Revised version, 14 April 2008

A Logical Account of Type Generativity:

Abstract types haveopen existential types

Benoit Montagu

INRIA
Benoit.Montagu@inria.fr

Abstract

We present a variant of the explicitly-typed second-ordgymor-
phic A-calculus with primitiveopen existential typese. a collec-
tion of more atomic constructs for introduction and elintioa of
existential types. We equip the language with a call-byeamall-
step reduction semantics that enjoys the subject reduptimgperty.
We claim that open existential types model abstract typdsmaod-
ule type generativity. Our proposal can be understood agicalhy-
motivated variant of Dreyer's R where type generativity is no
more seen as a side effect. As recursive types arise ngtuvih
open existential types, even without recursion at the tiesral, we
present a technique to disable them by enriching the steiafi
environments with dependencies. The double vision proligead-
dressed and solved with the use of additional equalitiesdorrcile
the two views.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guage¥ Formal Definitions and Theory—Semantics; D.334-
gramming LanguagésLanguage Constructs and Features— Ab-
stract data types, Modules; F.3.Bopics and Meanings of Pro-
gramg: Studies of Program Constructs—Type structure; F.4.1
[Mathematical Logic and Formal LanguageMathematical Logic
—Lambda calculus and related systems.

General Terms Languages, Theory

Keywords Lambda-Calculus, Modules, Type systems, Type ab-
straction, Generativity, Existential Types, Linear typgstems,
Modularity.

1. Introduction

Modularity has always been the key to robust, manageablk, an
maintainable large software. It is even more so as the side an
complexity of software keeps increasing. Modular prograngm
requires good discipline from programmers but also googstip
from programming languages. Unsurprisingly, module systand
type systems for modules have been an area of intensivacbasaa
the programming language community for more than two dexade
The module system for the langua@élL first proposed by
MacQueen |(1984) in the mid 80's and independently improved
and simplified in the mid 90’s by Harper and Lillibridge (19%hd

[Copyright notice will appear here once ’preprint’ optiaremoved.]

Didier Rémy
INRIA
Didier.Remy@inria.fr

bylLeray (1996) is still the one in use in all dialects M., with
relatively minor differences. Abstract types, higher-@rfunctors,
and sharinga posteriorj are key ingredients of its expressiveness
and success.

However, there is still a discrepancy between, on the ond,han
the simplicity of the concepts necessary to understand aitd w
simple modular programs and on the other hand the complexity
of the theoretical systems that have been proposed to gara th
meaning and the heaviness of modular programming in sorgerlar
scale but realistic situations.

Furthermore, previous works have highlighted the diffigut
define a reduction semantics at the level of modules androircu
vented the problem by giving a semantics via a non-triviabet
ration into an internal language, thus breaking the closeespon-
dence between programs and logic.

In this paper, we preserftY (read F-zip), a variant of the
second-order polymorphig-calculus with primitiveopen existen-
tial types along with a call-by-value operational semantics, that
allows to write programs more modularly, enjoys thgbject re-
duction property and whose underlying concepts are strongly and
directly related to logic. More precisely, we decomposestaitts
for existentials into more atomic ones. We argue that thithés
key to model abstract types and generativity. Interesfirtge new
constructs irF ¥ for open existential types are very closé to Dreyer
(2007)'s RrG.

Though the notion of generativity is generally understond a
modeled in an imperative way, we show this is not necessaty an
somewhat incorrect, since this relates type abstractioevatua-
tion. We argue instead that the fundamental notion of shdve:
hind generativity can be explained in termseodtrusionof some
binding. This leads to a more direct and logical explanatibtype
generativity.

A consequence of the decomposition we operate on existentia
constructs of Systerf-s that recursive types appear naturally, even
when no recursion is available at the term-level. To avokeirth
emergence, we introduce extra structure in typing envirems for
keeping track of dependencies that are requested to bdacycl

We also introduce equations between abstract and concrete
views to solve the double vision problem that occurs in owg-sy
tem.

As a result, we demonstrate that the cumbersome notion of
path is useless in the sole purpose of type abstraction. We are
conscious, however, that paths are useful to weibenpactpro-
grams. A path system at the level of types has been introdoged
Montagu and Remy (2008) to recover this compacity. Howeter
presentation is beyond the scope of this paper and is ddfésre
another one.

Our present goal is not to increase the expressiveness of the
module language, but instead to simplify the underlyingoeqts
and to bridge the gap between the complexity of the state-of-

Revised version, 14 April 2008

the-art meta-theory of modules and the intuitive simpfiaf the
underlying mechanisms.

We think this is a necessary step towards the design of a lan-

guage with first-class modules that is conceptually econahyiet
more expressive and flexible.

The rest of the paper is organized as follows. We review previ
ous approaches to abstract types in the next section. Walirde
open existential types if and give a formal description . We
discuss related work i before concluding remarks.

2. Previous approaches to type abstraction

Existing works on modules and type abstraction can be sorted

in three categories. In earlier works, abstract types werelly
identified with existential types. However, it has beenireal in
the mid 80’s that existential types do not adequately mogjst t
abstraction. Since then, abstract types have been coedider
types whose definition has been forgotten and that are ableess

through apath, i.e. modeled by strong sums and dependent types.

More recently, Dreyer| (2007) usdihear type referencesn an
internal language to explain abstract and concrete viewty
names.

We claim that dependent types are actually too strong for-mod

eling abstract types, making the meta-theory of modulescnn
essarily involved. Instead we can use existential typese ame
“opened” them up.

We now review the three approaches to type abstraction. For

pedagogical purposes, we do not follow the chronologicdépr

2.1 Paths-based systems

Pathsare at the foundation of the majority of recent module sys-

tems [(Leroy et &ll._2007;_Milner etldl. 1997; Odersky e al. 300
They arise when a type is made abstract. Since the definifitheo
type has been forgotten, one cannot refer to ihbwit is defined,
instead one designates it lyhereit is defined: an abstract type is
referred to as a projection path from a value variable, wiictkes
types depend on values. In fact, types only depend on valie va
ables, and therefore only require a decidable fragmentéaeent
types. However, this fragment is not stable under term gukisn.
This is a serious problem for the definition of a small-stefuion
semantics. Different solutions have been proposed in thiature.
Yet, none of them is quite satisfactory. A quick review fal

Couranti(1997) designed a module system for the Coq proof as-

sistant, together with a substitution semantics. To aehthis, he
used the full power of dependent types along with the strarg n
malization property of Coq terms. This approach is not ajatilie
to general purpose languages that allow non terminatingrpros.
Lillibridgel (1997) designed a module calculus in which gath
are extended so that they are stable under value subgtitutie
managed to define a substitution semantics and to prove timelso
ness of his system, but at the expense of a substantial tathni
complexity.

2.2 Dreyer's RTG

In the purpose of explaining type abstraction and genetgatior
recursive modules and solving tleuble vision problemDreyver
(2007) emphasizes the need for declaring a type variabladédb
definition can be given.

Thus, he introduces primitives to create a type referende@n
assign a definition to them, respectivelyie « in M” introduces
a type reference in the scope &f that should be set at most once,
with the type reference updateet o := 7 in M”. Then, M and
only M will see the concrete definition for o while other paths
of the program will seex abstractly. In this way, he can handle two
visions for a given type variable: an abstract one, with@tdirgtion,
and a concrete one, equipped with a definition.

An effect system is used to track assignments of type refexen
Dreyer also gives a reduction semantics which carries ayqe
to record type assignments in an imperative manner.

His system RG is meant to be an internal language for an
elaboration procedure and, although primitives seem aatetyu
chosen, its connection with logic is, unfortunately, notiobs.

2.3 Abstract types as existential types

Much earlier| Mitchell and Plotkirl (1988) had shown thattedost
types could be understood as existential types. Howewey, dlso
noticed that existential types do not accurately model bipstrac-
tion in modules, especially the notion of generativity, fack some
modular properties.

In SystemF, existential types are introduced by theck con-
struct. Provided the term/ has some type’[« <], the expres-
sionpack (7, M) as Ja. 7’ hides the type information, called the
witnessof the existential, from the type df/ so that the resulting
type isJa. 7'.

Pack
I'EM: 7'a« 7]

I'F pack (7, M) as 3a.7’ : Ja. 7’

Existential types are eliminated by th@pack construct: pro-
vided M has typeda. 7, the expressionnpack M as o,z in M’
binds the type variable: to the witness of the existential and the
value variabler to theunpackederm M in the body ofM’. The
resulting type is the one df/’, in which o must not appear free.
The reason for this restriction is that otherwisewhich is bound
in M’, would escape its scope.

UNPACK
I'EM: Ja.1 Naz:7FM : 7

I'+ unpack M as o,z in M’ : 7'

a ¢ ftv(r))

From now on we will consider Systef-is equipped with
the above constructs, as they can be recovered as a wellRknow
syntactic sugal_(Reynolds 1983).

3. Open existential types
3.1 Atomic constructs for existential types

Leroy (19965) designed a module system and implemented it in In this section we will split off the constructs for existatttypes.

the Objective Caml compilel_(Leroy etlal. 2007), but did niveg
a direct semantics. Instead he only gaveaaslation semanticef
his system, using an untypedcalculus with records as the target,
and proved the soundness of his system.

In the context of the definition of a formal specification for

Indeed, bothpack and unpack have modularity problems, but in
different ways.

The problem withunpack is non-locality. it imposes the same
scope to the type variable and the value variable, which is
emphasized by the non-escaping conditioncoms a result, all

SML (Milner et al.11997)! Drever et All (2003) defined a module uses of the unpacked term must be anticipated. In other wiirels
type system along with a typed internal language. They défine only way to make the variabla available in the whole program

an indirect semantics of their module system through a ¢/loba
trivial elaboration phase towards their internal language proved
the soundness of the internal language.

is to put unpack early enough in the program, which is a non
local, hence non modular, program transformation. Theards
that unpack is doing too many things at the same time: open the

Revised version, 14 April 2008

existential type, bind the opened value to a variable artricethe
scope of the fresh type variable.

The problem withpack is verbosity it requires to completely
specify the resulting type, thus duplicating type inforioatin the
parts that have not been abstracted away. This can be agnoyin
when hiding only a small part of a term, whereas this term has a
very long type. This duplication happens, for instance, mieing
the type of a single field of a large record, or maybe worse,.whe
hiding some type information deeply inside a record. It isseal
by the lack of separation between the introduction of antertal
quantifier, and the description of which parts of the type nings
abstracted away under that abstract name.

In both cases, the lack ahodularityis related to the lack of
atomicity of the constructs. Therefore, we propose to split both
of them into more atomic constructs, recovering modularitile
preserving expressiveness of existential types.

To achieve the decomposition of existential types into more
atomic constructs, we first need to enrich typing environisigrith
new items.

3.1.1 Richer contexts for typing judgments

The contexts of typing judgments in Systdmare sequences of
items. An item is either a binding : = from a value variable to
a type, which is introduced while typing functions, or a w@rsal
type variableVa, which is introduced while typing polymorphic
expressions.

We augment typing environments with two new items: existen-
tial type variables to keep track of the scope of (open) abstr
types, and type definition(« = 7) to concisely mediate between
the abstract and concrete views of types. That is, typingremv
ments are as follows:

I a=¢ | T,b
b z:T |

(Environments)
(Bindings)

Vao | Y(a=71) | 3a

Wellformedness of typing environments will ensure that adable
is ever bound twice. We shall see below that existentialatdeis
have to be treated linearly. For the moment, we consideramvi
ments as sequences. Their structure will be enriched agg&a.

3.1.2 Splitting unpack

We replaceunpack with two orthogonal construct@peningand
restriction, that implemenscopeless unpackingf existential val-
ues andscope restrictiorof abstract types, respectively.

Theopeningopen [a] M expectsM to have an existential type
Ja. 7 and opensit under the namex, which is trackedin the
typing environment by the existential itefw. The rule can also
be read bottom-up, treating the itetw as alinear resource that is
consumed by the opening.

OPEN
I'EM: da.7

I',3at openfa] M : 7

The fact that, when it is read bottom-lippEN makes the environ-
ment decrease might seem unusual. Indeed, it imposes éhstith
term should not mention the type variable with which it is ope.

It follows a subtle control of scope that is already presaworks
on resourceful\-calculi: IKesner and Lengrand (2007) introduce,
for instance, an explicit weakening construct, that makesenvi-
ronment decrease and hence finely controls the scope ofableri
Interestingly, our ruld_®EN also looks dual to the usual rule of
type generalization:

GEN
I''Vak M : 1

' Aa. M : Va.1

The quantifier moves downwards from the environment to thety
whereas it happens in the opposite way in [UEEN

The restriction va. M implements the non-escaping condition
of Rule[UNPACH First, it requiresa not to appear free in the
type of M, thus enforcing a limited scope. Second, it provides
an existential resourc8« in the environment, that ought to be
consumed by somepen [«] M’ expression occurring withid/ .

Nu
I3akM: 71 a ¢ ftv(r)
'Fva. M : T

We may recovennpack as syntactic sugar:

A

unpack M as o, x in M’ va. (let x = open [o] M in M')

This makes explicit all the simultaneous operations peréat by
unpack, which turns out not to be atomic at all: first, it defines a
scope for the name: of the witness of the existential type of;
then, it opensM under the namey; finally, it binds the resulting
value toz in the remaining expressiah/’.

The main flaw ofunpack, i.e. the scope restriction for the
abstract name, is essentially captured byréwgriction construct.
However, since the scope restriction has been separatedtfre
unpack, it need not (always) be used anymore. The abstract type
« may now be introduced at the outermost level or given by the
typing context and be freely made available to the whole anog

3.1.3 Splitting pack

We replacepack with three orthogonal constructexistential in-
troduction which creates an existential typgpen witness defini-
tion, which introduces a type witness and gives it a hame,cand
ercion which determines which parts of types are to be hidden. We
present this separation in two stages: first, we separatelteed)
definition of a witness from the information of which parte ab-
stracted away; then, we split the former construct we obthinto
two pieces that introduce an existential quantifier and dsfawit-
ness, respectively.

The closed witness definitioB(a. = 7) M introduces an exis-
tential type variablex with witnessr (more precisely, the definition
V(o = 7)) in the environment while typing/, and makesy exis-
tentially bound in the resulting type.

I'Wa=71)FM: 7
'3(a=7)M : Ja.7’

Thecoercion(M :) replaces the type af/ with somecom-
patibletype 7. The compatibility relation under contekt written
=, is the smallest congruence that contains all type-dedimstioc-
curring in . A coercion is typically employed to specify where
some abstract types should be used instead of their withastee
typing of M.

COERCE
'-M:7 7 =71
r(M:7):71

The expressiveness phck is retained, since it can be provided as
the following syntactic sugar:

pack (1, M) as Jo. 7’

2 Ja=7)(M:1"

However, the description of what is being hidden can now be
separated from the action of hiding, which avoids repetitad
type information. Hence, it makes the creation of existnalues,
shorter, thus easier, and more maintainable. Indeed,atvalfor
putting the information of hiding parts of a type deeply desia
term: in the following record, some leaves have been alistlac

Revised version, 14 April 2008

away.
I« = int)
letz={lr=(1:a); bz =2}in
lety={¢1 =x; o =2x}in
{ti=y; L=y}
The corresponding Systefterm requires to repeat the type of the
whole term.

let z =
Iet:c:{&:l; (2:2}“1
lety={l1=x; lo=2x}in
{th=y; 2 =y}in
pack (int, z) as
o {ly: {1 :{lr:a; Lazint}; Lo {1 Lozint}};
Lo:{lr:{li:a; Lazint}y; o:{l1:; L2:int}}}

Moreover, whereas the information of hiding was locatedsahgle
place in theFY -term, it is duplicated in th&-term, as if each leaf
had been abstracted independently.

To complete the separation, we now spliic = 7) M again.
The existential introductiorda. M introduces an existential type
variable in the environment while typind/, and makesy existen-
tially bound in the resulting type. This is the exact coupéet of
theopen construct.

EXISTS
I''Jda+M : 7

I'tF3da.M : Ja. 7

The open witness definitio® [3] (« = 7) M introduces the
witnesst for the type variablex: similarly to what is done for
I(a = 7) M, the equatiory(a = 7) is added to the context while
typing M. In addition, an external nameis provided, in the same
way as for thepen construct. The internal nameand its equation
are only reachable internally, but the witness is denoteérpally
by the abstract type variablg The resulting type does not mention
the internal name, since it has been substituted for theredtene.
In other words, the witness definition defir@$rontier between a
concrete internal world and an abstract external ofie keep the
system sound, we ensure that a unique witness is hiddencbehin
external name, hence the use of an existential resourcetypimg
rule will be refined later to handle the double vision problem

SIGMA
V3, Ya=7)F M

LB [B(a=1)M

7'[a +]

Again, the split construcl(a. = 7) M can be recovered by the
following syntactic sugar:

Ja=7)M 2 3.2 8] (a =7) M if 3 ¢ ftv(r, M)

It is worth noting that th@pen witness definitiocorresponds to
type abstraction as it is currently done in module languagégpe
definition is kept hidden for the outer environment and a tyame
is generated so that we can refer to it without knowing itsccete
definition. Usual existential types are recovered by clgsire open
witness definitionj.e. by hiding the external name for the witness.

The following piece of program, written in adL-like syntax,
defines an abstract module of integers.

module X : sigtype tval z: tval s:t— tend =
struct

type t=intval z=0val s= A(z
end

sint)z+1

It provides the zero constamtand the successor functian The
type X.tis abstract and available in the whole program. Its coun-

| VB, Y(a=7") F Tla « 7] |

([]: 7o = 7)) <) ([1:7)

OV V(a=71)F 7
| |

™) [

% 6] (a =
1,38 rla— 4|

S8 (a=7)] rv(rlo
//ﬂ[]\¢ (riec=)

BT

Figure 1. Open existential constructs

terpart inFY is defined hereafter:

8] (= int
{z=0; s=A(z

The two pieces of code look similar, except for the fact thatgig-
nature ascription has been replaced with an open witnegstasfi
The counterpart of the signature is the type in the coerdiwte
that no type component, hence no name for the module, is deede
the counterpart oX .t is the abstract typg, which is present in the
typing context. It is available in the whole program and doet
refer to a value variable.

Notice that it is also possible to rewrite this program in two
parts, by first creating an existential term and then opeitingder
the names.

cinfz+1}: {z:a; s:a—a})

let z =

I(« = int)

{z=0; s=Xz:in)z+1}: {z:a; s:a—a})in
open [(] ©

It has essentially the same effect (in fact the latter wiiuee to the
former). It shows however that mechanisms for type abstnaeind
opening of existentials are the same.

3.1.4 Generative functors

Following Russo, generative functors are functions thaefztype

of the formVa. (11 — 36.72). In ML, generativity isimplicitly
released when the functor is applied.H?ﬁ, however, the result of
the function must bexplicitly openedbecause generativity and
evaluation are two separate notions. To get the same redhlt w
another fresh type, it suffices to open it again under anathere.

3.1.5 Open existential constructs: a summary

The different constructs introduced for open existentyples are
gathered on the diagram of Hiyy.1. It describes their effentthe
typing environment and the resulting type. To increaseabditly,

terms are not printed on the judgments.

The topmost judgment corresponds to a concrete program (of
type r[a «— 7']) with an equatior/(a = 7’) in its environment.
With the use of coercions one can mediate to a typehere the
equation has been folded and then go back to the concreteers
Then, using &, we can remove the definition from the typing
environment and use the external nafméor the witness. In this
process, the variabl@ is marked as existential and the internal
name is replaced with the external one. If the external naoes d
not occur free in the resulting type, we can remove the axiste
item from the environment, without changing the type, to thet
bottom right judgment. If this is not the case, we can close th

Revised version, 14 April 2008

The above code is a pair whose components have been abdtracte

bYb = bifb# 3o Ja ¥ Va = 3o VaY da = Ja away and the witnesses are mutually defined. If we removeyfiee t
abstractions we get the recursive equation system= 5> — [
Figure 2. Zippings of bindings. andgz = B — B,

Notice that recursive types never arise in tinpack of System-
F. Consider the following piece of code, whete andC> denote
type by transferring the existential quantifier to the typet{om contexts:

left judgment). We can go back by re-opening the existential va. Cllet & = Ci [open [a] My] in Mo]

3.1.6 Linearity to control openings and open witness If we consider this program as ampack, then the context§’; and
definitions C, are empty. Consequenthy, cannot occur free i, or Cs. By

As openings and open witness definitions use abstract naiwess g splitting unpack, however, this restriction has been waived.

by the environment, one must be careful to avoid “abstractio

capture”. as in the following (ill-typed) example. 3.3 Preventing the emergence of recursive types

_ . .) . Montagu and Remyl (2008) imposed the restriction above and s
:et f — g % EO‘ — Z]ot)og)\((tfué’-nt)f .+} ‘o —a) in forbid the use of recursive types by restraining the zipghgon-
etr= @= s texts. Although, this solution is simple and of limited eggsive-

Here, f andz result from two different openings under the same ness so that it permitted a translation of terms into Sytaerms,

name 3. Hence, f and x are assigned type§ — (3 and 3, it also precludes interesting uses of abtract types.
respectively, using theameabstract namg. However, each branch In this paper we present a more general technique to control
uses a different witness fa# (int in the case off and bool in recursive types, by enriching the structure of typing emvinents
the case oft). This yields to the unsound applicatighz, which in a somehow natural way. We no longer consider environments
evaluates td + true as sequencese. totallyordered sets, but gmartially ordered sets,

To prevent abstraction capture, it suffices tleaery names where the order relation expresses dependencies betwedings

be used in exactly one opening or open witness definitionrunde and is required to bacyclic i.e. that no binding can (transitively)
name 3. This may be achieved by treating the existential items depend on itself. This disallows the zipping of two envir@mts
of the typing environment in Anear way. Linearity can easily be when this condition could not be satisfied.

enforced in typing rules by aippingoperation that describes how More specifically, a typing environmeiitis a dag represented
typing environments of the premises must be combined to form as a pain&, <) of a finite set of binding€ and an acyclic partial
the one of the conclusion. We give in fi.2 and in this pamlgra order < on &, i.e. there exists no binding such thatb < b. If

a preliminary definition of zipping to give the intuition. Vill b < b, we sayb depends ob’. We use the following notation for
be completed irfi33. Zipping is a binary operatioft Y -) that composing and decomposing typing environments so thahgypi
proceeds by zipping individual bindings pointwise. For igdims rules look familiar:

but existential type variables, zipping requires the twarfg items Notation 1. We write T'y, (b < D),T's when no binding inl';

to be identical, as usual. The interesting case is when otied#o depends orb, andb does not depend on bindings Bf, and D
items is an existential variably: the intuition is that, in this case, s the set of bindings depends on. In particular, whéh is empty,
the other item must be the universal varialste, hence thezipper bis minimal for the dependency relation.

image. This ensures that an existential variable in the losion
can only be used up in one of the premises. Zipping can also be
explained in terms of internal and external choice: the $idg

Notation 2. We may use(b, D) to denote the binary relation
{(b,V) | ¥ € D} obtained by lifting the seD with the bind-

makes use ol will make an internal choice by giving internally ing b. .)
the witness. Therefore the other sittistconsider the choice of We write domb, dom¢, anddom” for the domains ob, £, and
the witness as external. That is why it is given the itém I" when seen as mappings.

. Definition 1 (Zipping). LetI'; andI'; be two typing environments
3.2 The appearance of recursive types of the form (&1, <1) and (&2, <2). Let < be (<1 U <2)t. If
The above idea of zipping is unfortunately too generous:akes < is acyclic, the zipping of’y and 'z, written T’y Y T'o, is
recursive types appear naturally. Indeed the decompaositian- (E1Y &2,<), where& Y & is:

pack into opening and restriction opens up the way to recursive .« (b .
! : ; 1Y ba | b1 € E1 Aba € E2 A domby = domb.}, if £ and
types, because it allows to use an abstract type variabteedab £, have the same domain.

witness has been given. Recursive types can appear thrgpgh t ; , .
P ; : N ; e &1 Y & where&ris & U {(Va) | Ba) € &2 ANa ¢
abstractionj.e. through openings or open witness definitions, in domé;} and symmetrically oS}, when £, and £ have the

two ways. d !
We callinternal recursionthe first one. It is highlighted by the same domain.
following example: ¢ undefined otherwise.
_ _ : The zipping ofT"; andI': is undefined if< is not acyclic or if
let x = I(a = M pping 1 2 3
= (=5 = f) Min open [5] © &1Y & is undefined. 0

The abstract type variable is used in a witness to definewhich

is then opened under the narieBy reducing this expression we The second item in the definition of zipping extends the emvir

ments before considering their zipping. This performs aplioit

get: weakening on each side that refines the detection of cydesilla
. open [5] Ia =5 — B) M be exemplified below in the explanation[0EEN
This leads us to the recursive equatior= 5 — (. Rules[3GMAl [OFEN and[IET introduce new dependencies to
We call external recursiorthe second way, which is hereafter keep track of cycles (see HLfj.4). We review them now.
exemplified: Unsurprisingly[3GMAl specifies the external name to have the
{6, =2 [31] (a1 = B2 — B2) M; ; same dependencies as the internal one, among which layehe (d
by =% [Ba] (a2 =1 — B1) My } pendencies of the) free type variables of the witness. Titaigemts

5 Revised version, 14 April 2008

the example of external recursion seerffiid, which we remind
below, to be well-typed:

{1 =% [p1] (a1 = B2 — B2) M1 5
by =3 [B2] (a2 =01 — Br) M2 }

The dependencg: < (3 is required to type the first component,
since the witness depends gh. Symmetrically,32 < (1. is
required to type the second component. Consequently, ppénzj
is forbidden because of the obvious cycle.

specifies that the abstract type variable (possibly) de-
pends on every type variable present in the context, sinagomet
know the witness, as opposed to the cadelGiV&l The condition
placed o_®EN is then stronger. That is why the above example
would again be rejected if the’s were replaced with “open-exists”
patterns.

By contrast, the following example is well-typed, since the
witness of the first branch does not dependjen

{61 =X [51] (Oél = int) My ;
by =13 [ﬂ2] (042 =/ —>ﬂ1)M2 }

Rewriting this piece of code with “open-exists” patternsagain
well-typed, in spite of the stronger condition thanks to
the implicit weakening in zipping: we can type the first brianc
without usingV3: in the environment (provided/; does not
mentionf,). Therefore, the requiremenf < (32 is not required in
the first branch and no cycle is detected.

Finally, [CET highlights variables that are used, hence possibly
hidden in an existential value, in the first branch of ldkteand used
in an opening in the second branch. Therefore, the valualvari
that is bound in théet must depend on these variables. These are
indeed responsible for the cycle in the example of interealrsion
seen ing3.4 and reminded below:

let x = 3(a =6 — B) M in open [[] x

The bindingV is required in the typing environment of the bound
expression, whereas the bindia@ appears in the typing environ-
ment for the body. Thus, the constraint< [is required in the
typing environment of the body, which prevents typisygen [5] z,

as Ruld®ENrequests that no binding depend Bf.

3.4 Addressing the double vision problem

Independently from the control of recursion at the type liewe
can now handle the double vision problem in a straightfodvar
way. This problem characterizes the inability to maintaitink
between the internal and external view of a given type. lpleag,
for instance, in the following term:

Jp.let f =Xz :B)BinX[B] (a=int) f (1:)

After the existential resourcg is introduced, it defineg as the
identity on 8 and then uses it under the open witness definition
3 [8] (e = int). Itis not typable, since we do not know that
and denote the same witness, hence the applicafi¢h : «) is
ill-typed.
To solve this problem, is suffices to carry the missing infarm
tion in the context:
SIGMA
I'WVo,T" Y(a<aB=7)FM : T

LB, EF2[B(a=7)M : 7[a —]

The context is enriched with a new kind of equatitfm<s=1").
Again, it says that the witness is denoted by the internal name
and, in addition, that the external nariecan be viewed under its
internal versiorw. This is realized through the use of thienilarity
relation defined in a context and written< that satisfies all the
equalities between internal and external names that aseprén

Types:

T o= a | =71 | {(i:7m)E")
| Ve.r | ot
Terms:
M = =z | Mz:7)M | MM
| letz=MinM | Aa.M | MI7]
| {(:= M)y | ML | Ja. M
| SPBlla=7)M | (M:7)
| openfa] M | va.M |
Values and results:
v = u | (u:7)
u =z | Mz:m)M | AaM
| A{=v) <"} | 3.2 (B (a=T)v
w == v | Y[PBl(a=71)w

Figure 3. Syntax: types, terms, values, and results.

the context". It is used through tHei&l rule:

Sim
'-M:7 'Fr«ar7

I'EM: T

The reader may wonder why the authors decided to use both an
external and an internal name, while they denote the saneebj
instead of using only one name. This is indeed Dieyer (2807)’
approach: a single type reference is used along with twoesctiy
it, one of them contains a definition, while the other does not

We give two reasons for handling two names and an equation
relating them: first, it corresponds to practice in recugsivodules,
where a single type component is reached through two differe
paths, which yields to the double vision problem. Then, tbe of
two names increases maintainability of programs in theesthres it
is more respectful to the notion ofterface whatever is the internal
name, the external name will always be the same. Thus, walio
apply an internal renaming without changing the type of agief
program.

4. The languageF"
4.1 Syntax

The languag€Y is based on the explicitly typed version of System-
F with records and is extended with constructsf8fl. Types and
terms are described in Fig.3.

As open existentials do not introduce new forms of typesesyp
of F¥ are type variables, arrow types, record types, univergady
and existential types. The notatiqid; : 7;)*¢'" stands for a
sequence ofi pairs, each composed of a label and a type. Type
wellformedness is defined as usual. Environment wellformesd
also takes care of acyclicity of dependencies (see appBEndlx

Terms of FY are variables, functions (whose arguments are
explicitly typed), applicationslet-bindings, type generalizations
and applications, introductions and projections of respethd the
five constructs for open existentials described beforestential
introductions, open witness definitions, coercions, opgsi and
restrictions. Record fields are paits= M of a label namée and
atermM. The label name is used to access the field externally, as
usual with records.

For conciseness, we also use the following syntactic sugar i
technical developments fatosed witness definitions

Ja=7)M 2 IB.2[8] (a=71)Mif B ¢ ftv(r, M)

Revised version, 14 April 2008

ENTAIL -REFL ENTAIL-TRANS ENTAIL -FORALL letz =X (6] (a=in) (1:a)in{ts=z; 2= (A(y: B)y) 2}

T+ ok [FTy Dol T T, (Vo< D) + ok + % [8] (o = int)
TFT N [,(Va<D)IFT) letz = (1:a)in{li =x; b= (Ay:B)y) =}
c c ~ Bl (a=int){tr=(1:0a); lz=(Ay:By) (1:a)}
ENTAIL-VAR NTAIL-EQ XL — —(1- . —(1-
T,(x:7 D)+ ok T, (¥(a = 7) <D) F ok Bl (a=m)ih =(1:a); b=(1:0)}
I(z:7<D)IFT I,(Ma=71)<D)IFT Figure 7. Example of extrusion.
ENTAIL-DBEQ

I',(V(a<B =7)<D)F ok
T,(V(@<B=71)<D)F T

defined. Then, we hay& Y IV), T + M'[x «— M] : 7’ where
" is the pair(£”, (D"; (z : 7, D)) A and (£”,D") isT".

Figure 5. Entailment of environments. Therefore, values are substitutable if we restrict themucep
terms. Conversely, every irreducible terrmist necessarilya pure
term.

We write ftv(r) (respectlvelyftv(M)) to denote the set of free type 432 Results and values
variables of a type (respectively a ternd/).

Results are well-behaved irreducible terms. Results dechalues.
4.2 Typing rules In SystemF (as in many other languages) results actually coincide
with values. However, this need not be the casé Ynresults also
include terms such as [3] (& = 7) A(z : a)z, which are well-
behaved and cannot be further reduced, but are not valuéseas

. are not pure and thus not substitutable.
First, as mentioned above, typing rules with several ty pnig- More precisely, values are defined in Elg.3. They are either

ments as premises use zipping instead of equality to rélatetyp- pre-values or coerced pre-values, where pre-values aiables,
ing environments. This is the case of rUleB@N[FT, and FEECORD functions, generalizations, records of values or exigénalues.
Typing rules must also ensure that values can be substitutednote that nested coercions are not values—they must beefurth
without breaking linearity, which is the case when the tgoén- reduced. Note also that no evaluation takes place uhder A’s.
vironment does not contain existential items. Finally, results are values preceded by a (possibly emety)isnce
of ¥'s.
The purity premises in some of the typing rules ensure that
values are pure, hence by Lemfla 1 substitutable.

Typing rules for open existentials have already been ptedein
3. The remaining typing rules are as in Systémvith two small
differences described and two new rules.

Definition 2. WhenT does not contain existential items, we say
thatT" is pure and writd” pure

This condition appears as an additional premise of typitesru

of expressions that are also values (namely, {[I&8 TaMl [GEN, Lemma 2 (Purity of values) If T' - v : 7, thenl" is pure.
and[EMPTY). Purity will be used and explained in more details
in 3. 4.3.3 Extrusions

Becausd BEN makes the environment decrease (if it is read \a)yes are substitutable, but some results are not valaesely a
bottom-up), the property of weakening i@t provable in all its sequence af’s prefixing a value. How can we handle these results,

generality: one can only weaken a typing judgment with & non- \yhen they ought to be substituted, without breaking lirtgarOur

linear item that does not depend on linear items (and does notgqytion is to extrude thE’s just enougtto expose and perform the
create cycles). This restriction impedes simple but usgfogram next reduction step.

transformations such &st-expansions. To get rid of this limitation, For example, consider the reduction steps orlFig.7. Thiiinit
we add[VEAKEN to the type system. This rule is based on the gypression is a let-binding of the foriet = = w in M wherew is
entailment relation on environments described in[fFig.5aits one the result forms [3] (a = int) (1 : «). Hence, the next expected
can forget items of an environment, as long as they are neatin aqyction step is the substitution affor « in M. However, since

and they do not break dependencies. , x occurs twice inM/, this would duplicate the opening appearing in
Finally, [S] makes use of the similarity relation to present an ; preaking the linear use af. The solution is to firsextrudethe
abstract type variable under its internal concrete view. 3 binding outside of the let-binding, so that the expressioaril
to = becomes the substitutable value fofin: o). However, by
4.3 Reduction semantics enlarging the scope of, we have putM in its scope, in which

The languageY is equipped with a small-step call-by-value re- the external namg occurs. Thanks A can be viewed as.

duction semantics. We begin with important remarks abobssu ~ 1hen, we may perform let-reduction safely and further rexitie

tutability, then define and explain values, and finally diéscthe redex that has been created. o
reduction steps. More generally, the reduction semantics will be set so that

can always be extruded out of redex forms.

_— . Openings also introduce linear items into the environmek a
4.3.1 Substitution and purity . . o ~ thus preclude substitution. Note however that they arédhaepart
Some termgannotbe safely substituted, since substitution may vi- of values nor of results, because they can be eliminatedediycr

olate the linear treatment of openings and open witnessitiefis. tion, an openingpen[3] M will eventually lead to an “open-exists”
It turns out thatpure terms, i.e. terms that are typable in a pure patternopen 3] 3a.. M. This combination just performs a transfer
environment, behave well with respect to substitution: of an existential resource from the inner nam the outer ones,

Lemma 1 (Substitution lemma) Assume that" - M : 7 and
I, (z:7<D),T" + M : 7" wherelis pure andl’ Y T is well TR R2 = {(z,9) | (@R1y Ay € domR2) V (3z,2R1z A zRay)}

7 Revised version, 14 April 2008

VAR LAM APP
T pure T F ok D(x:m1<D)F M : 12 T pure WM :m9—T1 Tob My : 1
'tz : I'(x) TEXx:m)M : 11— 72 Ty YoM My : 7
LET
{a] Ba) ez and(Va) e I'1} C D GEN INST
WM 71 Do, (x:11<D)F Mz : 7 I,(Va<D)F M : 7 T pure T M : Va7 T+ rwf
TiYTokletx =My in M : 72 ' Aa. M : Va.T1 F'FMIr]: 7o« 7]
EMPTY RECORD PROJ .
I'+ok T pure Vielmn, TikE M; @ 7 Vi, g, i #J =L # L DEM:{(6:m) <"} 1<k<n
rE{:{} Y- YTn k- {(&-:Mi)ia“”} : {4 :Ti)iel”n} ' Mty : 7
SIGMA
EXISTS COERCE D'\ ({8} UdomI’) C D
I Ga<xD)FM : 7 re=M:7 rer'=7 I,(v8<D),I',(V(a<xB=7)<D)FM : 7
't3a.M: Ja.1 r-(M:7):7 I,E<D),I'FE[Bl(a=7)M : 7[a « f]
Nu
OPEN a ¢ ftv(r) WEAKEN Sim
't M: Ja.T D = domI’ I (Ga<D)FM : 7 '-M:r IFT re=m:7 'krart
I, (3a<D)Fopenfa] M : T Ptva.M: T I'-M: 7 '=M:r
Figure 4. Typing rules
let z =vin M ~~ Mz < v] REDEX-LET
Mz :T)M)v ~ letz=vin M REDEX-APP
(Aa. M) [1] ~ Mla 7] REDEX-INST
{(l; = 0) "}l ~ v if1<k<n REDEX-PROJ
open [8] Ja. M ~~ Mo «—] REDEX-OPEN
EXPl(a=1)w] ~ Z[B] (a=71)Ew] if a ¢ fiv(E) and({a, B} U ftv(7)) N et E) = 0 EXTRUDE

Y [A1] (e =71) B [Ba] (a2 = T2)w ~» X [Bi] (an = 71) T [Ba] (2 = 2[on — 1)) wif a1 € ftv(rz)

(AMz:m)M):11 = 12)v ~ (A :70)M) (Vv:70) : T2)
(u: Va. T[] ~ (u[r]: T'a 7))
(w: {(; = m) "Dl ~ (uly :) if1<k<n
open [a] (u : Ja. 7) ~ (open [a] u: T)

((w:m):7") ~ (u:7")

vB.X[Bl(a=1)w ~ vB.X 0] (a = 7)w[B « a] if B € ftv(w)
vB.X[Bl(a=T)w ~ vp.] (o =T1)wle — 7]if o € ftv(w) andB ¢ ftv(w)
vB.X[Bl(a=1)w ~ wif a, 8 ¢ ftv(w)

E == [| EM | ME | leez=FEinM | E[r] | {(ti=
| EfL | Ja.E | Z[Bl(a=7)E | (E:7) | open[a] E va.E
et([)) = 0 oS 4] (a = 7) E) = {a, B} U eME)
etJa. E) etME M) etMM E) etfletx=FEin M)
et (va. E) } ={a}Uet(E) eME[r]) eMEL) e((E:T))
et\/(open [a] E) et\/({(fl — Mi)zel.k ; £k+l =F; (éz — Mi)z€k+2.4n})

SIGMA-SIGMA

COERCEAPP
COERCEINST
COERCEPROJ
COERCEOPEN
COERCECOERCE

ERASE-NU-SIGMA 1
ERASE-NU-SIGMA 2
ERASE-NU-SIGMA3

Mi)iel”k : €k+1 — E; (& — Mi)i€k+2”n}
|

} = et(E)

Figure 6. Reduction rules

Revised version, 14 April 2008

as demonstrated by the following derivation:
I',Ja + M T
[da. M : da.T

I',38 + open [8] Ja. M :
Therefore, the patteropen [3] Ja. M can be simply eliminated

through an appropriate renaming from the internal name & th

external one into the term/[a < []. This way, reduction makes
the bottom-left cycle of Fiffl1 vanish.

(OPEN

Tla «— f]

4.3.4 Reduction

The semantics dfY is given by a call-by-value reduction strategy,
described by a small-step reduction relation. The ordewvafua-
tion is left unspecified everywhere but &n-bindings. By contrast
having a call-by-value strategy and a weak-reduction ieress.

Evaluation contexts are described in Elg.6. Note that, as op
posed ta_Dreyei (2007), evaluation also takes place undsteex
tial bindings. We define thexposed type variablesf a contextF,
written et E), that are either binding type variables or type vari-
ables that are carried by an opening or an open witness definit
A one-step reduction is the application of a reduction rnleame
evaluation context. The reduction relation is the tramsittlosure
of the one-step reduction relation. Reduction steps atedor four
groups.

The main group of rules describe the contraction of redekes.
let-reduction, theg-reduction, the reduction of type applications
and the record projection are as usual. The last rule of tloigmis
the reduction of the “open-exists” pattern explained abdlatice
that type substitution is a partial function on terms: fostance,
(open [B] M)[B < 7] is not defined. The type system ensures type
substitution is always performed when it is well-defined.

The second group of rules implement the extrusion3ts
through every other construEIXERUDHpermits extrusion through
evaluation contexts, provided this is valid with respect¢opes of
type variables. To make it possible for tWis to commute, rule
[SIGMA-SIGMAlsubstitutes the definition of the outérto eliminate
dependencies.

The third group of reduction rules keep track of coercions du
ing reduction, as exemplified by RUIEQERCEAPHE Notice that
nested coercions are ignored, the outer one taking prigRtyle
[COERCECOERCH.

Finally, the fourth group is responsible for the erasureseof
stricted open witness definitiolSRESE-NU-SIGMA I replaces the
external name with the internal ofieRESE-NU-SIGMAJ replaces
the type variable of a witness with the witness: note thatstimae
substitution occurs in Systefwhile unpack-ing apack-ed term.
Finally,[ERASEENU-SIGMA J really erases the restricted definition.

4.4 Type soundness

Type soundness results from the combination of the subgeitta-
tion and progress properties.

The subject reduction proof is, as usual, mainly built on the
substitution lemma (Lemnid 1) and the instantiation lemmnidchy
comes in two forms:

Lemma 3 (Instantiation by equation)Assume that" - ~wf and
I, (Va<D), T + M : 7" andftv(r) C D. Then the judgment
I, (V(a=71)<D), "+ M : 7" holds.

Lemma 4 (Instantiation by substitution)Assume that’, (V(« =

7)< D), I v M : 7. Then,M[a « 7] is well-defined and
LT F Mo « 7] @ 7@ < 7] whereT” is the pair
(E'a 7], (D';V(a=7),D))) and (£, D) isT".

The proof of subject reduction itself is not really inforrvat,
but it is particularly interesting that the proof is abselytstandard

and almost straightforward, as this is not usually the casether
approaches to modules with generativity.

Proposition 1 (Subject reduction) if ' = M : 7 andM ~ M’,
then - M’ : .

This property is proved by induction on the reduction. Inesrd
to simplify case analysis, we first show that typing derivasi can
be put in a canonical form, where successive applicationsle$
WEAKEN andSmMl have been fused.

Proposition 2 (Progress) If ' = M : 7 andI" does not contain
value variable bindings, then either M is a result, or it islaeible.

Progress is proved by induction on the typing derivatione Th
side condition thal' does not contain any value variable is as usual.
However, we cannot require the more restrictive hypothésisl’
be empty as evaluation takes place under existential digaatand
v binders. Moreover, this allows to consider the reductiooén
programs,i.e. programs with free type variables. This is the case
for programs with abstract types, which come from unretdc
openings or open witness definitions. This closely corredpdo
ML programs composed of modules with abstract types.

5. Related work

Russb [(2003) justifies the meaninglessness of paths for lemodu
types, by interpreting modules and signatures into semabjects
with SystemF types. He also uses existential quantifiers to track
type generativity. It seems however that his existentipksyare
implicitly opened and automatically extruded. Unfortunately, the
dynamic semantics of semantic objects is not described.

In the context of run-time type inspection, Rossberg (2003)
introduces\y, a version of Systenf-with a construct to define
abstract types and a mechanism of directed coercions. disaab
types can be automatically extruded to allow sharper typdyais,
and are thus close to ot binder. His coercions resemble ours,
though ours are symmetric, because they never cross thractist
barrier. Although both systems seem kindred in spirit, tlaeg
subtly different, because they have been designed for difiezent
purposes: in particular\y is only partially related to traditional
existential types, since parametricity is purposely \tieda

Drever (2007) defines s to deal with type generativity in the
context of recursive modules. He introdudgpe referencewhich
can be written at most once. The creation of a type referernite w
“new « in M" introduces a type variable in the scope f that
should be treated as a resource that can be set at most otice, wi
his type reference updateet o := 7 in M”. Then, M and only
M will see the concrete definition for « while other paths of the
program will seex abstractly.

Technically,the treatment of these linear resources differ sig-
nificantly from ours: his semantics employs a type store ta@ho
static but imperative type reference updates, whereas steuge
extrusions of bhinders. To a limited extent, these two approaches
might be related by seeing our extrusion as a local treatrobnt
his type store, as has been proposed for value referencisigen
1987). Dreyer uses an effect type system to guarantee th@emi
ness of writing, which exposes the evaluation order in thenty
rules of RrG, moving away from a logical specification, whereas
we usezipping of contexts—a symmetric operation—to enforce
sound openings and maintain a close correspondence wiit log
Intuitively, we think of existential values as generating a fresh type
when opened, while he sees them as functions in “destinpties-
ing style” (Dp9).

Despite these strong technical differences, the two systawe
similar constructs: therlew” primitive is similar to ourv binder;
the “set a := 7 in M”is related to theZ [(& = 7) M construct.
Note the use of a single type name here (as mentiongd4).

Revised version, 14 April 2008

The two systems differs a little more in other constructs. In

RTG, the creation of aimpurefunction of typer; o, T2, whose
body defines a type variable is always prefixed by the Bs
construct, namely the generalization by a writable typdade
Aa T K. M. The former is useful to write typical examples of
recursive modules and allow their separate compilatiorwéler,
this construct taken alone would have to be treated lingaitiych
would require the introduction of linearity in types, and wlad
raise type wellformedness issues with respect to type isutish.
Hence, the two constructs are combined into a single forris It
said that a term with typéla | K.7 can be understood as a

Dps function of typeVa 1 K.() 2L, . In other words, an
existential value is a term where the assignment for the esgn
is frozen. This implies, however, that the body of a€function,
hence the body of an existential termist evaluated. One could
argue that it would suffice to predefine the body witletabinding,
so that it is evaluated, but this is not always feasible sithee
body can depend on the type variableBy contrastFY disallows
the definition of impure functions, but the existential attuction
Ja. M corresponds to Re's type variable generalizationa 1
K. M taken alone. However, evaluatiatoestake place under
existential quantifiers iff¥.

The approach followed in R treats type abstraction as a side
effect and therefore correlates type abstraction withuatin. To
our point of view, the two must be separated, a&nfddemonstrates
that this is achievable.

RTG handles aricher type algebra thah: the support of higher
order as well as recursive typesh is planned.

In a previous work, Montagu and Remy (2008) define a weaker
version of F¥. They point out the inherent presence of type re-
cursion. They manage to disable recursive types with aicéetn
of the zipping operator thus avoiding explicit dependesiciehey
take advantage of this restriction to define a type and saosant
preserving translation to Systef-As the transformation is non
local and performdet-expansions, they show th&t’ allows for
programming more modularly than SystémThe current version
is an extension of the former presentation where constaretfur-
ther decomposed, the double vision problem is handled, e+
sion is tracked more precisely via explicit dependencies.

In a second stage, they equip their language with a pathrayste
at the level of types. They claim this is a necessary compaieen
write compactprograms, that is completely orthogonal to type ab-
straction, and would also benefit to SystémTheir path system
can be added unchanged to this extended versidf'ofprovid-
ing the complementary but necessary ingredient to progratim w
modules.

Conclusive remarks

We definedFY, a variant of explicitly-typed Systerf-with prim-
itive open existential typethat generalize the usual notion of
(closed) existential types by splitting their creation &tichination
into more atomic constructs. The subject reduction and ressy
theorems hold foFY and have routine proofs.

We showed how openings of existential values and open wit-
ness definitions tightly correspond to type abstraction genkra-
tivity in modules. Moreover, we gave a solution to the douwlid#on
problem that integrates smoothly with this system. In spftéhe
inherent presence of recursive types, we managed to detg o
bid them by enriching typing environments to track depedten
More importantly, we highlighted that type abstraction gasher-
ativity should and carbe separated from evaluation, and need
be explained as a side effect. Instead, the mechanisstaision
plays a central role.

10

We believe thaFY is promising as the core of a programming
language with first-class modules. Thare simplicityof the no-
tionsFY is based on is its best asset.

We purposely limited the expressivenesdgéfto the minimum
that permits programming with modules in thMd_-like style, di-
rectly. Concentrating on the core significantly helped us@ad-
ing the foundations of type generativity. The integratiéyeneral
purpose features such as recursive types, higher-ordes typlue
references or recursion, still requires some work.

The addition of recursive type equations and their conasphe-
cially, is currently under work and necessitate some deadjast-
ments: the problem is to generalize iso-recursive typeswéeur-
sion is split across module boundaries (external type ston). Re-
cursive type equations are required to enable programmitig-w
and hopefully provide a simpler foundations for—recursined-
ules and mixin modules.

Recursion (that is possibly ill-founded) can be added thhou
the use of a classical fixpoint combinator: if restrictedtogoterms,
the soundness is straightforward. It is also possible te th& fix-
point of impure terms, but one should ensure extrusion cacgad
across recursion. This is achievable by syntactic regirist

Higher-order types are motivated by Russo’s work on modelin
applicative functors.

We also limitedFY to the definition opurefunctions to keep the
system simple enough: impure functions would indeed nedxto
treated linearly. Yet, this extension is worth consideriiigvould
make the system more canonical and would correlate furgtion
with contexts as itis usually the case. For instance we aadover
let-binding as a derived construct. In addition, it would permi
to re-explore the duality between existentials and unalsrghat
is already visible in the typing rules. We also believe thaear
types can be integrated to the system by a light modificatidheo
zipping operator and of the notion of purity.

This work realizes the first half of our project of defining a
module language with simple and logical foundations. ldg&&
misses a significant element to be considered as a scalallle mo
ule language: gath systemmust complete it, that would per-
mit to write compact programs and overcome the diamond itnpor
problem. This second half, already briefly introduced in arlier
work (Montagu and Renty 2008), will be developed indepetigen
in another paper.

Of course, some form of type inference will eventually be
needed in a real programming language based 6nAn easy
solution is to stratify the type system—ijust for the purposéype
inference. We could infelL-like types for the base level and re-
quire explicit type information for the module level, as fiotL.
Another more ambitious direction is to use a form of partjglet
inference with first-class polymorphism.

Acknowledgments

The authors would like to thank Paul-André Mellies andrigais
Pottier for fruitful discussions, as well as anonymous neds for
useful remarks on an earlier version of this paper.

References

Luca Cardelli and Xavier Leroy. Abstract types and the dotation.
In M. Broy and C. B. Jones, editor&roceedings IFIP TC2 working
conference on programming concepts and methgdges 479-504.
North-Holland, 1990. Also available as research reporEB6C Systems
Research Center.

Judicaél Courant. An applicative module calculusTheory and Practice
of Software Development 9Zecture Notes in Computer Science, pages
622-636, Lille, France, April 1997. Springer-Verlag.

Revised version, 14 April 2008

Derek Dreyer. Recursive type generativifppurnal of Functional Program-
ming, pages 433—-471, 2007.

Derek Dreyer, Karl Crary, and Robert Harper. A type systemhigher-
order modules. 2003 ACM SIGPLAN Symposium on Principles of
Programming Language2003.

Matthias Felleisen.The Calculi of Lambda-v-CS Conversion: A Syntactic
Theory of Control and State in Imperative Higher-Order Raoigming
Languages PhD thesis, Indiana University, 1987.

Robert Harper and Mark Lillibridge. A type-theoretic appoh to higher-
order modules with sharing. roceedings of the 21st ACM SIGPLAN-
SIGACT symposium on Principles of programming languagegies
123-137, New York, NY, USA, 1994. ACM. ISBN 0-89791-636-@i:d
http://doi.acm.org/10.1145/174675.176927.

Delia Kesner and Stéphane Lengrand. Resource operatotaniida-
calculus.Information and Computatiqr205(4):419-473, 2007.

Xavier Leroy. A syntactic theory of type generativity anchehg. Journal
of Functional Programming6(5):667—698, 1996.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didienfggand Jérdme
Vouillon. The Objective Caml system release 3.INRIA, May 2007.

Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Mod-
ule SystemsPhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, May 1997.

David MacQueen. Modules for standard ML. Rroceedings of the
ACM Symposium on LISP and functional programmipgges 198—
207, New York, NY, USA, 1984. ACM. ISBN 0-89791-142-3. doi:
http://doi.acm.org/10.1145/800055.802036.

Robin Milner, Mads Tofte, Robert Harper, and David MacQue€eFrhe
Definition of Standard ML (Revisedfhe MIT Press, May 1997.

John C. Mitchell and Gordon D. Plotkin. Abstract types haxistential
type. ACM Trans. Program. Lang. SysfL0(3):470-502, 1988. ISSN
0164-0925.

Benoit Montagu and Didier Remy. Towards a simpler accafimodules
and generativity: Abstract types ha@penexistential types. Available
electronically fromhttp://gallium.inria.fr/~remy/modules/,
March 2008.

Martin Odersky, Vincent Cremet, Christine Rockl, and Mas Zenger.
A nominal theory of objects with dependent types. Froceedings of
ECOOR 2003.

John C. Reynolds. Types, abstraction and parametric paolyism. In
Information Processing 8pages 513-523. Elsevier Science, 1983.

Andreas Rossberg. Generativity and dynamic opacity fotratistypes. In
5th ACM-SIGPLAN International Conference on Principlesl &rac-
tice of Declarative ProgrammindJppsala, Sweden, September 2003.

Claudio V. Russo. Types for modulesElectronic Notes in Theoretical
Computer Sciencé0, January 2003.

A. Judgments
A.1 Wellformed environments

OK-FORALL
OK-EMPTY 'ok DCdoml
ek ok T, (Vo< D) I ok
OK-EXISTS OK-VAR
T ok D C domI’ I+ rwf ftv(r) € D C domI’

I, (3a<D) + ok I,(x:7<D)F ok

Ok-EQ

'+ 7wf ftv(7) € D C domI’
I',(V(a=7)<D) I ok

Ok-DBEQ

I',(V(a=7)<D) I ok
I, (V(a<B=7)<DW{B}) I ok

11

A.2 Wellformed types

WEF-VAR WEF-ARROW
'+ ok a € domr T+ 7 owf T'F mpwf
T'F awf 71 — mwf
WF-RECORD WE-EMPTY
Vi€ l.n, ' 7 wf VZ7‘],’L7£]:>€L75£J T+ ok
TH{(6:m) €t "y wi IE {Jwf
WEF-FORALL WEF-EXISTS
T, (Vo< D) 7wf ', (3a<D)F 7wf
T+ Vo. 7 wf 'k Ja. 7 wf
A.3 Compatible types
EQ-REFL
T'F ok a € dom!I’
I'Fa=«a
EQ-EQ
kok V(a=r1)el'VV(a<«f=1)el
I'Fa=T1
EQ-ARROW EQ-EMPTY
rrn=mn TFmr=m '+ ok
FkFr—>m=r — 7 r-={}=1{}

EQ-RECORD

Vielm, I'Frmi=1]

Vi i £ § = A L

DF{(l)™y = {0 7)€"}

EQ-FORALL

I,(Va<D)Fr=71

EQ-EXISTS
I'Ga<D)Fr=71

I'FVa.r=VYo. 1’

I'F3a.7=3a.7

EQ-Sym EQ-TRANS
r+r'=r T'Fr=mn I'Fr=m
THr=7 I'kFr=13
A.4 Similar types
SIM-REFL Sim-DBEQ
' ok a € domI’ I'tok V(a<«g=1)el
'Fa<a 'Fa<p
SIM-ARROW SIM-EMPTY
F|—7'1<17'{ F|—7'2<17'2/ T+ ok
PEr— 1 a1 — ={} < {}

SIM-RECORD
Vielmn, I'tn

arT] Vi, 5,0 # 5= £ # 4,

'k {(62 . Ti)iEL‘"} 4 {(Zz . Til)iel.xn}

SIM-FORALL

I,(Va<D)F71 a1

SIM-EXISTS
I'Ga<D)kFr a7

I'+Va. 7 <aVa. 7’

't 3a.7 < Ja.7’

SIM-TRANS
I'tm <7 'k a3
I }—T1 < 73

Revised version, 14 April 2008

http://gallium.inria.fr/~remy/modules/

	Introduction
	Previous approaches to type abstraction
	Paths-based systems
	Dreyer's Rtg
	Abstract types as existential types

	Open existential types
	Atomic constructs for existential types
	Richer contexts for typing judgments
	Splitting unpack
	Splitting pack
	Generative functors
	Open existential constructs: a summary
	Linearity to control openings and open witness definitions

	The appearance of recursive types
	Preventing the emergence of recursive types
	Addressing the double vision problem

	The language Fzip
	Syntax
	Typing rules
	Reduction semantics
	Substitution and purity
	Results and values
	Extrusions
	Reduction

	Type soundness

	Related work
	Judgments
	Wellformed environments
	Wellformed types
	Compatible types
	Similar types

