
Revised version, 14 April 2008

A Logical Account of Type Generativity:
Abstract types haveopen existential types

Benoı̂t Montagu
INRIA

Benoit.Montagu@inria.fr

Didier Rémy
INRIA

Didier.Remy@inria.fr

Abstract
We present a variant of the explicitly-typed second-order polymor-
phic λ-calculus with primitiveopen existential types, i.e. a collec-
tion of more atomic constructs for introduction and elimination of
existential types. We equip the language with a call-by-value small-
step reduction semantics that enjoys the subject reductionproperty.
We claim that open existential types model abstract types and mod-
ule type generativity. Our proposal can be understood as a logically-
motivated variant of Dreyer’s RTG where type generativity is no
more seen as a side effect. As recursive types arise naturally with
open existential types, even without recursion at the term-level, we
present a technique to disable them by enriching the structure of
environments with dependencies. The double vision problemis ad-
dressed and solved with the use of additional equalities to reconcile
the two views.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features— Ab-
stract data types, Modules; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs—Type structure; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical Logic
—Lambda calculus and related systems.

General Terms Languages, Theory

Keywords Lambda-Calculus, Modules, Type systems, Type ab-
straction, Generativity, Existential Types, Linear type systems,
Modularity.

1. Introduction
Modularity has always been the key to robust, manageable, and
maintainable large software. It is even more so as the size and
complexity of software keeps increasing. Modular programming
requires good discipline from programmers but also good support
from programming languages. Unsurprisingly, module systems and
type systems for modules have been an area of intensive research in
the programming language community for more than two decades.

The module system for the languageML first proposed by
MacQueen (1984) in the mid 80’s and independently improved
and simplified in the mid 90’s by Harper and Lillibridge (1994) and

[Copyright notice will appear here once ’preprint’ option is removed.]

by Leroy (1996) is still the one in use in all dialects ofML, with
relatively minor differences. Abstract types, higher-order functors,
and sharinga posteriori, are key ingredients of its expressiveness
and success.

However, there is still a discrepancy between, on the one hand,
the simplicity of the concepts necessary to understand and write
simple modular programs and on the other hand the complexity
of the theoretical systems that have been proposed to give them a
meaning and the heaviness of modular programming in some larger
scale but realistic situations.

Furthermore, previous works have highlighted the difficulty to
define a reduction semantics at the level of modules and circum-
vented the problem by giving a semantics via a non-trivial elabo-
ration into an internal language, thus breaking the close correspon-
dence between programs and logic.

In this paper, we presentF. (read F-zip), a variant of the
second-order polymorphicλ-calculus with primitiveopen existen-
tial types, along with a call-by-value operational semantics, that
allows to write programs more modularly, enjoys thesubject re-
duction property, and whose underlying concepts are strongly and
directly related to logic. More precisely, we decompose constructs
for existentials into more atomic ones. We argue that this isthe
key to model abstract types and generativity. Interestingly, the new
constructs inF. for open existential types are very close to Dreyer
(2007)’s RTG.

Though the notion of generativity is generally understood and
modeled in an imperative way, we show this is not necessary and
somewhat incorrect, since this relates type abstraction toevalua-
tion. We argue instead that the fundamental notion of sharing be-
hind generativity can be explained in terms ofextrusionof some
binding. This leads to a more direct and logical explanationof type
generativity.

A consequence of the decomposition we operate on existential
constructs of System-F is that recursive types appear naturally, even
when no recursion is available at the term-level. To avoid their
emergence, we introduce extra structure in typing environments for
keeping track of dependencies that are requested to be acyclic.

We also introduce equations between abstract and concrete
views to solve the double vision problem that occurs in our sys-
tem.

As a result, we demonstrate that the cumbersome notion of
path is useless in the sole purpose of type abstraction. We are
conscious, however, that paths are useful to writecompactpro-
grams. A path system at the level of types has been introducedby
Montagu and Rémy (2008) to recover this compacity. However, its
presentation is beyond the scope of this paper and is deferred to
another one.

Our present goal is not to increase the expressiveness of the
module language, but instead to simplify the underlying concepts
and to bridge the gap between the complexity of the state-of-

1 Revised version, 14 April 2008

the-art meta-theory of modules and the intuitive simplicity of the
underlying mechanisms.

We think this is a necessary step towards the design of a lan-
guage with first-class modules that is conceptually economical yet
more expressive and flexible.

The rest of the paper is organized as follows. We review previ-
ous approaches to abstract types in the next section. We introduce
open existential types in§3 and give a formal description in§4. We
discuss related work in§5 before concluding remarks.

2. Previous approaches to type abstraction
Existing works on modules and type abstraction can be sorted
in three categories. In earlier works, abstract types were usually
identified with existential types. However, it has been realized in
the mid 80’s that existential types do not adequately model type
abstraction. Since then, abstract types have been considered as
types whose definition has been forgotten and that are accessible
through apath, i.e. modeled by strong sums and dependent types.
More recently, Dreyer (2007) usedlinear type referencesin an
internal language to explain abstract and concrete views oftype
names.

We claim that dependent types are actually too strong for mod-
eling abstract types, making the meta-theory of modules unnec-
essarily involved. Instead we can use existential types, once we
“opened” them up.

We now review the three approaches to type abstraction. For
pedagogical purposes, we do not follow the chronological order.

2.1 Paths-based systems

Pathsare at the foundation of the majority of recent module sys-
tems (Leroy et al. 2007; Milner et al. 1997; Odersky et al. 2003).
They arise when a type is made abstract. Since the definition of the
type has been forgotten, one cannot refer to it byhow it is defined,
instead one designates it bywhereit is defined: an abstract type is
referred to as a projection path from a value variable, whichmakes
types depend on values. In fact, types only depend on value vari-
ables, and therefore only require a decidable fragment of dependent
types. However, this fragment is not stable under term substitution.
This is a serious problem for the definition of a small-step reduction
semantics. Different solutions have been proposed in the literature.
Yet, none of them is quite satisfactory. A quick review follows.

Courant (1997) designed a module system for the Coq proof as-
sistant, together with a substitution semantics. To achieve this, he
used the full power of dependent types along with the strong nor-
malization property of Coq terms. This approach is not applicable
to general purpose languages that allow non terminating programs.

Lillibridge (1997) designed a module calculus in which paths
are extended so that they are stable under value substitution. He
managed to define a substitution semantics and to prove the sound-
ness of his system, but at the expense of a substantial technical
complexity.

Leroy (1996) designed a module system and implemented it in
the Objective Caml compiler (Leroy et al. 2007), but did not give
a direct semantics. Instead he only gave atranslation semanticsof
his system, using an untypedλ-calculus with records as the target,
and proved the soundness of his system.

In the context of the definition of a formal specification for
SML (Milner et al. 1997), Dreyer et al. (2003) defined a module
type system along with a typed internal language. They defined
an indirect semantics of their module system through a global non
trivial elaboration phase towards their internal languageand proved
the soundness of the internal language.

2.2 Dreyer’s RTG

In the purpose of explaining type abstraction and generativity for
recursive modules and solving thedouble vision problem, Dreyer
(2007) emphasizes the need for declaring a type variable before its
definition can be given.

Thus, he introduces primitives to create a type reference and to
assign a definition to them, respectively: “new α in M ” introduces
a type reference in the scope ofM that should be set at most once,
with the type reference update “set α := τ in M ”. Then,M and
only M will see the concrete definitionτ for α while other paths
of the program will seeα abstractly. In this way, he can handle two
visions for a given type variable: an abstract one, without definition,
and a concrete one, equipped with a definition.

An effect system is used to track assignments of type references.
Dreyer also gives a reduction semantics which carries a typestore
to record type assignments in an imperative manner.

His system RTG is meant to be an internal language for an
elaboration procedure and, although primitives seem adequately
chosen, its connection with logic is, unfortunately, not obvious.

2.3 Abstract types as existential types

Much earlier, Mitchell and Plotkin (1988) had shown that abstract
types could be understood as existential types. However, they also
noticed that existential types do not accurately model typeabstrac-
tion in modules, especially the notion of generativity, andlack some
modular properties.

In System-F, existential types are introduced by thepack con-
struct. Provided the termM has some typeτ ′[α← τ], the expres-
sionpack 〈τ, M〉 as ∃α. τ ′ hides the type informationτ , called the
witnessof the existential, from the type ofM so that the resulting
type is∃α. τ ′.

PACK

Γ ⊢ M : τ ′[α← τ]

Γ ⊢ pack 〈τ, M〉 as ∃α. τ ′ : ∃α. τ ′

Existential types are eliminated by theunpack construct: pro-
videdM has type∃α. τ , the expressionunpack M as α, x in M ′

binds the type variableα to the witness of the existential and the
value variablex to theunpackedtermM in the body ofM ′. The
resulting type is the one ofM ′, in which α must not appear free.
The reason for this restriction is that otherwiseα, which is bound
in M ′, would escape its scope.

UNPACK

Γ ⊢ M : ∃α. τ Γ, α, x : τ ⊢ M ′ : τ ′ α /∈ ftv(τ ′)

Γ ⊢ unpack M as α, x in M ′ : τ ′

From now on we will consider System-F is equipped with
the above constructs, as they can be recovered as a well-known
syntactic sugar (Reynolds 1983).

3. Open existential types
3.1 Atomic constructs for existential types

In this section we will split off the constructs for existential types.
Indeed, bothpack andunpack have modularity problems, but in
different ways.

The problem withunpack is non-locality: it imposes the same
scope to the type variableα and the value variablex, which is
emphasized by the non-escaping condition onα. As a result, all
uses of the unpacked term must be anticipated. In other words, the
only way to make the variableα available in the whole program
is to put unpack early enough in the program, which is a non
local, hence non modular, program transformation. The reason is
that unpack is doing too many things at the same time: open the

2 Revised version, 14 April 2008

existential type, bind the opened value to a variable and restrict the
scope of the fresh type variable.

The problem withpack is verbosity: it requires to completely
specify the resulting type, thus duplicating type information in the
parts that have not been abstracted away. This can be annoying
when hiding only a small part of a term, whereas this term has a
very long type. This duplication happens, for instance, when hiding
the type of a single field of a large record, or maybe worse, when
hiding some type information deeply inside a record. It is caused
by the lack of separation between the introduction of an existential
quantifier, and the description of which parts of the type must be
abstracted away under that abstract name.

In both cases, the lack ofmodularity is related to the lack of
atomicity of the constructs. Therefore, we propose to split both
of them into more atomic constructs, recovering modularitywhile
preserving expressiveness of existential types.

To achieve the decomposition of existential types into more
atomic constructs, we first need to enrich typing environments with
new items.

3.1.1 Richer contexts for typing judgments

The contexts of typing judgments in System-F are sequences of
items. An item is either a bindingx : τ from a value variable to
a type, which is introduced while typing functions, or a universal
type variable∀α, which is introduced while typing polymorphic
expressions.

We augment typing environments with two new items: existen-
tial type variables to keep track of the scope of (open) abstract
types, and type definitions∀(α = τ) to concisely mediate between
the abstract and concrete views of types. That is, typing environ-
ments are as follows:

Γ ::= ε | Γ, b (Environments)
b ::= x : τ | ∀α | ∀(α = τ) | ∃α (Bindings)

Wellformedness of typing environments will ensure that no variable
is ever bound twice. We shall see below that existential variables
have to be treated linearly. For the moment, we consider environ-
ments as sequences. Their structure will be enriched again in §3.2.

3.1.2 Splitting unpack

We replaceunpack with two orthogonal constructs,openingand
restriction, that implementscopeless unpackingof existential val-
ues andscope restrictionof abstract types, respectively.

Theopeningopen [α] M expectsM to have an existential type
∃α. τ and opens it under the nameα, which is tracked in the
typing environment by the existential item∃α. The rule can also
be read bottom-up, treating the item∃α as alinear resource that is
consumed by the opening.

OPEN
Γ ⊢ M : ∃α. τ

Γ,∃α ⊢ open [α] M : τ

The fact that, when it is read bottom-up, OPEN makes the environ-
ment decrease might seem unusual. Indeed, it imposes that the sub-
term should not mention the type variable with which it is opened.
It follows a subtle control of scope that is already present in works
on resourcefulλ-calculi: Kesner and Lengrand (2007) introduce,
for instance, an explicit weakening construct, that makes the envi-
ronment decrease and hence finely controls the scope of a variable.
Interestingly, our rule OPEN also looks dual to the usual rule of
type generalization:

GEN
Γ,∀α ⊢ M : τ

Γ ⊢ Λα. M : ∀α. τ

The quantifier moves downwards from the environment to the type,
whereas it happens in the opposite way in rule OPEN.

The restrictionνα. M implements the non-escaping condition
of Rule UNPACK. First, it requiresα not to appear free in the
type of M , thus enforcing a limited scope. Second, it provides
an existential resource∃α in the environment, that ought to be
consumed by someopen [α] M ′ expression occurring withinM .

NU
Γ,∃α ⊢ M : τ α /∈ ftv(τ)

Γ ⊢ να. M : τ

We may recoverunpack as syntactic sugar:

unpack M as α, x in M ′
, να. (let x = open [α] M in M ′)

This makes explicit all the simultaneous operations performed by
unpack, which turns out not to be atomic at all: first, it defines a
scope for the nameα of the witness of the existential type ofM ;
then, it opensM under the nameα; finally, it binds the resulting
value tox in the remaining expressionM ′.

The main flaw ofunpack, i.e. the scope restriction for the
abstract name, is essentially captured by therestriction construct.
However, since the scope restriction has been separated from the
unpack, it need not (always) be used anymore. The abstract type
α may now be introduced at the outermost level or given by the
typing context and be freely made available to the whole program.

3.1.3 Splitting pack

We replacepack with three orthogonal constructs:existential in-
troduction, which creates an existential type,open witness defini-
tion, which introduces a type witness and gives it a name, andco-
ercion, which determines which parts of types are to be hidden. We
present this separation in two stages: first, we separate the(closed)
definition of a witness from the information of which parts are ab-
stracted away; then, we split the former construct we obtained into
two pieces that introduce an existential quantifier and defines a wit-
ness, respectively.

Theclosed witness definition∃(α = τ)M introduces an exis-
tential type variableα with witnessτ (more precisely, the definition
∀(α = τ)) in the environment while typingM , and makesα exis-
tentially bound in the resulting type.

Γ,∀(α = τ) ⊢ M : τ ′

Γ ⊢ ∃(α = τ)M : ∃α. τ ′

Thecoercion(M : τ) replaces the type ofM with somecom-
patible typeτ . The compatibility relation under contextΓ, written
≡, is the smallest congruence that contains all type-definitions oc-
curring in Γ. A coercion is typically employed to specify where
some abstract types should be used instead of their witnesses in the
typing ofM .

COERCE

Γ ⊢ M : τ ′ Γ ⊢ τ ′ ≡ τ

Γ ⊢ (M : τ) : τ

The expressiveness ofpack is retained, since it can be provided as
the following syntactic sugar:

pack 〈τ, M〉 as ∃α. τ ′
, ∃(α = τ) (M : τ ′)

However, the description of what is being hidden can now be
separated from the action of hiding, which avoids repetition of
type information. Hence, it makes the creation of existential values,
shorter, thus easier, and more maintainable. Indeed, it allows for
putting the information of hiding parts of a type deeply inside a
term: in the following record, some leaves have been abstracted

3 Revised version, 14 April 2008

away.

∃(α = int)
let x = {ℓ1 = (1 : α) ; ℓ2 = 2} in
let y = {ℓ1 = x ; ℓ2 = x} in
{ℓ1 = y ; ℓ2 = y}

The corresponding System-F term requires to repeat the type of the
whole term.

let z =
let x = {ℓ1 = 1 ; ℓ2 = 2} in
let y = {ℓ1 = x ; ℓ2 = x} in
{ℓ1 = y ; ℓ2 = y} in

pack 〈int, z〉 as
∃α. {ℓ1 :{ℓ1 :{ℓ1 :α ; ℓ2 : int} ; ℓ2 :{ℓ1 :α ; ℓ2 : int}} ;

ℓ2 :{ℓ1 :{ℓ1 :α ; ℓ2 : int} ; ℓ2 :{ℓ1 :α ; ℓ2 : int}}}

Moreover, whereas the information of hiding was located at asingle
place in theF.-term, it is duplicated in theF-term, as if each leaf
had been abstracted independently.

To complete the separation, we now split∃(α = τ)M again.
The existential introduction∃α. M introduces an existential type
variable in the environment while typingM , and makesα existen-
tially bound in the resulting type. This is the exact counterpart of
theopen construct.

EXISTS
Γ,∃α ⊢ M : τ

Γ ⊢ ∃α. M : ∃α. τ

The open witness definitionΣ [β] (α = τ)M introduces the
witnessτ for the type variableα: similarly to what is done for
∃(α = τ)M , the equation∀(α = τ) is added to the context while
typingM . In addition, an external nameβ is provided, in the same
way as for theopen construct. The internal nameα and its equation
are only reachable internally, but the witness is denoted externally
by the abstract type variableβ. The resulting type does not mention
the internal name, since it has been substituted for the external one.
In other words, the witness definition definesa frontier between a
concrete internal world and an abstract external one. To keep the
system sound, we ensure that a unique witness is hidden behind an
external name, hence the use of an existential resource. Thetyping
rule will be refined later to handle the double vision problem.

SIGMA

Γ,∀β, Γ′,∀(α = τ) ⊢ M : τ ′

Γ,∃β, Γ′ ⊢ Σ [β] (α = τ)M : τ ′[α← β]

Again, the split construct∃(α = τ)M can be recovered by the
following syntactic sugar:

∃(α = τ)M , ∃β. Σ [β] (α = τ)M if β /∈ ftv(τ, M)

It is worth noting that theopen witness definitioncorresponds to
type abstraction as it is currently done in module languages: a type
definition is kept hidden for the outer environment and a typename
is generated so that we can refer to it without knowing its concrete
definition. Usual existential types are recovered by closing the open
witness definition,i.e.by hiding the external name for the witness.

The following piece of program, written in anML-like syntax,
defines an abstract module of integers.

module X : sig type t val z : t val s : t→ t end =
struct

type t = int val z = 0 val s = λ(x : int)x+1
end

It provides the zero constantz and the successor functions. The
typeX.t is abstract and available in the whole program. Its coun-

Γ,∀β,∀(α = τ ′) ⊢ τ [α← τ ′]

Γ,∀β,∀(α = τ ′) ⊢ τ

Γ, ∃β ⊢ τ [α← β]

Γ ⊢ ∃β. τ [α← β] Γ ⊢ τ [α← β]

([·] : τ)([·] : τ [α← τ ′])

Σ [β] (α = τ ′) [·]

Σ [β] (α = τ ′) [·]

∃β. [·]

νβ. [·]
if β /∈ ftv(τ [α← β])

Figure 1. Open existential constructs

terpart inF. is defined hereafter:

Σ [β] (α = int)
({z = 0 ; s = λ(x : int)x+1} : {z : α ; s : α→ α})

The two pieces of code look similar, except for the fact that the sig-
nature ascription has been replaced with an open witness definition.
The counterpart of the signature is the type in the coercion.Note
that no type component, hence no name for the module, is needed:
the counterpart ofX.t is the abstract typeβ, which is present in the
typing context. It is available in the whole program and doesnot
refer to a value variable.

Notice that it is also possible to rewrite this program in two
parts, by first creating an existential term and then openingit under
the nameβ.

let x =
∃(α = int)
({z = 0 ; s = λ(x : int)x+1} : {z : α ; s : α→ α}) in

open [β] x

It has essentially the same effect (in fact the latter will reduce to the
former). It shows however that mechanisms for type abstraction and
opening of existentials are the same.

3.1.4 Generative functors

Following Russo, generative functors are functions that have a type
of the form∀α. (τ1 → ∃β. τ2). In ML, generativity isimplicitly
released when the functor is applied. InF., however, the result of
the function must beexplicitly opened, because generativity and
evaluation are two separate notions. To get the same result with
another fresh type, it suffices to open it again under anothername.

3.1.5 Open existential constructs: a summary

The different constructs introduced for open existential types are
gathered on the diagram of Fig.1. It describes their effectson the
typing environment and the resulting type. To increase readability,
terms are not printed on the judgments.

The topmost judgment corresponds to a concrete program (of
type τ [α ← τ ′]) with an equation∀(α = τ ′) in its environment.
With the use of coercions one can mediate to a typeτ where the
equation has been folded and then go back to the concrete version.
Then, using aΣ, we can remove the definition from the typing
environment and use the external nameβ for the witness. In this
process, the variableβ is marked as existential and the internal
name is replaced with the external one. If the external name does
not occur free in the resulting type, we can remove the existential
item from the environment, without changing the type, to getthe
bottom right judgment. If this is not the case, we can close the

4 Revised version, 14 April 2008

b . b = b if b 6= ∃α ∃α . ∀α = ∃α ∀α . ∃α = ∃α

Figure 2. Zippings of bindings.

type by transferring the existential quantifier to the type (bottom
left judgment). We can go back by re-opening the existential.

3.1.6 Linearity to control openings and open witness
definitions

As openings and open witness definitions use abstract names given
by the environment, one must be careful to avoid “abstraction
capture”, as in the following (ill-typed) example.

let f = Σ [β] (α = int) (λ(z : int)z + 1 : α→ α) in
let x = Σ [β] (α = bool) (true : α) in f x

Here,f andx result from two different openings under the same
name β. Hence,f and x are assigned typesβ → β and β,
respectively, using thesameabstract nameβ. However, each branch
uses a different witness forβ (int in the case off and bool in
the case ofx). This yields to the unsound applicationf x, which
evaluates to1 + true.

To prevent abstraction capture, it suffices thatevery nameβ
be used in exactly one opening or open witness definition under
nameβ. This may be achieved by treating the existential items
of the typing environment in alinear way. Linearity can easily be
enforced in typing rules by azippingoperation that describes how
typing environments of the premises must be combined to form
the one of the conclusion. We give in Fig.2 and in this paragraph
a preliminary definition of zipping to give the intuition. Itwill
be completed in§3.3. Zipping is a binary operation(· . ·) that
proceeds by zipping individual bindings pointwise. For allitems
but existential type variables, zipping requires the two facing items
to be identical, as usual. The interesting case is when one ofthe two
items is an existential variable∃α: the intuition is that, in this case,
the other item must be the universal variable∀α, hence thezipper
image. This ensures that an existential variable in the conclusion
can only be used up in one of the premises. Zipping can also be
explained in terms of internal and external choice: the sidethat
makes use of∃α will make an internal choice by giving internally
the witness. Therefore the other sidemustconsider the choice of
the witness as external. That is why it is given the item∀α.

3.2 The appearance of recursive types

The above idea of zipping is unfortunately too generous: it makes
recursive types appear naturally. Indeed the decomposition of un-
pack into opening and restriction opens up the way to recursive
types, because it allows to use an abstract type variable before its
witness has been given. Recursive types can appear through type
abstraction,i.e. through openings or open witness definitions, in
two ways.

We call internal recursionthe first one. It is highlighted by the
following example:

let x = ∃(α = β → β) M in open [β] x

The abstract type variableβ is used in a witness to definex which
is then opened under the nameβ. By reducing this expression we
get:

open [β] ∃(α = β → β)M

This leads us to the recursive equationβ = β → β.
We call external recursionthe second way, which is hereafter

exemplified:

{ℓ1 = Σ [β1] (α1 = β2 → β2) M1 ;
ℓ2 = Σ [β2] (α2 = β1 → β1) M2 }

The above code is a pair whose components have been abstracted
away and the witnesses are mutually defined. If we remove the type
abstractions we get the recursive equation systemβ1 = β2 → β2

andβ2 = β1 → β1.
Notice that recursive types never arise in theunpack of System-

F. Consider the following piece of code, whereC1 andC2 denote
contexts:

να. C2[let x = C1[open [α] M1] in M2]

If we consider this program as anunpack, then the contextsC1 and
C2 are empty. Consequently,α cannot occur free inC1 or C2. By
splittingunpack, however, this restriction has been waived.

3.3 Preventing the emergence of recursive types

Montagu and Rémy (2008) imposed the restriction above and so
forbid the use of recursive types by restraining the zippingof con-
texts. Although, this solution is simple and of limited expressive-
ness so that it permitted a translation of terms into System-F terms,
it also precludes interesting uses of abtract types.

In this paper we present a more general technique to control
recursive types, by enriching the structure of typing environments
in a somehow natural way. We no longer consider environments
as sequences,i.e. totallyordered sets, but aspartially ordered sets,
where the order relation expresses dependencies between bindings
and is required to beacyclic, i.e. that no binding can (transitively)
depend on itself. This disallows the zipping of two environments
when this condition could not be satisfied.

More specifically, a typing environmentΓ is a dag represented
as a pair(E ,≺) of a finite set of bindingsE and an acyclic partial
order≺ on E , i.e. there exists no bindingb such thatb ≺ b. If
b ≺ b′, we sayb depends onb′. We use the following notation for
composing and decomposing typing environments so that typing
rules look familiar:
Notation 1. We write Γ1, (b � D), Γ2 when no binding inΓ1

depends onb, andb does not depend on bindings ofΓ2, andD
is the set of bindingsb depends on. In particular, whenΓ2 is empty,
b is minimal for the dependency relation.
Notation 2. We may use(b,D) to denote the binary relation
{(b, b′) | b′ ∈ D} obtained by lifting the setD with the bind-
ing b.

We writedomb, domE , anddomΓ for the domains ofb, E , and
Γ when seen as mappings.

Definition 1 (Zipping). Let Γ1 andΓ2 be two typing environments
of the form (E1,≺1) and (E2,≺2). Let ≺ be (≺1 ∪ ≺2)

+. If
≺ is acyclic, the zipping ofΓ1 and Γ2, written Γ1 . Γ2, is
(E1 . E2,≺), whereE1 . E2 is:

• {b1 . b2 | b1 ∈ E1 ∧ b2 ∈ E2 ∧ domb1 = domb2}, if E1 and
E2 have the same domain.
• E ′1 . E ′2 where E ′1 is E1 ∪ {(∀α) | (∃α) ∈ E2 ∧ α /∈

domE1} and symmetrically forE ′2, whenE ′1 andE ′2 have the
same domain.
• undefined otherwise.

The zipping ofΓ1 and Γ2 is undefined if≺ is not acyclic or if
E1 . E2 is undefined. �

The second item in the definition of zipping extends the environ-
ments before considering their zipping. This performs an implicit
weakening on each side that refines the detection of cycles, as will
be exemplified below in the explanation of OPEN.

Rules SIGMA, OPEN and LET introduce new dependencies to
keep track of cycles (see Fig.4). We review them now.

Unsurprisingly, SIGMA specifies the external name to have the
same dependencies as the internal one, among which lay the (de-
pendencies of the) free type variables of the witness. This prevents

5 Revised version, 14 April 2008

the example of external recursion seen in§3.2, which we remind
below, to be well-typed:

{ℓ1 = Σ [β1] (α1 = β2 → β2) M1 ;
ℓ2 = Σ [β2] (α2 = β1 → β1) M2 }

The dependencyβ1 ≺ β2 is required to type the first component,
since the witness depends onβ2. Symmetrically,β2 ≺ β1. is
required to type the second component. Consequently, the zipping
is forbidden because of the obvious cycle.

OPEN specifies that the abstract type variable (possibly) de-
pends on every type variable present in the context, since wedo not
know the witness, as opposed to the case of SIGMA . The condition
placed on OPEN is then stronger. That is why the above example
would again be rejected if theΣ’s were replaced with “open-exists”
patterns.

By contrast, the following example is well-typed, since the
witness of the first branch does not depend onβ2.

{ℓ1 = Σ [β1] (α1 = int)M1 ;
ℓ2 = Σ [β2] (α2 = β1 → β1) M2 }

Rewriting this piece of code with “open-exists” patterns isagain
well-typed, in spite of the stronger condition on OPEN, thanks to
the implicit weakening in zipping: we can type the first branch
without using∀β2 in the environment (providedM1 does not
mentionβ1). Therefore, the requirementβ1 ≺ β2 is not required in
the first branch and no cycle is detected.

Finally, LET highlights variables that are used, hence possibly
hidden in an existential value, in the first branch of thelet and used
in an opening in the second branch. Therefore, the value variable
that is bound in thelet must depend on these variables. These are
indeed responsible for the cycle in the example of internal recursion
seen in§3.2 and reminded below:

let x = ∃(α = β → β) M in open [β] x

The binding∀β is required in the typing environment of the bound
expression, whereas the binding∃β appears in the typing environ-
ment for the body. Thus, the constraintx ≺ β is required in the
typing environment of the body, which prevents typingopen [β] x,
as Rule OPEN requests that no binding depend on∃β.

3.4 Addressing the double vision problem

Independently from the control of recursion at the type level, we
can now handle the double vision problem in a straightforward
way. This problem characterizes the inability to maintain alink
between the internal and external view of a given type. It happens,
for instance, in the following term:

∃β. let f = λ(x : β)β in Σ [β] (α = int) f (1 : α)

After the existential resourceβ is introduced, it definesf as the
identity on β and then uses it under the open witness definition
Σ [β] (α = int) . It is not typable, since we do not know thatα
andβ denote the same witness, hence the applicationf (1 : α) is
ill-typed.

To solve this problem, is suffices to carry the missing informa-
tion in the context:

SIGMA

Γ,∀α, Γ′,∀(α ⊳ β = τ ′) ⊢ M : τ

Γ,∃β, Γ′ ⊢ Σ [β] (α = τ ′) M : τ [α← β]

The context is enriched with a new kind of equation∀(α⊳β=τ ′).
Again, it says that the witnessτ ′ is denoted by the internal nameα,
and, in addition, that the external nameβ can be viewed under its
internal versionα. This is realized through the use of thesimilarity
relation defined in a contextΓ and written⊳ that satisfies all the
equalities between internal and external names that are present in

Types:

τ ::= α | τ → τ | {(ℓi : τi)
i∈1..n}

| ∀α. τ | ∃α. τ

Terms:

M ::= x | λ(x : τ)M | M M
| let x = M in M | Λα. M | M [τ]
| {(ℓi = Mi)

i∈1..n} | M.ℓ | ∃α. M
| Σ [β] (α = τ)M | (M : τ)
| open [α] M | να. M |

Values and results:

v ::= u | (u : τ)
u ::= x | λ(x : τ)M | Λα. M

| {(ℓi = vi)
i∈1..n} | ∃β. Σ [β] (α = τ) v

w ::= v | Σ [β] (α = τ)w

Figure 3. Syntax: types, terms, values, and results.

the contextΓ. It is used through the SIM rule:

SIM

Γ ⊢ M : τ ′ Γ ⊢ τ ⊳ τ ′

Γ ⊢ M : τ

The reader may wonder why the authors decided to use both an
external and an internal name, while they denote the same object,
instead of using only one name. This is indeed Dreyer (2007)’s
approach: a single type reference is used along with two scopes for
it, one of them contains a definition, while the other does not.

We give two reasons for handling two names and an equation
relating them: first, it corresponds to practice in recursive modules,
where a single type component is reached through two different
paths, which yields to the double vision problem. Then, the use of
two names increases maintainability of programs in the sense that it
is more respectful to the notion ofinterface: whatever is the internal
name, the external name will always be the same. Thus, it allows to
apply an internal renaming without changing the type of a piece of
program.

4. The languageF.

4.1 Syntax

The languageF. is based on the explicitly typed version of System-
F with records and is extended with constructs of§3.1. Types and
terms are described in Fig.3.

As open existentials do not introduce new forms of types, types
of F. are type variables, arrow types, record types, universal types,
and existential types. The notation(ℓi : τi)

i∈1..n stands for a
sequence ofn pairs, each composed of a label and a type. Type
wellformedness is defined as usual. Environment wellformedness
also takes care of acyclicity of dependencies (see appendixA.1).

Terms of F. are variables, functions (whose arguments are
explicitly typed), applications,let-bindings, type generalizations
and applications, introductions and projections of records, and the
five constructs for open existentials described before: existential
introductions, open witness definitions, coercions, openings, and
restrictions. Record fields are pairsℓ = M of a label nameℓ and
a termM . The label name is used to access the field externally, as
usual with records.

For conciseness, we also use the following syntactic sugar in
technical developments forclosed witness definitions:

∃(α = τ)M , ∃β. Σ [β] (α = τ) M if β /∈ ftv(τ, M)

6 Revised version, 14 April 2008

ENTAIL -REFL
Γ ⊢ ok

Γ
 Γ

ENTAIL -TRANS
Γ1
Γ2 Γ2
 Γ3

Γ1
 Γ3

ENTAIL -FORALL
Γ, (∀α �D) ⊢ ok

Γ, (∀α �D)
 Γ

ENTAIL -VAR
Γ, (x : τ �D) ⊢ ok

Γ, (x : τ �D)
 Γ

ENTAIL -EQ

Γ, (∀(α = τ) �D) ⊢ ok

Γ, (∀(α = τ) �D)
 Γ

ENTAIL -DBEQ

Γ, (∀(α ⊳ β = τ) �D) ⊢ ok

Γ, (∀(α ⊳ β = τ) �D)
 Γ

Figure 5. Entailment of environments.

We writeftv(τ) (respectivelyftv(M)) to denote the set of free type
variables of a typeτ (respectively a termM).

4.2 Typing rules

Typing rules for open existentials have already been presented in
§3.1. The remaining typing rules are as in System-F with two small
differences described and two new rules.

First, as mentioned above, typing rules with several typingjudg-
ments as premises use zipping instead of equality to relate their typ-
ing environments. This is the case of rules APP, LET, and RECORD.

Typing rules must also ensure that values can be substituted
without breaking linearity, which is the case when the typing en-
vironment does not contain existential items.

Definition 2. WhenΓ does not contain existential items, we say
thatΓ is pure and writeΓ pure. �

This condition appears as an additional premise of typing rules
of expressions that are also values (namely, rules VAR, LAM , GEN,
and EMPTY). Purity will be used and explained in more details
in §4.3.

Because OPEN makes the environment decrease (if it is read
bottom-up), the property of weakening isnot provable in all its
generality: one can only weaken a typing judgment with a non-
linear item that does not depend on linear items (and does not
create cycles). This restriction impedes simple but usefulprogram
transformations such aslet-expansions. To get rid of this limitation,
we add WEAKEN to the type system. This rule is based on the
entailment relation on environments described in Fig.5: itsays one
can forget items of an environment, as long as they are not linear
and they do not break dependencies.

Finally, SIM makes use of the similarity relation to present an
abstract type variable under its internal concrete view.

4.3 Reduction semantics

The languageF. is equipped with a small-step call-by-value re-
duction semantics. We begin with important remarks about substi-
tutability, then define and explain values, and finally describe the
reduction steps.

4.3.1 Substitution and purity

Some termscannotbe safely substituted, since substitution may vi-
olate the linear treatment of openings and open witness definitions.
It turns out thatpure terms, i.e. terms that are typable in a pure
environment, behave well with respect to substitution:

Lemma 1 (Substitution lemma). Assume thatΓ ⊢ M : τ and
Γ′, (x : τ �D), Γ′′ ⊢ M ′ : τ ′ whereΓ is pure andΓ . Γ′ is well

let x = Σ[β] (α = int) (1 : α) in {ℓ1 = x ; ℓ2 = (λ(y : β)y) x}
1
 Σ [β] (α = int)

let x = (1 : α) in {ℓ1 = x ; ℓ2 = (λ(y : β)y) x}
1
 Σ [β] (α = int) {ℓ1 = (1 : α) ; ℓ2 = (λ(y : β)y) (1 : α)}
1
 Σ [β] (α = int) {ℓ1 = (1 : α) ; ℓ2 = (1 : α)}

Figure 7. Example of extrusion.

defined. Then, we have(Γ . Γ′), Γ′′′ ⊢ M ′[x ← M] : τ ′ where
Γ′′′ is the pair(E ′′, (D′′; (x : τ,D)))1 and(E ′′,D′′) is Γ′′.

Therefore, values are substitutable if we restrict them to pure
terms. Conversely, every irreducible term isnot necessarilya pure
term.

4.3.2 Results and values

Results are well-behaved irreducible terms. Results include values.
In System-F (as in many other languages) results actually coincide
with values. However, this need not be the case. InF., results also
include terms such asΣ [β] (α = τ)λ(x : α)x, which are well-
behaved and cannot be further reduced, but are not values, asthey
are not pure and thus not substitutable.

More precisely, values are defined in Fig.3. They are either
pre-values or coerced pre-values, where pre-values are variables,
functions, generalizations, records of values or existential values.
Note that nested coercions are not values—they must be further
reduced. Note also that no evaluation takes place underλ’s or Λ’s.
Finally, results are values preceded by a (possibly empty) sequence
of Σ’s.

The purity premises in some of the typing rules ensure that
values are pure, hence by Lemma 1 substitutable.

Lemma 2 (Purity of values). If Γ ⊢ v : τ , thenΓ is pure.

4.3.3 Extrusions

Values are substitutable, but some results are not values, namely a
sequence ofΣ’s prefixing a value. How can we handle these results,
when they ought to be substituted, without breaking linearity? Our
solution is to extrude theΣ’s just enoughto expose and perform the
next reduction step.

For example, consider the reduction steps on Fig.7. The initial
expression is a let-binding of the formlet x = w in M wherew is
the result formΣ [β] (α = int) (1 : α). Hence, the next expected
reduction step is the substitution ofw for x in M . However, since
x occurs twice inM , this would duplicate the opening appearing in
w breaking the linear use ofβ. The solution is to firstextrudethe
Σ binding outside of the let-binding, so that the expression bound
to x becomes the substitutable value form(1 : α). However, by
enlarging the scope ofΣ, we have putM in its scope, in which
the external nameβ occurs. Thanks to SIM , β can be viewed asα.
Then, we may perform let-reduction safely and further reduce the
redex that has been created.

More generally, the reduction semantics will be set so thatΣ
can always be extruded out of redex forms.

Openings also introduce linear items into the environment and
thus preclude substitution. Note however that they are neither part
of values nor of results, because they can be eliminated: by reduc-
tion, an openingopen[β]M will eventually lead to an “open-exists”
patternopen [β]∃α. M ′. This combination just performs a transfer
of an existential resource from the inner nameα to the outer oneβ,

1 R1;R2 = {(x, y) | (xR1y ∧ y /∈ domR2) ∨ (∃z, xR1z ∧ zR2y)}

7 Revised version, 14 April 2008

VAR
Γ pure Γ ⊢ ok

Γ ⊢ x : Γ(x)

LAM
Γ, (x : τ1 �D) ⊢ M : τ2 Γ pure

Γ ⊢ λ(x : τ1)M : τ1 → τ2

APP
Γ1 ⊢ M1 : τ2 → τ Γ2 ⊢ M2 : τ2

Γ1 . Γ2 ⊢ M1 M2 : τ

LET
{α | (∃α) ∈ Γ2 and(∀α) ∈ Γ1} ⊆ D

Γ1 ⊢ M1 : τ1 Γ2, (x : τ1 �D) ⊢ M2 : τ2

Γ1 . Γ2 ⊢ let x = M1 in M2 : τ2

GEN
Γ, (∀α �D) ⊢ M : τ Γ pure

Γ ⊢ Λα. M : ∀α. τ

INST

Γ ⊢ M : ∀α. τ ′ Γ ⊢ τ wf

Γ ⊢ M [τ] : τ ′[α← τ]

EMPTY
Γ ⊢ ok Γ pure

Γ ⊢ {} : {}

RECORD
∀i ∈ 1..n, Γi ⊢ Mi : τi ∀i, j, i 6= j ⇒ ℓi 6= ℓj

Γ1 . · · · . Γn ⊢ {(ℓi = Mi)
i∈1..n} : {(ℓi : τi)

i∈1..n}

PROJ

Γ ⊢ M : {(ℓi : τi)
i∈1..n} 1 ≤ k ≤ n

Γ ⊢ M.ℓk : τk

EXISTS
Γ, (∃α �D) ⊢ M : τ

Γ ⊢ ∃α. M : ∃α. τ

COERCE

Γ ⊢ M : τ ′ Γ ⊢ τ ′ ≡ τ

Γ ⊢ (M : τ) : τ

SIGMA

D′ \ ({β} ∪ domΓ′) ⊆ D
Γ, (∀β �D), Γ′, (∀(α ⊳ β = τ ′) �D′) ⊢ M : τ

Γ, (∃β �D), Γ′ ⊢ Σ [β] (α = τ ′) M : τ [α← β]

OPEN
Γ ⊢ M : ∃α. τ D = domΓ

Γ, (∃α �D) ⊢ open [α] M : τ

NU
α /∈ ftv(τ)

Γ, (∃α �D) ⊢ M : τ

Γ ⊢ να. M : τ

WEAKEN

Γ ⊢ M : τ Γ′

 Γ

Γ′ ⊢ M : τ

SIM

Γ ⊢ M : τ ′ Γ ⊢ τ ⊳ τ ′

Γ ⊢ M : τ

Figure 4. Typing rules

let x = v in M M [x← v] REDEX-LET
(λ(x : τ)M) v let x = v in M REDEX-APP

(Λα. M) [τ] M [α← τ] REDEX-INST

{(ℓi = vi)
i∈1..n}.ℓk vk if 1 ≤ k ≤ n REDEX-PROJ

open [β] ∃α. M M [α← β] REDEX-OPEN

E [Σ [β] (α = τ)w] Σ [β] (α = τ)E [w] if α /∈ ftv(E) and({α, β} ∪ ftv(τ)) ∩ etv(E) = ∅ EXTRUDE
Σ [β1] (α1 = τ1) Σ [β2] (α2 = τ2)w Σ [β1] (α1 = τ1) Σ [β2] (α2 = τ2[α1 ← τ1]) w if α1 ∈ ftv(τ2) SIGMA -SIGMA

((λ(x : τ0)M) : τ1 → τ2) v ((λ(x : τ0)M) (v : τ0) : τ2) COERCE-APP

(u : ∀α. τ ′) [τ] (u [τ] : τ ′[α← τ]) COERCE-INST

(u : {(ℓi : τi)
i∈1..n}).ℓk (u.ℓk : τk) if 1 ≤ k ≤ n COERCE-PROJ

open [α] (u : ∃α. τ) (open [α] u : τ) COERCE-OPEN

((u : τ) : τ ′) (u : τ ′) COERCE-COERCE

νβ. Σ [β] (α = τ)w νβ. Σ [β] (α = τ)w[β ← α] if β ∈ ftv(w) ERASE-NU-SIGMA 1
νβ. Σ [β] (α = τ)w νβ. Σ [β] (α = τ)w[α← τ] if α ∈ ftv(w) andβ /∈ ftv(w) ERASE-NU-SIGMA 2

νβ. Σ [β] (α = τ)w w if α, β /∈ ftv(w) ERASE-NU-SIGMA 3

E ::= [] | E M | M E | let x = E in M | E [τ] | {(ℓi = Mi)
i∈1..k ; ℓk+1 = E ; (ℓi = Mi)

i∈k+2..n}
| E.ℓ | ∃α. E | Σ [β] (α = τ)E | (E : τ) | open [α] E | να. E

etv([]) = ∅ etv(Σ [β] (α = τ)E) = {α, β} ∪ etv(E)

etv(∃α. E)
etv(να. E)

etv(open [α] E)

9

=

;

= {α} ∪ etv(E)
etv(E M) etv(M E) etv(let x = E in M)
etv(E [τ]) etv(E.ℓ) etv((E : τ))

etv({(ℓi = Mi)
i∈1..k ; ℓk+1 = E ; (ℓi = Mi)

i∈k+2..n})

9

=

;

= etv(E)

Figure 6. Reduction rules

8 Revised version, 14 April 2008

as demonstrated by the following derivation:

OPEN

EXISTS
Γ,∃α ⊢ M : τ

Γ ⊢ ∃α. M : ∃α. τ

Γ,∃β ⊢ open [β] ∃α. M : τ [α← β]

Therefore, the patternopen [β] ∃α. M can be simply eliminated
through an appropriate renaming from the internal name to the
external one into the termM [α ← β]. This way, reduction makes
the bottom-left cycle of Fig.1 vanish.

4.3.4 Reduction

The semantics ofF. is given by a call-by-value reduction strategy,
described by a small-step reduction relation. The order of evalua-
tion is left unspecified everywhere but onlet-bindings. By contrast
having a call-by-value strategy and a weak-reduction is essential.

Evaluation contexts are described in Fig.6. Note that, as op-
posed to Dreyer (2007), evaluation also takes place under existen-
tial bindings. We define theexposed type variablesof a contextE,
written etv(E), that are either binding type variables or type vari-
ables that are carried by an opening or an open witness definition.
A one-step reduction is the application of a reduction rule in some
evaluation context. The reduction relation is the transitive closure
of the one-step reduction relation. Reduction steps are sorted in four
groups.

The main group of rules describe the contraction of redexes.The
let-reduction, theβ-reduction, the reduction of type applications
and the record projection are as usual. The last rule of this group is
the reduction of the “open-exists” pattern explained above. Notice
that type substitution is a partial function on terms: for instance,
(open [β] M)[β ← τ] is not defined. The type system ensures type
substitution is always performed when it is well-defined.

The second group of rules implement the extrusion ofΣ’s
through every other construct: EXTRUDE permits extrusion through
evaluation contexts, provided this is valid with respect toscopes of
type variables. To make it possible for twoΣ’s to commute, rule
SIGMA -SIGMA substitutes the definition of the outerΣ to eliminate
dependencies.

The third group of reduction rules keep track of coercions dur-
ing reduction, as exemplified by Rule COERCE-APP. Notice that
nested coercions are ignored, the outer one taking priority(Rule
COERCE-COERCE).

Finally, the fourth group is responsible for the erasures ofre-
stricted open witness definitions. ERASE-NU-SIGMA 1 replaces the
external name with the internal one. ERASE-NU-SIGMA 2 replaces
the type variable of a witness with the witness: note that thesame
substitution occurs in System-F while unpack-ing apack-ed term.
Finally, ERASE-NU-SIGMA 3 really erases the restricted definition.

4.4 Type soundness

Type soundness results from the combination of the subject reduc-
tion and progress properties.

The subject reduction proof is, as usual, mainly built on the
substitution lemma (Lemma 1) and the instantiation lemma, which
comes in two forms:

Lemma 3 (Instantiation by equation). Assume thatΓ ⊢ τ wf and
Γ, (∀α � D), Γ′ ⊢ M : τ ′ and ftv(τ) ⊆ D. Then the judgment
Γ, (∀(α = τ) �D), Γ′ ⊢ M : τ ′ holds.

Lemma 4 (Instantiation by substitution). Assume thatΓ, (∀(α =
τ) � D), Γ′ ⊢ M : τ ′. Then,M [α ← τ] is well-defined and
Γ, Γ′′ ⊢ M [α ← τ] : τ ′[α ← τ] where Γ′′ is the pair
(E ′[α← τ], (D′; (∀(α = τ),D))) and(E ′,D′) is Γ′.

The proof of subject reduction itself is not really informative,
but it is particularly interesting that the proof is absolutely standard

and almost straightforward, as this is not usually the case for other
approaches to modules with generativity.

Proposition 1 (Subject reduction). If Γ ⊢ M : τ andM M ′,
thenΓ ⊢ M ′ : τ .

This property is proved by induction on the reduction. In order
to simplify case analysis, we first show that typing derivations can
be put in a canonical form, where successive applications ofrules
WEAKEN and SIM have been fused.

Proposition 2 (Progress). If Γ ⊢ M : τ andΓ does not contain
value variable bindings, then either M is a result, or it is reducible.

Progress is proved by induction on the typing derivation. The
side condition thatΓ does not contain any value variable is as usual.
However, we cannot require the more restrictive hypothesisthatΓ
be empty as evaluation takes place under existential quantifiers and
ν binders. Moreover, this allows to consider the reduction ofopen
programs,i.e. programs with free type variables. This is the case
for programs with abstract types, which come from unrestricted
openings or open witness definitions. This closely corresponds to
ML programs composed of modules with abstract types.

5. Related work
Russo (2003) justifies the meaninglessness of paths for module
types, by interpreting modules and signatures into semantic objects
with System-F types. He also uses existential quantifiers to track
type generativity. It seems however that his existential types are
implicitly opened and automatically extruded. Unfortunately, the
dynamic semantics of semantic objects is not described.

In the context of run-time type inspection, Rossberg (2003)
introducesλN, a version of System-F with a construct to define
abstract types and a mechanism of directed coercions. His abstract
types can be automatically extruded to allow sharper type analysis,
and are thus close to ourΣ binder. His coercions resemble ours,
though ours are symmetric, because they never cross the abstraction
barrier. Although both systems seem kindred in spirit, theyare
subtly different, because they have been designed for quitedifferent
purposes: in particular,λN is only partially related to traditional
existential types, since parametricity is purposely violated.

Dreyer (2007) defines RTG to deal with type generativity in the
context of recursive modules. He introducestype referenceswhich
can be written at most once. The creation of a type reference with
“new α in M ” introduces a type variable in the scope ofM that
should be treated as a resource that can be set at most once, with
his type reference update “set α := τ in M ”. Then,M and only
M will see the concrete definitionτ for α while other paths of the
program will seeα abstractly.

Technically,the treatment of these linear resources differ sig-
nificantly from ours: his semantics employs a type store to model
static but imperative type reference updates, whereas we just use
extrusions ofΣ binders. To a limited extent, these two approaches
might be related by seeing our extrusion as a local treatmentof
his type store, as has been proposed for value references (Felleisen
1987). Dreyer uses an effect type system to guarantee the unique-
ness of writing, which exposes the evaluation order in the typing
rules of RTG, moving away from a logical specification, whereas
we usezipping of contexts—a symmetric operation—to enforce
sound openings and maintain a close correspondence with logic.
Intuitively,we think of existential values as generating a fresh type
when opened, while he sees them as functions in “destinationpass-
ing style” (DPS).

Despite these strong technical differences, the two systems have
similar constructs: the “new” primitive is similar to ourν binder;
the “set α := τ in M ” is related to theΣ[α] (α = τ)M construct.
Note the use of a single type name here (as mentioned in§3.4).

9 Revised version, 14 April 2008

The two systems differs a little more in other constructs. In

RTG, the creation of animpurefunction of typeτ1

α↓
−−→ τ2, whose

body defines a type variableα is always prefixed by the DPS
construct, namely the generalization by a writable type variable
Λα ↑ K. M . The former is useful to write typical examples of
recursive modules and allow their separate compilation. However,
this construct taken alone would have to be treated linearly, which
would require the introduction of linearity in types, and would
raise type wellformedness issues with respect to type substitution.
Hence, the two constructs are combined into a single form. Itis
said that a term with type∃α ↓ K. τ can be understood as a

DPS function of type∀α ↑ K. ()
α↓
−−→ τ . In other words, an

existential value is a term where the assignment for the witness
is frozen. This implies, however, that the body of a DPS function,
hence the body of an existential term, isnot evaluated. One could
argue that it would suffice to predefine the body with alet-binding,
so that it is evaluated, but this is not always feasible sincethe
body can depend on the type variableα. By contrast,F. disallows
the definition of impure functions, but the existential introduction
∃α. M corresponds to RTG’s type variable generalizationΛα ↑
K. M taken alone. However, evaluationdoes take place under
existential quantifiers inF..

The approach followed in RTG treats type abstraction as a side
effect and therefore correlates type abstraction with evaluation. To
our point of view, the two must be separated, andF. demonstrates
that this is achievable.

RTG handles a richer type algebra thanF.: the support of higher
order as well as recursive types inF. is planned.

In a previous work, Montagu and Rémy (2008) define a weaker
version ofF.. They point out the inherent presence of type re-
cursion. They manage to disable recursive types with a restriction
of the zipping operator thus avoiding explicit dependencies. They
take advantage of this restriction to define a type and semantics-
preserving translation to System-F. As the transformation is non
local and performslet-expansions, they show thatF. allows for
programming more modularly than System-F. The current version
is an extension of the former presentation where constructsare fur-
ther decomposed, the double vision problem is handled, and recur-
sion is tracked more precisely via explicit dependencies.

In a second stage, they equip their language with a path system
at the level of types. They claim this is a necessary component to
write compactprograms, that is completely orthogonal to type ab-
straction, and would also benefit to System-F. Their path system
can be added unchanged to this extended version ofF., provid-
ing the complementary but necessary ingredient to program with
modules.

Conclusive remarks
We definedF., a variant of explicitly-typed System-F with prim-
itive open existential typesthat generalize the usual notion of
(closed) existential types by splitting their creation andelimination
into more atomic constructs. The subject reduction and progress
theorems hold forF. and have routine proofs.

We showed how openings of existential values and open wit-
ness definitions tightly correspond to type abstraction andgenera-
tivity in modules. Moreover, we gave a solution to the doublevision
problem that integrates smoothly with this system. In spiteof the
inherent presence of recursive types, we managed to detect and for-
bid them by enriching typing environments to track dependencies.
More importantly, we highlighted that type abstraction andgener-
ativity should and canbe separated from evaluation, and neednot
be explained as a side effect. Instead, the mechanism ofextrusion
plays a central role.

We believe thatF. is promising as the core of a programming
language with first-class modules. Thebare simplicityof the no-
tionsF. is based on is its best asset.

We purposely limited the expressiveness ofF. to the minimum
that permits programming with modules in theML-like style, di-
rectly. Concentrating on the core significantly helped understand-
ing the foundations of type generativity. The integration of general
purpose features such as recursive types, higher-order types, value
references or recursion, still requires some work.

The addition of recursive type equations and their control,espe-
cially, is currently under work and necessitate some designadjust-
ments: the problem is to generalize iso-recursive types when recur-
sion is split across module boundaries (external type recursion). Re-
cursive type equations are required to enable programming with—
and hopefully provide a simpler foundations for—recursivemod-
ules and mixin modules.

Recursion (that is possibly ill-founded) can be added through
the use of a classical fixpoint combinator: if restricted to pure terms,
the soundness is straightforward. It is also possible to take the fix-
point of impure terms, but one should ensure extrusion can proceed
across recursion. This is achievable by syntactic restrictions.

Higher-order types are motivated by Russo’s work on modeling
applicative functors.

We also limitedF. to the definition ofpurefunctions to keep the
system simple enough: impure functions would indeed need tobe
treated linearly. Yet, this extension is worth considering: it would
make the system more canonical and would correlate functions
with contexts as it is usually the case. For instance we couldrecover
let-binding as a derived construct. In addition, it would permit
to re-explore the duality between existentials and universals that
is already visible in the typing rules. We also believe that linear
types can be integrated to the system by a light modification of the
zipping operator and of the notion of purity.

This work realizes the first half of our project of defining a
module language with simple and logical foundations. Indeed, F.

misses a significant element to be considered as a scalable mod-
ule language: apath systemmust complete it, that would per-
mit to write compact programs and overcome the diamond import
problem. This second half, already briefly introduced in an earlier
work (Montagu and Rémy 2008), will be developed independently
in another paper.

Of course, some form of type inference will eventually be
needed in a real programming language based onF.. An easy
solution is to stratify the type system—just for the purposeof type
inference. We could inferML-like types for the base level and re-
quire explicit type information for the module level, as forML.
Another more ambitious direction is to use a form of partial type
inference with first-class polymorphism.

Acknowledgments
The authors would like to thank Paul-André Melliès and François
Pottier for fruitful discussions, as well as anonymous referees for
useful remarks on an earlier version of this paper.

References
Luca Cardelli and Xavier Leroy. Abstract types and the dot notation.

In M. Broy and C. B. Jones, editors,Proceedings IFIP TC2 working
conference on programming concepts and methods, pages 479–504.
North-Holland, 1990. Also available as research report 56,DEC Systems
Research Center.

Judicaël Courant. An applicative module calculus. InTheory and Practice
of Software Development 97, Lecture Notes in Computer Science, pages
622–636, Lille, France, April 1997. Springer-Verlag.

10 Revised version, 14 April 2008

Derek Dreyer. Recursive type generativity.Journal of Functional Program-
ming, pages 433–471, 2007.

Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-
order modules. In2003 ACM SIGPLAN Symposium on Principles of
Programming Languages, 2003.

Matthias Felleisen.The Calculi of Lambda-v-CS Conversion: A Syntactic
Theory of Control and State in Imperative Higher-Order Programming
Languages. PhD thesis, Indiana University, 1987.

Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-
order modules with sharing. InProceedings of the 21st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
123–137, New York, NY, USA, 1994. ACM. ISBN 0-89791-636-0. doi:
http://doi.acm.org/10.1145/174675.176927.

Delia Kesner and Stéphane Lengrand. Resource operators for lambda-
calculus.Information and Computation, 205(4):419–473, 2007.

Xavier Leroy. A syntactic theory of type generativity and sharing. Journal
of Functional Programming, 6(5):667–698, 1996.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon. The Objective Caml system release 3.10. INRIA, May 2007.

Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Mod-
ule Systems. PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, May 1997.

David MacQueen. Modules for standard ML. InProceedings of the
ACM Symposium on LISP and functional programming, pages 198–
207, New York, NY, USA, 1984. ACM. ISBN 0-89791-142-3. doi:
http://doi.acm.org/10.1145/800055.802036.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, May 1997.

John C. Mitchell and Gordon D. Plotkin. Abstract types have existential
type. ACM Trans. Program. Lang. Syst., 10(3):470–502, 1988. ISSN
0164-0925.

Benoı̂t Montagu and Didier Rémy. Towards a simpler accountof modules
and generativity: Abstract types haveOpenexistential types. Available
electronically fromhttp://gallium.inria.fr/~remy/modules/,
March 2008.

Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger.
A nominal theory of objects with dependent types. InProceedings of
ECOOP, 2003.

John C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing 83, pages 513–523. Elsevier Science, 1983.

Andreas Rossberg. Generativity and dynamic opacity for abstract types. In
5th ACM-SIGPLAN International Conference on Principles and Prac-
tice of Declarative Programming, Uppsala, Sweden, September 2003.

Claudio V. Russo. Types for modules.Electronic Notes in Theoretical
Computer Science, 60, January 2003.

A. Judgments
A.1 Wellformed environments

OK-EMPTY

ε ⊢ ok

OK-FORALL
Γ ⊢ ok D ⊆ domΓ

Γ, (∀α �D) ⊢ ok

OK-EXISTS
Γ ⊢ ok D ⊆ domΓ

Γ, (∃α �D) ⊢ ok

OK-VAR
Γ ⊢ τ wf ftv(τ) ⊆ D ⊆ domΓ

Γ, (x : τ �D) ⊢ ok

OK-EQ

Γ ⊢ τ wf ftv(τ) ⊆ D ⊆ domΓ

Γ, (∀(α = τ) �D) ⊢ ok

OK-DBEQ

Γ, (∀(α = τ) �D) ⊢ ok

Γ, (∀(α ⊳ β = τ) �D ⊎ {β}) ⊢ ok

A.2 Wellformed types

WF-VAR
Γ ⊢ ok α ∈ domΓ

Γ ⊢ α wf

WF-ARROW
Γ ⊢ τ1 wf Γ ⊢ τ2 wf

Γ ⊢ τ1 → τ2 wf

WF-RECORD
∀i ∈ 1..n, Γ ⊢ τi wf ∀i, j, i 6= j ⇒ ℓi 6= ℓj

Γ ⊢ {(ℓi : τi)
i∈1..n}wf

WF-EMPTY
Γ ⊢ ok

Γ ⊢ {}wf

WF-FORALL
Γ, (∀α �D) ⊢ τ wf

Γ ⊢ ∀α. τ wf

WF-EXISTS
Γ, (∃α �D) ⊢ τ wf

Γ ⊢ ∃α. τ wf

A.3 Compatible types

EQ-REFL

Γ ⊢ ok α ∈ domΓ

Γ ⊢ α ≡ α

EQ-EQ

Γ ⊢ ok ∀(α = τ) ∈ Γ ∨ ∀(α ⊳ β = τ) ∈ Γ

Γ ⊢ α ≡ τ

EQ-ARROW

Γ ⊢ τ1 ≡ τ ′
1 Γ ⊢ τ2 ≡ τ ′

2

Γ ⊢ τ1 → τ2 ≡ τ ′
1 → τ ′

2

EQ-EMPTY

Γ ⊢ ok

Γ ⊢ {} ≡ {}

EQ-RECORD

∀i ∈ 1..n, Γ ⊢ τi ≡ τ ′
i ∀i, j, i 6= j ⇒ ℓi 6= ℓj

Γ ⊢ {(ℓi : τi)
i∈1..n} ≡ {(ℓi : τ ′

i)
i∈1..n}

EQ-FORALL

Γ, (∀α �D) ⊢ τ ≡ τ ′

Γ ⊢ ∀α. τ ≡ ∀α. τ ′

EQ-EXISTS

Γ, (∃α �D) ⊢ τ ≡ τ ′

Γ ⊢ ∃α. τ ≡ ∃α. τ ′

EQ-SYM

Γ ⊢ τ ′ ≡ τ

Γ ⊢ τ ≡ τ ′

EQ-TRANS

Γ ⊢ τ1 ≡ τ2 Γ ⊢ τ2 ≡ τ3

Γ ⊢ τ1 ≡ τ3

A.4 Similar types

SIM -REFL
Γ ⊢ ok α ∈ domΓ

Γ ⊢ α ⊳ α

SIM -DBEQ

Γ ⊢ ok ∀(α ⊳ β = τ) ∈ Γ

Γ ⊢ α ⊳ β

SIM -ARROW

Γ ⊢ τ1 ⊳ τ ′
1 Γ ⊢ τ2 ⊳ τ ′

2

Γ ⊢ τ1 → τ2 ⊳ τ ′
1 → τ ′

2

SIM -EMPTY
Γ ⊢ ok

Γ ⊢ {} ⊳ {}

SIM -RECORD

∀i ∈ 1..n, Γ ⊢ τi ⊳ τ ′
i ∀i, j, i 6= j ⇒ ℓi 6= ℓj

Γ ⊢ {(ℓi : τi)
i∈1..n} ⊳ {(ℓi : τ ′

i)
i∈1..n}

SIM -FORALL

Γ, (∀α �D) ⊢ τ ⊳ τ ′

Γ ⊢ ∀α. τ ⊳ ∀α. τ ′

SIM -EXISTS

Γ, (∃α �D) ⊢ τ ⊳ τ ′

Γ ⊢ ∃α. τ ⊳ ∃α. τ ′

SIM -TRANS
Γ ⊢ τ1 ⊳ τ2 Γ ⊢ τ2 ⊳ τ3

Γ ⊢ τ1 ⊳ τ3

11 Revised version, 14 April 2008

http://gallium.inria.fr/~remy/modules/

	Introduction
	Previous approaches to type abstraction
	Paths-based systems
	Dreyer's Rtg
	Abstract types as existential types

	Open existential types
	Atomic constructs for existential types
	Richer contexts for typing judgments
	Splitting unpack
	Splitting pack
	Generative functors
	Open existential constructs: a summary
	Linearity to control openings and open witness definitions

	The appearance of recursive types
	Preventing the emergence of recursive types
	Addressing the double vision problem

	The language Fzip
	Syntax
	Typing rules
	Reduction semantics
	Substitution and purity
	Results and values
	Extrusions
	Reduction

	Type soundness

	Related work
	Judgments
	Wellformed environments
	Wellformed types
	Compatible types
	Similar types

