(α = τ′) � D′) ⊢ M : τ

Γ, (∃β � D), Γ′ ⊢ Σ 〈β〉 (α = τ′)M : τ[α← β]

The prevents typechecking:

{ℓ1 = Σ 〈β1〉 (α1 = β2 → β2)M1 ; implies β1 ≺ β2
ℓ2 = Σ 〈β2〉 (α2 = β1 → β1)M2 } implies β2 ≺ β1

But allows typechecking:

{ℓ1 = Σ 〈β1〉 (α1 = int)M1 ; implies nothing
ℓ2 = Σ 〈β2〉 (α2 = β1 → β1)M2 } implies β2 ≺ β1

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉132 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Avoiding recursive types How? ◭ ◮

Open

Γ ⊢ M : ∃β. τ {(∃α) ∈ Γ} ∪ {(∀α) ∈ Γ} ⊆ D

Γ, (∃β � D) ⊢ open 〈β〉 M : τ

Let

{(∃α) ∈ Γ2 | (∀α) ∈ Γ1} ⊆ D

Γ1 ⊢ M1 : τ1 Γ2, (x : τ1 � D) ⊢ M2 : τ2

Γ1 . Γ2 ⊢ let x = M1 in M2 : τ2Open:
◮ Γ must not depend on β.

◮ β depends on every existential or univeral bindings in Γ.

Let:
◮ x depends on all existential bindings (∃α ∈ Γ2) that are determined

in M2 and universally used (∀α ∈ Γ1) in M1.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈1〉133 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Avoiding recursive types How? ◭ ◮

Open

Γ ⊢ M : ∃β. τ {(∃α) ∈ Γ} ∪ {(∀α) ∈ Γ} ⊆ D

Γ, (∃β � D) ⊢ open 〈β〉 M : τ

Let

{(∃α) ∈ Γ2 | (∀α) ∈ Γ1} ⊆ D

Γ1 ⊢ M1 : τ1 Γ2, (x : τ1 � D) ⊢ M2 : τ2

Γ1 . Γ2 ⊢ let x = M1 in M2 : τ2

Prevents typechecking:
let x = ∃(α = β → β)M in implies x ≺ β, since ∃β ∈ Γ2 ∧ ∀β ∈ Γ1
open 〈β〉 x requires x 6≺ β since x ∈ dom Γ

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 〈2〉133 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Avoiding recursive types Restriction to F.−
◭

Why a further restriction?
◮ Enforces abstract types to follow the scope of value variables.

◮ Programs can then be translated to System F.

◮ Dependencies reduces to well-formedness dependencies, as usual.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 134 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Avoiding recursive types Restriction to F.−

1) Replace Γ1 . Γ2 in typing rules by more restrictive versions,

Γ1 �q Γ2 for let-bindings and Γ1 / Γ2 for applications and products.

∀α �q ∃α = ∃α

∃α �q · = ∃α

∀α �q ∀α = ∀α

· / ∃α = ∃α

∃α / · = ∃α

∀α / ∀α = ∀α

◮ Side condition of rule Let becomes a tautology and can be
removed.

◮ Dependencies on rules Sigma and Open become useless
(acyclicity check cannot fail as a result of this zipping).

2) Restrict rule Sigma so that β does not depend on Γ′.

◮ Dependencies are thus reduced to well-formedness dependencies.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 135 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Expressiveness Relation to System F

Open existential types are more expressive than System F
System F is a special case, using the syntactic sugar.

Conversely, open existential types do not enforce abstract types to
follow the scope of type variables. This is useful in practice, but goes
beyond what can be done in System F.

Open existential types with more restrictive dependencies
Using more restrictive dependencies (F.−) enforces abstract types to
follow the scope of type variables:

◮ System F is still a subset of F.− (using the syntactic sugar).

◮ Pure expressions of F.− can be translated to System F such that
◮ Semantics, type abstraction, and typings are preserved
◮ β-reduction steps are preserved, but new let-reduction steps

are introduced.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 136 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Expressiveness Translation to System F

Algorithm

1. From the typing derivation, insert coercions around Σs and ∃s in
order to get Σ 〈β〉 (α = τ′) (M : τ) and ∃α. (M : τ).

2. Replace existential quantifiers by uses of pack, according to the
rule: ∃α. (M : τ) _ να. let x = M in pack α, x as ∃α. τ

3. Extrude open’s and Σ’s using let-bindings and intrude ν’s so that
they get closer to each other.

4. Recover System F constructs:
να. let x = open 〈α〉M inM′ _ unpackM as α, x inM′

να. let x = Σ 〈α〉 (α = τ0) (M : τ) in M′

_ unpack (pack τ0,M[α← τ0] as ∃α. τ) as α, x inM′

5. Finally, remove all remaining coercions.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 137 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Expressiveness Translation to System F

Extrusion of Open’s and Σs

να. let x = Qα M in M′ _ να. let y = Qα in let x = y M in M′

να. let x = M Qα in M′ _ να. let y = Qα in let x = M y in M′

Intrusion of νs
να. (Qα M) _ (να. Qα) M
να. (M Qα) _ M (να. Qα)

να. (let x = M in Qα) _ let x = M in να. Qα

Context with open existentials

Qα ::= open 〈α〉 M | Σ 〈α〉 (β = τ)M | Qα M | M Qα

| Qα [τ] | pack τ, Qα as ∃β. τ′ | νβ. Qα | Qα.ℓ
| open 〈β〉 Qα | {(ℓi = Mi)i∈I ; ℓ = Qα ; (ℓj = Mj)j∈J}
| Σ 〈β〉 (γ = τ)Qα | let x = M in Qα | let x = Qα in M

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 138 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Expressiveness Relation to System F

Reading through the Curry-Howard isomorphism for F.−

◮ The formulae are the same as in System F.

◮ The provable formulae are the same as in System F.

◮ They are more proofs in F.−, which can be assembled in mode
modular ways.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 140 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Expressiveness Adding recursion

Type level recursion
◮ Add equi-recursive types

◮ Let recursive types appear from Σ 〈β〉 (α = τ)M (by not tracking
dependencies), or better,

◮ Add an expression Σ 〈β〉 (α ≈ τ)M that behaves as Σ 〈β〉 (α = τ)M
but does not make β depend on what τ′ depends on.

Then, recursive types always originate from an ≈-form of Σ’s (and
not accidentally from the other form.

Term level recursion
◮ Allow restricted fixpoints that are guaranteed to be well-formed.

◮ Allow more fixpoints and raise an exception when ill-founded
recursion is detected at runtime.

The combination can model recursive modules

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 141 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Expressiveness Adding recursion

Example

νβ1. νβ2.
let rec A : {compare : β1 → β1 → bool; ...} =

Σ 〈β1〉 (α ≈ Leaf of int | Node of β2){
compare = λ(t1 : α) λ(t2 : α) match t1, t2 with

| Leaf i1, Leaf i2 → i2 − i1
| Node n1, Node n2 → ASet.compare(n1)(n2)
| Leaf , Node → 1 | Node , Leaf → −1

leave = λ(x1) Leave x1
...

}
and ASet : SET (β1, β2) =

open 〈β2〉 (Set.Make[β1](A))
in ...

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 142 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Summary (open existential types)

Type generativity can be explained by open existential types
◮ Standard small-step reduction semantics.

Scope extrusion is a good, fine grain explanations of type abstraction

◮ Linearity provides a good explanation of type generativity.

◮ Close connection to logic with new ways of assembling proofs.

Easy modeling of double-vision

Accommodate recursive type and value definitions

Explains modules as first-class records
◮ whose components have abstract types,

◮ but without type components!

Extension to higher-order kinds is needed but not a problem

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 143 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Summary (open existential types)

However,

◮ Sharing is by parametrization,

◮ Which does not scale up.

◮ This needs to be solved—without bringing back type components.
(on going work)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 144 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Ideas to bring back home Summary

Modules with type components
◮ Common approach to generativity with path-dependent types.

◮ Not so easy as it appears.

Open existentials keep types out of modules
◮ No need for dependent types; more intuitive; modules are records.

◮ Sharing is by parametrization. Still need support for scalability.

Mixins modules
◮ More expressive and more flexible; closer to object-oriented

languages.

◮ Need good static semantics, perhaps with open existential types.

◮ Tracking down ill-formed recursion is hard.
Should we accept some dynamic errors, here?

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 145 / 146

Introduction Simple Modules Advanced aspects Mixin modules Open Existential Types

Ideas to bring back home State of the art

Pessimistic view
◮ Despite man years of use, the state of the art is still far behind

what one could expect.

◮ There remain differences between the theory and the
implementations.

Optimistic view
◮ Modules have been an area of continuous research.

◮ Recently, there have been significant advances.

◮ There are still places and needs for new results...

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 146 / 146

References

Appendix

Answers to exercises
Bibliography

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 148 / 146

References

Answers to exercises I

Exercise 1, page 41 Both signatures are well-formed. It remains to
show that Γ ⊢ (ϕ.t : ∗) <: (ϕ.t : ∗ = ϕ.u) (1)
Γ ⊢ (ϕ.u = ϕ.t) <: (ϕ.u : ∗) (2). where Γ is ϕ.t : ∗, ϕ.u = t. (2) is by
subtyping of type definitions. (1) is by concretization of abstract types:
the premisse Γ ⊢ ϕ.t ≈ ϕ.u holds by hypothesis and commutativity of
≈.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 149 / 146

References

Answers to exercises II

Exercise 2, page 51 By induction on the definition of Γ ⊢ π : S, one
may show that π or a prefix of π is in Γ.
In Γ, type definitions are either abstract or concrete, but not
strengthened (which would be an ill-formed recursive definition).
One may then build a derivation of Γ ⊢ S/p <: S by induction on the
definition of S where the only non trivial case is for concrete type
definitions, which should then be found in the context.
(For abstract type definition, it suffices to use subtyping axiom
Γ ⊢ π : κ = π.ℓ <: π : κ.)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 150 / 146

References

Answers to exercises III

Exercise 2 (continued) By induction on the definition of Γ ⊢ π : S,
one may show that π or a prefix of π is in Γ.
In Γ, type definitions are either abstract or concrete, but not
strengthened (which would be an ill-formed recursive definition).
One may then build a derivation of Γ ⊢ S/p <: S by induction on the
definition of S where the only non trivial case is for concrete type
definitions, which should then be found in the context.
(For abstract type definition, it suffices to use subtyping axiom
Γ ⊢ π : κ = π.ℓ <: π : κ.)
Exercise 4, page 66

{u = λ(α) X.t; s = X.t}

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 151 / 146

References

Answers to exercises IV

Exercise 4 (continued) The signature {u = λ(α) X.t; s = X.t} of X.M
should avoid X. Well-formed sub-signatures are either {u : ∗ → ∗; s = ∗}
or (ϕ){u : ∗ → ∗; s = ϕ.u(τ)} for any type τ. However, each of the
latter forms are incomparable and the former is a strict subtype of
any of the latter forms.
So there would be no principal well-formed signature for this expression.

(Notice, that the signature (ϕ){u : λ(α) ϕ.s; s = ∗} is ill-formed because
field ϕ.s would be used before being defined.)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 152 / 146

References

Answers to exercises V

Exercise 5, page 94

module Apply =
functor(Z: sig module type A module type B end) →
functor(F: functor (X : Z.A) → Z.B) → functor(Y:Z.A)→ F(Y)

module Id =
functor(Z: sig module type A end) → functor(X:Z.A)→ X

module WithApply
(Apply : functor(Z: sig module type A module type B end) →
functor(F: functor (X : Z.A) → Z.B) → functor(Y:Z.A)→ Z.B) =

functor (Z : sig module type A end) →
Apply
(struct module type A = Z.A module type B = Z.A end)
(Id (struct module type A = Z.A end))

module T1 (Z : sig module type A end) = WithApply (Apply) (Z)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 153 / 146

References

Answers to exercises VI

Exercise 5 (continued)

module Apply2 =
functor(Z: sig module type A module type B end) →
functor(F: functor (X : Z.A) → Z.B) → functor(Y:Z.A)→
Apply (struct module type A = Z.A module type B = Z.B end)
(F)(Y)

module T2 (Z : sig module type A end) = WithApply (Apply) (Z)

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 154 / 146

References

Bibliography I

⊲ Derek Dreyer. Recursive type generativity. Journal of Functional
Programming, pages 433–471, 2007.

⊲ Derek Dreyer. A type system for well-founded recursion. In POPL ’04:
Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 293–305, New York, NY,
USA, 2004. ACM. ISBN 1-58113-729-X.

⊲ Derek Dreyer and Matthias Blume. Principal type schemes for modular
programs. In ESOP, number 4421 in LNCS, pages 441–457. Springer
Verlag, 2007.

⊲ Derek Dreyer and Andreas Rossberg. Mixin’ up the ml module system.
In ICFP ’08: Proceeding of the 13th ACM SIGPLAN international
conference on Functional programming, pages 307–320, New York, NY,
USA, 2008. ACM. ISBN 978-1-59593-919-7.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 155 / 146

http://www.mpi-sws.org/~dreyer/papers/dps/jfp.pdf
http://doi.acm.org/10.1145/964001.964026
http://www.springerlink.com/content/h65766004285705k/
http://doi.acm.org/10.1145/1411204.1411248

References

Bibliography II

⊲ Derek Dreyer, Karl Crary, and Robert Harper. A type system for
higher-order modules. In Proceedings of ACM SIGPLAN Symposium on
Principles of Programming Languages, pages 236–249, 2003.

⊲ Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value
setting. ACM Transactions on Programming Languages and Systems,
27(5):857–881, 2005.

⊲ Tom Hirschowitz, Xavier Leroy, and J. B. Wells. Compilation of extended
recursion in call-by-value functional languages. In International
Conference on Principles and Practice of Declarative Programming,
pages 160–171. ACM Press, 2003.

⊲ Xavier Leroy. Applicative functors and fully transparent higher-order
modules. In Proceedings of ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 142–153. ACM Press, 1995.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 156 / 146

http://www.mpi-sws.org/~dreyer/papers/recmod/main-short.pdf
http://gallium.inria.fr/~xleroy/publi/mixins-cbv-toplas.pdf
http://gallium.inria.fr/~xleroy/publi/compil-recursion.pdf
http://gallium.inria.fr/~xleroy/publi/applicative-functors.pdf

References

Bibliography III

⊲ Xavier Leroy. A modular module system. Journal of Functional
Programming, 10(3):269–303, 2000.

⊲ Xavier Leroy. Manifest types, modules, and separate compilation. In
Proceedings of ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 109–122. ACM Press, 1994.

⊲ Benôıt Montagu and Didier Rémy. Modeling abstract types in modules
with open existential types. In Proceedings of the 36th ACM
Symposium on Principles of Programming Languages (POPL’09), pages
63–74, Savannah, Georgia, USA, January 2009.

⊲ Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing Modules.
In ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI2010), January 2010.

Didier Rémy (INRIA-Rocquencourt) Modularity, Module Systems MPRI 2007-2008, 2-4-2 157 / 146

http://gallium.inria.fr/~xleroy/publi/modular-modules-jfp.pdf
http://gallium.inria.fr/~xleroy/publi/manifest-types-popl.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://research.microsoft.com/~crusso/papers/fingmodules.pdf

	Introduction
	Simple Modules
	Syntax
	Typing
	Subtyping
	Strengthening
	Type inference

	Advanced aspects of modules
	Signature definitions
	Type sharing by parametrization
	Applicative functors
	Abstract signatures
	Type Soundness

	Recursive and mixin modules
	Recursive modules
	Double vision problem
	Recursive definitions
	Mixin modules

	Open Existential Types
	Splitting unpack (and typechecking)
	Splitting pack (and typechecking)
	Reduction
	Double vision
	Avoiding recursive types
	Expressiveness

	Appendix
	Answers to exercises
	
	Bibliography

	References

